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 ABSTRACT 

 This thesis first aims to understand how a part of the computed tomography (CT) 

 algorithm called “forward projector” (FP) works and how it can be accelerated at a hardware 

 level.  Two methods of FP are defined and studied:  pixel-driven and ray-driven. Both methods 

 fundamentally use the property of line integral and Bresenham’s algorithm.  As the result of the 

 study of the two FP methods, the ray-driven algorithm implemented in C++ performed 35% 

 faster than the pixe-driven algorithm implemented in Python. 

 This thesis implements the ray-driven forward projector algorithm using 

 field-programmable gate array (  FPGA), making use of  hardware-acceleration techniques. The 

 result shows that the FPGA implementation had a comparable speed advantage compared to the 

 implementation on the personal computer (PC). Even though the FPGA used was outdated and 

 budget-oriented, the chip was able to perform 58% of the performance of a more expensive, 

 modern, and performance-oriented PC. Also, the FPGA implementation performed better in 

 power consumption compared to the PC. Methodologies included the state machine, random 

 access memory (RAM), and universal asynchronous receiver-transmitter (UART). By using the 

 results in this thesis, a CT scanner can be designed to be less expensive, more efficient, faster, 

 and use less power. 
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 1. INTRODUCTION 

 A modern medical computational  (or computerized)  tomography  (CT) scanner industry 

 increasingly requires larger and faster radiation data to process and compute. Some of the 

 requirements have been met through the power-consuming and expensive graphical processing 

 units (GPU). However, gaining faster computation time with the GPUs comes with the tradeoff 

 of high power consumption and price. This brings up the maintenance and initial price of the 

 scanner, and this makes a life-saving preventative screening process more inaccessible. 

 Hardware-accelerated medical CT scans can solve these issues. 

 In a CT scan, radiation rays penetrate through a patient to acquire a projected image. 

 These rays rotate around the patient and collect the projected image in multiple angles. Denser 

 parts of the patient, such as bones, absorbs or diffracts the radiation source more than the softer 

 parts of the patient, such as organs. This results in a difference in the intensity of the projected 

 images. CT reconstruction algorithms take these images and reconstruct the cross-sectional 

 image of the patient to detect early development of tumor, internal bleeding, and irregularities 

 inside the body. CT scanner development goes alongside radiation technology to improve 

 medical image diagnostics. CT scanner or image diagnostics have saved numerous lives since its 

 invention by bringing up the percentage of cancer screening to about 20% [1]. 

 A cross sectional image of the patient is mathematically acquired by reconstruction 

 algorithms. Two major reconstruction algorithms are filtered back projection (FBP) and 

 simultaneous algorithmic or iterative reconstruction techniques (SART or SIRT). The forward 

 projection (FP) algorithm is used by these reconstruction algorithms. In FBP, the FP data 

 inversely transform through a back projection algorithm by reconstructed, and in SART, the FP 

 data is repeatedly forward projected and back projected to minimize the weight of the projection 
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 difference to reconstruct the image. Efficient and accurate FP algorithm development is 

 necessary for both reconstruction algorithms to yield an improved reconstruction result. Also, as 

 the radiation source and detector technology progresses, tomographic algorithms such as FBP 

 require more computational power and speed due to high-resolution, high-frequency data 

 acquisition and real-time reconstruction. Therefore, an effort to improve and accelerate the FP 

 algorithm will directly benefit the achievement of such technologies and save more lives. 

 Recent development of real-time detectors can collect up to 3072 by 3072 of 16 bit pixel 

 data and the speed of up to 30 frames (or ‘views’) per seconds (fps) [2]. This specification 

 amounts to 4.5Gb of data to transmit, process, and compute per second. CT reconstruction 

 algorithm researchers are mainly focused on optimizing the reconstruction algorithms to parallel 

 processing to process this large data efficiently.. Many of these parallel processing efforts are 

 made using GPUs. Using a GPU is good for elementary and large array vector calculations. For 

 example, multiply-and-accumulate computations found in FBP algorithms perform much faster 

 in parallel processing through FPGA or GPU rather than in CPU. However, there has not been 

 much attempt to accelerate the CT algorithms through the use of FPGA. Generally, in power 

 consumption and cost aspects, FPGAs have more advantage over GPUs for a specified 

 application. The disadvantages of GPUs are that they are heavy on power consumption and, in 

 some cases, slower than application-specific integrated circuits (ASIC) or FPGA hardware 

 implementation due to the lack of optimization. 

 On top of an effort to improve software FP algorithms, this thesis proposes an effort to 

 implement an FP algorithm on FPGA and highlights the advantages and disadvantages of such 

 an effort versus the software implementations for CPU or GPU. The purpose of the 

 implementation of the FP algorithm on FPGA is to accelerate the previous GPU and CPU based 

 2 



 computation faster with lower power consumption from taking advantage of hardware 

 acceleration. The proposed implementation will reduce the cost of data acquisition and 

 reconstruction by reducing the energy consumption and the device price with better speed and 

 accuracy to contribute to lower price CT device cost that will bring the initial and maintenance 

 cost of scanning down. 
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 2. BACKGROUND 

 To better understand the topic of this thesis, a bit of background information must be 

 stated about the CT scanner and its components. 

 2.1 THE CT SCAN GEOMETRY 

 The CT scanner geometry is divided into two parts: radiation source and the detector. The 

 radiation source is defined as a single point which represents the starting position of the X-rays. 

 The detector consists of a row of pixels that detects radiation emission and converts the intensity 

 from analog to digital. How the radiation source is generated is outside the focus of this study. In 

 a general sense, the radiation source hits the metal target such as tungsten and scatters 

 concentrically from the target point. This scattering beam is collimated, or windowed, and 

 creates a certain angle of exposure to only hit the detector row. When the source emits radiated 

 energy that can pass through the object, the detector collects the intensity of the source after the 

 scatter and absorption by the object in the path. If there’s more soft tissue than hard tissues in the 

 beam path, the detector will collect more intensity. This intensity data is the essence of the 

 forward projected data that the FP algorithm aims to simulate. 

 2.2. THE FIELD OF VIEW (FOV) 

 An object of interest with unknown density lies in between the source and the detector in 

 the field of view (FOV). The FOV is defined by the angle overlap area of the geometry of the 

 scanner. The resolution and the area of the FOV is defined to limit the computation area based on 

 the distance and length of the detector and the distance of the source. In the CT scanner design 
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 process, a target FOV area and its resolution are set first as a requirement and the surrounding 

 geometry is designed. 

 Naturally, one could assume that the bigger the FOV the better. However, this is not the 

 case. Depending on the type of scans, the FOV has to trade off between the area and the 

 resolution. In a general full-body scan, the FOV is designed to accommodate large bodies with 

 less resolution density. But in a cardiac scan, the FOV is designed to have a better resolution 

 within a smaller area. In order to have a bigger FOV, either the source and the detector must be 

 further apart, or the detector must be curved. This is because the further the distance between the 

 source and the detector the larger the area that overlaps. This overlap area from the rotation 

 defines the FOV. 

