Lab 2 Operation of a compensated scope probe - EE 420L
Authored
by Jeremy Garrod
02/09/2017
Email: garrod@unlv.nevada.edu
Pre-Lab Work
Pre-lab work
- Watch the video scope_probe and review scope_probe.pdf (associated notes).
- Vary the parameters in the simulations found in probe.zip to ensure you understand the operation of a compensated 10:1 scope probe.
- From lab 1 ensure that you understand the operation and analysis of simple RC circuits (likely a quiz on this).
- Ensure that you can read/create Bode plots and plot the corresponding signals in the time-domain at a particular frequency.
- Read the write-up seen below before coming to lab
Lab Work
Perform, and document in your html lab report, the following:
- Show scope waveforms of a 10:1 probe undercompensated, overcompensated, and compensated correctly.
- Comment
on where the type of scope probe (i.e., 1:1, 10:1, 100:1, etc.) is set
on your scope (some scopes detect the type of probe used automatically).
- Draft
the schematic of a 10:1 scope probe showing: the 9 MEG resistor, 1 MEG
scope input resistance, capacitance of the cable, scope input
capacitance, and capacitance in the probe tip.
- Using
circuit analysis, and reasonable/correct values for the capacitances,
show using circuit analysis and alegbra (no approximations), that the
voltage on the input of the scope is 0.1 the voltage on the probe tip.
- Devise
an experiment, using a scope, pulse generator, and a resistor, to
measure the capacitance of a length of cable. Compare your measurement
results to the value you obtain with a capacitance meter. Make sure you
show your hand calculations.
- Build
a voltage divider using two 100k resistors. Apply a 0 to 1 V pulse at 1
MHz to the divider's input. Measure, and show in your report, the
output of the divider when probing with a cable (having a length
greater than or equal to 3 ft) and then a compensated scope probe.
Discuss and explain the differences.
- Finally,
briefly discuss how you would implement a test point on a printed
circuit board so that a known length of cable could be connected
directly to the board and not load the circuitry on the board.
Experiment 1: Show scope waveforms of a 10:1 probe undercompensated, overcompensated, and compensated correctly.
Undercompensated
Overcompensated
Properly Compensated
Experiment 2: Comment on where the type of scope probe (i.e., 1:1, 10:1,
100:1, etc.) is set on your scope (some scopes detect the type of probe
used automatically).
Using
the Tektronix oscilloscope that is available in the lab, you can
manually set the ratio of the probe that you are using. In the menus
for each scope channel there is an option called "Attenuation" that is
used to select the type of scope that will be used. The probe that is
used in this lab is a Tetronix 10x probe.
10x Scope probe
Menu of oscilloscope showing probe type
Experiment 3: Draft the schematic of a 10:1 scope probe showing: the 9 MEG
resistor, 1 MEG scope input resistance, capacitance of the cable, scope
input capacitance, and capacitance in the probe tip.
SPICE schematic of compensated probe
Using
the values from the schematic above, the circuit was analyzed by hand
to show that the output (Vout) was indeed 0.1 of the input (Vin). The
output of the circuit is just a simple voltage divider between the two
impedances Z1 and Z2. The first impedance, Z1, is the probe capacitor
and resistor in parallel. The second impedance, Z2, is the the cable
and scope capacitances added together in parallel with the resistance of the scope.
Hand calculations for given schematic
Experiment 4: Devise an experiment, using a scope, pulse generator, and a
resistor, to measure the capacitance of a length of cable. Compare your
measurement results to the value you obtain with a capacitance meter.
Make sure you show your hand calculations.
In
order to find the capacitance of the cable, the time delay of the
circuit will be used. A 100k resistor was put in series with the cable
in order to stay consisent with the prelab video. When the 100k
resistor is in series with the cable, the capacitance of the cable
creates an RC circuit, where the time delay can be found by using t =
0.7*R*C. If a time is measured and the resistance is known (100k), the
equation can be rearranged into C = t/(0.7*R), where C is the
capacitance of the cable.
A time delay of 924ns was measured, which gives a capacitance of c = (924ns/(0.7*100k) = 13.2pF
In
order to measure the capcitance of the cable using a capacitor meter, a
pair of banana probes was used. The capcitance of the banana probes was first
measured. The capacitance of the banana probes and cable were then
measured together and the capacitance of the banana probes were
subtracted from this value. The resulting capacitance is the
capacitance of the cable.
Capacitance of the banana probes along with the cable
Capacitance of
banana probes
0.0225nF - 0.0084nF = 14.1pF
Experiment 5: Build a voltage divider using two 100k resistors. Apply a 0 to 1
V pulse at 1 MHz to the divider's input. Measure, and show in your
report, the output of the divider when probing with a cable (having a
length greater than or equal to 3 ft) and then a compensated scope
probe. Discuss and explain the differences.
The
two scope output below are of a properly compensated scope probe and
just normal cable. The output of the compensated scope probe is
larger than the cable due to the fact that the probe capacitance is in
series with the other capacitances, which lowers the overall
capacitance since capacitors in series work like resistors in parallel.
This lower capacitance creates a lower RC time constant which means
that the capacitors will charge and discharge very quickly. The output
of the noncompensated cable will be much lower due to the high
capacitance, which creates a large RC time constant. This in turn
causes the capacitor to charge and discharge slowly. This effect can be
seen by the much more linear output.
Output of compensated probe
Output of noncompensated cable
Experiment 7: Briefly discuss how you would implement a test point on a
printed circuit board so that a known length of cable could be
connected directly to the board and not load the circuitry on the board.
Since
the cable is of a known length, the capacitance and resistance will be
known values. Since these values are known, you can treat them the same
way that the capacitance and resistance of the cable and scope input
are treated. A resistor and capacitor that are in parallel can added
into the circuit. This has the same effect that using a compensated
scope probe does, it if effectively compensating the cable so that the
effects are minimal.
Return to EE 420 labs