Laboratory Exercise 1

Switches, Lights, and Multiplexers

The purpose of this exercise is to leam how to connect simple input and outpot devices o an FPGA chip and
implement a circuit that uses these devices. We will use the switches 51 7—y on the DE2 board as inputs to the
circuit. We will use light emitting diodes (LEDs) and 7-segment displays as output devices,

Part1

The DE2 hoard provides 18 ingele switches, called SW v _y, that can be used as inputs to a circoit, and 18 red
lights, called LEDR 5, that can be used io display output values. Figore | shows a simple Verilog module that
uses these switches and shows their states on the LEDs. Since there are 18 switches and lights it is convenient to
represent them as vectors in the Verilog code, as shown. We have osed a single assignment statement for all I8
LEDR putputs, which is equivalent to the individual assignments

assign LEDR[17] = 5WI[17]:
assign LEDR[16] = SW[16]:

assign LEDR[0] = SW{(]:

The DE2 board has hardwired connections between its FPGA chip and the switches and lights. To use SW -_; und
LEDR 7 it is necessary to include in your Quartus 1 project the correct pin assignments, which are given in the
DE2 User Manua!. For example, the manual specifies that Wy is connected o the FPGA pin 235 and LEDR y, is
connecied 1o pin AE23. A good way o make the required pin assigmments is o import into the Qruartus [ softwire
the file called DE2_pin_assignmenis.cav, which is provided on the £DE2 System CD and in the University Program
section of Altera’s web site. The procedure for making pin assignments is described in the tuiorial Quarins 1
Intreaduerion using Vertlog Design, which is also available from Altera,

It is important (o realize that the pin assignmenis in the DE2_pin assigmmenis.csv file are uscful only if the
pin names given in the file are exactly the same as the port names wsed in your Verilog module. The file uses the
names SWO] ... SW[1T] and LEDR[O] ... LEDR[1T] for the switches and lights, which is the reason we used
these names in Figure L

Hf Simple module that connects the SW switches to the LEDR lights
module part] (SW, LEDR);

input [17:0] 5W; ! togele switches

output [17:0] LEDR:  // red LEDs

assign LEDR = SW;
endmaodule

Figure 1. Verilog code that uses the DE2 board switches and lights,

Pedorm the following steps to implement a circuit corresponding to the code in Figure | on the DE2 board.

1. Create a new Quartus 11 project for vour circuit. Select Cyelone 1l EP2C3SF6T2C6 as the target chip, which
is the FPGA chip on the Altera DE2 board.

2. Create a Verilog module for the code in Figure 1 and include it in your project.



3. Include in your project the required pin assignments for the DE2 board, as discussed above, Compile the
project.

4. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
swilches and observing the LEDs.

Part I1

Figure 2a shows a sum-of-products circuit that implements a 2-to- 1 mudifplever with a select input 5. If & = (1 the
multiplexer’s output 77 is egqual 1o the input &, and if & = 1 the output is equal to . Par b of the figure gives g
truth table for this multipleser, and part ¢ shows its circuit symbol.

a) Circuit

b) Truth table c¢) Symbaol

Figure 2. A 2-to- 1 multiplexer.

The multiplexer can be deseribed by the following Verilog statement:
assign m ={~s& x) | (s &y}

You are i write o Verilog module that includes eight assignment statemenis like the one shown above
describe the circuil given in Figure 3q. This circuit has two eight-bit inputs, X and Y, and produces the eighi-bil
output Af. If & = () then Al = X whileif 5 = | them M = Y. We refer to this circuit as an eight-hit wide 2-to- |
multiplexer, It has the circuit symbaol shown in Figure 36, in which X, Y. and A are depicted as eight-bit wires,
Perform the steps shown below.

3]



s . — iy,
Y& I
.
.
i:: ] ? By
a) Circuit b) Symbol

Figure 3. An eight-bit wide 2-to- 1 multipleser.

1. Create a new Quarius [T project for your circuit.

2. Include yvour Verilog file for the eighi-bit wide 2-to- 1 muliiplexer in vour praject. Use switch SW 7 on the
DE2 board as the s nput, switches SWr_p as the X input and SWis_» as the ¥ inpul. Connect the SW
switches o the red lights LEDR and connect the output M to the green lighss LEDG .

3. Include in your project the required pin assignments for the DE2 board. As discussed in Pan 1, these
assignments ensure that the input poris of yvour Verilog code will use the pins on the Cyclone 11 FPGA
that are connected to the SW switches, and the output ports of your Verilog code will use the FPGA piny
connecled to the LEDR and LEDG lights.

4. Compile the project.

5. Downloud the compiled circuit into the FPGA chip. Test the functionality of the eight-bit wide 2-10-1
multiplexer by toggling the switches and observing the LEDs,

Part 111

In Figure 2 we showed a 2-10-1 multiplexer that selects between the two inputs v and v, For this part consider a
circuil in which the output s has o be selected from five inpuls w. v, w, @, and g Parl o of Figure 4 shows how
we can build the required 5-to-1 multiplexer by using four 2-to- | multiplexers. The circuit uses n 3-bit select input
53550 und implements the iroth table shown in Figure 40, A circuit symbaol for this muoltiplexer is given in pari ¢
of the figure,

Recall from Figure 3 that an eight-bit wide 2-to- 1 multiplexer can be built by using cight instances of a 2-0-]
multiplexer, Figure 5 applies this concepl to define a three-bit wide 5-to- | multiplexer. It contains three instances
of the circuit in Figure 4a.



a) Circuit
Ay
Xo Fi% -
2512 n |
000 "
D01 v 1]
010 w
L1 R | ¥ o —
100 ¥ e I— ()
1 01 ¥ T L—m
1 10] w 010
i 13| 3 x —I_EU
¥ —I_
b) Truth table ¢) Symbol

Figure 4. A 5-to-1 multiplexer.

Figure 5. A three-bit wide 5-to-| muoltiplexer.

Perform the following steps to implement the three-bit wide 5-1o-1 multiplexer.



1. Create a new Quartus [T project for your circuil.

2. Create a Verilog module for the three-bit wide 5-t0-1 multiplexer. Connect its select inputs o switches
SWis_1s, and use the remaining 15 switches SWq,_; 10 provide the five 3-bit inputs 7 1o ¥, Connect the
SWswitches 1o the red lights LEDR and connect the output M (o the green lights LEDG o _y,.

3. Include in your project the required pin assignments for the DE2 board. Compile the project,

4. Downloxd the compiled circult into the FPGA chip. Test the functionality of the three-bit wide 5-10-1
multiplexer by toggling the switches and observing the LEDs. Ensure that each of the inputs [ to ¥ can be
properly selected as the output A/,

Part IV

Figure 6 shows a 7-sepment decoder module that has the three-bit inpul ¢ aeycg. This decoder produces seven
outputs that are used to display a character on a 7-segment display. Table 1 lists the characters that should be
displayed for cach valuation of coeyep. To keep the design simple, only four characters are included in the table
{plos the “hlank” character, which is sclected for codes 100 — 111).

The seven segments in the display are identified by the indices O fo 6 shown i the figure. Each scgment is
illuminated by driving it to the logic value 0. You are o write a Verilog module that implements logic functions
that represent circuits needed to activate each of the seven segments. Use only simple Verilog assign statements
in vour code o specily each logic function using a Boolean expression,

T
L
e————

— ]
¢ T-segment
SEE—

decoder I

Figure 6. A T-segment decoder.

caryeg | Character

000
001
016
011
104
1
110
111

O-mmD

Table 1. Character codes.

Pedorm the following steps:

1. Create a new Quarius [1 project for your circuit.



2. Create a Verilog module for the 7-segment decoder. Connect the caryop inputs to switches SWa_g, and
connect the outputs of the decoder o the HEXD display on the DE2 board. The secgments in this display are
called HEXOy,, HEXO,, .. .. HEXOy, corresponding to Figure 6, You should declare the 7-bit port

output [(:6] HEX(;

in your Verilog code so that the names of these outputs maich the corresponding names in the DE2 User
Mareaf and the DE2_pin_assignments.csv file.

3. Afier making the required DE2 board pin assignments, compile the project.

4. Download the compiled circuit into the FPGA chip, Test the functionality of the circuit by toggling the
SWa_p switches and observing the 7-segment display,

PartV

Consider the circuit shown in Figure 7, It uses a threc-bit wide 5-to-1 multiplexer to enable the sclection of five
characters that are displayed on a 7-segment display. Using the 7-segment decoder from Pan IV this circuit can
display any of the characters H. E. L, O, and “blank’. The character codes are set according to Table | by using
the switches Wy, and a specific character is selected for display by seuting the switches W 5.

An outling of the Verilog code that represents this circuit is provided in Figure 8. Note that we have used the
circuits from Parts [T and IV as subcircuits in this code. You are o extend the code in Figure § so that it uses
five 7-segment displays rather than just one. You will need to use five instances of each of the subeircuits. The
purpose of your circuit is to display any word on the five displays that is compesed of the characters in Table |,
and be gble to rotate this word in a circular fashion across the displays when the switches SW ;5 are toggled,
As an example. if the displayed word is HELLO. then your circuit should produce the output patterns illustrated
in Table 2.

Lih

1
——

T-segment
decoder

Figure 7. A circuit that can select and display one of five characiers.



module pants (SW, HEX();
imput [17:0] SW; I togele switches
output [0:6] HEXO;, [ T-seg displays

wire [2:0] M:
mux3bit Stol MO (SWIT: 15 SW14:12]. SW[11:9], SW[8:6], SW[5:3], SW[2:0]. M);

char_Tseg HO (M. HEX ()
endmodule

I implements a 3-bit wide 5-to-| multiplexer
module mux 3bit Stol (5, U, V. W, X, ¥, M);
input [220] 5, U. V. W, X. Y;
output [2:0] M:

++ » code not shown
endmodule
{/ implements a T-segment decoder for H, E. L, O, and “blank’
module char_7seg (C, Display i

input [2:0] C: N input code

output [0:6] Display: /f output 7-seg code

.. code not shown

endmodule

Figure 8, Verlog code for the circuit in Figure 7.

SWir SWis SWis Charucter patiern
00 H E L L O
00 E L. L O H
(0110 L L O H E
011 L O HE L
100 O H E L L

Table 2. Rotating the word HELLO on five displays.

Perform the following steps.

-
-

Creale a new Quarus [l project for your circuil.

. Include your Verilog module in the Quartus 11 project. Connect the switches SW 5 5 1o the select inputs of

each of the five instances of the three-bit wide 5-to-1 multiplexers. Also connect SW 4y to each instunce
of the multiplexers as required to produce the pattems of characters shown in Table 2. Connect the outputs
of the five multiplexers to the 7-scgment displays HEXY HEXS HEX2 HEX], and HEX(.

. Include the required pin assignments for the DE2 board for all switches, LEDs, and 7-segment displays.

Compile the project,

. Download the compiled circuit inio the FPGA chip. Test the functionality of the circuit by setting the proper

churacter codes on the switches SW o and then toggling SW 515 0 observe the rotation of the characters.



Part VI

Extend your design from Part V so that is uses all cight 7-segment displays on the DE2 board. Your circuit should
be able to display words with five (or fewer) chamcters on the eight displays. and rotate the displayed word when
the switches SWyp_ 5 are toggled. If the displayed word is HELLO, then your circuit should produce the pattems
shown in Table 3.

SWir Wi SWis Character pattern
K H E L L O
(L1 H E L L O
00 H E L L ©O
arl H E L L O
Lk E L L O H
LH L L O H E
[ 10y L O H E L
11 4] H E L L

Table 3. Rotating the word HELLO on eighi displays.

Perform the following steps:

1. Create a new Quartus 11 project for your circuit and select as the target chip the Cyclone 1T EP2C35F672C6,

2. Include vour Verilog module in the Quartus 1 project. Connect the switches SW -5 to the select inputs of
each instance of the multiplexers in your circuit. Also conneet SW 5y to each nstance of the multplexers
as required to prodoce the patterns of characters shown in Table 3. (Hint: for some inputs of the multiplexers
you will want to select the *blonk’ character.) Connect the outputs of your multiplexers to the 7-segmeni
displays HEX7, . .., HEX0.

3. Include the required pin assignments for the DE2 board for all switches, LEDs, and 7-segment displays.
Compile the project.

4. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by seiting the proper
character codes on the switches SW 43— and then toggling S§Wi7-15 to observe the rotation of the charncters.

Copyright © 20K Altern Corporation,



Laboratory Exercise 10
An Enhanced Processor

In Laboralory Exercise 9 we described a simple processor. In Pant | of that exercise the processor itsell was
designed, and in Part 11 the processor was connected to an exiernal counter and o memaory unit. This exercise
describes subsequent parts of the processor design. Note that the numbering of figures and tables in this exercise
are continued from those in Parts | and 11 in the preceding lab exercise.

Part 111

In this pan vou will extend the capability of the processar so that the external counter is no longer needed. and
so that the processor has the ability 10 perform read and write operations using memory or other devices. You
will ndd three new types of instructions to the processor, as displayed in Table 3, The Id (load ) instruction loads
data into register RX from the extemal memory address specified in regisier RY, The st {store) instruciion stores
the dita contained in register RX into the memory address found in RY. Finally, the instruction mynz (move if
not zem) allows a mv operation to be execuied only under a certain condition; the condition is that the current
contents of register 7 are not equal to 0.