 2.3. THE DETECTOR 

 There are many ways the detector can measure the intensity of the X-ray and convert it to 

 a digital signal. One way is to use a scintillator layer to convert the X-ray into light that is 

 digitized by an array of photodiodes. Scintillator is a material that converts X-ray into visible 

 light. Another way is to use a photoconductor layer to directly convert the photons into electric 

 current charge in a capacitor and read out by an array of thin-film transistors (TFT) or solid-state 

 complementary metal-oxide-semiconductor (CMOS) detectors. Recent development of detector 

 technology utilizes photon-counting technique where crystal semiconductors as cathode and 

 anode are used to convert the X-ray directly to electric charge between them and eliminate dead 

 space created from using the scintillator and conversion time from X-ray to light. 
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 Figure 2.1.  Geometric diagram of the CT scan. 

 The type of detector geometry is typically divided into flat panel or tile (curved array) 

 geometry. Flat panel detectors have a rectangular flat surface such as shown in figure 2.1, and 

 curved array detectors have smaller ‘tiles’ of detectors to create a curved detector surface with a 

 certain radius. Curved detector geometry has the advantage of having a shorter distance between 

 the center for the same size of FOV than the flat panel detector geometry. However, flat panel 

 detectors are much cheaper, computationally less complicated, and easier to develop and 
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 interface. Also, due to the geometric difference, the resulting sinogram image will be slightly 

 different along the outside of the detector rows. The flat panel detector will have the cone-shaped 

 ray whereas the curved detector will have the fan-shape ray. 

 2.4. CT RECONSTRUCTION ALGORITHMS 

 In a CT reconstruction, a “view” is referred to as a row or area of detector data collected 

 for a single source point along its rotational path. The most recent CT scanner can rotate in 300 

 milliseconds. This means that, if the detector’s data acquisition interval is 60 fps, then in 

 rotation the CT scan will collect 18 views per rotation. If the average scan time is 15 minutes, 

 then the scanner will rotate 2000 times and will collect 36000 views total. The rotation speed 

 will vary based on the level of detail and noise required for the acquired image. The acquired 

 image is in the form of a sinogram. In the sinogram, the typical convention is that each column 

 represents the detector row and each row represents one view, starting from left to right. The 

 sinogram convention of image alignment is used for the reconstruction because in the FBP the 

 image must be transformed in the order of rotation. 

 Mathematician Johann Radon’s Radon transform introduced in 1917 led to the start of the 

 CT development. Radon transform takes the series of ‘projection data,’ or sinogram, of lines 

 rotating around a two-dimensional object of an unknown density and returns the density map of 

 the object via inverse-transformation. 
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 Figure 2.2.  Computing the 2-dimensional Radon transform  in terms of two Fourier transforms 

 [1] 

 In 1963, Allan Cormack developed the algebraic reconstruction technique (ART) that 

 uses an iterative reconstruction technique which was adopted in Godfrey Hounsfield’s first 

 commercial CT scanner. ART utilizes a different approach than transform-based approach where 

 the unknown cross-sectional data is solved algebraically with the known projection data and ray 

 equations. Ever since their Nobel-awarded invention,  Anders Andersen and Avinash Kak 

 improved the ART by making voxel corrections after computing  all rays at once (SIRT) and 

 making corrections after each ray (SART). 

 The FP image refers to a mathematical approximation or simulation of the sinogram data. 

 The FP image is the data acquired by the detectors from the X-ray beam forwardly projected 

 onto them. There are different ways to conceptualize the radiation source geometry to simulate 

 an FP image. The fan-shaped (for 2D)  or cone-shaped (for 3D) beams are the most accurate 

 source geometry to the characteristics of CT X-ray physics, compared to the parallel-shaped 

 beam geometry. 

 2.5. FP ALGORITHMS 
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 The basic theory behind the FP algorithm boils down to taking the line integral of the ray 

 that passes through the object. Ideally, the collected projection data on a detector pixel is the sum 

 of the values that the FOV pixel areas hold that the x-ray passes through. The line integral 

 formula makes it possible to accumulate the infinitesimally small fractions of the points along 

 the ray. First, the property of ray consists of functions of x and y in a parametric equation from 

 the starting point  a  (the source) and to the ending  point  b  (the detector). 

 𝑥 =  ℎ ( 𝑡 ),     𝑦 =  𝑔 ( 𝑡 ),     𝑎 ≤  𝑡 ≤  𝑏 

 Because the positron emission x-rays that are used for CT scans travel in a straight line 

 from the source point to the detector point, the function for  x  and  y  can be defined as a linear 

 function. Then the line integral of the ray is denoted by 

 𝑎 

 𝑏 

∫  𝑓 ( ℎ ( 𝑡 ),  𝑔 ( 𝑡 )) (  𝑑𝑥 
 𝑑𝑡 )

 2 + (  𝑑𝑦 
 𝑑𝑡 )

 2  𝑑𝑡 

 Because the phantom data is binned to fit a discrete FOV with width and height in pixels, 

 the integral should be converted to a summation. Therefore, the FP algorithm is an estimation of 

 the approximate density of a given pixel area based on the weight of the line passing through the 

 area. 

 The weight can be calculated using two methods: pixel-driven and ray-driven. The 

 pixel-driven method of FP calculates the projection weight from the assumption that the intensity 

 is distributed uniformly on each pixel. The pixel-driven FP algorithm finds the intersection 

 between the ray and the pixel area and accumulates the density weight. The Ray-driven method 

 of FP calculates the weight based on the length of the intersecting line of the given data. 
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 Figure 2.3.  From left to right: pixel-driven FP, ray-driven  FP. 

 2.6. PHANTOMS 

 Various imaging phantoms, or phantoms, are used to tune the beam, adjust the 

 reconstruction parameters, and evaluate the noise performance of the CT scan. Phantoms are 

 specially designed to calibrate for different density of the materials such as water, soft tissue, or 

 hard bones with body parts phantom or to test the quality of the reconstruction with a resolution 

 phantom with thin cylinders and cylindrical holes. 
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 Figure 2.4.  Plotted image of a modified Shepp-Logan  head phantom. 

 Shepp-Logan head phantom (SL phantom) as shown in Figure 2.4 is one of the 

 formula-generated phantom data used to test the performance of reconstruction algorithms 

 created by Larry Shepp and Benjamin F. Logan in 1974 [3]. It is composed of ten ellipses 

 defined by functions with center, major axis, minor axis, tilt angle, and the gray level as different 

 parameters. The gray level of the SL phantom represents the linear attenuation coefficient, or the 

 density, of each cylinders. A modified SL phantom has a normalized gray level to improve the 

 contrast. A benefit of the SL phantom is that it can create the cross-sectional image of the head in 

 many different resolutions because it is function-generated. 
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 3. PROJECT SETUP AND ENVIRONMENTS 

 For this thesis, two FP algorithms were written and tested in three different environments. 

 The pixel-driven FP algorithm is written in Python programming language. The ray-driven FP 

 algorithm is written in C++ and Verilog for both PC and FPGA implementation. For the FPGA, 

 the Xilinx AC701 evaluation kit with Artix 7 XC7A200T was chosen because this chip is 

 budget-friendly. The FPGA firmware was written with development tools such as Vivado, Vitis 

 high level synthesis (HLS), and Vitis integral development environment (IDE). The FPGA is 

 programmable with the free version of Vivado. For the software test environment for Python and 

 C++, AMD Ryzen 9 3900X with 128 GB RAM in Windows 10 Pro was used. 

