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Abstract: 

 Photon counting is a technique in many modern technologies such as medical imaging 

and LiDAR systems. Photon counting is needed in many aspects of the development process for 

these technologies from photodetector characterization to operation of the finished product. This 

thesis will serve to solve the challenge of quantifying photodetector performance using 

automating test equipment with known software packages such as MATLAB to be able to 

characterize photodetectors in an efficient manner. 

 A custom MATLAB program has been developed to interface with various 

instrumentation using a General-Purpose Interface Bus (GPIB) and a Prologix GPIB-USB 

controller that will be able to send SCPI commands to conduct experiments on Avalanche 

Photodiodes for their various properties. The program automatically calculates the estimated 

completion time to notify the user of when the experiment and data will be complete for data 

processing and presentation. Testing throughput is significantly advanced through this automated 

system with a test consisting of 1,000 unique operating points taking only about 2 hours, 

compared to having a user manually performing the same test in around 8 hours; a decrease of 

time by a factor of 4. This enables complete characterization and calibration of a typical 

photodetector in less than a day in a manufacturing environment. The results are processed in a 

program that compares multiple tests for parameters such as the generated photon counts 

produced by incident light and normalized count data over a certain area of a photodiode.
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Chapter 1 Intro to Photon Counting 

1.1 What is a photon? 

Before introducing what a photon is, one must bring in a trivial question: what do 

photons do? One may look at an object such as an apple, and light reflects off the object, 

however, one will never be able to see individual photons, but one experiences what photons do. 

What photons do is bind electric charges along with magnetic effects together by discrete 

irreducible processes of photon emission and absorption connected by a continuous process of 

propagation [Roychoudhuri, 1]. The modern photon was originally theorized by Albert Einstein 

in 1905 to explain various experimental observations about light such as black body radiation 

and the photoelectric effect. In the simplest terms, a photon is the smallest possible unit of 

electromagnetic energy that can be generated or detected. This level of explanation is sufficient 

for discussions on photon counting techniques and applications. While there are many quantum 

physics-based descriptions of a photon, an understanding of these is not required for practical 

photon counting.  

1.2 Photon Counting 

Photon counting is a method of quantifying light intensity by counting events triggered 

by photons rather than measuring the current flowing in a photodetector. This is a powerful 

technique that is a key component of many emerging technologies such as LiDAR and medical 

imaging. Photons with wavelengths in the visible light range have a greater advantage over other 

alternatives such as using RADAR due to having shorter wavelengths and can be favored when 

detecting photons in medical imaging. Figure 1 shows an example of medical imaging of the 

author’s retina using optical coherence tomography, a type of LiDAR imaging which can use 

photon counting [Mohan, 2], where Figure 1 displays the author’s eye. 
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Figure 1 - Imagining of the Author’s eye 

 

1.3 Photodetection 

The process of detecting photons can be mainly characterized by the absorption of 

photons in the material with generation of charge carriers [Donati, 4]. These charge carriers can 

be electrically measured and are proportional to the light irradiance on a photodetector. The most 

fundamental measurement of the performance of a photodetector is responsivity, typically given 

in units of amps/watt. Responsivity is the amount of electrical current (amps) produced by a 

photodetector for a given amount of light power (watts). The photodetector material, structure of 

the layers, biasing conditions, temperature, and many other environmental and design parameters 

contribute to the responsivity. Responsivity is accurate when the number of photons hitting the 

detector is large. For irradiance values that correspond to relatively small numbers of photons, 

the statistical nature of charge carrier generation along with noise limitations of electronics, 

requires photon counting techniques to resolve. This will be expanded upon later in the chapter. 
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Figure 2 - Spectrum of Light 

 

1.4 Quantum Efficiency 

Another merit that is used to characterize photodetectors is the quantum efficiency. 

Quantum efficiency is the ratio of the number of photocarriers to the number of incident photons 

[Pearsall, 5]. For example, if the result of a sensor absorbing every photon is that a minority 

carrier (a hole in semiconductors) reaches the p-n junction of a diode (and therefore pulling an 

electron), then the quantum efficiency would be 100%. Photocurrent is described as the number 

of electrons per second, 𝑛𝑒, times the charge of each electron, 𝑞, shown in Equation 1.1. This 

equation can also be arranged to describe the number of electrons per second as a function of 

current and charge. 

𝐼𝑝ℎ𝑜𝑡𝑜𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  𝑞 ∙ 𝑛𝑒 , → 𝑛𝑒 =
𝐼𝑝ℎ𝑜𝑡𝑜𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑞
 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠/𝑠𝑒𝑐 

Equation 1.1 – Describing photocurrent 
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Optical power is described as the number of photons per second, 𝑛𝜙, times the energy per 

photon, 𝐸 = ℎ𝑓, where ℎ is Planck’s constant, and 𝑓 is the frequency of a photon, shown in 

Equation 1.2. This equation can also describe the number of photons in terms of power and 

energy. 

𝑃𝑜𝑝𝑡𝑖𝑐𝑎𝑙 = 𝑛𝜙 ∙ ℎ𝑓 →  𝑛𝜙 =
𝑃𝑜𝑝𝑡𝑖𝑐𝑎𝑙

ℎ𝑓
 𝑝ℎ𝑜𝑡𝑜𝑛𝑠/𝑠𝑒𝑐 

Equation 1.2 – Optical Power Equation 

 

Combining both Equations 1.1 and 1.2, the quantum efficiency, 𝑛𝑄, can be described by 

Equation 1.3, where 𝐼𝑝ℎ𝑜𝑡𝑜𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑃𝑜𝑝𝑡𝑖𝑐𝑎𝑙 are values that can be measured and produced in a 

laboratory setting. 

𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  𝑛𝑄 =
𝑛𝑒

𝑛𝜙
=

𝐼𝑝ℎ𝑜𝑡𝑜𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∙ ℎ𝑓

𝑃𝑜𝑝𝑡𝑖𝑐𝑎𝑙 ∙ 𝑞
 

Equation 1.3 – Quantum Efficiency 

 

1.5 Photon Counting Detectors 

Photon counting begins with a suitable photodetector. All photon counting detectors use 

some form of electron multiplication, such as avalanching and/or breakdown effects to amplify 

the photocurrent from a single photon. Photon counting detectors can be divided into two broad 

categories: semiconductor and vacuum tube based. Vacuum tube-based detectors such as 

photomultiplier tubes are only used in niche applications and will not be covered in this thesis. A 

few examples of semiconductor photodetectors are the PN photodiode, Schottky photodiode, and 

the avalanche photodiode. The most common photon counting detector is the avalanche 

photodiode (APD). An APD is a photodiode with an internal structure optimized for electron 
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multiplication and is typically biased at relatively high voltages such that a single photoelectron 

causes an “avalanche” of electrons due to impact ionization. This device can therefore be thought 

of as a photodiode with gain. Combining hundreds of Geiger-mode APD unit cells (Geiger-mode 

APD combined with a series quench resistor) in parallel creates a silicon photomultiplier (SiPM) 

also known as a multi-pixel photon counters (MPPC). The APD will be discussed in more detail 

later in this thesis, along with the structures used for experimentation. 