Operation | Funciion performed
Id R [Ry) R — || Ry
st R, [Ry| [fty] — [Rx]

mvnz fr, Ry | if G =0, Rr — Ry
Table 3. New instructions performed in the processor.

A schematic of the enhanced processor is given in Figure 7. In this figure. registers f0 o fi6 are the same
as in Figure 1 of Labomtory Exercise 9. bul register /1T has been changed to a counter. This counter is used
to provide the nddresses in the memory from which the processor’s instructions are read; in the preceding lab
exercise, a counter external to the processor was used for this purpose, We will refer to [T as the processor’s
program counter (PC), because this terminology is common for real processors available in the industry,. When
the processor is reset, 'C is set to address (1. At the start of each instruction (in time step 0) the contents of PC
are used as an address to read an instruction from the memory. The instruction is stored in IR and the PC is
automatically incremented 1o point to the next instruction (in the case of myi the PC provides the address of the
immediate datu and is then incremented again),

The processor's control unit increments PC by using the iner_PC signal, which is just un enable on this counter,
It is also possible to directly load an address into PC (RT) by having the processor execute a my or mvi instruction
in which the destination regisier is specified as K7, In this case the control unit uses the signal R7 . 1o perform
a parallel load of the counter. In this way, the processor con execuie instructions al any address in memory, as
opposed 1o only being able 10 execuie insiructions that are stored in successive addresses. Similarly, the current
comtents of PC can be copied into another register by using a my instruction. An example of code that vses the
PC register to implement a loop is shown below, where the text afier the % on each line is just a comment. The
instroction my B5,R7 places into 85 the address in memory of the mstruction sub R4.R2, Then, the instruction
mwnz R7.R5 causes the sub instruction to be executed repeatedly until R4 becomes (1. This type of loop could be
used in a larger program as a way of creating a delay,

mvi R2#1

mvi  R4F10000000 % binary delay value

my R5.R7 %% save pddress of next instruction
sub R4.R2 % decrement delay count

mvnz R7.ES % continue subtracting until delay count gets to (1



Bus

16
',lﬁ
| 50 e 5 L 1 16
L .'1. . 4
RO, r7 Ll F.'"R?"Tw in
in RO i I ] A
—t> i [—:-
Clock I A&
i AddSub - S [~ ADDR
DIN - Addsub -
| A
Muliplexers G |
ik s s
B
4 = = DOouUT
Dj'l*:m.l E
Grlur Fat
ROyur' BT s |
IR, von
ADDR,_
b IR DOUT,,
| ": Control unit T
W_I -
Run
Resein Done
L Jf-l
Clear
Coumnter

-

Figure 7. An enhanced version of the processor.

Figure 7 shows two registers in the processor that are used for data transfers, The ADDR register is used 1o
send addresses to an external device, such as o memory module, and the DOUT register is used by the processor o
provide data that can be stored outside the processor. One use of the ADDR register is for reading, or ferching, in-
structions from memory; when the processor wants to feich an instroction, the contents of PC (A7) are transfermed
across the bus and loaded into ADDR. This address is provided to memory, Tn addition to fetching instructions,
the processor can read data at any address by using the ADDR register. Both data and instructions are read into the
processor on the DIV input port. The processor can write data for storage at an extemal address by placing this
address into the ADDR register, placing the data to be stored into its DOUT register. and asserting the output of
the W iwrite) flip-flop 10 1.
Figure § illusirates how the enhanced processor is connected to memory and other devices. The memory unit
in the figure supports both read and write operations and therefore has both address and datn inputs, as well as a
write enable input. The memaory also has a clock input. becavse the address, data, and write enable inpots must be

td



loaded into the memory on an active clock edge. This type of memory unit is usually called a synclironous random
access memary (svachronons RAM). Figure § also includes a 16-bit register that can be used 1o store data from the
processor; this register might be connected to a set of LEDs to allow display of data on the DE2 board. To allow
the processor to select cither the memory unit or register when performing a write operation, the circuit includes
some logie gates that perform address decoding: if the upper address lines are 4 15414413452 = 0000, then the
memory module will be written at the address given on the lower address lines. Figure 8 shows e lower address
lines connected to the memory; for this exercise a memory with 128 words is probably sufficient, which implies
that 1 = 7 and the memory address port is driven by A .. Ay For addresses in which A5 A7 440 = 0001,
the data writien by the processor is loaded into the regisier whose outputs are called LEDs in Figure 8.

2% ]

A
Processor Al:ﬁ E Memory
I &
B A n
ADDR — . adelr
DOUT —ris dow | 18
N " _I—\ vior it
12 A
?j 5 Dyne p— Ap
Ags
Clock vV
Rexetn
i6
Run e [} () i LE s

Figure 8. Connecting the enhanced processor to a memory and output register,

. Create a new Quanus U project for the enhanced version of the processor.

. Write Verilog code for the processor and test vour circuit by using functional simolation: apply instructions

to the YNV port and observe the intemal processor signals as the instructions are executed. Pay careful
attention to the timing of signals between your processor and external memory; account for the fact that the
memory has registered input ports, as we discussed for Figure 8.

. Create another Quartus 11 project thal instantiates the processor, memory module, and register shown i Fig-

ure 8, Use the Quartus [T MegaWizard Plug-In Manager tool to create the ALTSYNCRAM memory module,
Follow the instructions provided by the wizard 1o create a4 memory that has one 16-bit wide read/write data
port and is 128 words deep, Use a MIF file 1o store instructions in the memory that are o be executed by

YOur processor,

. Use functional simulation to test the circuit. Ensure that data is read properly from the RAM and executed

by the processor.

. Include in vour project the necessary pin assignments o implement your circuit on the DE2 board. Use

switch §W,7 to drive the processor’s Run input, use KEY), for Besern. and use the board’s 50 MHz clock
signal as the Clock inpul. Since the circuit needs to run properly at 50 MHz, make sure that a timing
constraint is set in Quartus 11 10 consirain the cireuit’s elock o this frequency. Read the Report produced by
the Quartus [1 Timing Analyser to ensure that your circuil operates al this speed; if not, use the Quartus 11
toals to analyze your circuit and modify your Verilog code o make a more efficient design that meets the



5(-MHz speed requirement, Also note that the Run inpui is asynchronous to the clock signal, so make sure
to synchronize this input using flip-fAops,

Connect the LEDy register in Figure 8 o LEDR 5 so that vou cun observe the output produced by the
Processor,

6. Compile the circuit ond download it into the FPGA chip.
7. Test the functionality of your design by executing code from the RAM and observing the LEDs,

Part IV

In this part you are to connect an additional I/O module to your circuit from Pan 11 and write code that is executed
by vour processor,

Add n module called seg7_serall 1o your circuit. This module should contain one register for each 7-segment
display on the DE2 board. Each register should directly drive the scgment lights for one 7-segment display. so
that the processor can write characters onto these displays. Create the necessary address decoding o allow the
processor Lo write to the registers in the seg?_seroll module.

1. Create a Quartus [T project for your circuit and write the Verilog code that includes the circuit from Figure 8
in addition 1o your seg?_scroll module.

2. Use functional simulation to test the circuil

3. Add appropriate timing consiraints and pin assignments to your project, and write a MIF file that allows
the processor to write characters to the 7-segment displays. A simple program would write a word to the
displays nnd then terminate, but a more interesting progmm could scroll a message across the displavs, or
seroll a word aeross the displays in the left, right, or both directions,

4. Test the functionality of yourdesign by executing code from the RAM and observing the 7-segment displays.
Part V

Add to your circuit from Part TV another module, called post_n, that allows the processor 1o read the state of
some swilches on the board. The switch values should be stored into a regisier, and the processor should be able
to read this register by using a M instruction. You will have to use address decoding and multiplexers to allow the
processor 1o read from either the RAM or pert_n units, according to the address used.

1. Draw a circuit diagram that shows how the pord_n unit is incorporated into the system.

2, Create a Quartus 11 project for your circuit, write the Verilog code. and write a MIF fik: that demonstrates
use of the port_n module. One interesting application is 1o have the processor scroll a message across the 7-
segment displays and use the vilues read from the porr_n module to change the speed at which the message
is serolled.

e

. Test your cireuit both by using functional simulation and by downloading it and executing your processor
codde on the DE2 board.

Sugpested Bonus Parts

The following are suggesied bonus parts for this exercise.

1. Use the Quarnus I1 tools to identify the critical paths in the processor circuit. Modify the processor design
so that the circuit will operate st the highest clock frequency that vou can achieve.

2, Exiend the instructions supporied by your processor to make it more Aexible. Some suggested instruction
types are logic instructions (AND. OR. ctc). shift instructions. and branch instructions. You may also wish
to add support for logical conditions other than “not zero”™ | as supporied by mynz. and the like,

3. Write an Assembler program for your processor. [tshould automatically produces a MIF file from assembler
code,

Copynight (€)2006 Aliera Corporation,



Laboratory Exercise 2

Numbers and Displays

This is an exercise in designing combinational circuits that can perform binary-to-decimal number conversion
and binary-coded-decimal (BCD) addition.

Part 1

We wish to display on the 7-segment displays HEXT 10 HEX( the values set by the switches SWys_. Let the
vilues denoted by SWis g2, SWi_w, SWo_y and SWa_y be displayved on HEX3, HEX2, HEX! and HEXD,
respectively. Your circuit should be able to display the digits from 0 to 9, and should treat the valuations 1010
1111 as don'tcares.

1. Create a new project which will be used o implement the desired circuit on the Altera DE2 board. The
intent of this exercise is to manually derive the logic functions needed for the 7-segment displays. You
should use only simple Verilog assign statements in your code and specify each logic function as a Boolean
expression.

d

. Wnite a Venlog file that provides the necessary functionality. Inelude this file in your project and assign the
pins on the FPGA to connect to the switches and 7-segment displays, as indicated in the User Manual for the
DE2 board. The procedure for making pin assignments is described in the tutorinl Quartus H Introdiection
using Wrilog Design, which is available on the DE? System €D and in the University Program section of
Altera’s web sile.

3. Compile the project and download the compiled circuit into the FPGA chip.
4. Test the functionality of vour design by toggling the switches and observing the displays.

Part 1T

You are to design o circuil that converts a four-hit binary number V' = v gugey vy, into its two-digit decimal equiv-
alent D = dydy, Table | shows the required output values, A partial design of this circuit is given in Figure 1. Ti
includes a comparator that checks when the value of V' is greater than 9. and wses the output of this comparator in
the control of the 7-segment displays. You are to complete the design of this circuit by creating a Verilog module
which includes the comparator, multiplexers, and circuit A (do not include circuit B or the 7-segment decoder a
this point). Your Verilog module should huve the four-bit input V', the four-bit output A and the output 2. The
intent of this exercise is o use simple Verilog assign statements to specify the required logic functions using
Boolean expressions. Your Verilog code should not include any if-else, case, or similar stntements,

Binury value | Decimal digits
OO0 { 0
(001 {1 |
0010 { 2
1001 { 9
1010 [ 0
1011 1 1
1100 1 2
1101 1 3
110 1 4
111 1 5

Table 1. Binary-io-decimal conversion vilues.,



Perform the following steps:

1. Make a Quartus I project for your Venlog module.

[ §¥ ]

. Compile the circuil and use functional simulation o verify the correct operation of your comparator. multi-
plexers. and circuit A.

3. Auvgment your Verilog code to include circuit B in Figure | as well os the T-segment decoder. Change the
inputs and outputs of your code to use switches S1Wy_y; on the DE2 board to represent the binary number
V', and the displays HEX{ and HEX0 10 show the values of decimal digits o | and dyy. Make sure 1o include
in your project the reguired pin assignments [or the DE2 board,

4. Recompile the project, and then download the cirenit into the FPGA chip.

5. Test your circuit by rying all possible values of 1 and observing the output displays.

d

Comp 0
PRk —_—

i
e

oy
_— M
— —
—
L

—a=]  Circuil B

Hy

=y |

"IE I
il 5 I I 1
= T-segment b

decoder
| 4 2
- —

my 3

, B
)

iy,

Yo

S =’_| v =I—! | & *I—! C

Circuit A

Figure 1. Partial design of the binary-to-decimal conversion circuit,
Part I

Figure 2a shows a circuit for a fiull adder. which has the inputs a. b, and ¢,. and produces the outputs 5 and ..
Parts b and ¢ of the figure show a circuit symbol and truth table for the full adder, which produces the two-bit
binary sum c,5 = o+ b + ¢, Figure 2d shows how four instances of this full adder module can be used 1o design
a circuit that adds two four-bit numbers. This type of circoit is usually called a ripple-carmy adder, becanse of
the way that the carry signals are passed from one full adder to the next. Write Verilog code that implements this
circuit, as described below.

td



e —
—
i FA
h h m— Lliﬁ
l"lI
a) Full adder circuit b) Full adder symbol
boae| c s by ay £y by &y 3 by ay £y by ay oy
oot p VP Ab P b
o1o| o
LI T I O 1 FA Fa EA FA
100 01
101 1 0 |
[ i) ke |y oy L1y L1y
1 Can ¥ ¥y 5 5
¢} Full adder truth table d) Four-bit ripple-carry adder circuit

Figure 2. A ripple-carry adder circuit,

1. Create a new Quartus IT project for the adder circuit. Write a Verilog module for the full adder subcircuit
and write n top-level Verilog module that instantiates four instances of this full adder.

{3 ]

. Use switches S5 _y and STWa_g 1o represent the inputs A and B, respectively. Use Wy for the carry-in
£y, of the adder. Connect the SW switches to their corresponding red lights LEDR, and connect the ootputs
of the adder. ¢,,; and 5, to the green lights LEDG.