 The geometry of the FP algorithm is fixed for all implementations. The detector row is 

 defined as 1000 pixels 1mm wide per pixel. The start of the detector row is 500 mm from the 

 center of the FOV and is on the opposite side to the source point 180 degrees. The source point is 

 located 500 mm from the center of the FOV. There are 1000 views rotating around 180 degrees. 

 The FOV is a grid width of 512 pixels and height of 512 pixels with the side of the square pixel 

 being 1 mm in length. The simulating phantom used in the FOV is a modified SL phantom in 

 32-bit floating point format. As a result, all sinogram outputs have the width of 1000 pixels and 

 the height of 1000 pixels in 32-bit floating point data. The width of the sinogram output comes 

 from the number of views (1000), and the height of the sinogram output comes from the detector 

 row pixel count (1000). 
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 4. PIXEL-BASED FP ALGORITHM 

 The pixel-based FP algorithm is implemented in the Python programming language. This 

 algorithm was first written to be the initial proof of concept for the FP algorithm. This algorithm 

 later served as the performance comparison for the ray-driven FP algorithm implementation. 

 With the comparison in the later chapter of the thesis, it highlights the advantage of the 

 ray-driven algorithm over the pixel-based algorithm. It also highlights the different results 

 between the detector geometry. As a major geometric difference, the Python algorithm uses a 

 curved detector geometry, and C++ and FPGA algorithms will use the flat detector geometry. 
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 Figure 4.1.  Geometric diagram of a curved detector  setup. 

 The geometry of the pixel-based curved detector geometry FP algorithm is as shown in 

 Figure 4.1. above. The algorithm consists of parameters such as fan angle in radians and detector 

 radius. The input parameters are the phantom data (including given width and length), cartesian 

 coordinates of the source positions, and the number of views (a.k.a. the source angle count). 
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 4.1. PRESUPPOSITION OF THE ALGORITHM 

 The algorithm used to generate the output as shown in this chapter presumes the source 

 radius to be 500mm from the center of FOV, the detector radius to be 500mm from the center of 

 FOV, the fan angle to be  , the number of rays per view to be 1000, and the number of views π
 3 

 per rotation to be 1000. The starting source position is at (500, 0), and the scan rotates 360 

 degrees counter-clockwise. The FOV has the width and length of 512 and 512 pixels, each pixel 

 being 1mm in length. The phantom used to show the result sinogram is the modified SL phantom 

 in 32-bit data in 512 by 512 in size. 

 4.2. THE METHOD AND DERIVATION OF THE ALGORITHM 

 The main algorithm used to accumulate the FP is Bresenham’s line generation algorithm 

 [4] as shown in Figure 4.2.. This algorithm is widely used and referenced for computer vision 

 applications, such as representing and displaying lines on a discrete and pixelated monitor screen 

 with a continuous line function. The algorithm chooses the pixels that have their center closest to 

 the given line over a fixed increment. For the Python FP algorithm, the selected pixels’ data are 

 simply accumulated without the weight factor to acquire the resulting sinogram data. The pixel 

 coordinate convention is set to have the top-left of the phantom data to be the base point; 

 however, this can be changed to accommodate different slopes of lines. For this implementation, 

 only the top-left orientation was considered. 
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 Figure 4.2.  A diagram illustrating Bresenham’s line  algorithm. [5] 

 At first, the fan angle determines the detector end coordinate prior to executing each view 

 projection. The arctangent of the slope of the view is calculated first with the given detector 

 coordinates and the source coordinates with the x-axis as the base axis. This means that the first 

 view that is queued up for computation has the source position at (500, 0) and the detector center 

 at (-500, 0). The center of the detector is always 180 degrees adjacent to the source point across 

 the center of FOV. If the slope of the ray is negative, then the resulting start angle is a negative 

 angle. However, to traverse the line in the uniform direction, an additional operation of adding π 

 to the angle to rotate the function 180 degrees is done to convert the negative angle to the 

 positive equivalent angle. The starting point of the line traversing is also switched to the detector 

 point, and not the source position of the ray. Based on the fan angle defined, the starting and 

 ending ray coordinates are calculated by subtracting or adding the half of the fan angle to the 

 center of the detector. For example, if the fan angle is set as  at the first view at 0 degrees from π
 3 

 the x-axis, then the start angle would be  and the end angle would be  . The order − π
 6 + π

 2 + π
 6 

 of rays from start to end is always clockwise. The angular separation between each rays is 

 calculated in equidistance of each other. 

 16 



 Secondly, the source position and detector position from a ray are used to calculate the 

 slope and intercept of the standard point-slope formula. By this, the change in x-direction (  ) ∆ 𝑥 

 and in y-direction (  ) are acquired as well as the starting position of the ray. Then, the first ∆ 𝑦 

 pixel to begin the line traversing is determined by rounding down the coordinates of the starting 

 source position. The pixels are traversed equidistantly in the x-direction, and the addition of ∆ 𝑦 

 and the comparison between the center of the pixel determines which pixel is to be included and 

 which is not. With the selected pixel coordinates, corresponding data are accessed from the 

 memory and are accumulated into the corresponding view to the zero-initialized sinogram array. 

 This line traversing is done for all rays in the view, and the next view with the fixed angle 

 increment is done until it fully rotates around the phantom. 

 4.3. THE RESULT AND CONCLUSION 

 Figure 4.3.  Resulting sinogram of a pixel-based FP  algorithm. 

 17 



 The resulting sinogram of the algorithm is shown in Figure 4.3. As one can notice, the 

 algorithm has a significant flaw of blurred diagonal line across the middle of the detector rows. 

 This means that there are not enough phantom values accumulated for the region. This is because 

 the algorithm did not consider the vertical orientation of the rays. Because the algorithm is 

 written to increment the pixels in x-direction by one while traverse in y-direction with  , ∆ 𝑦 

 there’s a limited amount of pixel values vertical to the given x-position. 

 Based on the disadvantages found from this algorithm, a few improvements can be made; 

 a primary improvement being the inclusion of the vertical rays in the algorithm. An additional 

 feature to be added to the algorithm is the weight factor of the beam overlap onto the pixel 

 location. The pixel-based nature of the algorithm can yield a larger error for the case where the 

 beam that passes through a certain pixel makes a lesser overlap, i.e. the beam that passes a small 

 section of the pixel’s corner area. Adding the weight feature based on the beam overlap could 

 reduce the inaccuracy of the FP output. 
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 5. RAY-BASED FP ALGORITHM 

 The ray-based FP algorithm written in C++ is an improvement of the pixel-based FP 

 algorithm from the previous chapter that is also used for the FPGA implementation. In a nutshell, 

 the ray-based FP algorithm uses the same concept of Bresenham’s line algorithm and the pixel 

 increment methodology. However, it has additional features to separate the pixel index 

 calculation between the horizontal and vertical rays. It also adds the weight factor based on how 

 far the offset of the ray’s position is to the center of a certain pixel. The algorithm is also 

 optimized for accessing and indexing the phantom data stored in and structured for FPGA 

 implementation. The last difference is that the detector geometry for the ray-base FP algorithm is 

 flat as opposed to the curved detector geometry for the pixel-based FP algorithm. This implies 

 that the flat detector row is perpendicular to the start of the ray position from its center. This also 

 eliminates the need for the fan angle parameter. 

