Lab Project - EE 421L - Fall 2019

Design a Circuit that takes a 9-11MHz Clock Signal and Generates a 36-44MHz Clock Signal (x4 Clock Multiplier)

                       
Authored by John Patrick Buen

Rebelmail: buenj1@unlv.nevada.edu

11/10/2019 

                                

Download my lab project here: jpb_Lab_Project.zip                                     

              

            

Project Description: 
                   
Design a circuit that takes a 9-11 MHz clock signal and generates a 36-44 MHz clock signal. In other words, design x4 clock multiplier. The input clock is multiplied by 4 and output. Assume the input clock signal has a 50% duty cycle.

                     

            

                       

Schematics and Instantiations Used: 

               

XOR Gate (Designed from Lab 6)

             

->

                

The XOR gate is used for this lab project due to it's functionality. In summary, the XOR gate outputs a logic 1 when only one of the inputs are a logic 1, hence given the name "exclusive OR."
In this project, the XOR gate is used as an edge detector for the input signal when applied a delayed signal from one input (A) onto the other input (B). Thereby, the resulting output signal of 

the XOR gate will have double the frequency compared to the input signal. To quadruple the frequency, there would have to be another XOR gate in-series from the previously created XOR gate

and simply connecting the output of the 1st XOR gate as the input to the next including it's own delay signal. That is our goal for this project. 

              

                   

Buffers

             

->

                   

Buffers are just a long string of inverters that contribute to delaying signals and making faster/steeper rise and fall times of signals.

                   

                    

                

Schematic Overview

             

              

                  

                      


 


                             

PART 1: MAKING THE 2X CLOCK  

            

Intro: To make the 2x clock frequency, an XOR gate and a buffer on the B input of the XOR is needed. 

             

                

Buffer 1 (1st delay buffer on the 1st XOR gate):

         

- This buffer is composed of 2 unique buffers: one specifically to delay the signal and the other one to make steeper and quicker edges for the delayed signal.

         

             

Delay Buffer  (12u/6u, L = 12u)                                                                                                                            "Fast" Buffer (12u/6u, L = 600n (minimum))

-> 

                 

For both buffers, I used 3 inverters. For the delay buffer, I used a length of 12u for each inverter in order to get a solid delay time. The goal to achieve a solid 50% duty cycle for the output signal is to position the rise/fall times of the delayed signal to be almost exactly in the half-way point of the input pulse width (~25ns) whenever the signal is either high or low. For the fast buffer, I used the minimum length of 600n. Using this minimum length is significant for the delayed signal to have sharp edges due to the input capacitances for each inverter. In the equation, C = Cox'*W*L, the bigger the length, the bigger the capacitance, and the slower the edges. Thus, to have faster edges, the length must be small.

             

          

Simulation Schematic for the 2 buffers and Symbol

             

First Delay Buffer (1st XOR gate)                                                                                                              Symbol

 -> 

The combined buffers are put together into one, leading to 1 overall symbol for the two buffers (shown above)
The two buffers are combined together to make a total of 6 inverters. The delay is implemented in the delay buffer and getting fast edges on the signal is implemented on the "Fast" buffer.

                 

                     

             

First Delay Buffer Simulation (Input signal vs. Delayed Input signal)

               

           


Period = 100ns, pulse width = 50ns (to test for the 10MHz frequency)

For the simulation above, I calculated the propagation delays (tPHL and tPLH)
Using the widths and lengths used for the delay buffer schematic, W = 12u (PMOS), W = 6u (NMOS), L = 12u (BOTH)
Effective Resistances: PMOS -> Rp = Rp'(L/W) = (40k)(12u/12u) = 40k  
                                  NMOS -> Rn = Rn'(L/W) = (20k)(12u/6u) = 40k
                                  Rp + Rn = 80k

Capacitances: PMOS -> Coxp = Cox'(W)(L) = 2.5fF(12u)(12u) = 360fF
                     NMOS -> Coxn = Cox'(W)(L) = 2.5fF(6u)(12u) = 180fF
                      Ctot = 5/2(360fF + 180fF) = 1350fF
Taking the sum of both the propagation high to low and low to high delays and dividing that number by the number of inverters
used for the 'delay' buffer (N = 3) gave me an approximate delay of 25.2 ns as shown in the simulation above.
tPHL + tPLH  = 0.7(Rp + Rn)(Ctot) = 0.7(80k)(1350fF) = 75.6ns
(tPHL + tPLH) / 3 = 25.2ns

         

         

Simulation of the 2x CLK 

            

           

           

 

              

The 2x CLK output shown above had slow edges, which can have an influence in it's delayed signal and the 4x CLK signal.