3. Include the necessary pin assignments for the DE2 board, compile the circuit, and download it into the
FPGA chip.

4. Test your circuil by trying different values for numbers 4, 8. and ¢ 4y,

Part 1V

In part 11 we discussed the conversion of binary numbers into decimal digits. 1t is sometimes uselul w build
circuits that use this method of representing decimal numbers, in which each decimal digit is represented using
four bits, This scheme is known as the binary coded decimal (BCD) representation. As an exomple, the decimal
vilue 59 is encoded in BCD form as 0101 1001,

You are to design a circoit that adds two BCD digits. The inputs to the circuit are BCD numbers A and B,
plus a carry-in. o4,. The output should be a two-digit BCD sum 5.5, Note that the largest sum that needs to be
handled by this circuit is 515 = 9+ 9 + 1 = 149. Perform the steps given below.

1. Create a new Quartus 11 project for your BCD adder. You should use the four-bit adder circuit from part 111
to produce a four-bit sum and carry-out for the operation A + B A circuit that convents this five-bit result,
which has the maximum value 19, into two BCD digits 5.5, can be designed in a very similar woy as the
binary-to-decimal convener from part I1. Write your Verilog code using simple assign stalements to specify
the required logic functions—do not use other tvpes of Verilog statements such as if-else or case statements
for this part of the exercise.



[ ¥ ]

. Use switches SWs_y and SWi—y for the inputs A and B, respectively, and use SWy for the carry-in,

Connect the SW switches to their corresponding red lights LEDR, and connect the four-bit sum and carry-
out produced by the operation 4 + B to the green lights LEDG, Display the BCD values of A and B on the
T-segment displays HEX6 and HEX4, and display the result 5.5, on HEX/{ and HEXO,

. Since your circuit hundles only BCD digits, check for the cases when the input A or B is greater than nine,
If this occurs, indicate an error by turning on the green light LEDG .

. Include the necessary pin assignments for the DE2 board, compile the circuit, and download it into the
FPGA chip.

. Test your circuit by trying different valves for numbers A, B, and ..

Part V

Design a circuit that can add two 2-digit BCD numbers, 4 1.4y and By By to produce the three-digit BCD sum
Sa5155. Use two instances of your circuit from part TV to build this two-digit BCD adder. Perform the steps
below:

Use switches SWis—s and SW5_y to represent 2-digit BCD numbers A Ay and 8 8y, respectively. The
value of Ay Ay should be displayed on the 7-segment displays HEXT and HEX6, while B By shoald be on
HEXS and HEX4. Display the BCD sum, S5 5,5y. on the T-segment displays HEX2, HEX{ and HEXO.

Make the necessary pin assignments and compile the circuit.

Download the circuit imo the FPGA chip, and test its operation.

Part VI

In part ¥V you created Verilog code for a two-digit BCD adder by using two instances of the Verilog code for a
one-digit BCD adder from part IV. A different approach for describing the two-digit BCD adder in Verilog code
is to specify un algorithm like the one represented by the following pseudo-code:

I Th=4+ 8
2 i (Th = 9)then
3 z”= 1

4 iy = 1;

5 else

ﬁ Z[pzﬂ:

7 ey =1

8  endif

9 S =Ta—4%

lﬂ T:,l-—_-‘1.1+3'|+1'.“3
11 if (17 > 9)then

12 Zr=10;

13 2 = 1:

14 else

15 Zi=1

16 o = [}

17 endif

18 5, =T; - %

19 5'2 =g



It is reasonably straightforward to sce what circuit could be used to implement this pseudo-code. Lines 1.9, 110,
and |8 represent adders, lines 2-8 and 11-17 correspond o0 multiplexers, and testing for the conditions T > 8
and T, > 9 requires comparators, You arc to write Verilog code that comesponds to this psendo-code. Note that
you can perform addition operations in your Verilog code instead of the subtractions shown in lines 9 and 8. The
intent of this part of the exercise is to examine the effects of relving more on the Verilog compiler to design the
circuit by using if-else statements along with the Verilog > and + operators. Perform the following steps:

1.

bl

Create 2 new Quartus 11 project for your Verilog code. Use the same swiiches, lights. and displays as in
part V. Compile your circuit,

. Use the Quarms 11 RTL Viewer wol to examine the circuit produced by compiling your Verilog code.

Compare the circuit 1o the one you designed in Pan V.

. Download your circuit onto the DE2 board and test it by trying different values for numbers 4 | 4 and

By By.

Part VI1

Design a combinational circuit that converts a 6-bit binary number into a 2-digit decimal number represented in
the BCD form. Use switches 515 to input the binary number and 7-scgment displays HEX! and HEX0 to
display the decimal number. Implement vour circuit on the DE2 board and demonstrate its functionality.

Copyright (© 2006 Altera Corporation.



Laboratory Exercise 3

Latches, Flip-flops, and Registers

The purpose of this exercise is 1o investigate lutches, Aip-Aops, and registers.
Part1

Alwera FPGAs include flip-flops that are available for implementing a user's circuit. We will show how to make
use of these flip-flops in Part IV of this exercise. But first we will show how storage elements can be created in an
FPGA withowt using its dedicated fip-flops,

Figure 1 depicts a gated RS latch circuit. Two styles of Verilog code that can be used 1o describe this circuit
are given in Figure 2. Part « of the figure specifies the laich by instantiating logic gates, and part b vses logic
expressions to create the same circoit. IF this lotch is implemented in an FPGA that has 4-input lookup tables
(LUTs). then only one lookup table is needed. as shown in Figure 3a.

Ry

Qa (Q}

Clk

5¢g

o

Figure 1. A gated RS latch circuit.

I A gated RS laich

module part] (Clk R, 5, Q)
input Clk. R, 5:
output (J;

wire R_g, 5_g, Qa, Qb /* synthesis keep */
and (R_g. R. Clk};

and (S_g. S. Clk):

nor “:.hlr R._E. Qb]‘:

nor (Qb, S_g. Qu);

assign () = Qu;

endmaodule

Figure 20, Instantiating logic gates for the RS laich.



I A goted RS laich

module partl (Clk. R, 5, Q)
input Clk, R, 5;
output J;

wire B_g. 5_g. Qa, Qb /* synthesis keep */ ;

assign R_g = R & Clk;
assign 5_g =5 & Clk;
assign O =~(R_g | Qbj
assign (b = ~(5_g | Qa);

assign () = Qua:

endmodule

Figure 2b, Specilying the RS latch by using logic expressions,

Although the laich can be correctly realized in one 4-input LUT, this implementation does not allow its in-
ternal signals, such as #_g and 5_g. to be observed. because they are not provided as outputs from the LUT. To
preserve these internal signals in the implemented circuit, it is necessary o include a compiler direcrive in the
code. In Figure 2 the directive /# synthesis keep ®/ is included to instruct the Quartus [ compiler to use separate
logic elements for cach of the signals B_g. 5_g, Qa., und (2. Compiling the code produces the circuit with four
4-LUTs depicted in Figure 38,

Qaih

Clk

. 4-L0T
s

e

{a) Using one 4-input lookup table for the RS latch.

R

R i |— Qa i)
4LUT
Clk —4
S5
sLuT
5 & LUT
=

ib} Using four 4-input lookup tables for the RS latch.

Figure 3. Implementation of the RS latch from Figore 1.

Create a Quartus [1 project for the RS laich circuit as follows:

1. Create o new project for the RS latch, Select as the target chip the Cyclone 11 EP2C35F672C6, which is the
FPGA chip on the Altera DE2 board.

3]



[ ¥ ]

. Generate a Verilog file with the code in either part & or b of Figure 2 (hoth versions of the code should

produce the same circoit) and include it in the project,

. Compile the code. Use the Quantus I RTL Viewer tool to examine the gate-level circuit produced from the

code, und vse the Technology Viewer 1ol to verify that the lutch is implemented as shown in Figure 3,

. Create a Vector Waveform File (.vwf) which specifies the inputs and cutputs of the circuit. Draw waveforms

for the / and 5 inputs and vse the Quartus 1T Simulator to produce the corresponding wiveforms for B_g.
5_g, Oa.and @b, Verify that the lawch works as expected using both functional and timing simulation.

Part 11

Figure 4 shows the circuit for a gated D latch.

D 5 g
()
k. —
Qb
L >0 R Rl
Figure 4. Circuit for o gated D laich,
Perdorm the following steps:

Create a new Quartus I project. Generate o Verilog file using the style of code in Figure 25 for the gated D
latch, Use the / synthesis keep */ directive 1o ensore thal separate logic elements are used 1o implement the
signals 1. 5 _gq, B_g, Clo, and ()b

. Select as the target chip the Cyclone [1 EP2C35F672C6 and compile the code. Use the Technology Viewer

tool to examine the implemented circuit,

. Verify that the latch works properly for all input conditions by using functional simulation. Examine the

timing characteristics of the circut by using timing simulation.

. Create a new Quartus [ project which will be used for implementation of the gated D laich on the DE2

board. This project should consist of a top-level module that contains the appropriate input and outpul ports
ipins) for the DE2 board. Instantiate your latch in this wp-level module, Use swich SW, 1o drive the D
input of the laich, and use SWy as the Ck input. Connect the Q) output to LEDR .

. Recompile your project and download the compiled circoit onto the DE2 board.
. Test the functionality of your circuit by toggling the D) and Clk switches and observing the Q output.



Part IT1

Figure 5 shows the circuit for a master-slave D flip-flop.

Master Slave

{u:wk—-—bno— Clk Q |— ak Qb9—— @

Figure 5. Circuit for a master-slave D flip-fop.

Perdorm the following:

L

Create a new Quartus 11 project, Generate a Verilog file that instantiates two copics of vour gated D Jatch
module from Part 11 o implement the master-slave flip-flop,

. Include in your project the appropriate input and output ports for the Altera DE2 board. Use switch SW ; 1o

drive the D input of the fip-flop, and use SW, as the Clock input. Connect the ) output to LEDR,

. Compile vour project.

. Use the Technology Viewer to examine the I Rip-flop circuit, and use simulation to verity ils correct oper-

ation.

. Downlowd the circuit onto the DE2 board and test its functionality by toggling the D and Clock switches

and observing the ) outpul.

Part IV

Figure 6 shows a circuit with three different storage elements: a gated D latch, a positive-edge triggered D flip-
flop, und a negative-edge triggered D flip-flop.



D b Qf—
Clock ak Q— q,
— {:} e Qh-
} é - F‘L}I-
—D QF— Q
—a> Q) Q.

{a) Circunt

Clock | | |

(h) Timing diggram

Figure 6. Circuit and waveforms for Part TV,

Implement and simulate this circuit using Quartus 1 software as tollows:
1. Create a new Quarius [T project.

2. Wrte a Verilog file that instantiates the three storage elements. For this part you should no longer vse
the /# synthesis keep */ directive from Parts T to [IL. Figure 7 gives a behavioral style of Vertlog code that
specifies the pated D laich in Figure 4. This latch can be implemented in one d-input lookup table. Use a
similar style of code to specify the flip-fops in Figure 6.

3. Compile your code and ose the Techmology Viewer to examine the implemented circuit, Verify that the
latch uses one lookup table and that the Aip-flops are implemented using the Rip-flops provided in the target
FPGA.

4. Create a Vector Waveform File (.vwf) which specifies the inputs and outputs of the circuit. Draw the inputs
D and Clock as indicated in Figure 6, Use functional simulation to obtain the three output signals, Observe
the different behavior of the three storage clements.



maodule 1 _latch (D, Clk, Q)
input D, Clk;
output reg Q)

always @ (D, Clk)
i iClk)
Q=D
endmodule

Figure 7. A hehavioral style of Verilog code that specifies a gated D latch.

Part V

We wish to display the hexadecimal value of a 16-bit number A on the four 7-segment displays, HEXT— 4, We
ulso wish to display the hex value of a 16-bit number 5 on the four 7-segment displays, HE X3 —~ (. The values
of A and B are inputs to the circuit which are provided by means of switches SWi5_q. This is to be done by first
setting the switches to the value of A and then setting the switches to the value of B; therefore, the value of A
must be stored in the circuit.

3
-

Create o new Quartus [ project which will be used 1o implement the desired circuit on the Altera DE2 board,

. Wnite a Verilog file that provides the necessary functionality. Use KEYj as an active-low asynchronous

resct, and use KEY) as a clock input.

. Include the Vertlog file in your project and compile the circuit,

. Assign the pins on the FPGA to connect to the switches and 7-segment displays, as indicated in the User

Manual for the DE2 board.

. Recompile the circoit and download it into the FPGA chip.
. Test the functionality of your design by toggling the switches und observing the output displays.

Copyright (€2006 Altera Corporation,



Laboratory Exercise 4

Counters

This is an exercise in using couniers.,

Part 1

Consider the circuit in Figure 1. 1t is a 4-bit synchronous counter which uses four T-type fip-flops. The counter
increments its count on each positive edge of the clock if the Enable signal is asserted. The counter is reset to (0 by
using the Reset signal. You are to implement 4 16-bit counter of this type.

L]

Emable =T Q T Q T Q r QF
Clock 4> D =] > 0 ]
|} r r [ &) r T
Clesnr

Figure 1. A 4-bit counter,

. Wrte o Verilog file that defines a 16-bit counter by using the structure depicted in Figure 1. Your code

should include a T flip-fAlop module that is instantiaded 16 imes to create the counter. Compile the eircuit,
How many logic elements (LEs) are used to implement your circuit? What is the maximum frequency,
Fmere, at which your circuit can be operated?