 5.1. PRESUPPOSITION OF THE ALGORITHM 

 The algorithm sets some of the geometric constraints as constant, similar to the 

 pixel-based FP algorithm. The FOV size and source positions are identical to the pixel-based FP 

 algorithm. The initial detector  x  position is determined  by the detector count and the detector 

 pixel width. The pixel width is set to 1 mm, which is the same for the pixel-based FP algorithm. 

 The detector displacement is equivalent to the detector radius in the pixel-based FP algorithm, 

 but it is the distance between the center of the detector row and the center of FOV. The initial 

 detector x-position is determined by the following formula: 

 𝐷 =
− 𝐷 

 𝑐 
× 𝐷 

 𝑤 

 2 = − 1 , 000 × 1  𝑚𝑚 
 2 =−  500  𝑚𝑚 

 where 
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 initial detector  x  position,  detector count,  detector width  𝐷 =  𝐷 
 𝑐 

=     𝐷 
 𝑤 

=    

 The detector count of 1,000 is also identical. Unlike the fact that the detector count is implicitly 

 determined by the ray count in the pixel-based FP algorithm, the ray-based FP algorithm sets it 

 explicitly. The angle count is also identical to 1,000 per rotation. The source distance is kept 

 constant at 500mm. 

 The source positions, detector start position, and detector increments are determined by 

 the following formulas: 

 𝑆 
 𝑥 

=  𝐷 
 𝑠 

×  𝑠𝑖𝑛 (θ),     𝑆 
 𝑦 

= −  𝐷 
 𝑠 

×  𝑐𝑜𝑠 (θ)

 𝐷 
 𝑥 

=  𝐷 ×  𝑐𝑜𝑠 (θ) −  𝐷 
 𝑑 

×  𝑠𝑖𝑛 (θ),     𝐷 
 𝑦 

=  𝐷 ×  𝑠𝑖𝑛 (θ) +  𝐷 
 𝑑 

×  𝑐𝑜𝑠 (θ)

∆ 𝐷 
 𝑥 

=  𝐷 
 𝑤 

×  𝑐𝑜𝑠 (θ),    ∆ 𝐷 
 𝑦 

=  𝐷 
 𝑤 

×  𝑠𝑖𝑛 (θ)

 where 

 source coordinate  x  ,  source coordinate  y  𝑆 
 𝑥 

=     𝑆 
 𝑦 

=

 detector start coordinate  x  ,  detector start coordinate  y,  𝐷 
 𝑥 

=     𝐷 
 𝑦 

=    

 detector increment in  x  ,  detector increment in y, ∆ 𝐷 
 𝑥 

=    ∆ 𝐷 
 𝑦 

=    

 source distance, and  detector distance.  𝐷 
 𝑠 

=     𝐷 
 𝑑 

=    

 The geometry of FOV uses a similar convention to the pixel-based FP algorithm. Each 

 pixel is 1 mm both in length and width. The window of FOV is between (-256, -256) and (256, 

 256). Therefore, the center of FOV has the coordinate of (0, 0). This convention calls for the 

 need to adjust the pixel coordinate calculations by half the pixel width and length, and this adjust 

 value is calculated as the following formulas: 

 𝐴 
 𝑥 

=  𝑊 
 𝑥 ,    𝑚𝑖𝑛 

+
 𝑃 

 𝑥 

 2 =−  255 .  5 ,     𝐴 
 𝑦 

=  𝑊 
 𝑦 ,    𝑚𝑎𝑥 

−
 𝑃 

 𝑦 

 2 =  255 .  5 
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 where 

 𝐴 
 𝑥 

=  𝑥     𝑎𝑑𝑗𝑢𝑠𝑡     𝑣𝑎𝑙𝑢𝑒 ,     𝐴 
 𝑦 

=  𝑦     𝑎𝑑𝑗𝑢𝑠𝑡     𝑣𝑎𝑙𝑢𝑒 ,

 𝑊 
 𝑥 ,    𝑚𝑖𝑛 

=  𝑚𝑖𝑛𝑖𝑚𝑢𝑚     𝑥     𝑤𝑖𝑛𝑑𝑜𝑤 ,     𝑊 
 𝑦 ,    𝑚𝑎𝑥 

=  𝑚𝑎𝑥𝑖𝑚𝑢𝑚     𝑦     𝑤𝑖𝑑𝑜𝑤 ,

 𝑎𝑛𝑑     𝑃 
 𝑥 

=  𝑤𝑖𝑛𝑑𝑜𝑤     𝑝𝑖𝑥𝑒𝑙     𝑤𝑖𝑑𝑡ℎ ,     𝑃 
 𝑦 

=  𝑤𝑖𝑛𝑑𝑜𝑤     𝑝𝑖𝑥𝑒𝑙     ℎ𝑒𝑖𝑔ℎ𝑡 .

 5.2. THE METHOD AND DERIVATION OF THE ALGORITHM 

 Figure 5.1.  Geometric diagram of detector pixel traversal. 
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 First, the algorithm determines a given ray’s verticality based on the slope of the ray. This 

 ray is represented by the center coordinate of the detector pixel and the coordinate of the source 

 point. Figure 5.1. illustrates a horizontal ray case. The ray is either vertical or horizontal. The 

 detector pixel center coordinates can be calculated with the formula as follows: 

 𝐷 
 𝑖𝑥 

=  𝐷 
 𝑥 

+ ( 𝑖 +  0 .  5 ) × ∆ 𝐷 
 𝑥 
   ,     𝐷 

 𝑖𝑦 
=  𝐷 

 𝑦 
+ ( 𝑖 +  0 .  5 ) × ∆ 𝐷 

 𝑦 

 where 

 detector pixel center coordinates,  detector index  𝐷 
 𝑖𝑥 

,  𝐷 
 𝑖𝑦 

=     𝑖 =    

 Also, the displacement between the source and the detector pixel is derived as follows: 

 𝑅 
 𝑥 

=  𝑆 
 𝑥 

−  𝐷 
 𝑖𝑥 

   ,     𝑅 
 𝑦 

=  𝑆 
 𝑦 

−  𝐷 
 𝑖𝑦 

 where 

 𝑅 
 𝑥 ,    𝑦 

=  ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙     𝑎𝑛𝑑     𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙     𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 

 𝑏𝑒𝑡𝑤𝑒𝑒𝑛     𝑡ℎ𝑒     𝑠𝑜𝑢𝑟𝑐𝑒     𝑎𝑛𝑑     𝑡ℎ𝑒     𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟     𝑝𝑖𝑥𝑒𝑙     𝑐𝑒𝑛𝑡𝑒𝑟 .

 The ray is defined to be vertical if the absolute value of the vertical displacement is greater than 

 the absolute value of the horizontal displacement. 

 In the case of the Figure5.1, 

 𝑆 
( 𝑥 , 𝑦 )

= (−  500 ,  0 ),     𝐷 
( 𝑥 , 𝑦 )

= ( 500 ,  500 ),    ∆ 𝐷 
( 𝑥 , 𝑦 )

= ( 0 , −  1 ),

 𝐷 
 0  𝑥 

=  500 + ( 0 +  0 .  5 ) ×  0 =  500    ,     𝐷 
 0  𝑦 

=  500 + ( 0 +  0 .  5 ) ×−  1 =  499 .  5 ,

 𝑅 
 𝑥 

=−  500 −  500 =−  1000 ,     𝑅 
 𝑦 

=  0 −  499 .  5 =−  499 .  5 .