               

         

-->TO FIX: Include a buffer at the output of the first XOR gate

          

2x CLK Output Buffer (12u/6u, L = 600n, m = 2)                                                                          Updated Schematic

               

-> 

            

Resulting simulation

       

**Notice the edges got sharper after including the buffer at the output.

             

            

             

                   

              

PART 2: MAKING THE 4X CLOCK

             

Intro: To make the 4x clock, another XOR gate has to be placed in-series with the 1st XOR gate with the input of the 2nd XOR gate be the output of the 1st XOR (2x clk) and it's delayed signal.

           

          

Buffer 2 (2nd Delay Buffer on the 2nd XOR Gate):

          

- This buffer is also composed of a delay buffer and a fast buffer and are then combined together to make one overall buffer for the delayed signal.

                 

               

Delay Buffer (12u/6u, L = 8.1u)                                                                                                                                "Fast" Buffer  (12u/6u, L = 600n (minimum))

->  

           


The 'fast' buffer used here is the exact same schematic used in the previous. The lengths of the 'delay' buffer is smaller than the lengths of the first delay 

buffer (length ~8u). This is because the delay time for the delayed signal is smaller/quicker than the previous. In order to achieve a near 50% duty cycle for the output, the delay time has to be around 12ns for a 10MHz
input clock.

 

          

           

             

Simulation Schematic for the 2 buffers and Symbol 

           

Second Delay Buffer (2nd XOR gate)                                                                                                                   Symbol

->

          


            

         

Second Delay Buffer Simulation (2x CLK vs. Delayed 2x CLK)

           

          

Period = 50ns, Pulse width = 25ns (to model the 2x CLK Signal)

Calculations for the propagation delays
Using widths and lengths according to the delay buffer schematic: W = 12u (PMOS), W = 6u (NMOS), L = 8.1u (BOTH)
Effective Resistances: PMOS -> Rp = Rp'(L/W) = (40k)(8.1u/12u) = 27k  
                                  NMOS -> Rn = Rn'(L/W) = (20k)(8.1u/6u) = 27k
                                  Rp + Rn = 54k

Capacitances: PMOS -> Coxp = Cox'(W)(L) = 2.5fF(12u)(8.1u) = 243fF
                     NMOS -> Coxn = Cox'(W)(L) = 2.5fF(6u)(8.1u) = 121.5fF
                     Ctot = 5/2(243fF + 121.5fF) = 911.25fF
Taking the sum of both the propagation high to low and low to high delays and dividing that number by the number of inverters
used for the 'delay' buffer (N = 3) gave me an approximate delay of 11.5 ns as shown in the simulation above
tPHL + tPLH  = 0.7(Rp + Rn)(Ctot) = 0.7(54k)(911.25fF) = 34.4ns
(tPHL + tPLH) / 3 = 11.5ns

            

            

Simulating the 4x CLK

Schematic            

            

                         

Simulation of the 4x CLK


            

For the simulation above, the 4x output is slightly slow in terms of it's rise times. To sharpen the rise times, a buffer would have to be included at the output of the 4x clock


                    

4x CLK Output Buffer (12u/6u, L = 600n, m = 2, using 2 inverters)

             

              

             

Updated Circuit and Resulting Simulation

           

Schematic

              

Simulation with included buffer at the output

                

**Note: The pins in the middle of the circuit are there so I can see the signals operating at those nodes when I simulate the circuit. They will be removed in the final schematic.


             

             

Temporary Sim-Schematic to Simulate ALL Signals

                    

                     

The sim-schematic above is created based on the previous 4x schematic that included each of the pins for all signals. The schematic is used to simulate all signals from the input signal (10MHz) to the 2x CLK and to the 4x CLK as well as their corresponding delayed signals.