. Simulate your circuit to verify its correctness,

. Aupment your Verilog file 10 use the pushbutton K EY,, s the Clock input, switches 515 and SW, as

Enable and Reser inputs, and 7-segment displays HEXS-0 to display the hexadecimal count as vour circuit
operates. Make the necessary pin assignments needed to implement the circuit on the DE2 board, and
compile the circuit,

. Download your circuit into the FPGA chip and test its functionality by operating the implemented switches,

. Implement a 4-bit version of your circuit and use the Quartus [T RTL Viewer to see how Quartus 11 software

synthesized your circuit. What are the differences in comparison with Figure 17

Part I1

Simplify your Verilog code so that the counter specification is based on the Venlog statement

Q==0+1;

Compile a 16-bit version of this counter and compare the number of LEs needed and the Frex that is attainable,
Use the RTL Viewer to see the structure of this implementation und comment on the differences with the design
from Part L



Part IT1

Usc an LPM from the Library of Parameterized modules to implement a | 6-bit counter. Choose the LPM options
to be consistent with the above design. ie. with enable and synchronous clear How does this version compare
with the previous designs?

Part 1V

Design and implement o circuit that successively flashes digits (f through 9 on the 7-segment display HEXD,
Each digit should be displayed for about one second. Use a counter to determine the one-second intervals. The
coumier should be incremented by the 50-MHz clock signal provided on the DE2 board, Do not derive any other
clock signals in your design-make sure that all Aip-flops in your circuit are clocked directly by the 50 MHz clock
signal.

Part V

Design and implement a circuit that displays the word HELLD, in ticker tape fashion. on the eight 7-segment
displays A EXT — (. Make the letters move from right to left in intervals of about one second. The patterns that
should be displayed in successive clock intervals are given in Table 1.

Clock cycle Displayed patiern

0 H E L L 0O
H E L L O
2 H E L L ©
3 H E L L ©O
4 E L L O H
5 L L O H E
6 L O H E L
F 0O H E L L
8 H E L L 0O
and 50 on

Table 1. Scrolling the word HELLO in ticker-tape fashion.

Copyright (€200 Altern Corporation,

3]



Laboratory Exercise 5

Clocks and Timers

This is an exercise in implementing and using a real-time clock.
Part 1

Implement a 3-digit BCD counter. Display the contents of the counter on the 7-segment displays, HEX2—0, Derive
a contrl signal, from the S0-MHz clock signal provided on the Altera DE2 board, to increment the contents of
the counter at one-second intervals, Use the pushbution switch KEY, 1o reset the counter o 0.

1. Create a new Quanus [l project which will be used to implkement the desired circuit on the DE2 board.

Write a Verilog file that specifies the desired circuin.

el o

Include the Verilog file in your project and compile the circuit.

Stmulate the designed circut o verify its functionality,

L T

Assign the pins on the FPGA 1o connect to the 7-segment displays and the pushbution switch. as indicated
in the User Manual for the DE2 board.

=

Recompile the circuit and download it into the FPGA chip.

7. Venfy that your circuit works correctly by observing the display.

Part 11

Design and implement a circuit on the DE2 board that acts as a ime-of-day clock, 1t should display the hour { from
0 to 23) on the T-segment displays HEX7 -6, the minute (from 0 1o 60) on HEXS5—4 and the second (from 0 to 60)
on HEX3—2, Use the switches SWy5_ to preset the hour and minute parts of the time displayed by the clock,

Part 111

Design and implement on the DE2 board a reaction-timer circuit. The circuit is to operate as follows:

1. The circuit is reset by pressing the pushbutton switch KEY,.

2. After an elapsed time, the red light labeled LEDR turns on and a four-digit BCD counter starts counting
in intervals of milliseconds. The amount of time in scconds from when the circuit is reset until LEDR @ is
turned on is set by switches SWo_p.

3. A person whose reflexes are being tested must press the pushbutton KEY 3 as quickly as possible to turn
the LED off and freeze the counter in its present state. The count which shows the resction lime will be
displayed on the 7-segment displays HEX2-0,

Copyright () 2006 Altera Corporaton,



Laboratory Exercise 6

Adders, Subtractors, and Multipliers

The purpose of this exercise is o examine arithmetic circuits that add, subtract, and multiply nimbers. Each
type of circuit will be implemented in two ways: first by writing Verilog code that describes the required function-
ality, and second by making use of predefined subcircuits from Allem’s library of parameterized modules | LPMs),
The results produced for various implementaions will be compared, both in terms of the circuit strocture and its
speed of operation,

Part 1

Consider again the four-hit ripple-carry sdder circoit that was used in lab exercise 2: a diagram of this cincuit is
reproduced in Figure lo. You are to create an 8-bit version of the adder and inclode it in the circuit shown in
Figure 15, Your circuit should be designed to support signed numbers in 2's-complement form, and the Overflow
output should be set to | whenever the sum produced by the adder does not provide the correct signed valoe.
Perdorm the steps shown below.

by ay ¢, by @ ¢ by ) ¢, by @y €
f IEREEENEE
FA FA FA Fa
K f ' i
Cour %3 o | Yo

a) Four-bit ripple-carry adder circuil

}s }s
4 R J
Clock 0 g N
A B
\ b
—ii} 0 Coi + Cim 1l
41 N /
4r3
&
0
Chverflow 8

b} Eighi-bit registered adder circuit

Figure 1. An 8-bit signed adder with registered inputs and outputs.



1. Miake a new Quartus Il project and write Verilog code that desenbes the cireuit in Figure 1b. Use the eircuit
structure in Figure la 1o describe your adder.

2. Include the reguired input and output ports in your project to implement the adder circuit on the DE2 board,
Connect the inpuis A and B to switches SWi;_q ond SWy_y. respectively. Use KEY;, as an active-low
asynchronous reset input. and use KEY; as a manual clock input. Display the sum outputs of the adder on
the red LEDRT_ lights and display the overflow output on the green LEDG ¢ light. The hexadecimal values
of A and 8 should be shown on the displays HEX7-6 and HEXS-4, and the hexadecimal value of 5 should
appear on HEX 1,

3. Compile your code ond wse timing simulation to verify the correct operation of the circuit. Once the sim-
ulation works properly, download the circuit onto the DE2 board und test it by using different values of 4
and . Be sure to check for proper functionality of the Overflow output.

4. Open the Quartus IT Compilation Report and examine the results reporied by the Timing Analvzer. What is
the maximum opemting frequency, fimax, of your circuit? What is the longest path in the circuit in terms of
delay?

Part 11

Maodify your circuit from Part [ so that it can perform both addition and subtmction of eight-bit numbers, Use
switch SWyy to specify whether addition or subtraction should be performed. Conneet the other switches, lights,
and displays as descnbed for Part L

1. Simulate your adder/subtractor circuil o show that it functions properly, and then download it onto the DE2
board and test it by using different switch sellings.

2. Open the Quartus [1 Compilation Report and examine the results reported by the Timing Analyzer. What is
the fmax of your circuit? What is the longest path in the circuit in terms of delay?

Part I11

Repeat Part 1 using the predefined adder circuit called {pm add sub, instead of your ripple-carry adder structure
from Figure 1. The Ipmadd sub module can be found in Altera’s library of parameterized modules (LPMs).
which is provided as part of the Quoartus 11 system, The procedure for using these predefined modules in Quartus
I projects is descobed in the tutorial Using Library Modules in Verifog Designs, which is available on the DE2
Svsrem CD and in the University Program section of Altera’s web site,

1. Contigure the {pm_add_sieh module so that it performs only addition, to make the functionality comparable
to Part 1. Store your configuration of the {pm _add suh module in the file [pm gddS.v. After instantiating this
module in your Venlog code, compile the project and vse the Quartus IT Chip Editor ool to exomine some
of the details of the implemented circuit,

One way to examine the adder subcircuit using the Chip Editor tool is illustrated in Figure 2. In the Quartus
1T Project Navigator window right-click on the pant of your circuit hierarchy that represents the Ipm gdds
subcircuit, and sclect the command Locate = Locate in Chip Editor. This opens the Chip Editor window
shown in Figure 3, The logic elements in the Cyclone [ FPGA that are used to implement the adder are
highlighted in blue in the Chip Editor tool. Position your mouse pointer over any of these logic elements
und double-click 1o open the Resource Property Editor window displayed in Figure 4. In the box lubeled
MNode name you can select any of the nine logic elements that implement the adder module. The Resource
Property Editor allows you to examine the contents of a logic element and 1o see how one logic element is
connected others.

3]



WEjeek Higaber — =L

B o= C_|LC Zambn.
Uyelons I EFULIEHES 1S [
e~ ek WO YIRE
- il regr_a g5l |00
e jie wgr LR Ak HE )]
o 1T )
st el 5 ] il ]

e o e sdakn  TINDS

* le<Tigy it O TE & Tep-LEvE EFRLY
i teTesnt e >coh v Scsanreck Lok
3 hedicgdl 4 sba it Pt
I | w F“m Hﬂw Lacabein frng Coswea [ an
i heaTocg digil B Cruate Moy ogelock Tagen
¥ heeTeag digi_ T Enuwl Sty wes da, Lacabe in 3=sourze Popsty Cdbo

Lacabs i Tadhrokgy Map disse
Lacabs in 1. Weswer
Lacabe in Zmsign Fle

T8 i g P ibon

Exaand Al

Pt Hmcarchs

Pt Al Doagn Shes

fe= e

Peoporties

Cpenin Yar Wincos
I w E bz Cusiig
e e st

|
dynimch [ Fiar | oF Dakn

Figure 2. Locating the eight-bit adder in the Chip Editor ool

¥ Cimp Fifitnr

Figure 3, The highlighted logic clements for the eighi-bil adder.



Using the tools described above, and referencing the Data Sheet information for the Cyclane 11 FPGA,
deseribe the eight-bit adder circuit implemented with the fpin gdd suh module,

- L]
¥ I B - ; ] e Al Ak
o el g AL Dk i 0 0 e
o o I - - i |

"*I—f'-]

'ril.l\_u-_-r_snﬂ Bl

Figure 4. Examining details in a logic element using the Resource Property Editor.

2. Open the Cuartus 11 Compilation Report and and compare the fmax of your adder circuit with the one
designed in Part 1. Discuss any differences in performance that are observed.

Part 1V

Repeat Part 11 using the predefined adder circuit called lpm add sub. instead of vour adder-subtractor circuit based
on Figure 1.

Comment briefly on the circuit structure obtained using the LPM module, and compare the fmax of this circuit
to the one from Part I1. Describe how the [pm _add sub module implements the Overflow signal.



Part V

Figure 5a gives an example of the traditional paper-and-pencil multiplication P = 4 = 8, where 4 = 12 and
£ = 11. We need 1o add two summands that are shifted versions of 4 to form the product P = 132, Part b of the
figure shows the same example using four-bit binary numbers. Since each digitin B is either | or (), the summands
are either shified versions of A or (KKK, Figure 5¢ shows how each summand can be formed by using the Boolean
AND operationof A with the appropriate bitin 5.

1 100
1 2 1011
x 11 1100
1 2 1100
1 2 0000
[ 3 2 1 100
loo00D 100
a) Decimal b) Binary
th ﬂg ||'.I'| rt.l'“

x by by B b

ashy azhy agby aghy
ayby asby agby agh,
azby axby ayby ayb;
ayby ayby ahy aghy
Py Py 5 Py M P " Py

c) Implementation

Figure 5. Multiplication of binary numbers,

A four-bit circuit that implements P = A4 = [¥ is illustrated in Figure 6. Because of its regular structure, this type
of multiplier cirenit is wsually called an array mulnplier. The shaded arcas in the circuit comrespond to the shaded
columns in Figure 3¢, In each row of the multplier AND gates are used w produce the summands, and Tull adder
modules are used 1o generate the required sums.



iy dy  dy dy i thy @y iy

| L. N
by
0
. ' i 1
[ [T Booa 0oa
rlE‘ [-'I"" rl rll FA "'_r - ril I-A {-I. = '-I.I .F"\' C _.'U
& 5 5 X I
iy i a iy
| ! b
1 L L
boa b u b a Fooa
£, FA € €, FA €} £, FA Cjle ©,; FA r‘r—u
X x & X
ity ity iy i
| | by
L) L |
b a ba b a ]
C, FA C; L R €, BA L Cy FA O fa— ]
X | g 5
! l : I 1. |
Py Py P Py 73 L] My Pij

Figure 6. An array multiplier circuit.

Use the following steps to implement the array multiplier circuit:

1. Create anew Quarius 11 project which will be used to implement the desired circuit on the Altera DE2 board,

[

. Generate the required Verilog file, include it in your project. and compile the circuit

. Use functional simulation to verify that vour code is correct.

=

. Augment your design to use switches SW o _g to represent the number A and switches 5W.y_y, to represent
B. The bexadecimal valoes of 4 and B are w be displayed on the 7-segment displays HEX6 and HEXH,
respectively. The result P = A x B is 1o be displayed on HEX! and HEXO.

5. Assign the pins on the FPGA to connect to the switches and 7-segment displays, as indicated in the User
Mamual for the DE2 board.