1.6 Motivation of Thesis 

General photon counting in a laboratory setting will require instrumentation such as power 

supplies, generators, analyzers, and active personnel that conducts the experiments. Depending 

on the equipment used, this may be a tedious procedure and would require extensive amounts of 

user experience to manage and gather precise results. One form of conducting experiments that is 

accessible to the user is the use of a communication system that is already in place in most 

laboratory equipment, a General-Purpose Interface Bus (GPIB) system. Using this system may 

require the use of purchasing special subscription-based licenses and controllers such as National 

Instrument’s LabVIEW and GPIB control devices, however, the cost to maintain a 1st party 

communication system for a multi-year project that only requires basic data retrieval would be 

cost-ineffective and add unnecessary complexity to operate.  

One solution of having a perpetual low-cost and efficient manner of using GPIB is by 

using a 3rd party controller that is relatively cheaper than a 1st party controller and by utilizing 

MATLAB, which is an excellent program for data processing and presentation. This thesis will 

discuss the instrumentation used, investigate the process of setting up an automated system with 

GPIB, and to analyze select size and shaped APDs for their characteristics. 
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1.7 Context of Thesis 

 This thesis will serve as a reference and guideline for experimentation and future research 

on APDs. The first two chapters serve as an introduction to photon counting and provide 

background information on what the user would find helpful during testing. Chapter 3 discusses 

the current experimentation system in place and explains why an alternative system would be 

preferred. Chapter 4 provides the context behind GPIB that is deemed practically beneficial for 

not just this thesis, but also for other research work with instrumentation that works with GPIB. 

Chapter 5 goes into depth on the integration of MATLAB and GPIB to make a powerful program 

that is able to automate GPIB-configurable devices and retrieve data, and Chapter 6 goes on to 

discuss the analysis of data produced and processed via MATLAB. The final portion of this 

thesis contains a conclusion chapter summarizing the work 
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Chapter 2 Background information of Photodiodes 

2.1 Semiconductors 

 

Figure 3 ‒ Bohr Structure of Silicon atom 

 

 An elementary structure of a photodiode begins with silicon, an element with an equal 

number of 14 protons, electrons, and neutrons. The Bohr model electron structure of an atom 

follows a stable electron shell pattern where the innermost shell contains 2 electrons, the second 

shell contains 8 electrons, and the third shell contains 8 electrons, where an atom will either want 

to gain or lose electrons depending on the number of valence electrons in the outermost shell to 

achieve stability. Silicon fills these shells where the valence shell only has 4 electrons, shown in 

Figure 3 , giving it the ability to either gain or lose an electron. In its pure form, silicon forms 

covalent bonds with other silicon atoms and creates a structure where each silicon is sharing a 

bond with four neighboring silicon atoms, shown in Figure 4. 
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Figure 4 ‒ Covalent bonding of silicon atoms 

 

 Silicon on its own will not conduct a current and ideally has no free moving electrons. To 

make it into a semiconductor, silicon (which has 4 valence electrons) is doped with either donor 

atoms (elements found under Group V with an extra electron) such as phosphorus or acceptor 

atoms (elements found under Group III with one less electron) such as boron. Doping silicon 

with donor atoms will introduce an extra mobile electron that is able to freely move around and 

create an n-type semiconductor, shown in Figure 5. Similarly, doping silicon with acceptor atoms 

will create a space where an electron can jump towards, and a mobile “hole” appears to move 

and create a p-type semiconductor, shown in Figure 6. Although n-type and p-type 

semiconductors can freely move charge, they are both neutrally charged as the semiconductors 

will not conduct a current until a potential difference is introduced. 
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Figure 5 ‒ Movement of mobile free electron through n-type semiconductor 

 

 

 

Figure 6 ‒ Movement of “hole” through p-type semiconductor 

 

 

2.2 The Diode 

 A fundamental device that appears in practice either as a useful technology or a parasitic 

is the diode. A diode is formed when p-type and n-type semiconductors neighbor each other and 
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create a PN junction. The PN junction consists of a region where the free mobile electrons from 

the n-type material move across the junction and leave behind a positive charge, and similarly 

the holes of the p-type material move across and leave behind a negative charge. Consequently, 

this creates a neutral region that is depleted of free roaming carrying electrons called the 

depletion region. The fixed atoms on each side of the junction will generate a force that will 

equalize the charge distribution in the diode and give rise to a parasitic capacitance [Baker, 8]. 

The p-type material will become the anode of the diode and the n-type material will be the 

cathode, shown in Figure 7. In the depletion region, the n-type side will have a net positive 

charge and the p-type will have a net negative charge, creating an electric field in the depletion 

region and therefore a junction voltage is created. 

 

 

Figure 7 ‒ PN diode (a) showing depletion region (b) schematic symbol 
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If the PN diode is forward biased (a positive potential difference between the anode and 

cathode), the electrons on the n-type side will move towards the p-type side and vice versa for 

the holes. The applied negative voltage on the n-type side assists with electron diffusion and 

therefore the length of the depletion region shortens. Conversely, in reverse bias operation, the 

diode will experience a negative external voltage which will prevent the electron and hole 

carriers from crossing the junction, therefore widening the depletion region (and lowering the 

depletion region capacitance) and conduct a negligible leakage current until a very high voltage 

punches through the diode. This punch-through voltage is also known as the breakdown voltage 

of a diode, shown in Figure 8. All APDs described in this thesis are only tested in the reverse 

bias region including breakdown and beyond.  

 

 

Figure 8 ‒ I-V curve of a diode 
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2.3 Photodiodes 

 The structure of a photodiode is a PN junction where the photodiode’s semiconductor 

material is designed to be more responsive to light. When light is applied to a photodiode, the 

photons from the light interact with silicon atoms and release an electron if the photon contains 

enough energy to knock out a valence electron from the silicon atom, which results in an 

electron-hole pair. If photons are absorbed in either the P or N regions, the electron-hole pair 

would recombine in the material as heat, however, if photons are absorbed in the depletion 

region where there are no free electrons, the electron-hole pair that would move to opposite sides 

of the PN junction due to the electric field inside the depletion region and generates current. 

More simply, photocurrent is current generated due to incident photons applied onto a diode. 

 Operating a photodiode in reverse bias mode, as the reverse bias voltage increases, the 

depletion region continues to widen. This consequently will result in a larger area of absorption 

for photons and generate a larger amount of photocurrent. The direction of the photocurrent is 

dictated by the movement of photogenerated holes in the depletion region, where the holes 

(positive charges) move with the electric field (direction from n-type to p-type). This direction is 

the same as the leakage current through the photodiode. At a constant reverse bias voltage (and 

therefore constant leakage current), the amount of photocurrent flow is proportional to the 

intensity of the photons applied to the photodiode [9], shown in Figure 9. 
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Figure 9 ‒ Family of photodiode IV curves with increasing light intensity.  

 

2.4 Avalanche Photodiodes 

 The structure of all photodiodes stem from the elementary PN junction design. From 

here, devices such as the PIN photodiode, the Schottky photodiode, and the avalanche 

photodiode are designed to meet certain specifications and performance modes. The avalanche 

photodiode (APD) is a high-speed, high-sensitivity photodiode that internally multiplies 

photocurrent when reverse voltage is applied. The internal multiplication means that the APD 

has a high sensitivity to photons and therefore can perform at low light intensities [Hamamatsu, 

10].  
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Figure 10 – Photodiode I-V curve rotated to show reverse bias region in the right quadrant.  