 Since the  , the ray is defined as horizontal.  𝑅 
 𝑥 | | >  𝑅 

 𝑦 | |
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 Figure 5.2.  Geometric diagram of a ray character calculation. 

 Vertical rays increment the row by 1 from row 0. The column index is determined by first 

 calculating the initial column value,  C  , for row 0, and incrementing the change in column value, 

 and truncating to the closest integer. To derive the  C  , one must know the change in horizontal ∆ 𝐶 

 direction in respect to the change in vertical direction. This is done by dividing the horizontal 

 displacement between the source and the detector by the vertical displacement. 
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 ration of run over rise    =
 𝑅 

 𝑥 

 𝑅 
 𝑦 

 This ratio is multiplied to the adjusted y coordinate of the given detector coordinate to 

 acquire the weighted displacement in horizontal direction, and it is added to the adjusted  x 

 coordinate of the given detector. Finally, the value is normalized with the detector pixel 

 increment. The resulting formula is as follows: 

 𝐶 = ( 𝐷 
 𝑖𝑥 

+ ( 𝐴 
 𝑦 

−  𝐷 
 𝑖𝑦 

) ×  𝑅𝑥 
 𝑅𝑦 −  𝐴 

 𝑥 
)  / ∆ 𝐷 

 𝑥 
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 Figure 5.3.  Diagram of the pixel offset and weight  determination. 

 The  , since row 0 is defined as the uppermost row, will simply be the negative of the ∆ 𝐶 

 ratio between the horizontal and vertical displacement: 

 . ∆ 𝐶 =−
 𝑅 

 𝑥 

 𝑅 
 𝑦 

 The horizontal rays have a similar calculation except that the columns are incremented by 

 1 from column 0, which is the leftmost column, and the ratio between horizontal and vertical 
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 displacement is inverted. Therefore, the initial row value,  , and the row increment,  , is  𝑅 ∆ 𝑅 

 calculated. 

 For the vertical case, once the initial column value and the column increment is 

 calculated, then the main loop iterates through each row and finds which column index the ray 

 crosses by truncating the value of  C  to the nearest  integer. If the column is outside the bound of 

 the window, then the loop increments the value of  C  with  . In a vertical case, there are three ∆ 𝐶 

 cases where the ray will land within the FOV pixel: left to the center, right to the center, or at the 

 center of the pixel area. This is determined by the offset between the real  C  increment value and 

 the truncated integer column index. This offset is defined as the following: 

 𝑂 =  𝐶 −  𝐶 
 𝑖 

 where 

 truncate  column index..  𝐶 
 𝑖 

=       ( 𝐶 +  0 .  5 )   

 If this offset is smaller than half of  , then the ray is left to the center of the FOV pixel. 
 𝑅 

 𝑥 

 𝑅 
 𝑦 

 If the offset is greater, then the ray is right to the center. In other cases, as long as the column 

 index is within the FOV window boundary, the ray is at the center of the FOV pixel area. 

 The weight calculation depends on the information above since the ray center to the FOV 

 pixel should have greater weight when performing multiply and accumulate than those that are 

 off-center. If the ray is lying left or right to the center of the FOV pixel, then the weight is 

 calculated by comparing the offset with the left (  ) and right (  ) bound of the possible offset  𝑂 
 𝑆 

 𝑂 
 𝑇 

 from the center. They are derived as follows: 

 𝑂 
 𝑆 

=  1 − 𝑅𝑥  /  𝑅𝑦 
 2 ,     𝑂 

 𝑇 
=  1 + 𝑅𝑥  /  𝑅𝑦 

 2 

 26 



 If the offset  is less than  , then the ray is left to the center, and if it is greater than  , then  𝑂 −  𝑂 
 𝑆 

 𝑂 
 𝑆 

 the ray is right to the center. 

 To derive the weight, the normalized horizontal displacement is calculated as follows: 

 𝐶 =
 𝑅 

 𝑥 
 2 + 𝑅 

 𝑦 
 2 

 𝑅 
 𝑦 | |

 This displacement vector is used for the following cases to calculate the weights for the left case 

 (  ) and the right case (  ):  𝑊 
 𝐿 

 𝑊 
 𝑅 

 .  𝑊 
 𝐿 

= ( 𝑂 +  𝑂 
 𝑇 
) ×  𝐶 

 𝑂 
 𝑇 
− 𝑂 

 𝑆 
,     𝑊 

 𝑅 
= ( 𝑂 −  𝑂 

 𝑆 
) ×  𝐶 

 𝑂 
 𝑇 
− 𝑂 

 𝑆 

 This weight is subtracted from the displacement vector and multiplied to the value of the 

 corresponding FOV pixel intensity with the same row and column indices. The actual weighted 

 length of the crossing ray for the left and right therefore is always less than the maximum ray 

 increment in column per row. 

 Additionally for the left case, there is a possibility that the ray extends to the pixel left to 

 the current column except for the edge column on the far right. In this case, if the column to the 

 left is within the FOV column bound, then the weight is multiplied to that pixel’s intensity value 

 without the displacement vector subtraction. The weight for the center case is simply the 

 normalized horizontal displacement vector itself. 

 The same algorithm is applied for a horizontal case except that the column is incremented 

 from start to end by 1 while the change in  y  direction  per column is calculated and iterated. 

 5.3. THE RESULT AND CONCLUSION 

 The output sinogram width is the detector row width and the height is the number of 

 angles in one rotation. The resulting sinogram of the algorithm is as shown in Figure 5.4. 
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 Figure 5.4.  Resulting sinogram of a ray-based FP algorithm. 

 The advantage of the algorithm over the pixel-based FP algorithm written in Python is 

 that the sinogram simulation output has less error due to the weight factor. Another improvement 

 is that the different orientations of ray are handled adequately, and the vertical rays are 

 accumulated well. 

 Methodology wise, this FP algorithm written in C++ was faster than the pixel-based FP 

 algorithm written in Python. The Python FP algorithm completed the computation in 36.91 

 seconds and the C++ FP algorithm completed the computation in 23.60 seconds. This is because 

 even though the C++ FP algorithm has the added weight computation, the programming 

 language has overall better performance than Python. Both programs are not optimized by 

 multiprocessing or threading. 
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 The C++ FP algorithm is forked from the open source project, the ASTRA toolbox, 

 developed and maintained by iMinds-Vision Lab, University of Antwerp. The ASTRA toolbox 

 provides a library of a wide range of CT reconstruction algorithms and framework [6]. 
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 6. FPGA FP IMPLEMENTATION OF RAY-BASED FP ALGORITHM 

 The FPGA implementation is designed in two architectures. First is the state machine 

 design pattern where the current state can be dynamically flown into different states. This 

 architecture is used to implement the repetitive step of the FP algorithm. Second is the typical 

 microprocessor design in Harvard or Von Neumann architecture to accommodate the surrounding 

 components such as RAM and communication. 

 6.1. IMPLEMENTATION STRUCTURE 

 The structure of the algorithm implemented in the FPGA is similar to the C++ algorithm. 