6. Recompile the circuit and download it into the FPGA chip.

7. Test the functionality of your design by togeling the switches and observing the 7-segment displays.



Part VI

Extend your multiplicr to multiply 8-bit numbers and produce a 16-bit product, Use switches ST 5 to represent
the number A and switches S5 to represent B. The hexadecimal values of A and B are to be displayed on the
T-segment displays HEX7—6 and HEX5—4. respectively. The result P = A x B s to be displayed on HEX3—0,
Add registers 1o your circuit to store the values of 4, . and the product P, using a similar structure as shown for
the registered adder in Figure 1.

Ader successiully compiling and testing vour multiplier circuit, examine the results prodoced by the Quartus
Il Timing Analvzer to determine the fmax of your circuit. What is the longest path in terms of delay between
registers?

Part VII

Change vour Verilog code to implement the 8 ¥ 8 multiplier by vsing the {pm muft module {rom the library of
pammeterized modules in the Quartus 11 system. Complete the design steps above., Compare the resalls in terms
of the number of logic elements (LEs) needed and the circuit fmax.

Part VIII

It many applications of digital circuits it is useful to be able to perform some number of multdplications and then
produce a summation of the results. For this part of the exercise you are to design a circuit that performs the
calculation

S=(A=xB)+(C = D)

The mputs A, B, O, and I} are eight-bit unsigned numbers, and S provides a 16-bit result. Youwr cirenit should
also provide a carry-out signal, C',;. All of the imputs and outputs of the circuit should be registered. similar 1o
the structure shown in Figure b

1. Create anew Quartus 11 project which will be used to implement the desired circuit on the Altera DE2 board,
Use the fpr_mult and Jpm_add_sub modules o realize the multipliers and adders in vour design,

-

. Connect the inputs A4 and O 1o switches SWr_4 and comnnect the inputs B and D to switches §Ws_;,. Use
switch SWyy to select between these two sets of inputs: A, Bor O, I, Also, use the switch SW 7 as a write
enable (WE) input. Setting WE 10 | should allow data 1o be loaded into the input registers when an active
clock edge occurs, while setting WE 1o 0 should prevent loading of these registers.

3. Use KEY; as an active-low asynchronous reset input, and use KEY, as a manual clock input.

4. Display the hexadecimal value of either A or €, as selected by SW ;. on displays HEX7-0 und display either
Bor 13 on HEX5-4, The sum 5 should be shown on HEXS-0, und the €, ; signal should appear on LEDGy.

5. Compile your code and use either functional or timing simulation to venfy that your circuil works properly,
Then download the circoit onto the DE2 board and test its operation,

6. 1t is often necessary Lo ensure that a digital circuit is able w0 meel certain speed requirements, such as a
particular frequency of a signal applied to a clock input. Such requirements are provided to a CAD sysiem
in the form of timing constraints. The procedure for using timing constrints in the Quartus [T CAD system
is described in the ttornal Timing Considerations with Wrilog-Based Designs, which is available on the
DE2 System CD and in the University Program section of Aliera’s web site.

For this excrcise we are using a manual clock that is applied by a pushbutton switch, so no realistic timing
requircments exist, But to demonsirate the design issues involved, assume that your circuit is required to
operate with a clock frequency of 220 MHz. Enter this frequency as a timing constraint in the Quartus
T software, and recompile your project. The Timing Analyzer should report that it is unable to meet the
timing requirements due to the lengths of various register-to-register paths in the circuit. Examine the timing
anilysis report and deseribe briefly the timing violations observed.



7. One way io increase the speed of operation of a given circuit is to insert registers into the circuit in a way
that shortens the lengths of its longest paths. This technique is referred to as pipeliming a circuit, and the
inscrted registers are often called pipeline registers, Insert pipeline registers into your design between the
multiplicrs and the adder. Recompile your project and discuss the results obtained.

PartIX

The Quartus Il software includes a predesigned module called altmuft gdd that can perform calculations of the
form § = (A = B) 4 (£ = 7). Repeat Part V111 using this module instead of the lpm gl and fpm gdd sub
modules. Test your circuit using both simulation and by downloading the circuit onto the DE2 board.

Briefly describe how the implementation of youor circuit differs when using the aftmult add module. Examine
its performance both with and without the pipeline registers discussed in Part VIIL

Copyright (© 2006 Altera Corporation.



Laboratory Exercise 7

Finite State Machines

This is an exercise in using finite state machines,
Part1

We wish to implement a finite state machine (FSM) that recognizes two specific sequences of applied input sym-
bols, namely four consecutive 15 or four consecutive Us. There is an input w and an output 2, Whenever w = 1 or
w = 0 for four comsecutive clock pulses the value of 2 has to be 1; otherwise, = = (. Overlapping sequences are
allowed, so that if w = 1 for five consecutive clock pulses the output 2 will be equal 1o 1 after the fourth and fifth
pulses. Figure 1 illusirates the required relationship between w and =

S inlpipipipigipipigipipipiyh
| I L I O

Figure 1. Required timing for the output 2.

4

A state diggram for this FSM is shown in Figure 2. For this part you are to manually derive an FSM circuit tha
implements this state diagram, including the logic expressions that feed cach of the state flip-flops. To implement
the FSM wvsc nine state flip-fops called yy, . . . . 4, and the one-hot state assignment given in Table 1.

State Code
Name | ysyriesiasizm i
OON000001
GO0000N1 0
GOOO00 00
O0O0 1000
M L0
(MM LOD0OID
0 L0000
(10000000
100000000

~DNEETOR =

Table 1. One-hot codes for the FSM.



Figure 2. A stute diagrmm for the FSM.

Design and implement your circuit on the DE2 board as follows,

¥ )

e

Create nnew Quartus 11 project for the FSM circuit. Select as the target chip the Cyclone ITEP2C35F672C6,
which is the FPGA chip on the Altera DE2 board.

. Write a Verilog file that instantiates the nine flip-flops in the circuit and which specifies the logic expressions

that drive the Aip-Aop inpul poris, Use only simple assign statements in your Verilog code 1o specify the
logic feeding the flip-fAops. Note that the one-hot code enables you to derive these expressions by inspection,
Use the toggle switch §W), on the Altera DE2 board a5 un active-low synchronous reset input for the FSM.

usec SWy as the w input, and the pushbutton KEY as the clock input which is applicd manually. Use the
grcen LED LEDG)) as the output 7. and assign the state flip-flop outputs to the red LEDs LEDR « to LEDR;,.

. Include the Verilog Ale in your project. and assign the pins on the FPOA 1o connect 1o the switches and the

LEDs. as indicated in the User Manual for the DE2 board. Compile the circuit.

. Simulate the behavior of your circuit.

. Dinee you are confident that the circuil works properly as o resull of your simulation, download the circuil

inio the FPGA chip. Test the functionality of your design by applying the input sequences and observing
the output LEDs. Make sure that the FSM properly transitions between stales as displayed on the red LEDs,
and that it produces the correct output values on LEDG .

. Finally, consider a modification of the one-hot code given in Table 1. When an FSM is going 10 be im-

plemented in an FPGA, the circuit can often be simplified if all flip-fAop outputs are (0 when the FSM is in
the reset state. This approach is preferable because the FPGA's flip-flops wsually include o clear input port,
which con be conveniently used to realize the reset state, but the flip-flops often do not include a ser input
port.

3]



Table 2 shows a modified one-hot state assignment in which the resel state, A, uses all Os. This is accom-
plished by inverting the state variable ;. Create a modified version of your Verilog code that implements
this state assignment. (Hinr: you should need to make very few changes to the logic expressions in your
circuit to implement the modificd codes. ) Compile your new circuit and test it both through simulation and
by downloading it onto the DE2 board.

Stote Code
Name | mutizintinialiadiaih o

COOOOCM0
00000007 1
OOn0no0101
COOODTN]
QOOOT a1
ORI ]
OO LO000 ]
010000001
100000001

~OamEEnR -

Table 2. Modified one-hot codes for the FSM,

Part 11

For this part you are to write another style of Verilog code for the FSM in Figure 2. In this version of the code you
should not manually derive the logic expressions needed for each state flip-Aop. Instead, describe the state table
for the FSM by using a Verilog case statement in an always block, and use another always block to instantiate
the state flip-flops. You can use a third always block or simple assignment statements to specify the output z. To
implement the FSM, use four state flip-flops g4, . . . . 4 and binary codes. as shown in Table 3.

State Code
iratkatti i
(000
0001
(10
(111
(100
(3101
(1110
(1111
1

z
7

Table 3. Binary codes for the FSM.

A suggested skeleton of the Verilog code is given in Figure 3.



module part2 (... )
« o« define input and output ports

... define signals

reg [3:0] v Q.Y _D: N y_(Q represents current state, Y _D represents next state

parameter A = 4'b0000, B = 4°b0001, C = 450010, D = b0 |, E = 4'b0 LK,
F=4'bN01, G=4"b0110, H=4"b0111, | =4"b 1000

always @(w, v Q)
begin: state_table
case (y_Q)
Aif(!w) Y_D=B;
eke Y D=F;
... remainder of state table
defanlt: ¥_D = 4 bxxxx;
endcase
end Jf state_table

always @(posedge Clock)
begin: statc_FFs

end /f state_FFS

... assignments for output # and the LEDs
endmodule

Figure 3. Skeleton Verilog code for the FSM.

Implement your circuit as follows,

1. Create a new project for the FSM. Select as the target chip the Cyclone 1 ER2C35F672C6.

2
&

. Include in the project your Verilog file that uses the style of code in Figure 3. Use the toggle switch SW, on

the Altera DE2 board ns an active-low synchronous reset input for the FSM. use SW as the winput. and the
pushbutton KEY, as the clock input which is applied manually. Use the green LED LED  as the output 2,
and assign the state flip-flop outputs to the red LEDs LEOR 4 (o LEDRy;. Assign the pins on the FPGA to
connect to the switches and the LEDs. s indicated in the User Manual for the DE2 board.

. Before compiling your code it is necessary to explicitly tell the Synthesis tool in Quartus 11 that yon wish to

have the finite state machine implemented using the state assignment specified in vour Verilog code. If you
do not explicitly give this sctting to Quartus I1, the Synthesis tool will automatically use a state assignment
of its own choosing, and it will ignore the state codes specified in your Verlog code. To make this setting,
choose Assignments = Settings in Quartus 11, and then click on the Analysis and Synthesis item on the
left side of the window. As indicated in Figure 4, change the parameter State Machine Processing to the
selting User-Encoded.

. To examine the circuit produced by Cuoartus 11 open the RTL Viewer tool. Double-click on the box shown

in the circuit that represents the finite state mochine, and determine whether the stute diagram that it shows
properly corresponds to the one in Figure 2. To see the state codes used for your FSM, open the Compilation
Report, select the Analysis and Synthesis section of the report, and click on State Machines.

. Simulate the behavior of your circuit.

. Once you are confident that the circuit works properly as a result of your simulation, download the circunt

into the FPGA chip. Test the functionality of your design by applying the input sequences and observing



the output LEDs. Make sure that the FSM properly transitions between states as displayed on the red LEDs,
and that it produces the correct output values on LEDG .

7. In step 3 you instructed the Quartus [T Synthesis ool 1o use the state assignment given in vour Verilog
code. To see the result of removing this setting, open aguin the Quartus 11 settings window by choosing
Assignments = Settings. and click on the Analysis and Synthesis item. Change the setting for State
Machine Processing from User-Encoded to One-Hot. Recompile the circuit and then open the report
file, select the Analysis and Synthesis section of the report, and click on State Machines. Compare the
state codes shown to those given in Table 2, and discuss any differences that you observe,

Sa1Tings - perl2

Zabmgerr
Gemnal Analezic L S miharie Setinagr
e
Laar Lt s o Dot Prajecl Speciy opleryt B arah T e B ayningr i | Redd cphoad serTel Lo sty B rlecrated Sorlhat s and
Deiise 0 nottect VM o BT it unies WS eV pirine (2n e senatied
- Tirviveg Meequireweents & Do
e D Tl Smtins 3 dmemeali gy Tache e <y 3 oo Tt (e Do O by
i Cowioi atinn Frocess Settng: € Crasd -4l
5 Beialen b Harthes s Sl ng T o
YHOL rps -
Uaikag HOL basit ™ Area F Fauen LR
Dredzul Maramekzey
Snribaeszs b, Qplimea i s 17 Cresbs dabuggeg nodee loriP st
e [P hioe Sesirgs I3 -l H) = &o Open Drais Fres
s 40 RIOM Feoacerent 7 Tt | Bl
i, P'";:;t F o RaH Ropbomont 5 Bk CFill Faigober Feplacapund
nmﬂwlL:-gi:ﬂu i LM N WA o s 1 1) e
Loz bl rieifoncy < =
it DEP B oon Balacieg R
5 i e S Sty [T =]
& PoeaiPlap Fose AnshaarSatrgr -
11 Golkrears Bulc Sotimgs Freduicare Mulipleses: ["{.Fu .Lj
Hereloss Setings PeaatePhw pensar cobriisatin:  [Nerresl sorplalicn -
Hi hemszoe Levsnt [Lavetz |
Mg Gatings
KL T

thee pracesing akie weed fo somple 3 ake maching: e son Lz vaurden
se-butoded 1y e, of et e g, el ik o Bued ILarpler-islected] ercocns.