 

As an APD operates at relatively low reverse bias voltages, it performs similarly to a 

general PN photodiode and is said to be operating in photoconductive mode, where the depletion 

region increases with increasing reverse bias voltage. As the reverse bias voltage increases and 

nears the breakdown voltage, the APD begins to operate in linear mode, where the avalanche 

gain of an APD can vary from around 10 to 1000 and can be amplified with sensitive electronics 

and used to trigger photon counting instrumentation. This region of APD operation below its 

breakdown voltage is known as the linear region because there is a proportional output to 

incident light. The effects of noise within the signal chain can make the single photon level 

output from an APD difficult to resolve. Detecting 10 to 1000 electrons is often as hard as 

detecting a single photogenerated electron. Another method of APD operation is Geiger-mode, 

where the APD is biased beyond its breakdown voltage. The three main regions that the APD 

can operate are shown in Figure 10, where region 1 is the photoconductive mode with reverse 
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biased applied and a gain of 1, region 2 is linear-mode where typical APDs are operated with 

gains of 10-1000, and region 3 is Geiger-mode where the APD is biased beyond breakdown. 

2.5 Geiger-Mode APD 

When operated in Geiger-mode, a current limiting resistor, called a quenching resistor is 

needed to prevent damage due to excess current flow from breakdown events. The APD breaks 

down, current flows through the quenching resistor and drops the voltage across APD until the 

breakdown is stopped. This process repeats and the output from a Geiger-mode APD is a train of 

short pulses with a mostly fixed amplitude determined by the bias voltage beyond breakdown 

and the value of the quenching resistor. 

The concept of biasing “beyond breakdown” often causes confusion with the assumption 

being that a device in breakdown has a permanent short circuit current flowing. Even with a 

quenching resistor, the intuitive understanding of breakdown would lead to the assumption that 

the Geiger-mode APD would toggle between the two states as fast as the quench resistor and 

photodiode capacitance would allow. However, breakdown is a probabilistic process and the 

probability of breakdown increases with incident light on a Geiger-mode APD. This is the reason 

why an APD biased beyond breakdown outputs a pulse rate that is proportional to the light 

intensity. There are also some breakdown pulses even without light and this is known as the 

“dark count”. If the dark count is sufficiently low, then a small change in count rate due to a 
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single photon can be detected. Even if the dark count is high for a detector, a single photon can 

still be resolved if the same experiment is repeated thousands of times and averaged.  

 

 

Figure 11 ‒ APD cross section 

 

A Geiger-mode APD can be easily created from the layers available in standard CMOS 

processes with no modifications. The cross-section of an elementary Si CMOS APD is shown in 

Figure 11. The PN junction is formed from the N-well used for PMOS transistors and a square or 

circle of P+ active material usually used for source/drain terminals. Metal contacts to the N-well 

and the P+ are then used to connect the APD to either bond pads or other circuitry on the chip. It 

is important to note that if the CMOS process is silicided, a silicide block layer must be used in 

layout to cover the P+ region. Otherwise, silicide deposited on the photoactive region will block 

light from hitting the junction.  

The APDs formed in CMOS processes can be operated in either linear or Geiger mode. 

However, the linear multiplication region is very small due to the sharp breakdown 

characteristics of the heavily doped CMOS process layers. As a result, it is difficult to bias the 

APD in the linear region. This is why Geiger mode operation is preferred for a CMOS APD. 

Many variations in terms of APD size, shape, and guarding can be done to optimize the 
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performance and tailor the breakdown characteristics of the Geiger-mode CMOS APD. For 

example, using a circular structure instead of a square structure can reduce breakdown effects at 

the edges leading to reduced dark count rates.  

2.6 SiGe APDs 

 

 
Figure 12 ‒ SiGe APD cross section and layout 

 

 A variant on the Si APD formed in CMOS processes is the SiGe APD formed using 

layers found in SiGe BiCMOS processes. SiGe BiCMOS processes use a graded heterojunction 

SiGe base layer to create high heterojunction bipolar transistors (HBT). The SiGe base layer can 

be exposed to light by omitting the polysilicon emitter. The SiGe base layer then forms the anode 
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of the APD. The deep N-well originally used for the collector is then repurposed as the cathode 

of the APD. The basic structure is then improved with uniform contacts to the anode and cathode 

regions. These SiGe APDs can be shaped, resized, and have guard rings added just like their Si 

CMOS counterparts. A representative cross-section of a SiGe APD is shown in Figure 12. The 

main focus of this thesis is testing these SiGe APD structures to determine what parameters 

make an optimal SiGe APD.  

 The SiGe APD structures can be broadly classified into two shapes, circular and square. 

Among these shapes, there are APDs with sizes (defined as width of square or diameter of circle) 

of 5 µm, 24 µm, and 50 µm. Examples of these structures are shown in the figures below. The 

layouts are a part of a broad research investigation of SiGe APDs [11], where the devices chosen 

function properly and will be tested using the system developed in this thesis. 

 

 

Figure 13 ‒ 5μm Square SiGe APD 
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Figure 14 ‒ 24μm Square SiGe APD 

 

 

 

Figure 15 ‒ 50μm Square SiGe APD 
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Figure 16 ‒ 5μm Circle SiGe APD 

 

 

 

Figure 17 ‒ 24μm Circle SiGe APD 
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Figure 18 ‒ 50μm Circle SiGe APD 
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Chapter 3 Understanding Photon Counting Instrumentation 

3.1 Photon Counting Experimentation Setup 

For this thesis, there are a few metrics to discuss before proceeding to conduct photon 

counting tests. When performing a single test, a laser diode at a specific wavelength of visible 

light is applied to an avalanche photodiode (APD). The circuit under test is an APD in series 

with a quenching resistor and a termination resistor, where the quenching resistor will limit the 

current coming from a voltage supply, shown in Figure 19 in a schematic. The APD is 

configured with the cathode connected to the quenching resistor and the anode connected to the 

termination resistor. The APD is inserted into an integrating sphere that contains the laser diode 

that will cause the inside of the sphere to equally diffuse light onto the APD. The anode of the 

APD is connected to a low-noise amplifier that is used to amplify short current pulses and 

convert it into a measurable voltage that will feed into the SR430 photon counter. 

 

 

Figure 19 ‒ APD Test Setup (schematic) 

 

 A PCB board was designed by a colleague, seen in Figure 20, where the variable voltage 

supply feeds into a BNC connector that is on the cathode side, and the output is the SMA 
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connector on the anode side. The APD is on the bottom side of the PCB board, shown in Figure 

21.  

 

 

Figure 20 ‒ APD Test Board (top view) 

 

 

 

Figure 21 ‒ APD Test Board (bottom view) 
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The SMA output feeds into a Mini-Circuits ZFL-500LN-BNC+ amplifier, shown in 

Figure 22, which is powered with an external voltage supply of 15V, has a bandwidth up to 

500MHz and amplifies the incoming signal by around 28dB (linear gain of 25V/V). 

 

 

Figure 22 ‒ Mini-Circuits ZFL-500LN-BNC+ Low Noise Amplifier (LNA) 

 

 The laser diode is attached to the integrating sphere, where the laser is enabled using a 

current source, shown in Figure 23. 