 The difference between the FPGA implementation and the PC implementation is that the FPGA 

 uses MicroBlaze, a soft microprocessor core, to interface between PC, RAM on the development 

 board, and the hardware-accelerated FP implementation. The main reason for the FP algorithm is 

 implemented in the FPGA this way because there is a great deal of IPs provided to handle a lot 

 of logistical issues that came up while working on this thesis project. One major obstacle that can 

 be overcome by using the microprocessor design is the usage of RAM. By using Xilinx’s custom 

 IP module for RAM controller, initializing, writing and reading from RAM is much more 

 convenient in designing the implementation. The RAM controller IP was provided and 

 configured with Vivado memory interface (MIG 7 series). 

 Another design problem that MicroBlaze solves is the communication between the PC 

 and the FPGA. The implementation uses a universal asynchronous receiver/transmitter (UART) 

 16550 chip for serial communication. The UART is interconnected with the Advanced 

 eXtensible Interface 4 (AXI4) interconnect module that talks to other AXI modules through 
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 MicroBlaze. A different approach to communication is to use onboard ethernet communication. 

 However, this was not possible for the project due to an IP licensing issue. 

 Some of the parameters have fixed values for the FPGA implementation similar to the PC 

 implementation, such as the FOV dimensions, detector count and radius, column count and 

 radius, pixel size, and the start and end angle values of 0 to Pi. These parameters are hard-coded, 

 and should be re-synthesized for different geometry. 

 Figure 6.1.  Overview diagram of the main FP algorithm  for FPGA implementation. 

 Figure 6.1. shows the top state machine overview of the FPGA implementation. The first 

 step of the algorithm is to convert the integer count value to the corresponding angle from the 

 positive x-axis that is in radians. The second step is to calculate the source coordinate, the 
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 detector start coordinate, and detector  x  and  y  increment based on the angle of the source and the 

 detector. The third step is to determine the characteristics of the ray, whether it is vertical or 

 horizontal. The fourth step is the loop of row and column for each vertical and horizontal ray 

 case and store them in a block RAM. Until the loop reaches the end, the main FP module will 

 read the phantom data from the RAM and accumulate the corresponding data to the block RAM 

 within the state machine. The last step is to store the detector projection row data to the RAM. A 

 result of 1000 data points for each source angle are stored in the MicroBlaze RAM. When all the 

 sinogram columns are written, then the loop emits the ‘done’ signal through the AXI4 interface 

 to the MicroBlaze processor. Generally, the modules generated by Vitis HLS tool follow the 

 communication protocol similar to AXI4 protocol. This protocol is universally used and 

 followed by many microprocessor systems and modules. The protocol is active when reset is 

 LOW. When start is HIGH, the module starts. When the module starts, idle is driven LOW until 

 the operation is done. When the data is ready and done, both ready and done will be HIGH for 

 one clock period. After that, when the module is not active, idle will go HIGH. Most of the 

 sub-modules are created via Vitis HLS. 

 6.2. THE PHANTOM AND THE DATA TYPE 

 CT detectors convert the analog intensity data into digital data. This value represents the 

 electric energy that passed through the scintillator to the detector in an analog capacitive energy 

 that gets converted by 16-bit analog-to-digital (ADC) converters. To simulate the projection 

 image resulting from the actual scan, the sinogram data should be an unsigned 16-bit integer 

 data. Most reconstruction algorithms convert the detected image data to attenuation coefficient in 

 a floating point format such as 32-bit floating point value. This is done with normalizing the 
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 attenuation of water molecules using a water calibration phantom. Especially for GPU 

 reconstruction using Nvidia’s CUDA parallel computing programming, the data is converted to 

 64-bit floating point to support the architecture. This FPGA implementation is done in 32-bit 

 floating-point data type. The Institute of Electrical and Electronics Engineers Standard for 

 Floating-Point Arithmetic (IEEE 754) format is used for the floating point format. It includes the 

 sign, the exponent, and the mantissa. The exponent takes 8 bits and the mantissa takes the 23 bits 

 with 1 sign bit that makes the 32 bits. 

 The integer and the decimal value are first separately converted into their binary 

 representations. For example, the number 85.125 has the integer 85, which is 1010101 in binary, 

 and has the decimal 0.125, which is 0.001, and it has the binary representation of 1010101.001. 

 The signed bit is 0 since the number is positive. In scientific notation, the number is 

 1.010101001 x  . The ‘6’ is added to the single precision bias 127 to make 133, which is  2  6 

 10000101 in binary. This will be the 8 bits exponent. The exponent ‘010101001’ is stored to the 

 mantissa with added zeros for the rest bits. The final IEEE 754 single precision of the number is 

 0 10000101 01010100100000000000000 or 0x42AA4000. 

 The Shepp-Logan (SL) head phantom data is in a double precision (64-bit) floating point 

 from 0 to 1 that resembles the attenuation coefficient of soft and hard tissues. The attenuation 

 coefficient is a value to express how easily the material can be penetrated by the X-ray. As 

 another widely-used equivalent unit conversion, there is the Hounsfield unit where the water is 

 represented as 0, the air is represented as -1000, and the bone is represented as greater than 1000. 

 The modified Shepp-Logan head has a higher contrasted range of values for better visibility. The 

 phantom consists of multiple defined ellipses that represent different regions of the brain. The 

 frequent values of the SL phantom can be found in Table 6.1. Because there are only a handful of 
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 ellipses, the variation of the pixel value is not limited to the values listed on the table below. 

 Since all of the values point to much shorter and simpler numbers, the loss in accuracy can be 

 somewhat forgiven when converted from double precision to single precision. 
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 SL phantom values  Modified SL phantom values  Counts  Percentage 

 1  0.0  0.0  131968  50.34% 

 2  1.734723475976807e-17  -5.551115123125783e-17  20080  7.66% 

 3  0.010000000000000018  0.09999999999999995  361  0.14% 

 4  0.020000000000000018  0.19999999999999996  86683  33.07% 

 5  0.03000000000000002  0.29999999999999993  11396  4.35% 

 6  0.04000000000000002  0.3999999999999999  200  0.08% 

 7  1.0  1.0  11456  4.37% 

 Table 6.1.  The SL phantom vs modified SL phantom value,  count, and percentage comparison 

 6.3. MEMORY REQUIREMENT 

 For the implementation in FPGA, the phantom data is stored in the RAM. The data is 

 written to RAM on the FPGA development board from the PC via universal asynchronous 

 receiver-transmitter protocol (UART). The sinogram data is written to RAM when the 

 computation is done. The algorithm will utilize block ram to store each column of sinogram data 

 and is written in RAM after each ray position. Table 6.2. below states the memory requirement 

 for the data. 
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 Name  data type  size 

 Phantom data  32-bit single precision floating point  32 bits * 512 * 512 / 8= 2MB 

 Sinogram data  32-bit single precision floating point  32 bits * 1000 * 1000 / 8 = 4MB 

 One view data  32-bit single precision floating point  32 bits * 1000 / 8 = 4KB 

 Table 6.2.  Data types and sizes by category. 

 The block RAM storage for the chip is not sufficient to store both phantom and the 

 resulting sinogram data. Therefore, the external RAM is required in this design. If the resolution 

 of the sinogram or the phantom is smaller, it is possible to reduce the design by only using the 

 block RAM. 

 The phantom and the sinogram are both flattened when stored. The order of the data 

 stored goes from row to column. For example, the data is stored in the following order: row 0 

 column 0, row 0 column 1, … row 0 column 511, and row 1 column 0. 

 6.4. THE ALGORITHM IMPLEMENTATION MODULES 
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 Figure 6.2.  Timing diagram of an example AXI4 protocol. 