[tk | twed |

Figure 4. Specifying the stale assignment method in Quartus [1.
Part 111

For this part you are 1o implement the sequence-detector FSM by using shift registers, instead of using the more
formal approach described above. Create Verilog code that instantiaies two 4-bit shift registers: one is for recog-
nizing a sequence of four (s, and the other for four 15, Include the appropriate logic expressions in your design to
produce the output z. Make a Cuartus 1 project for your design and implement the circuit on the DE2 board. Use
the switches and LEDs on the board in o similar way as vou did for Parts 1 and 1T and observe the behavior of youor
shift registers and the output z. Answer the following question: could vou use just one 4-bit shift register, rather
than two'! Explain your answer.



Part IV

We want to design a modulo- 10 counter-like circuit that behaves as follows. 1t is reset to 0 by the Reser input. Tt
has two inputs, wy and wy, which control its counting operation. If wwy = (), the count remains the same., IF
wiwp = 01, the count is imcremented by 1. If wiwy = 10, the count 15 incremented by 2. If wywy = 11, the
count is decremented by 1. All changes take place on the active edge of a Clock input. Use toggle switches SW
and $W, for inputs w, and wy,. Use toggle switch W, as an active-low synchronous reset. and use the pushbutton
KEY,; as a manual clock. Display the decimal contents of the counter on the 7-segment display HEX0,

1. Create a new project which will be used o implement the circuit on the DE2 board.

2. Wnte a Verilog file that defines the circuit. Use the style of code indicated in Figure 3 for your FSM.
3. Include the Verilog file in your project and compile the circuit.

4. Simulute the behavior of your circuil.

. Assign the pins on the FPGA to comnect to the switches and the 7-scgment display,

. Recompile the circoit and download it into the FPG A chip.

=] O Lh

. Test the functionality of vour design by applying some inputs and observing the output display.

Part V

For this part you are to design a circnit for the DE2 board that scrolls the word "HELLO" in ticker-tape fashion on
the eight 7-segment displays HEXT — 0. The letters shoold move from right to left each ime yoo apply a manual
clock pulse to the circoil. After the word "HELLO" scrolls off the left side of the displays it then starts again on
the right side.

Design vour circuil by wsing eight 7-bit registers connected in o quene-like fashion, such that the outputs of the
first register feed the inputs of the second, the second leeds the third, and so on. This Lype of connection belween
registers is often called a pipeline. Each register’s outputs should directly drive the seven segments of one display.
You are to design a finite state machine that controls the pipeline in two wiys:

1. For the first cight clock pulses after the system is reset, the FSM inserts the correct characters (HEL,L0O. . . )
into the first of the 7-bit registers in the pipeline,

2. Afier step | is complete, the FSM configures the pipeline into a loop that connects the last register back 1o
the first one. so that the letters continue to scroll indefinitely.

Wnte Verilog code for the ticker-tape circoit and create a Quartus 11 project for your design, Use KEY |, on the
DE2 board to clock the FSM and pipeline registers and use SWy, as a synchronous active-low reset mput. Write
Venlog code in the style shown in Figure 3 for your finite state machine.

Compile your Verilog code, download it onto the DE2 board and test the circuit,

Part VI

For this part you are to modify your circuit from Part V so that it no longer requires manoally-applied clock pulses,
Your circuit should scroll the word "HELLO" such that the letters move from right to left in intervals of about one
scoond. Scrolling should continue indefinitely; after the word "HELLO" scrolls off the left side of the displays it
should start again on the right side.
Write Venlog code for the ticker-tape circuit and create a Quartus 1 project for vour design. Use the 50-MHz clock
signul, CLOCK_5d, on the DE2 board 1o clock the FSM and pipeline regisiers and use KEYj; a8 a synchronous
active-low reset input. Write Verilog code in the style shown in Figure 3 for your finite state machine, and ensure
that all flip-flops in your circuit are clocked directly by the CLOCK_5t input. Do not derive or use any other clock
signals in your circuit,

Compile yvour Verilog code, download it onto the DE2 board and test the circuit,



Part V11

Augment your design from Part V1 so that under the control of pushbuttons KEY 5 and KEY, the rate at which the
letters move from right to lefi can be changed. If KEY ) is pressed. the letters should move twice as fast. If KEY;
is pressed. the rate has 1o be reduced by a factor of 2,

MNote that the KEYs and KEY, switches are debounced and will produce exactly one low pulse when pressed.
However, there is no way of knowing how long a switch may remain depressed, which means that the pulse
duration can be arbitrarily long. A goed approach for designing this circuit is to include a second FSM in your
Venlog code thai properly responds o the pressed keys. The outputs of this FSM can change appropriately when
a key is pressed, and the FSM can waii for each key press to end before continuing. The outputs produced by this
second FSM can be used as part of the scheme forcreating a variable time interval in your circuit. Note that KEY 2
and KEY, are asynchronous inputs to your circuit, so be sure to synchronize them to the clock signal before using
these signals os inputs to your finite state machine.

The ticker tape should operate as follows. When the circuit is reset. scrolling occurs at about one second
intervals. Pressing KEY; repeatedly causes the scrolling speed to double to a maximum of four letters per second,
Pressing KEY: repeatedly causes the scrolling speed to slow down 1o a minimum of one letter every four seconds,

Implement your circuit on the DE2 board and demonstrate that it works properly.

Copyright (2006 Altera Corporation.



Laboratory Exercise 8

Memory Blocks

In computer systems il is necessary 1o provide a substantial amount of memory. 1If o system s implemented
using FPGA technology it is possible 1o provide some amount of memory by using the memory resources that exisi
in the FPGA device. If additional memory is needed, it has to be implemented by connecting external memory
chips o the FPGA. In this exercise we will examine the general issoes involved in implementing such memaory,

A diagram of the random sccess memory (RAM) module that we will implement is shown in Figure la, It
containg 32 eight-bit words {rows). which are accessed using a five-bit address port, an eight-bit dara port. and a
write control input, We will consider two different ways of implementing this memaory: using dedicated memory
blocks in an FPGA device, and nsing a separate memory chip.

The Cyclone I 2C35 FPGA that is included on the DE2 board provides dedicated memory resources called
M4K Bocks. Each M4K block contains 4096 memory bits, which can be configured to implement memories of
various sizes. A common term used o specify the size of a memaory is its aspect radio, which gives the depth in
waords and the widh in bits (depth X width). Some aspect ratios supporied by the M4K block are 4K x 1, 2K X
2, IKX 4, and 512 x 8. We will utilize the 512 X 8 mode in this exercise, using only the first 32 words in the
memory, We shoold also mention that many other modes of operation are supported in an M4K block, but we will
not discuss them here.

Address -—:-.—-.
-1
32 x 8RAM R
Wrile
() RAM organization
5 5
Address - —
-
—
l b -
Dataln - — - K
32 x 8 RAM < DataOut
>
Write
Clock 3

(b) RAM implementation

Figure 1. A 32 x 8 RAM module.

There are two important features of the M4K block that have 1o be mentioned. First, it includes registers that can
be used Lo synchronize all of the input and oulpul signals o a clock input. Second, the M4K block has sepurate
ports for data being writlen 1o the memory and data being mead from the memory. A requirement for using the



M4K block is that either its input ports, output port, or both, have to be synchronized to o clock input, Given these
recquirements, we will implement the modified 32 ¥ 8 RAM module shown in Figure 15, It includes registers for
the address, data input, and wrire ports, and uses a separate unregisiered data ouiput port.

Part1

Commonly used logic structures, such as adders, registers, counters and memories, can be implemented in an
FPGA chip by using LPM modules from the Quartus 11 Library of Parameterzed Modules. Altera recommends
that a RAM module be implemented by using the altsyncram LPM. In this exercise you are to use this LPM 1o
implement the memaory module in Figure 16,

1. Create a new Quartus 1 project o implement the memory module. Select as the wrget chip the Cyclone 1
EP2C35F6T2C6, which is the FPGA chip on the Altera DE2 board.

]

. You can learn how the MegaWizard Plug-in Manager is used to generaie a desired LPM module by reading
the wiorial Using Library Modules in Verilog Designs. This tatorial is provided in the University Program
section of Altera’s web site, In the first screen of the MegaWizard Plug-in Manager choose the alrsyneram
LPM, which is found under the storage category. As indicated in Figure 2, select Verilog HDL as the type of
output file to create, and give the file the nume ramlpr.y. On the next page of the Wizard specify a memory
size of 32 eight-bit words. and select M4K as the type of RAM block. Advance to the subsequent page and
accept the default settings to use a single clock for the RAM s registers. and then advance again to the page
shown in Figure 3. On this page deselect the setting called Read output port(s) under the category Which
ports should be registered?. This setting creates a RAM module that matches the structure in Figure
L b, with registered input ports and unregistered output ports. Accepl defaults for the rest of the sellings in
the Wizard, and then instantiate in vour top-level Verilog file the module generated in ramfpm.v. Include
appropriate input and output signals in your Verilog code for the memory ports given in Figure 1h.

MepaWizard Plug-In Manager [ pape fa]

‘Which megaluncion woud pou ke o cusiomize’? fhich dewice famnilly vl you be Crpelane || -
Select a megabun chion from the i below gl
=i Instabed Puglng e ‘whach by of output He do you wantlo create?
=] Albera SOPC Builder  AHDL
* athmatic —
) 4RMBssed Excaibur il
s gates s Vanlog HOL
- B

‘wihat rame do you ward lor the outpul fle? Brovsa...

+ I8l wmemoy compler
3 |7 [P Progran\UP_Digita_Logic EseercineBhpat] assipm

al £ oy
é Sigrallap |l Loge Analpes

zlmage [ Gerenghe cloar bon rellis flo mdtoad of o defaul wiap per fis
lg] LT aPRAM [for use wih supported EDA syrthiesiz ook ariy)
—J = I Retuin bo thiz paga for another ciesbs opessbon

A ALTSHIFT_TAPS Wiote: To compie 2 pioject successlulp in the Quaitus || sofhware.
02 TS HERA M peir dezign Hles must be in the project desctan, i the gobsl ieer
korznes speched in the Ophions daog box [Tock merul, o a e
bwany tpecified] in e Llssr Liisdes pags ol the Saitrgt daiog
bos [Puszimnments meanul

Tow current wuse libeay duectones e

+ @ P MegaStons ™

Cmca!l :E-sc:h| Nest s |

Figure 2. Choosing the aitsynerem LPM.

3]



MogaWzard Moy 'n Managzr A TSYHCRAM [page 7 of 10]

“IUII.IL!TNJL':I:@H':'.?
e el o
‘el vermddre', e 'aer’!

I Feoe
(e Hneppure: |

I E::m: outz parls|

[~ Cissbe g tlesk mvsbls 1ona b

L e e 1) ko
[ frasmatspmieushs | g gstii)|

]| L] e ]

Figure 3. Configunng input and output ports on the alisvacram LPM.

3. Compile the circuil. Observe in the Compilation Report that the Quartus I Compiler uses 236 bits in one of
the M4K memory blocks to implement the RAM circuit.

4. Simulate the behavior of vour circuit and ensure that you can read and write data in the memory.

Part 11

Now, we want 1o realize the memory circuil in the FPGA on the DE2 board, and use toggle switches to load some
data into the created memory, We also want to display the contents of the RAM on the 7-segment displays.

1. Make a new Quartus II project which will be used to implement the desired circuit on the DE2 board.

2, Create another Verilog file that instantiates the ramipm module and that includes the required input and
output pins on the DE2 board. Use 1oggle switches SWr_g 1o input a byte of data into the RAM location
ideniified by a 5-bit address specified with toggle switches SWr_ ). Use SW,; as the Wrire signal and use
KEY, as the Clock input. Display the value of the Wrire signal on LEDG . Show the address volue on the
T-segment displays HEXT and HEXG, show the data being input to the memory on HEXS and HEX4, and
show the data read out of the memory on HEXT and HEX0.

3. Test your circuit and make sure that all 32 locations can be loaded properly.

Part 111

Instead of directly instuntiating the LPM module, we can implement the required memory by specifying its struc-
ture in the Verilog code. In a Verilog-specified design it is possible to define the memory as a multidimensional
array. A 32 x 8 arruy, which has 32 words with 8 bits per word, can be declared by the statement

reg [7:0] memoryarcay [31:0;

In the Cyclone [T FPGA, such an aray can be implemented either by using the fip-flops that each logic element
contains or, more efficiently, by using the M4K blocks, There are two ways of ensuring that the M4K blocks will



be used. One is to use an LPM module from the Library of Parameterized Madules, as we saw in Part 1. The other
is to define the memory requirement by using a suitable style of Verilog code from which the Quartus [T compiler
can infer that a memory block should be used. Quartus IT Help shows how this may be done with examples of
Verilog code (search in the Help for “Inferred memory™).

Pedorm the following steps:

1. Create a new project which will be used o implement the desired circuit on the DE2 board.

2. Write a Verilog file that provides the necessary functionality, including the ability to load the RAM and read
its contents as done in Part IL

3. Assign the pins on the FPGA to connect to the switches and the 7-segment displays,
4. Compile the circuil and download it imo the FPGA chip.

5. Test the functiomality of your design by applying some inputs and observing the output,  Describe any
differences yvou obscrve in comparison to the circuit from Part I1.

Part 1V
The DE2 board includes an SRAM chip. called IS61LV25616AL- 10, which is a static RAM having o capacity

ol 256K 16-bit words. The SRAM interface consists of an 18-bil address port, A (;_, imd a 16-bit bidirectional
data port, 1Oy, Italso has several control inputs, TF, OF, WE, I'H, und TH, which are described in Table 1,

Name | Purpose

CE Chip enable—asserted low during all SRAM operations

OF | Output enable—can be asserted low dunng only read operations, or during all opemations
WE | Write enable—asserted low during a write operation

I'B | Upperbyte—asserted low to read or write the upper byte of an address

TE | Lower byte—asserted low to read or write the lower byte of an address

Tahle 1. SRAM contral inputs.