 

 

Figure 23 ‒ Integrating Sphere 
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 The setup explained in this section is the minimum requirement to proceed with testing. 

The following sections and chapters will discuss how tests are conducted and the values 

obtained. 

3.2 Testing with General Purpose Instruments 

 

 

Figure 24 ‒ Observing pulses with LeCroy Oscilloscope (a) Dark Counts (b) Light Counts 
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It is possible to perform photon counting with general purpose laboratory instruments 

such as oscilloscopes or pulse detectors. One such way to test the APD for current pulses is by 

probing the output and viewing the output on an oscilloscope and making observations. By 

following Figure 19, setting the voltage supply to a voltage higher than the breakdown voltage of 

the APD and connecting the output to an oscilloscope, the output measured on an oscilloscope 

can be seen in Figure 24 showing noticeable voltage pulses. With the laser diode disabled, this 

measured output will be considered pulses that are generated under the absence of light, or dark 

counts, shown in Figure 24(a). Enabling the laser diode will cause the APD to generate more 

pulses, indicating that by applying light onto the photodiode will generate more counts, which 

will be defined as light counts, shown in Figure 24(b). If one were to manually count the number 

of pulses generated from the dark and light counts, the difference between these two measured 

outputs will be the extra counts produced due to applying incident photons to the APD, which 

are the photon counts. Although it is possible to manually experiment with an oscilloscope, it 

would be deemed impractical to experimentally measure results due to user errors of managing 

the oscilloscope and discriminating on what can be considered a pulse.  

3.3 Survey of Dedicated Photon Counting Instruments  

 Conducting photon counting testing with everyday lab instruments is a feasible option, 

however, it would be deemed a tedious task to processing incoming signals for specific 

measurements such as peak voltages and average photon counts over a given time frame. A 

dedicated photon counting instrument can discriminate between noise and voltage pulses, and 

store individual counts into a dedicated time bin. The discriminator voltage of a photon counter 

is defined as the level at which a voltage pulse can be distinguished as a define count. 

Accompanying this discriminator voltage is the discriminator slope, where the photon counter 
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will define a count based on the direction of the voltage pulse. Figure 25 shows an example of 

how a photon counter would discriminate between a pulse being considered a count, where 

Figure 25(a) uses a positive discriminator slope to count positive voltage pulses and similarly for 

negative voltage pulses in Figure 25(b). 

 

 

Figure 25 ‒ Discrimination of a count (a) Positive slope (b) Negative slope 

 

A time bin is the time that a bin is exposed to collecting data. While exposing a bin, all 

photon counters will have a maximum count per bin before the photon counter becomes 

saturated. A record is a collection of all time bins that sums the count data of all bins. If the 

maximum bin count has not been met, a test may be running where multiple records may be 

recorded and summed together. Depending on the number of records, the rate at which each 

record is triggered, and the time bin size, an accurate count of photons may be collected and 

analyzed using the photon counter’s data processor. The following section will discuss the 

operation of the SR430. 
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3.4 Stanford Research Systems SR430 

 The main photon counter that has been used extensively throughout this thesis is the 

SR430, featured in Figure 26. The added benefits of this photon counter are the upgraded user 

interface and data processing options. One of the foundations of the SR430 is the use of time 

bins that collect counts. The minimum time bin width of the SR430 is 5ns, however, the 

maximum count rate is 100MHz, or one count per 10ns. The next largest time bin is 40ns, 

therefore, each bin can record up to 4 counts. The next time bin is 80ns, and each consecutive 

time bin doubles, up to 10.486ms. For this thesis, a time bin of 160ns is used, therefore 16 counts 

can be recorded in each bin. A record is a collection of time bins, where there is no dead time 

between bins and all counts can be collected. The number of bins that can be used in a record 

range from 1024 to 16,352, in increments of 1024. The length of each record in terms of time is 

determined by multiplying the time bin width by the number of bins in a record. The SR430 has 

a feature that can scan a record multiple times and sum all counts into each bin. A scan can 

accumulate a range of records between 1 and 64k.  

 

 

Figure 26 ‒ The SR430 Photon Counter 
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 Shown in Figure 27 is the SR430’s process of collecting counts on a time diagram 

[Stanford Research Systems, p.12]. The time it takes to do a scan with multiple records will 

change as a function of the length of bins and number of bins used, plus accumulation and 

processing time to add all counts. Equation 3.1 can be used to mathematically solve for the busy 

time it takes to process one record, 𝑇𝑏𝑢𝑠𝑦 , where 𝑇𝑏𝑖𝑛 is the time bin and N is the number of bins 

per record [Stanford Research Systems, p.11]. A record is triggered using a trigger pulse, which 

can be generated using a square pulse generator that serves as a clock. The frequency of this 

square pulse is the reciprocal of the busy time, and at each trigger a new record will be initiated. 

If the trigger pulse frequency is higher than the maximum frequency calculated, the SR430 will 

throw a trigger rate error, which indicates that the SR430 detected a trigger pulse while the 

record was still being processed and will be flagged and ignored. Once the trigger frequency has 

been defined, the length of a scan can be calculated by taking the number of records and 

multiplying this to the busy time, demonstrated in Equation 3.2. 

 

 

Figure 27 ‒ Timing Diagram of the SR430 for one record 
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𝑇𝑏𝑢𝑠𝑦 = 𝑁 ∙ 𝑇𝑏𝑖𝑛 + 𝑁 ∙ 250𝑛𝑠 + 150𝜇𝑠, 𝑓𝑐𝑙𝑘 = 1/𝑇𝑏𝑢𝑠𝑦 

 

Equation 3.1 – Solving for 𝑇𝑏𝑢𝑠𝑦 and trigger clock input, 𝑓𝑐𝑙𝑘 

 

𝑇𝑠𝑐𝑎𝑛 = # 𝑜𝑓 𝑅𝑒𝑐𝑜𝑟𝑑𝑠 ∙ 𝑇𝑏𝑢𝑠𝑦 

Equation 3.2 – Total scan time of the SR430 

 

 To access the SR430’s time bins and record lengths, this is found by pressing on the 

“Mode” key, shown in Figure 28. The mode menu contains all the main photon counting 

functions of the SR430. The SR430 can operate with either an internal bin clock that uses 

dedicated bins or an external bin clock where the user can define their own bin size. In this 

thesis, the bin clock source is set to “internal”. To change a value on the SR430, the dark 

softkeys can be pressed to access menus seen on the screen and the spin knob can be turned to 

set a numerical value. 

 

 

(a) 
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(b) 

Figure 28 ‒ Mode menu on the SR430 (a) Accessing menu (b) Mode Menu 

 

A similar process to Figure 28 to access the levels menu of the SR430 by pressing on the 

“Levels” key. The levels menu will be the main testing menu where parameters such as 

discriminator level can be changed. To setup the SR430 for photon counting, the parameters 

shown in  

Table 1 are set. 
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Levels Menu 

Parameter  Set Value Notes 

Trigger Level 1.25 V This is the voltage level to cross to 

trigger a record scan. Can be a value 

from -2V to 2V in 1mV increments. 

Trigger Slope Positive This parameter will set the trigger 

slope. A trigger will occur when the 

clock pulse passes the trigger level 

with the set trigger slope. Can also be 

negative. 