 An example RTL timing of the modules are shown in the timing diagram in Figure 6.2. 

 The reset (ap_rst) is active LOW. The design starts when ap_start is asserted HIGH. ap_idle is 

 driven LOW when this happens. The data input and output should be ready when the ap_start is 

 asserted. When the operation is done, ap_ready and ap_done are signaled HIGH. Then the 

 ap_start is driven LOW and the state is back to idle. 

 6.4.1. COUNT-TO-ANGLE (ANGLE) MODULE 
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 Figure 6.3.  Example module diagram from the state machine. 

 The angle module converts the integer count to a single precision floating point angle 

 value of the source and the detector in radians. The typical input and output signals for the 

 communication protocol is shown in Figure 6.3. The module has inputs of 10ns clock (ap_clk), 

 reset (ap_reset), start enable (ap_start), and 32 bit unsigned integer count, and has outputs of 

 done signal (ap_done), idle signal (ap_idle), data ready signal (ap_ready), and 32 bit floating 

 point angle value (angle). In the unit test, the conversion operation takes 9 cycles of 10ns rising 

 edge clock (90ns). The operation time the module adds to the total algorithm is 90ns * 1000, 

 which is 90µs. An example of an output can be shown in Figure 6.4. 

 Figure 6.4.  Timing diagram of the angle module. 
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 The angle module includes operations such as floating point multiplication. The module 

 is written and generated using the HLS tool. 

 6.4.2. ANGLE-TO-COORDINATES (COORDINATES) MODULE 

 The coordinates module calculates the source coordinates, detector start coordinates, and 

 detector coordinate displacement, as well as the same operation signals as the count-to-angle 

 module, such as ap_reset. The operation begins when the ap_start signal goes high. This signal is 

 pulled up at the state where the count-to-angle operation for the count is done. In the unit test, the 

 operation takes 30 cycles of 10ns rising edge clock (300ns). The operation time the module adds 

 to the total algorithm is 300ns * 1000, which is 300µs. 

 Figure 6.5.  Timing diagram of the coordinates module. 
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 The coordinates module includes operations such as floating point sine and cosine, 

 multiplication, addition and subtraction. An example operation can be shown in Figure 6.5. For 

 sine and cosine operation, Coordinate Rotation DIgital Computer (CORDIC) technique, 

 developed by Jack Volder, was used to efficiently calculate the output ratios [7]. An example of 

 CORDIC technique is illustrated in Figure 6.6. CORDIC is an iterative algorithm to adjust the 

 rotation of the angle based from the positive  y  axis  in a loop to arrive at an accurate 

 trigonometric value. The number of iterations is handled by the CORDIC IP. In essence, there’s 

 an angle of a ray to estimate the value of in radians, and it takes additions and shifts from an 

 initial angle to iterate and guess. In detail, it applies the rotation transformation matrix in 

 Equation 6.1. on the unit i-direction vector. 

 (Eq. 6.1.) 

 𝑥  ' =  𝑥     𝑐𝑜𝑠    θ −  𝑦  𝑠𝑖𝑛 θ =  𝑐𝑜𝑠    θ( 𝑥 −  𝑦     𝑡𝑎𝑛    θ)

 𝑦  ' =  𝑦     𝑐𝑜𝑠    θ +  𝑥  𝑠𝑖𝑛 θ =  𝑐𝑜𝑠    θ( 𝑦 +  𝑥     𝑡𝑎𝑛    θ)

 The  is iteratively rotated clockwise or counter-clockwise. After constraining the  , the θ θ

 rotated matrix would be as below where n is the number of iterations. The  is from an angle θ

 from a look-up-table in the IP. The constrained terms are a simple right shift operation. 

 𝑥 
 𝑛 + 1 

=  𝑐𝑜𝑠    θ( 𝑥 
 𝑛 

−  𝑦 
 𝑛 
    𝑡𝑎𝑛    θ) =  𝑐𝑜𝑠    θ( 𝑥 

 𝑛 
−  𝑦 

 𝑛 
( 2 − 𝑛 ))

 𝑦 
 𝑛 + 1 

=  𝑐𝑜𝑠    θ( 𝑦 
 𝑛 

+  𝑥 
 𝑛 
    𝑡𝑎𝑛    θ) =  𝑐𝑜𝑠    θ( 𝑦 

 𝑛 
+  𝑥 

 𝑛 
( 2 − 𝑛 ))

 where 

θ =  𝑡𝑎  𝑛 − 1 ( 2 − 𝑛 )

 For the cos  , it is replaced by a predetermined value based on the number of iterations,    θ

 and the starting angle is set to the angle of interest. 
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 Figure 6.6.  Example calculation of  and  using the CORDIC algorithm. [8]  𝑐𝑜𝑠  6  0 ◦  𝑠𝑖𝑛  6  0 ◦

 6.4.3. THE COORDINATE-TO-ORIENTATION (ORIENTATION) MODULE 

 The orientation module takes the source positions, detector positions, and the detector 

 increment values and outputs whether the ray of the angle is horizontal or vertical. This is done 

 by calculating the displacement between the X and Y of the source and detector of a certain 

 detector index. If the X displacement is greater than the Y displacement, then the ray is defined 

 as horizontal. 

 In the module, the floating point displacement x and y are converted to an absolute value. 

 This is very simple since only the sign bit can be pulled to zero to convert all values to positive 

 for IEEE 754 format. 
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 The detector center displacement (Dx, Dy) and the total displacement between the source 

 and the detector center (Rx, Ry) are also passed onto the next module. The orientation module 

 takes 26 cycles of 100MHz clock in the unit test, or 56ns, and the total number of operation in 

 the algorithm is 1,000 * 1,000 = 1,000,000 times (angle index times detector pixels). This totals 

 to 56 ms of operation, excluding the data ready clock cycles and reset cycles. The data structure 

 of the return data from this module looks as Figure 6.7. 

 Figure 6.7.  The data format of the five outputs from  the orientation module. 

 6.4.4. THE LOOP CALCULATION MODULES 

 If the ray being calculated is vertical, then the algorithm loops the rows and increments 

 the column along the ray. If the ray is horizontal, then the algorithm loops the columns and 

 increments the column along the ray. Before the loop with row and column decrement, the 

 algorithm calculates the variables described in the ray-based FP algorithm chapter. The module 

 saves the row and column indices and the corresponding weights to the block RAM module, 

 which is the next state. In the unit test, the loop algorithm takes 1.4µs per pixel. For the main 

 algorithm implementation, it took 40.93 seconds. An example of this operation is found in Figure 

 6.8. 
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 Figure 6.8.  Timing diagram of the loop module. 

 6.4.5. WRITE SINOGRAM COLUMN TO RAM 

 The block RAM module has a stacked data of the phantom data indices and the weights. 

 It reads the phantom data from RAM through the Microblaze and applies the weight and stores 

 the weighted detected values to RAM. When the loop count is at the maximum count, then the 

 next data is not queued for the main FP module and the sinogram data can be read from the PC 

 through UART. 

 The file transfer and status communication are done on the PC side using TeraTerm. The 

 soft application was written in Vitis IDE. The language used to build the application was in C++. 