The operation of the IS61LV 2561 6AL chip is described in its data sheet, which can oblained from the DE2 System

CD that is included with the DE2 board, or by performing an Internet search. The data sheet describes a number

of modes of operation of the memory and lists many timing parameters related to its use. For the purposes of
this exercise a simple operating mode is to always assert (set to 0) the control inputs TE, OF. UB. and LT, and

then to control reading and writing of the memory by using only the WE input. Simplified timing diagrams that

correspond to this mode are given in Figure 4. Part (a) shows a read cycle, which beging when a valid address

appears on A17_g and the WE input is not asserted. The memory places valid data on the 1/ 150 port after the
adidress access delay, £ 4 4. When the read cycle ends because of a chunge in the address value, the output data
remains valid for the awpur hold time, © o 4.



[ faa —*> Tona

17-0 >(': Address in |

{a) SRAM read eycle liming
- faw ——
Apa % Address in _::;l.f:
WE )
Ty —ae=
o, £ Dutain 3
= fyp —ert—t= an
(b) SRAM write cyele timing

Figure 4. SRAM read and write cycles.

Figure 46 gives the timing for a write cycle. It begins when WE is set to 00, and it ends when W E is set back to
1. The address has to be valid for the address setup time, § aw, and the data to be written has to be valid for the

data setup ime, Lsp, before the rismg edge of W E, Table 2 lists the minimum and maximum values of all iming
parameters shown in Figure 4.

Value
Parumeter | Min  Max
Laa — 10 ns
toia | 3ns —
taw 8 ns
tsn fins -
tira 0 =
tsa 0
D o -

Table 2. SRAM timing parameter values,

You are 1o realize the 32 X 8 memory in Figure 1a by using the SRAM chip, 1t is a good approach to include in

your design the registers shown in Figure 15, by implementing these registers in the FPGA chip. Be careful 1o
implement properly the bidirectional data port that connects to the memory.

1. Create anew Quartus 1 project for vour cireuit. Write a Verilog file thut provides the necessary funetionality,
including the ability to load the memory and read its contents. Use the same switches, LEDs, and 7-segment
displays on the DE2 board as in Parts 11 and 11, and use the SRAM pin names shown in Table 3 (o interface



your circuit to the IS6HILV25616AL chip (the SRAM pin names are also given in the DE2 User Manual),
Note that you will not use all of the address and data ports on the 1561LV25616AL chip for your 32 x 8
memory; connect the unnceded ports to 0 in your Verilog module,

SRAM port name | DE2 pin name
Aqroy SRAM_ADDR 7
VO 150 SRAMDOy s
CE SRAM_CE.N
OF SRAM.OEN
WE SRAMWELN
B SRAM_UBN
L SRAMLB.N

Table 3. DE2 pin names for the SRAM chip.

2. Compile the circuit and download it into the FPGA chip.

3. Test the functionality of your design by reading and writing values to several different memory locations,

Part V

The SEAM block in Figure 1 has o single pont that provides the address for both read and wrile operations. For
this part you will create a different type of memory module, in which there is one pont for supplying the address
for a read operation, and a sepurate port that gives the address for o write operation. Perform the following steps.

1. Create anew Quartus 11 project for vour circuit. To generate the desired memory module open the MegaWiz-
ard Plug-in Manager and select again the alisyneram LPM in the storage category. On Page | of the Wizard
choose the setting With one read port and one write port (simple dual-port mode) in the category called
How will you be using the altsyncram?. Advance through Pages 2 o 5 and make the same choices as
in Part I1. On Page 6 choose the setting | don't carg in the category Mixed Port Read-During-Write for
Single Input Clock RAM. This setting specifies that it does not matter whether the memory outputs the
new data being writien, or the old data previously stored, in the case that the write and read addresses are
the same,

Page 7 of the Wizard is displayved in Figure 5. Tt makes use of a feature that allows the memory module
to be loaded with initial data when the circuit is programmed into the FPGA chip. As shown in the figure,
choose the setting Yes, use this file for the memary content data, and specify the filename ramipm. mif,
To learn about the format of a memery initialization file (MIF), sce the Quartus 11 Help., You will need w0
create this file and specify some data values to be stored in the memaory. Finish the Wizard and then examine
the generated memory module in the file ramipmy.



MogaWzard Mg 'n Managzr A TSYHCRAM [page 7 of H]

T w0 st v 2 i Ly, ol L e mmilig S
7 M e | Henk
Rl - S e
e, vz thie fi foo the mecrean ontcl data
Pruwweriuse 4 Hemalecanal fIrocHus | Fie el s e ey
Iriicicctis File "ail|
3w
Frenans “Hﬂ‘mﬂl
The i B 1 '
w15 ot deerin =y i I e |
5 oy e
i Cuiuigueiing, | Coanued | « Baus [ b+ | Firinli

Figure 5. Specilying a memory initinlization file (MIF).

2. Write a Yerilog file that instantiates your dual-port memory. To see the RAM contents, add to vour design a
capability to display the content of each byte {in hexadecimal format) on the 7-segment displays HEXT and
HEXD. Scroll through the memory locations by displaying each byte for about one second. As each byte
is being displayed. show its address (in hex format) on the 7-segment displays HEX? and HEX2. Use the
50 MHz clock, CLOCKS0, on the DE2 board, and use KEY g as a reset input. For the write address and
corresponding data use the sume swilches, LEDs, and 7-segment displays as in the previous parts of this
exercise. Make sure that you properly synchronize the woggle switch inputs o the 50 MHz clock signal.

3. Test your circuit and verify that the initial contents of the memory match your ramipm.mif file. Make sure
that you can independently write data to any address by using the ogele switches.

Part V1

The dual-port memory creaied in Pan V allows simulineous read and write operations 1o occur, becanse it has
two address ports. In this part of the exercise you should create a similar capability, but using a single-pont RAM,
Since there will be only one address port yvou will need to use multiplexing to select either a read or write address
al sy specific ime. Perdfomm the [ollowing steps.

. Create a new Quartus 1l project for your circuit, and use the MegaWizard Plug-in Manager o agzain create
i single-port version of the altsvrcram LPM. For Pages | 10 6 of the Wizard vse the same seltings as in
Pan 1. On Page 7, shown in Figure 6, specify the ramipm.nif file as you did in Part V, but also make the
setting Allow In-System Memory Content Editor to capture and update content independently of the
system clock, This option allows vou to use a feature of the Quartus IT CAD system called the In-System
Memory Content Editor to view and manipulate the contents of the created RAM module. When using this
tool you can optionally specify a four-character 'Instance 1D" that serves as a name for the memory: in
Figure 7 we gave the RAM module the name 32x8. Complete the final steps in the Wizard.



MogaWzard Mg 'n Managzr A TSYHCRAM [page 7 of H]

T w0 st v 2 i Ly, ol L e mmilig S
7 M e | Henk
il - Tl
e, vz thie fi foo the mecrean ontcl data
Pruwweriuse 4 Hemalecanal fIrocHus | Fie el s e ey
Iriicicctis File "ail|
3w
Frenans “Hﬂ‘mﬂl
Tl I B 1 "
3 1k £ dmerncw PELF & )
o plow beSyamm erory Contey! Edio o geplas arc spoigle Jonte-
| udeparckeill, of b timbem clock
The rmensall ol i F2M I fma
Fatourss Evinsle
T b : =1 s
Hige L. Cuiuigueiing, | Coanued | { Bas [ M. | il

Figure 6. Configuring altsvncram lor use with the In-System Memaory Content Editor.

2. Write a Verilog file that instuntiates vour memory module. Include in your design the ability to scroll
through the memory locations as in Part V. Use the same switches, LEDs, and 7-segment displays as you
did previously.

3. Before vou can use the In-System Memory Content Editor tool, one additional setting has to he made. In
the Quartus 11 software select Assignments > Settings to open the window in Figure 7, and then open the
item called Default Parameters under Analysis and Synthesis Settings. As shown in the figure, type
the parameter name CYCLONEI_SAFE_WRITE and assign the value RESTRUCTURE, This pammeter
allows the Quartus 11 synthesis tools to modify the single-port RAM as necded to allow reading and writing
of the memory by the In-System Memory Content Editor tool. Click OK w exit from the Settings window,



Nimins

Fias

I | Fomime Thmert Mot
Davice

o s 3

FRoe ¥ e derl 3ohnge ol e pIETCIC K K00 P OW et St r cospe oy of
ZCRITEn madke koo Lee grves i wl Tvoidz thooodota s

To v Boip s o owedc 3 Mg

b ELa Too Sacincg | Mot

e Tovn el Fr v Sashiomgs rars v T Ll
Ui i e N sl i Hire [riariu s LwiniL i
B ‘wting  [FESTALETLAE z

Yol HIL o bt |
S atrodk ook Jpte ot ot g pOrIrCir eeaines
ol b ey
Henizad Sy abey o U o rizascns LCALLUE kb . —ESTHIL| B
LIRLETE TN
Lizagn See scw!

FighaT ap || Laglc shays
SighaHrabe b obinge
e
IV Por=la ~pwe decses Songs
[t Sl Euld Sanrge
Herzlooy athog:

—E ] ot |

Figure 7. Seiting the CYCLONEN_SAFE_WRITE purameler.

4. Compile your code and download the circuit onto the DE2 boord, Test the circuit’s operation and ensure

that read and write operations work properly. Describe any differences you observe from the behavior of
the circuit in Part V.

. Select Tools > In-System Memory Content Editor, which opens the window in Figure 8, To specity the

connection to your DE2 board click on the Setup bution on the right side of the screen, In the window in
Figure 9 sclect the USB-Blaster hardware, and then close the Hardware Setup dialog.

— In-Systerm Memory Conlenf Ldilet

Patsnen Haragsr | 10| (RS T gl TS Chein Donlig reen [TTAG saty 1z =
Ires | weae s | fomen W, | Tieeta | Tape b | R 2 L
T B Ao AR e dorem | Hodere U kst sk 1 = eun
| Bave | @ BRI il 208 000 | Sechen
T | L]
el
A B 5 £ R S T B T TR S O SR A
et s M et P R A A L

Figure 8. The In-System Memory Content Editor window.



Harbwas St | JTAG Cetiios |

et & pAC ATV G Wr e DRl o e mran pIogEN NG devDEE. T ErIpEnmng
i b s e vk b= i miesl deie ey il e

Ty seected haers (US55 aner P55 =l
s el ey e e
| | He b | Eome [Pl S b
| F,u'-ﬁl?n-; [N TPE
Loca W30 berrre e

Eb-el

Figure 9. The Hardware Setup window,

Instructions for using the In-Sysiem Memory Content Editor tool can be found in the Quartus 11 Help.
A simple operation is (o right-click on the 32x8 memory module, as indicated in Figure 10, and select
Read Data from In-System Memory. This action causes the contents of the memory o be displayed
in the bottom part of the window. You can then edit any of the displayed values by typing over them. To
sctually write the new value 1o the RAM, right click again on the 32xB memory module and select Wrile

All Modified Words to In-System Memaory,

Experiment by changing some memory values and observing that the dati is properly displayed both on the
T-segment displays on the DE2 board and in the In-System Memory Content Editor window,

ibmes areger 210 0 el m [0 % | A e o gertoy ﬁ

Wiis | ndies B St widh | Dk | Teps | dew —_—
= Tih \ 1 RIS Teac e Hatwra | _5E Blavin UEET)
Ve sk oo T 3
Wagd bty o i s Momary [
i Wik p Poad Dz o n D -Seeomibeiisy O
Wilte Deba b lirTvalem Mooy r?
sl I ils g PN i
g%;g‘ié :-: £ :-:: ik {-: e T T Wy e : :
Ecmd ZolalaRe o
LN ftaves Hep

Figure 10. Using the In-System Memory Content Editor ool

For this part you arc to modify your circoit from Part VI (and Part IV} 1o use the IS61LV256 16 AL SEAM chip
insicad of an M4K block, Create a Quartus 11 project for the new design. compile it, download it onio the DE2

boards. and test the circuit.

In Part V1 you used a memory initialization file to specify the initial contents of the 32 x 8 RAM block, and
you used the In-System Memory Content Editor tool 1o read and modify this data. This approach can be used
only for the memory resources inside the FPGA chip. To perform equivalent operations using the external SRAM
chip you can use o special capability of the DE2 board called the DE2 Control Panel. Chapter 3 of the DE2 User
Maniial shows bow to use this tool. The procedure involves programming the FPGA with o special circuit that
communicates with the Control Panel software application, which is illustrated in Figore 11, and osing this setup

L



to load data into the SRAM chip. Subsequently, you can reprogram the FPGA with your own circuit, which will
then have access (o the data stored in the SRAM chip {reprogramming the FPGA has no effect on the external
memory ). Experiment with this capability and ensure that the results of read and write operations to the SRAM
chip can be observed both in the your circuit and in the DE2 Control Panel software.,

Gam Pely Al

P52a 3 506G | o UHpeLCD | TOOLS
rLAsil L L L S SRAM VGA
AP AN -
Fi-ruli o Ba3 04
Aticene Iu Wl ATA |:|):|u DT |w"{
| Fi: [
SazjLaniin Wi

&iddraze ||'| Langth: g I FilaLenatk

sejpenks —aad

&litraze ||-|_ 1 s |;1— T Endee Sa-am

Figure 11, The DE2 Control Panel software.