Discriminator Level 200mV This is the voltage level that the 

incoming signal should pass to be 

considered a count. Can be a value 

from -300mV to 300mV in 0.1mV 

increments.  

Discriminator Slope Positive This parameter will set the 

discriminator slope. A count is 

recorded when the incoming signal 

passes the disc. level with the set disc. 

slope. Can also be negative. 

Mode Menu 

Bin Clock Source Internal Determines if either internal or external 

time bins will be used. The 

recommended setting is to set to 

“internal”. 

Bin Width 160 ns The length of each bin. Can be a short 

value of 5ns, or 40ns, 80ns, doubling 

up to 10.486ms. Note that longer time 

bins may cause the bin to saturate 

easier (max counts per bin: 32,767, 

regardless of bin size) 

Bins/Record 1k (1024) The number of bins per record. There 

is no dead time between bins. Can be a 

value between 1k up to 16k, in 

increments of 1k. 

Records/Scan 10000 The number of records per scan. The 

current record is added to the next 

record, where bin positions are added 

together. Can be a value between 1 to 

64k. Note that more records will have a 

chance of saturating bins. 

Trigger Offset 0 The number of time bins to add after a 

trigger that will not be counted. This is 

used if the user needed a delay time 

before testing. 

 

Table 1 ‒ SR430 Main Parameter Setup 
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3.5 Manual Photon Counting Experimentation 

 

 

Figure 29 ‒ Manual Photon Counting Flowchart 

 

 The process of conducting photon counting experiments is shown in Figure 29. A 

majority of this chapter has established how to setup the APD board, main connections, and 
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SR430 setup. Once the user has verified all instrumentation and circuitry, the first step is for the 

user to manually set the current flow through the laser diode using a current source. A dark 

counting test is done when the laser diode is off, and a light count consists of setting a desired 

current to produce counts due to incident photons, or photon counts. 

 After the laser diode current is set, the reverse bias voltage is manually set. It is preferred 

that the voltage be set near the breakdown voltage to minimize user workload. To conduct a 

count, the user will initiate a scan by pressing on the “Stop/Reset” button twice to stop any 

processes on the SR430 and to reset all count data, seen in Figure 30. The “Start” button is 

located to the left of the “Stop/Reset” button. If all is done correctly, at the breakdown voltage 

there should be a few counts produced on screen, shown in Figure 31. If there is nothing on 

screen, the user may press the “Auto Scale” button to scale the vertical access or can horizontally 

zoom out by pressing the “Display” button and zooming out. 

 

 

Figure 30 ‒ Resetting SR430 count data 
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Figure 31 ‒ Detecting pulses on the SR430 

 

 To access the current count data, the “Math” button is pressed to access the math menu of 

the SR430. Selecting “Stats” followed by “Do Stats”, shown in Figure 32, using the softkeys will 

provide all the count data that can be recorded manually into Excel. Figure 33 shows all 

statistical values, where the total counts can be found. 
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(a) 

 

(b) 

Figure 32 ‒ Accessing math menu (a) Math menu (b) Statistics menu 
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Figure 33 ‒ Obtaining number of counts from the SR430 (counts = 2) 

 

 After data is recorded, the user resets all SR430 count data using the “Stop/Reset” button, 

manually increments the voltage supply, rescans, and repeats until the maximum desired voltage 

range has been satisfied. This recording process will take a duration of around 30 seconds for 

each count data, where the time takes into consideration user actions and awareness. The laser 

diode current can be incremented to emit more incident photons and conduct light counts. The 

process of scanning repeats until the laser diode current has been satisfied. 

3.6 Manual Photon Counting Results 

 The data results of a sample APD counting experiment are shown in Figure 34. The 

breakdown voltage of the APD begins at 11.14V, where at this voltage, the SR430 has not 

detected any pulses while the APD is applied both a dark state and a laser wavelength of 530nm 

with a current of 20mA. Figure 35 is a graphical representation of the data in Figure 34, where 
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with manual experimentation, there is a noticeable increase in voltage increments at higher 

voltages. The difference between the light and dark counts is shown in Figure 36, where the data 

shows that the difference between the counts is positive and shows that incident light produces 

more counts. 

 

 

Figure 34 ‒ Example of manual counting result data 
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Figure 35 ‒ Plotting results of manual counting test 

 

 

Figure 36 ‒ Light Counts minus Dark counts of manual counting test 
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Altogether, there are 90 points of data collected, where each point takes roughly 30 

seconds to record. The total duration of the experiment is roughly 45 minutes, which for one 

APD is not so much time, however, will prove to be a tedious task if multiple experiments are to 

be performed, such as changing the intensity of the laser diode. The conclusion for this 

experiment is that manual counting is a feasible option, however, it would be ideal to develop a 

system that would take on the load of performing experiments automatically, better yet, with 

higher precision and more unique operating points. The following two chapters will go over a 

method of performing these same experiments using a communication bus system and MATLAB 

that will speed up this process of experimentation. 
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Chapter 4 Implementation of GPIB 

 

 

(a) 

 

(b) 

Figure 37 ‒ GPIB System developed in Thesis (a) Diagram (b) Physical Setup 
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The process of using all the instrumentation mentioned in chapter 3 requires a user to 

conduct the experiments manually. Any manual process will introduce errors (mostly user-based 

errors such as timing) and it would be desirable to minimize errors using an automatic process. 

One such process that will assist in conducting experiments in an efficient way is using an 

established communication system that would control instruments via a remote controller (such 

as a computer), shown in Figure 37.  

There are two established connection systems that equipment manufacturers may install 

into test instruments: a General-Purpose Interface Bus (GPIB or IEEE-488) and a Recommended 

Standard 232 (RS-232) connection system. The objective that each system achieves is to 

communicate to instruments using Standard Commands for Programmable Instruments (SCPI, 

often pronounced “skippy”) commands that the manufacturer sets for each instrument and 

provides materials for the user. This thesis will go in depth on the basics of GPIB, the setup 

process of how to connect to an instrument, process SCPI commands to achieve communication, 

and an efficient solution that will create an automated process for retrieving data. 

4.1 General Purpose Interface Bus Connection System 

 GPIB (originally developed as Hewlett-Packard Interface Bus) was developed during the 

1960s by Hewlett-Packard as a means to create a communication system between instruments 

and controllers. As many manufacturers began developing more digital testing instruments, the 

desire to create an interface standard increased. There was an all-out effort in which the United 

States and Germany during the early 1970s worked on an international digital instrumentation 

standard. By 1975, the U.S. with the help of members of the Institute of Electrical and 

Electronics Engineers (IEEE) prepared a document which will be intended as an IEEE standard 

known as the IEEE Std 488-1975, “Digital Interface for Programable Instrumentation”. The 
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document aided in establishing a national standard for communication between instrumentation, 

and later would be published as an international standard [7]. 

4.2 GPIB Communication 

GPIB devices can either be “Talkers”, “Listeners”, and/or “Controllers”. In general, 

power supplies with GPIB can be both a talker and a Listener, where a power supply may listen 

for a command (such as changing a supply value) and can talk about the status of the supply 

(such as calling out its current supply value). A controller is what controls what information is 

sent on the GPIB (such as addresses) and acts as a switch to send commands to specific 

instruments. 