            

            

           

Simulation of ALL Signals (with the input clock at 10MHz, 100ns period, and with VDD = 5V)

           

              

             

The resulting frequency of the 4x Clock signal with a 10MHz input signal is calculated to be around 41MHz.


           

Final Schematic and Symbol

               

Schematic (INPUT - "clk_in", OUTPUT - "clk_out")

                

Symbol

            

             

             

PART 3: Test for Other Frequencies and Power Supply Voltages (VDD)

                  

Frequency - 9MHz

             

9MHz, VDD = 4V
9MHz, VDD = 5V
9MHz, VDD = 6V
9MHz, VDD = 7V

                   

                      

             

Frequency = 10MHz

                   

10 MHz, VDD = 4V
10 MHz, VDD = 5V
10 MHz, VDD = 6V
10 MHz, VDD = 7V

                   

                

Frequency = 11 MHz

          

11 MHz, VDD = 4V
11 MHz, VDD = 5V
11 MHz, VDD = 6V
11 MHz, VDD = 7V

             

                

                

                 

              

PART 4: LAYOUT OF 4X CLOCK MULTIPLIER

                   

Layout and Extracted View of the XOR Gate

              

    

             

DRC and LVS of XOR Gate:

        

       

             


                

                

Layout and Extracted View of the 'Delay Buffers'

                 

Delay Buffer 1: Widths - 12u/6u, Lengths (both PMOS and NMOS) - 12u                                           Delay Buffer 2: Widths - 12u/6u, Lengths(both) - 8.1u

     

              

    

Extracted Views

         

Delay Buffer 1  (length = 12u)                                                                                                                                Delay Buffer 2 (length = 8.1u)

        

              

  

DRC/LVS of Delay Buffer 1 (length = 12u) 

         

->

            

   

DRC/LVS of Delay Buffer 2 (length = 8.1u)

         

->

               

   


           

Layout and Extracted View of the 'Fast' Buffer (for having fast edges on the signals)

                 

12u/6u, Length = 600n (minimum)

-> 

                

       

DRC/LVS of the 'Fast' Buffer

         

->

                   


              

Layout and Extracted View of the First Delay Buffer 

             

            

The first delay buffer layout is composed of the delay buffer with the length of 12u and the 'fast' buffer with minimum length of 600n. Both have PMOS and NMOS width sizes of 12u/6u respectively.

              

Extracted View

         

       

                 

 

DRC/LVS of the First Delay Buffer

           

->  

               

  


               

 

Layout of the Second Delay Buffer

                  

                

The Second Delay Buffer is composed of the delay buffer with length of 8.1u and the fast buffer with minimum length of 600n. Both have NMOS and PMOS width sizes of 12u/6u respectively.

  

               

Extracted View

           

               

   

DRC/LVS of the Second Delay Buffer

         

->

            

   


            

   

Layout and Extracted View of the 2x Clock and the 4x Clock Output Buffers

                

2x Clock Output Buffer                                                                                                                                                            4x Clock Output Buffer

   

              

2x Clock Output Buffer: width - 12u/6u, length - 600n (minimum), factor of 2 for each inverter size, 4 inverters used4x Clock Output Buffer: width -> 12u/6u, length -> 600n (minimum), factor of 2 for each inverter size, 2 inverters used

                    

Extracted View

         

2x Clock Output Buffer                                                                                                                                                             4x Clock Output Buffer

   

              

            

DRC/LVS of the 2x Clock Output Buffer

         

->

         

The LVS output shown in both the 2x or 4x output buffers have more instances for the layout than the schematic. That is due to the increasing multiplier value for the sizes of each inverter of both buffers. 

          

    

DRC/LVS of the 4x Clock Output Buffer

           

->

             

      


               

             

Entire Layout of the 4x Clock Multiplier Circuit

                

         

              

    

Extracted View

             

           

        

DRC and LVS Verification

            

-> ->

            

       

 

            

              

       

 

                              

                                            

That concludes my Lab Project.

                       

                             

Return to buenj1

Return to EE421L Students