Copyright (€ 2006 Altera Corporaton.



Figure | shows o digital sysiem that contains o number of 16-bit registers. a muliiplexer, an adder/subiracter
unil, a counter, and a contral unit. Dutn is input to this system via the 16-bit VN inpot. This data can be loaded
through the 16-bit wide multiplexer into the various registers, such as R0, ..., B7 and A, The multiplexer also
allows data to be transferred from one register to another. The multiplexer’s output wires are called a bus in the
figure becanse this term is often used for wiring that allows data 1o be transferred from one location in a system to

another.

Addition ar subtraction is performed by using the multiplexer to first place one 16-bit number onto the bus
wires and loading this number into register A. Once this is done. a second 16-bit number is placed onto the bus,
the adder/subtracter unit performs the required operation, and the result is loaded into register &, The data in G

Laboratory Exercise 9

A Simple Processor

can then be transferred to one of the other registers us required,

‘rlh

RO, L

16

L 16 ‘—!ﬁ

Clock +
4]
DIN 3 l . I_
ke
Muliplexers
H r.
Bus
F &
GIJ‘J.II' !)fNilllf
RO, RT
IR;, S
A iR
2 Control unil
Run
Resetn
L }3
Clear Done

Figure 1. A digital system,



The system can perform different operations in each clock cycle, as governed by the contred unit, This unit
determines when particular data is placed onto the bus wires and it controls which of the registers is 1o be loaded
with this data, For cxample, if the control unit asscns the signals 0, and A,,,. then the multiplexer will place
the contents of register f() onto the bus and this data will be loaded by the next active clock edge into register A.

A system like this is often called a processor. It executes operations specified in the form of instructions,
Table | lists the instmictions that the processor has to support for this exercise. The left column shows the name
of an instroction and its operand. The meaning of the syntax RX — |RY | is that the conients of register RY are
loaded into register RX. The my (move) instruction allows data to be copied from one register to another. For
the mvi (move immediate) instruction the expression RX «— D indicates that the 16-bit constant D is loaded into
register RX.

Operation Function performed
my R Ry R +— |[Ry]
mvi e #l) Ry — 0

add Rr, Ry | Rx — [Rz] + [Ry]
sub R, Ry | Re — [Raz] — [Ry]

Table 1. Instroctions performed in the processor,

Each instroction can be encoded and stored in the IR regisier using the 9-bat format ITXXXYYY, where 111
represents the instruction, XXX gives the RX register, and YY'Y gives the RY register. Although only two bits
are needed to encode our four instructions, we are using three bits because other instructions will be added to the
processor in later parts of this exercise. Hence /R has to be connected to nine bits of the 16-bit 2N input, as
indicated in Figure 1. For the mvi instruction the YY'Y field has no meaning, and the immediate data #D hos to be
supplied on the 16-bit DY input after the mvi instruction word is stored into /R,

Some instructions, such as an addition or subtraction, take more than one clock cvele 1o complete, because
multiple ransfers have o be performed across the bus. The control unit uses the two-bit counter shown in Figure 1
to enable it to “step through™ such instructions. The processor stars exccuting the instruction on the DUN input
when the Run signal is asseried and the processor asserts the Done output when the instruction is finished. Table
2 indicates the conirol signals that can be asserted in each time step to implement the instructions in Table 1. Note
that the only control signal asserted in time step 0 is R .. so this ime step is not shown in the table.

T T Ty
(mv): Iy | RYoue RX
Dane
imvik £y | DIN g RX
Done
faddy /- RXouts Ain RYout, Gin | Gouts RXin,.
Done
isubj: [y RX s Ain RYouts Gine | Gonts BXin.
AddSub Dome

Table 2. Control signals asserted in each instructionftime step,

3]



Part 1

Design and implement the processor shown in Figure 1 using Verilog code as follows:

1.
2

Create a new Quarus 11 project for this exercise.

Generate the required Venlog file, include it in your project, and compile the circuit. A suggested skeleton
of the Verilog code is shown in Figure 2u, and some subcircnit modules that can be used in this code appear
in Figure 2h,

. Use functional simulation to verify thot your code is correct. An example of the oviput produced by a

functional simulation for a correcily-designed circuit is given in Figure 3. It shows the value (2000] ;, being
loaded inio JR from £IN at time 30 ns. This pattem represents the instruction myvi RO#D, where the value
7 = §is loaded into KO on the clock edge at 50 ns. The simulation then shows the instruction my R1.R0O
at 90 ns, add ROER!L at 110 ns. and sub ROROD at 190 ns. Note that the simulation output shows DUN as a
4-digit hexadecimal number, and it shows the contents of IR as a 3-digit octal number.

. Create a new Quartus 1T project which will be used for implementation of the circuit on the Alicra DE2

board. This project should consist of a top-level module that contains the appropriate input and output ports
for the Altera board. Instamtiate your processor in this top-level module, Use switches SW 5, to drive the
£4N imput pon of the processor and use switch SW 5 to drive the Run input. Also. use push button KEY ), for
Resern und KEY | for Clock, Connect the processor bus wires o LEDR ;- and connect the Done signal to
LEDR 7.

. Add to your project the necessary pin assignments for the DE2 board. Compile the circuit and download it

into the FPGA chip.

. Test the functionality of your design by wegling the switches and observing the LEDs. Since the processor’s

clock input is controlled by a push button switch, it is easy to step through the execulion of instructions and
ohserve the behavior of the circuit,



module proc (DIN, Resein, Clock, Bun, Done, BusWires):
input [ 15:0] DIMN;
input Resctn, Clock, Run;
output Done:
output | 15:0] BusWires:

... declare variables

wire Clear=. ..

upcount Tsiep (Clear, Clock, Tstep_Q
assign | = [R[1:3]:

dec3to8 decX (TR|4:6], 1°b1, Xreg);
dec3tol decY (IR[7:9]. 1'bl. Yreg):

always @ (Tstep_Qor 1 or Xreg or Yreg)
begin
... specily initial values
case | Tsiep_0J)
2'blitk: /f store DIN in IR in time siep ()
begin
IRin = 1'bl:
end
2'bi}: Mfdefine signals in time step 1
case (1)

endcase

2'b Uk /fdefine signals in time step 2
case (1)
endcase

2’bl1: ffdefine signals in time step 3
case (1)
endcase

endcase
end

regn reg [ (BusWires, Rin[0], Clock, R
... instantiate other registers and the adderfsubtracier unil

... define the bus

endmodule

Figure 2a. Skeleton Verilog code for the processor.



maodule upcountiClear, Clock, (Q);
input Clear, Clock;
output [1:0]Q;
reg [1:0] Q;

always @ (posedge Clock)
if (Clear)
Q <=2'b0;
clse
Q <=0Q+ 1'bl;
endmodule

muodule dec3toS(W. En. Y
input [ 2:0] W:
input En:
output [(:7] Y:
reg [0:7] Y.

always @ (W or En)
begin
if(En=1)
case (W)
F'biHK}: Y = 8 b1 (000000,
F b : Y = 8 bl 1 O00000;
Fhi ik Y = 8" bOOTO0000:
FhO11: Y = 8 b 0000
FhINE Y = 8" hODOOT (00;
Fhi0: Y = & hOOON 100,
Fh11e ¥ = 8 bICHN0 (;
Fhill: ¥ =8 hOOOO0001:
endcase
else
Y = 8 bO00O0MH):
end
endmodule

maodule regn(R, Rin, Clock, QY
parametern = 16
input [n-1:0] R;
input Rin, Clock:
output [n-1:0] Q:
reg [n-1:0] O

always @ (posedge Clock)
if (Rin)
Q<==R:
endmodule

Figore 26, Subcircuit modules for use in the processor.



Sizrnd ation Yayvelorms

Mazber Time Bar: Ops 4 0 Pairfiar 0ps Iriberval Ope Shart: End
p1 410 n B0 [l 1200 nz 1600 ne 2000 nz 240 M ns |
Hame |ops
J -
| | Rezein
EI e remririri
| Run I I | i | i 1
|| @& DN " TI000 ¥ 2000 G00s N4 b 4080 RO oG
k=d Do f | 1 | I 1 I
&% O moueg R0 fT OO0 o0y oo i 4 E101] X
&3] [ upcountTrepd o0 ) o0 O ™ T 0 W1 e 00 T X 70 X T ) 00
| B regreg 40 4 T X s H T, OO0 _
| B movea 1z | I b 0005
45| B rworteo A 0ood A O H i)
=3 regroreg GI 1] X (1017 X LI
| & Buswie: [ 0000 § 9000y D005 WA 0005 faonfOen 0005 o CO0S ¢0aOin 0008 X mog
o | el ¥ % I | ]

Figure 3. Simulation of the processor.
Part 11

In this part you are to design the circuit depicted in Figure 4. in which a memory module and counter are connected
to the processor from Part [ The counter is used to read the coments of successive addresses in the memory, and
this data is provided to the processor as a stream of instroctions. To simplify the design and testing of this eircuit
we have used separate clock signals, PClock and MClock, for the processor and memory.

> Processor
mory
Counter v
16
Y 6 Bus b Bus
et cifdlr it s DN
Dime f—— Done
Fal
Fu £
P s
A = =
MClock
PClock
Resetn
Run

Figure 4. Connecting the pmcessor io a memory and counter,
. Create a new Quarius [T project which will be used to test your circuil.

2. Generate a top-level Verilog file thal instantiates the processor, memory, and counter, Use the Quoartus [1
MegaWizard Plug-Tn Manager tool to create the memory module from the Aliera library of parameterized
modules (LPMs). The comect LPM is found under the storage category and is called ALTSYNCRAM, Follow
the instructions provided by the wizard to create a memory that has one 16-bit wide read data port and is 32
words deep. The first sereen of the wizard i shown in Figure 5. Since this memory has only 4 read port,
and no write port, it is called a synchronous read-only memory (synchronows ROM). Note that the memory



includes a register for synchromously loading addresses, This register is required due to the design of the
memory resources on the Cyclone 11 FPGA; account for the clocking of this address register in your design,

To place processor instructions into the memory. you need 1o specify inirial values that should be stored in
the memory once your circuit has been programmed into the FPGA chip. This can be done by telling the
wizard to initialize the memory using the contents of a memory initialization file (MIF). The appropriate
screen of the MegaWizard Plug-In Manager tool is illustrated in Figure 6. We have specified a file named
inst_mem.mif, which then has to be created in the directory that contains the Quartus 11 project. Use the
Quartus 11 on-line Help to learn about the format of the MIF file and create a file that has enough processor
instructions 1o test your circuit.

3. Use functional simulation to test the circuit. Ensure that data is read properly out of the ROM and executed
by the processor,

4. Make sure your project includes the necessary pont names und pin location assignments o implement the
circuil on the DE2 board. Use switch §W 7 1o drive the processor’s Run inpul. use KEY, lor Resem, use
KEY, for MClock, and use KEY. for PClock. Connect the processor bus wires to LEDR ,_ and connect
the Dane signal to LEDR 5.

5. Compile the circuit and download it into the FPGA chip.

6. Test the functionality of vour design by toggling the switches and observing the LEDs. Since the circuit's
clock inputs are controlled by push button switches, it is easy to step through the execution of instructions
and observe the behavior of the circuit

MegaWizard Plug-In Manager - AL TSYMCHRAM [page 1 of B]

Cumerthys salscted device family. Itpbm [ =
Hiw well wou bes vong the ltzpnciam?
(¥ ‘With ane read pot JROM mode]
I wyith cnes readwnbe port [Singis-pot mods)

" wyith one read poil and one wite port | Siemple duakpor mode]

1™ "wyith s st s ptete (T dlusak-pert made)

inst_mem

How dhey o wean| Lo s pescaly Lhe memiong size ™

@ e 8 v ol woeds

Wil Typa: SUTO l 17 e 5 numbes of buls
]

I.IIIH— Dm.mﬂm.l Cancel B H Mel » I Firneh |

Figure 5. ALTSYNCRAM configuration.



MagaWizard Plug-In Manager - ALTSYNCRAM [ page T of 8]

— [ho g izt by specify Tha irilial conbant of the menmay™ -
™ Ma, leave it blank
Tl 1) 1l v |

f* Yas, use kg file for the memos content dala
[Vau can ute & Hexsdecrnsl (intel-harmst] File [hax] o s Mamnony
Iriaization File [.mil]
Erawiie...

Fil rimme: Iml_memrfi

I _imia ; e e o
g5l o wnclper e omEnooe I y

i : A
[ dlow I System Memany Canterit Echior bo capt s and upedats conbert
'; mdependenths ol the spskem dosk

Fal

T Wond{)

Diek Type AUTD The Instence 0" of thes FAM 5 MO
mn Erenae Documentation Corcal | <Back | Mews | Finisn |
Figure 6. Specifying a memory initialization file (MIF).
Enhanced Processor

It is possible w enhance the capability of the processor so that the counter in Figure 4 is no longer needed, and
s0 that the processor has the ability to perform read and write operations using memaory or other devices, These
enhancements involve adding new instructions o the processor and the programs that the processor executes are
therefore more complex. Since these steps are beyond the scope of some logic design courses, they are described
in a subsequent lab exercise available from Alera.

Copyright (€ 2006 Altern Corporation.