There are two configurations in which GPIB devices can be configured. A simple and 

hardware-efficient way of connecting devices is in a linear configuration, where all devices 

connect to a single line and are daisy-chained together. A more dedicated form of connecting 

devices is via a star configuration, where each device is connected to a single node (either tying 

all devices together or directly into a computer). A mix of the two can also be done if the length 

of the bus between the device and controller is under 20 meters (Wiki). Figure 38 shows the 

possible types of configurations, where all configurations have no technical advantage over each 

other and is dependent on personal preference. 
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Figure 38 ‒ Daisy Chaining vs. Star-Configuration 

 

There are 31 device addresses that the bus can access, where each device can be assigned 

a value between 0 and 30. The controller can only access one address at a time, and multiple 

listeners may have the same address (configured on the instrument), so long as these devices act 

as listeners. There can also be multiple controllers on the bus, however, only one controller may 

be considered the “controller-in-charge”.  
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4.3 Prologix GPIB-USB Controller 

 

 

Figure 39 ‒ Prologix GPIB-USB Controller (a) GPIB port (b) USB-B port 

 

 A GPIB controller is a special device that connects multiple GPIB-enabled devices to a 

computer that also has its own set of commands that can override devices on the bus line [12]. 

For this thesis, a Prologix GPIB-USB (ver. 6) controller is used to communicate with all the 

devices on the line, shown in Figure 39. The Prologix controller uses a double plus sign 

command, “++”, to denote that the command is directed at the controller. The controller can be 

used in either a Controller-In-Charge (CIC) mode or in Device mode. While in CIC mode, the 

controller expects a SCPI command from the computer to the controller which is terminated with 

either a Carriage Return (CR) or a Line Feed (LF). The controller then will address a GPIB 

device at the current specified address and sends the SCPI command that was sent from the 

computer. 

(a)                                              (b) 
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Figure 40 ‒ Prologix GPIB Configuration application 

 

 By default, the Prologix controller has the “Read-After-Write” feature enabled, which if 

desired, can read data from the GPIB instrument that was sent a SCPI command. Note that this 

can create an additional delay and the feature can be disabled. A specific command can be sent if 

the user needs to read data at a particular time. 

 The controller comes with an executable GPIB configurator that can send individual 

SCPI commands from a computer to the controller, shown in Figure 40. Once the GPIB 

controller is connected to the computer via USB, the program can be executed and if properly 

installed, the controller is selectable through a COM port, shown in the “Select Device” section 

in Figure 40. By selecting a device (in this case, “COM4 (USB Serial Port)” is selected), the 

controller can now be configured and can send commands. For this thesis, the GPIB controller 

will exclusively function in “Controller” (Controller-in-Charge) mode.  
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4.3.1 Initial GPIB Application Setup 

 

 

(a) 

 

(b) 

Figure 41 ‒ Sending a command on the Prologix GPIB terminal, (a) before (b) after 

 



48 

 

The following settings are recommended to reproduce similar results: The “Auto read 

after write” feature should be disabled so that the controller can skip having to read from a 

device (a manual read command can be sent if desired). To disable, either the user may click on 

the “Auto read after write” box to deselect the feature, or can type the command, “++auto 0”, to 

disable (and verify) the feature via GPIB commands. To enable the feature again, either the box 

can be clicked to enable the feature, or the user can type the command, “++auto 1”. Figure 41 

demonstrates sending a command to the controller via the terminal. 

 The next setting to configure is the End-of-Send (EOS) transmission termination 

characters. When data is sent from the computer to the controller, all non-escaped line feed (LF), 

carriage return (CR), and escape (ESC) characters are removed, and GPIB terminators can be 

added depending on the EOS transmission setting. It is important that commands end with a 

termination, else GPIB devices will misinterpret the command and will not function properly. To 

enable this feature, either the user may select “CR/LF” (to terminate with both a CR and LF), 

“CR”, “LF”, and “None” (if desired), from the configurator, or can type the command “++eos 

[N]”, where N is an integer from 0 to 3 (0 – CR+LF, 1 – CR, 2 – LF, 3 – None). Figure 42 shows 

an example of sending a command and setting the EOS transmission to “CR/LF”. Once the 

above settings have been set, the controller is ready to send SCPI commands to GPIB devices via 

a bus cable. 
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Figure 42 ‒ Sending the command, "++eos 0" 

 

4.3.2 Controller to GPIB Connections 

 

 

Figure 43 ‒ GPIB Cable 

 

 To connect the controller to devices, a standard 24-pin, “double-headed” (connector has 

male on one side and female on the other) bus cable is used. Figure 43 shows the standard cable, 

where each end of the cable contains both a male and female connector to make daisy-chaining 

more of a convenience. The controller male port feeds into the female connector of the bus, and 
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the remaining male connector can either connect to a GPIB device (an IEEE-488 port) or can be 

left unconnected, shown in Figure 44. 

 

 

Figure 44 ‒ Controller and GPIB device connected to bus 
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4.4 GPIB Device: SR430 Photon Counter 

 

(a) 

 

(b) 

Figure 45 ‒ Getting to SR430 Communication menu, (a) Setup key (b) Communication key 
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 The SR430 photon counter is equipped to work with GPIB controllers and devices. 

Pressing the “SETUP” button will open the setup menu of the SR430 and enable the photon 

counter to work with GPIB. The “Commun.” prompt can be selected with the softkey that 

corresponds to the option and will bring up the communication setup for the SR430, shown in 

Figure 45.  

In the “Communication” setup menu, the SR430 is set to output data to the “RS-232” 

protocol by default. To output data to GPIB, the softkey that corresponds to the “Output To” 

option can be pressed to cycle to “GPIB”, shown in Figure 46a. After setting the SR430 to 

function with GPIB, the address must be verified on the SR430 by pressing the softkey that 

corresponds to the “GPIB” setup menu, seen in Figure 46b. On the GPIB menu, the GPIB 

address can be accessed and changed. By default, the SR430 is set to address 23, but can be 

changed if desired (from a value between 0 to 31). For debugging purposes, it is desirable to be 

able to also control the SR430 manually during idle times. The “Override Remote?” softkey, 

seen in Figure 46b, can be cycled so that it is set to “Yes” and the user may manually operate the 

SR430 keys after a SCPI command has been sent, else the SR430 will disable all buttons on the 

interface and only work remotely via GPIB. 
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(a) 

 

Figure 46 ‒ Configuring GPIB on the SR430 (a) Communication Menu (b) GPIB Menu 
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4.4.1 Sending SCPI Commands to the SR430 

 

 

Figure 47 ‒ Configuring GPIB controller to send SCPI commands to SR430 

 

 A list of SCPI commands is provided from the manufacturer of the SR430 photon counter 

and individual actions can be accessed with a quick SCPI command list provided on Page 9 of 

the SR430 manual (details of each command can be found on Page 81 of the SR430 manual) 

[13]. Before sending a command to the photon counter, the GPIB controller must be configured 

so that the address it is calling is the same as the address set on the SR430 (in this case, address 

23). By typing into in the Prologix GPIB Configurator application and sending the command, 

“++addr 23”, the GPIB controller is then configured to route all SCPI commands to the SR430 

located at address 23, shown in Figure 47. Looking at the commands list, a command that can be 

sent to the SR430 is to change the trigger voltage level. To change the trigger level, the 

command, “TRLV {x}” can be sent via the Prologix GPIB configurator terminal where {x} is a 

value from −2.000 ≤ {𝑥} ≤ 2.000 with a resolution of 1mV. For the following example, the 

trigger level will be set to 1.000 volts by typing into the terminal, “TRLV 1.0”, and the trigger 

level on the SR430 should change to 1.000 volts, as shown in Figure 48. If the trigger level has 
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not changed, the user may verify that all connections are properly connected tightly, change the 

EOS transmission to a different mode, or verify that the computer is still able to respond to the 

controller. 