 The main algorithm state machine in RTL was designed in the Vivado block design tool using 

 the IP integrator. The main state machine was wrapped in an AXI4 to communicate with the 

 MicroBlaze through AXI interconnect. The modules used in the main algorithm are written in 

 C++ form Vitis HLS and were exported as an IP to be used in Vivado. 
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 6.5. THE RESULT COMPARISON 

 Figure 6.9.  The comparison of sinogram from left to  right: C++ and FPGA 

 The resulting sinogram of the algorithm is shown in Figure 6.9. The FPGA algorithm 

 generated a sinogram close in shape and intensity to the sinogram from the C++ algorithm. The 

 major difference in the values comes from the difference in the CORDIC IP’s trigonometric 

 estimation. However, the CORDIC algorithm’s output is also accurate to the true values of sine 

 and cosine. The minor difference in values come from floating point calculations within the 

 FPGA, which is handled by the Vitis HLS when the IP is created. This can create rounding 

 errors. Also the floating point arithmetics in the IPs result in slightly different decimal points. 

 Regardless, the resulting sinogram does not vary much from it since the added values and its 

 weights are fractional. On top of that, the output of the algorithm has been verified with a golden 

 value generated by the C++ algorithm, and the average percent difference measured to be less 

 than 1%. It shows that the FPGA implementation of the FP algorithm is possible. 
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 In terms of the performance of the speed, the algorithm implementation by itself took 41 

 seconds. However, the bottleneck in speed comes from reading/writing from the external RAM 

 through the UART protocol. The protocol uses the outdated USB 2.0 bus interface which can 

 only transfer data at 480 Mbps. Theoretically, the transfer speed is not significant: 0.02 s for the 

 phantom data transfer and 0.06 s for the sinogram data transfer. However, the baud rate of 9600 

 was set for UART, and the entire data transfer took more than an hour to transfer the phantom 

 data and sinogram data between the PC. This is a fatal design flaw of the project that can be 

 improved significantly for the production application. 

 6.6. FUTURE IMPROVEMENTS 

 As the section above mentioned, there are clear disadvantages in implementing the FP 

 algorithm in such a way. First, each ray traversing algorithm was done sequentially. This can be 

 improved to handle multiple ray traversing in parallel. Even though each step of the ray 

 traversing algorithm was optimized to fit more steps in a loop, each ray calculation still goes 

 through increments in a sequential pattern. In the future improvement, the ray traversing 

 algorithm should be parallelized to handle multiple ray traversing at a time. This would mean 

 that multiple cores of the ray traversing algorithm will calculate a stack of data coordinates to be 

 stored in a RAM to be handled more efficiently. 

 Second, within the ray traversing algorithm, finding the overlaid pixel coordinates with 

 Bresenham’s line equation can be optimized. The current design first calculates the pixel 

 coordinate, hangs while the data is read, applies the weight, and accumulates into the ray sum. 

 The ray traversing algorithm can perform each step in a separate module for optimization. A 

 proposed change in the architecture would reflect the steps as follows: 
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 1.  The first module calculates every ray’s overlying pixel coordinates and stores them and 

 the corresponding weights in a sorted stack. 

 2.  The next module reads the data of the coordinates and stores the weighted data into a 

 stack. 

 3.  The final module accumulates the weighted data stack. 

 This will reduce the occurrence of one process from holding up the rest of the process in the ray 

 traversing algorithm. 

 Lastly, the data transfer between the PC and the FPGA system should be optimized. It 

 was observed that the bottleneck of the implementation came from the transfer. The first 

 approach is to replace the microprocessor design to a more simplified RAM, communication, 

 and the state machine controller. Because of the inability to control RAM without a proprietary 

 IP through the MicroBlaze, the solution used for this project was not the most lightweight and 

 optimized choice. Next, the UART communication should be either replaced by an external 

 storage device such as an SD card or a faster ethernet communication. Another potential method 

 is to establish the Xilinx direct memory access (XDMA) subsystem to bypass the CPU resources 

 and have a mapped memory between the PC and the FPGA board memory. This will greatly 

 reduce the data transfer time between the FPGA and the PC. And this will also bring better 

 control of the system by setting register maps for variables and different modes that can be 

 directly controlled from the PC. 
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 7. CONCLUSION 

 First in this study, the different types of FP algorithms are explored and implemented. 

 The first iteration of the pixel-driven FP algorithm has the advantage of having a more simple 

 algorithm composed of shift-and-add operations. It has the disadvantages of poorly handling 

 vertical rays, lower accuracy of the projection data due to the inconsideration of line weights, 

 and lower performance from the programming language. 

 Some improvements have been made to the ray-based FP algorithm. One of the 

 improvements over the pixel-driven FP algorithm is that the ray-driven FP algorithm handles the 

 vertical ray cases well. Another improvement is that the inclusion of the line weight algorithm 

 achieves better accuracy in result. The other improvement is a slight performance boost and 

 optimization from lowering the level of the programming language from Python to C++. The 

 disadvantage of the ray-based FP algorithm was that it was not parallelized by nature. This 

 invoked the question of whether parallelizing the algorithm via GPU or FPGA would improve 

 the performance of the algorithm. 

 With the question above, the algorithms are implemented for the PC and the FPGA. It has 

 been found that there are clear advantages and disadvantages of implementing the FP algorithm 

 on the FPGA over the PC. As the main advantage, the implemented algorithm itself performed 

 relatively better than the similar PC algorithms. The result of the FPGA algorithm is relatively 

 fast compared to 36.91 s taken in Python and 23.60 s taken in C++ considering the fact that the 

 chip, Artix 7 series, is based on the 28 nm process released in 2010 compared to the CPU used, 

 AMD Ryzen 9, that is based on the 7nm process released in 2019. Therefore, it is reasonable to 

 conclude that the FPGA implementation of the FP algorithm brings a performance edge. 
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 Another implied advantage is in the price and power consumption. The below chart 

 shows the general advantage of price and average power consumption between the FPGA, GPU, 

 and CPU, from left to right. In a power-consumptious project such as a medical CT scanner, it 

 might not seem like a great deal to add a couple of thousand watts for computing reconstruction 

 and data acquisitions. However, reduction in power consumption is a great way to make the 

 product more carbon friendly. 

 Name  XC7A200T  AMD Ryzen 9 3900X  NVIDIA RTX 3080 ti 

 Price  $337.40  $379.99  $1,000 > 

 Average power  3.52W  86.7W  384W 

 Table 7.1.  Price and power comparison of different  implementations as of 2022/09/12. 

 However, there remains a question whether it is objectively better to implement the FP 

 algorithm in FPGA than in CPU or GPU. Considering the disadvantages from the previous 

 chapter, the performance advantage was far outweighed by the lack of consideration in 

 optimizing the solution for the surrounding system architecture. Nevertheless, the proposed 

 improvements mentioned in the same chapter should be attempted to provide more evidence to 

 the argument that the FP algorithm is better to be implemented in the FPGA hardware rather than 

 in CPU or GPU applications. Without the much needed improvements, it is better to implement 

 the algorithm in PC. 

 48 



 8. FUTURE WORK AND IMPROVEMENT 

 Beyond the studies of the FP algorithm and the optimization effort, a back projector and 

 reconstruction algorithm should be studied and optimized. The back projector or reconstruction 

 algorithms use various mathematical operations that can be optimized better in parallel than the 

 FP algorithm in its mostly sequential nature. After all, the purpose of the FP algorithm lies 

 heavily in the utilization in the back projector and the reconstruction algorithm. 
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