 

 

Figure 48 ‒ SR430 Trigger level changed to 1V 

 

 Shown in  

Table 2 are a list of SCPI commands that will be used to assist with creating an automated 

photon counting test. Note that other commands may be investigated, however, for the scope of 

this thesis, these are the commands that have been used to create a successful test. This section 

along with the previous sections in this chapter demonstrate the use of GPIB to control 

measurement instrumentation. The following section will demonstrate the use of GPIB to control 

power supplies. 
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SR430 SCPI Command Description Notes 

PAUS The pause command. This pauses 

any test. 

This command can be iterated at 

any time by the user while the 

SR430 is performing a test. Used 

mostly if user wants to rerun a test 

with new parameters. 

CLRS The clear command. This clears 

all count data from the SR430. 

Should be used after collecting 

data and performing another test. 

SSCN The start command. This starts a 

test on the SR430. 

Use this command only after 

setting up clock trigger, else, the 

SR430 will be stuck at the 

beginning of a test. 

STAT Functions as the “Do Stats” 

calculation. The SR430 will 

perform statistics on the current 

test data. 

The manual process for this 

function can be done by pressing 

Math, then Stats, and “Do Stats”. 

SPAR ? {i} Returns the result of one of the 

statistic values. {i} is an integer 

from 0-3 (0 – mean, 1 – Standard 

Deviation, 2 – Total Area, 3 – 

Baseline Area). 

The command that is used 

exclusively is “SPAR ? 2” 

command. This returns the total 

counts collected from the test.  

DCLV (?) {d} The Discriminator Level 

command. This sets the 

discriminator voltage level. {d} is 

a decimal value from −0.3 ≤ 𝑑 ≤
0.3, with a resolution of 0.2mV. 

A question mark can be added to 

read the current discriminator 

value on the SR430. 

For a discriminator level of 

15mV, the user may enter “DCLV 

0.015”.  

*STB? {i} Serial Poll Byte (status bits) of the 

SR430. These are flags that the 

SR430 can set if certain 

conditions are met. {i} is an 

integer from 0 to 7. All bits are 

initially set to 1, where a return 

value of “0” signifies a flag has 

been raised. 

The command “*STB? 0” will 

return if the SR430 is running a 

scan. A “0” will correlate to the 

SR430 currently running a test, 

where a “1” will correlate to the 

SR430 not running a test. 

 

Table 2 ‒ SR430 SCPI Commands 
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4.5 GPIB Device: Keithley 2450 SourceMeter 

 

 

(a) 

 

(b) 

Figure 49 ‒ Keithley 2450 SourceMeter, (a) front panel (b) back panel 
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 The full potential of GPIB can be discovered when one uses it to remotely operate power 

supplies and poll data from measurement instrumentation. In this thesis, devices such as the LED 

current source and the reverse bias voltage of the APD from chapter 3 can be remotely operated. 

Setting these values by hand across multiple source-measure units is tedious and time consuming 

since often 1000 data points or more are needed for an accurate experiment. The Keithley 2450 

SourceMeter, shown in Figure 49, is a GPIB-configurable, touchscreen enabled instrument that 

is capable of supplying voltage and current, as well as being able to meter how much of the 

supply is being used at any given moment. 

 

 

(a) 

 

(b) 

Figure 50 ‒ GPIB menu of Keithley, (a) system column (b) GPIB menu 
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 To setup the supply with GPIB, the menu key can be pressed to access all the available 

menus of the Keithley SourceMeter. Looking under the system column, shown in Figure 50a, the 

GPIB settings is located by pressing the “Communications” button on the touchscreen. There are 

four available communication systems in place for the supply, where the first tab is the GPIB tab. 

The default address for the Keithley SourceMeter is 18. Following the flowchart shown in Figure 

37, the Keithley SourceMeter can be connected to the GPIB cable by inserting the connector to 

the back of the supply, shown in Figure 51. 

 

 

Figure 51 ‒ GPIB connection to Keithley SourceMeter 

 

Before establishing the supply settings used, the main function that is used on the 

Keithley SourceMeter is the output button, which is an LED button located on the front top right 

side of the supply. The Keithley SourceMeter’s supply is enabled when the output button emits a 

blue LED, else, it remains off. This function can be controlled remotely using the terminal. 

To communicate to the Keithley SourceMeter, the command, “++addr 18”, is typed into 

the Prologix GPIB configurator terminal and then sent to the GPIB controller that will direct any 
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upcoming SCPI commands to the Keithley SourceMeter. The address may be verified by sending 

an appropriate read command or looking at the GPIB configurator window. To enable the output 

on the Keithley SourceMeter, the SCPI command, “OUTP:STAT ON”, is typed into the 

terminal. Respectively, the command, “OUTP:STAT OFF”, can also be typed to disable the 

output. The supply must have received the messages and toggled the output button remotely. 

 If the above commands have not been received by the Keithley SourceMeter, the GPIB 

connectors may be verified, or the user may send the appropriate commands to the Prologix 

controller to verify the controller is operating. Another setting to check is verifying the command 

set that the Keithley is using. This can be checked by pressing the menu button, pressing 

“Settings” on the touchscreen, shown in Figure 50a, and using the “SPCI” command set, shown 

in Figure 52 

 

 

Figure 52 ‒ Configuring Keithley with SCPI command set 
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An additional error that is possible after sending a command is the supply displaying, 

“Error -420”, shown in Figure 53, which signifies that the supply has been commanded to talk, 

but has nothing to return to the controller. This error may be removed by verifying that the 

Prologix controller has been enabled to send a termination character, shown earlier in Figure 42. 

 

 

Figure 53 ‒ Error -420: Keithley SourceMeter requested to talk but has nothing to say 

 

 Shown in  

Table 3 are the SCPI commands that can be used to interact with the Keithley. There are other 

commands that can be investigated [14], however, the following commands are what are used to 

conduct a successful test. 

 This chapter should serve as a basic reference on operating the system developed 

throughout this thesis. Chapter 5 will utilize MATLAB to replace the Prologix GPIB 

configurator application and develop a script that will automate commands sent to the 

instrumentation used in Chapter 4. 
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Keithley SourceMeter SCPI 

Command 

Description Notes 

SENS:CURR:RANGE [d]E[I] The sensed current range 

output from the Keithley 

while operating in voltage 

mode. [d] is a decimal 

value, “E” sets the value to 

be an exponential of base 

10, and [I] is the exponent. 

In GPIB mode, the Auto 

Range function is disabled, 

and the user must declare a 

range at the beginning. 

Example: 

“SENS:CURR:RANG 10E-

3” sets the current range to 

10mA. 

SENS:VOLT:RANG [d] The sensed voltage range 

output from the Keithley 

while operating in current 

mode. [d] is a decimal 

value, “E” sets the value to 

be an exponential of base 

10, and [I] is the exponent. 

In GPIB mode, the Auto 

Range function is disabled, 

and the user must declare a 

range at the beginning. 

Example: 

“SENS:VOLT:RANG 20” 

sets the voltage range to 20V. 

SOUR:FUNC <function> The source function, where 

<function> is either 

“VOLT” to source voltage 

or “CURR” to source 

current. 

Example: “SOUR:FUNC 

VOLT” will set the Keithley 

up to source a voltage. 

OUTP:STAT <state> The state of the output, 

where <state> can either be 

“ON” or “OFF” to turn on 

or off the supply from the 

Keithley. 

Example: “OUTP:STAT: 

OFF” will turn off the output 

of the Keithley, regardless of 

the type of supply. 

SOUR:VOLT d Sets the voltage amplitude 

of the Keithley, where “d” 

is a decimal from -210V to 

210 volts, and a precision 

of 1μV 

Example: “SOUR:VOLT 1.8” 

will set the voltage output to 

1.8V. Note this will not turn 

on the output of the supply. 

 

Table 3 ‒ Keithley SourceMeter SCPI Commands 
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Chapter 5 MATLAB Integration 

 

 

Figure 54 ‒ Automatic Photon Counting using GPIB and MATLAB 
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 Up to this point in this thesis, it has been shown that all the devices discussed are able to 

operate remotely via GPIB. One may use many terminals to individually control each GPIB 

device, however, it would be demanding to send multiple SCPI commands from a computer and 

to process data simultaneously. In this section, MATLAB will be the host environment that will 

be able to concurrently send SCPI commands and receive incoming data from the GPIB bus 

cable. 

 To connect to the GPIB controller, an initial setup can be programmed in MATLAB so 

that there is a successful link between the controller and computer. In MATLAB, the 

“serial(‘port’)” function creates a serial port object that can be stored as an object, where ‘port’ is 

the associated COM port number that is assigned to the GPIB controller (see Ch. 3 for COM port 

configuration). In this thesis, “GPIBPort” is the variable that stores the serial object. Parameters 

of the COM port can be changed by using dot notation. To open the port, the function, 

“fopen(GPIBPort)”, is used to grant MATLAB access to the COM port. 

 Shown in Code 1 is a main general connection between the GPIB controller and the host 

computer. By using this script and integrating the COM port configuration from the beginning of 

Ch. 4, SCPI commands can be chained together, and the system is ready to be automated via 

MATLAB. An important comment to stress for this thesis: after a COM port has been opened, 

the user must close this port. If the script must be stopped at any time by the user, the COM 

should be closed using the “fclose(GPIBPort)” function prior to restarting the script. If the script 

is executed without closing the port, MATLAB will stop and notify the user that the COM port 

to be opened has not been closed. At that point, a MATLAB bug where reopening a COM port 

that has not been closed will be inaccessible and therefore MATLAB must be restarted. The user 
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may recover the data that has been obtained, however, once the program has restarted, all 

experimental data will be lost. 

 

 

%% GPIB Communication 

 

GPIBPort = serial('COM5');     % Set up your COM port 

GPIBPort.Terminator = 'CR/LF'; % Command Terminator required for controller  

   % communications 

 

GPIBPort.Timeout = 1;     % Serial Timeout set to 1 second 

fopen(GPIBPort);               % Open the Controller port 

 

fprintf(GPIBPort,'++eos 3');    % This is VERY important if we want to send  

    % commands that use other 

                                  % ASCII values. This command will 

                                  % append a terminator to the 

                                  % controller. We can also use ++eos 2 

 

fprintf(GPIBport,"++auto 0")  % Turns off read-after-write feature of the 

     % Prologix controller. This prevents 

     % the controller from doing unnecessary 

     % reads and suppresses read-errors in 

     % all GPIB devices. 

 

%%%%  

% Add SCPI Commands here 

% using fprintf(GPIBPort,cmd) 

% where “cmd” is a string to be 

% sent to GPIBPort 

%%%% 

 

response = fgetl(GPIBPort);   % Getting whatever the controller threw out  

  % from the last command 

disp(response)                  % Display result on the MATLAB Command Window 

 

fclose(GPIBPort);             % Close the port **Important** 

Code 1 – General COM port setup 

 

The operation of this automated system can be visualized in Figure 54. Before running the 

MATLAB script developed for this thesis, it would be a good measure to verify all connections, 

instruments, and circuits so that any local issues can be resolved (see top of Ch. 3 for debugging 

manual processing). A first-time setup is required when setting up the MATLAB script, where 
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the following global parameters shown in Appendix C are set. Once all first-time setup has been 

initialized, the user may proceed with changing variables specific to testing. The variables shown 

in Appendix D are all available to change. 

After the test variables have been set, the script can be initialized, and MATLAB will 

begin the photon counting process. There are two processes that occur when the script is 

executed: the main process is the GPIB loop that controls all devices on the GPIB bus, and the 

second process is an added quality-of-life feature in which local MATLAB timers are used to 

notify the user of the length and duration of the experiment. 

The main process is as follows: The LED current will initially be turned off to begin testing the 

APD for dark counts. The next step is to set the discriminator voltage level of the SR430 to a low 

setting so that the photon counter can detect pulses. After that, to generate the voltage pulses 

from the APD, the reverse bias voltage is set at a voltage near the breakdown voltage of the 

APD. The final step is to start a scan on the SR430 and operate on one of two modes: an 

automatic mode and a user-defined pause mode. The automatic mode will wait for the SR430 to 

talk back to MATLAB when scanning is complete, while the user-defined pause mode will read 

the data from the SR430 after a pause and should be treated as a developer mode. The benefits of 

the automatic mode are that the user can let the MATLAB script do all the processing, whereas 

the benefit of the user-defined mode is that the user can force read data and save a few seconds 

of time which can be valuable if there is an indefinite number of points. Shown in  

Table 4 are the times that it takes to scan and record one point from the SR430 with the 

time bins and record lengths set from Ch. 3. 

 

 

 

 

Time Required to Record One Point 

Mode Time 

Manual ~30 seconds 

Automatic 9.27 seconds 

User-Defined (for developing purposes) 8.55 seconds 

 

Table 4 ‒ Time it takes to record one point 
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 For this thesis, a user-defined pause of 6.3 seconds was used in replace of the automatic 

mode. This time is calculated based on the timing diagram discussed in Ch. 3, recalling that each 

clock cycle will go through one record plus some processing time. In Layman’s terms, the pause 

is defined as the total amount of records divided by the clock frequency. The actual time it takes 

to take one point is longer than an SR430 record scan due to MATLAB processing and places in 

the script where there is a generous amount of pause time to make sure there are no errors during 

a run. 

 Looking at Figure 54 again, the green “set” boxes are where the Prologix controller is 

setting a GPIB address and sending commands to the appropriate device. The inner reverse bias 

loop has two iterations where there is a change in GPIB address: an address change when 

sweeping the Keithley voltage source, and an address change to the SR430 to begin a scan at that 

voltage point. Due to this alternating address change, there are short arbitrary pauses that are 

added to ensure that the device-specific SCPI commands reach their respective GPIB devices. 

During experimentation, it was found that a short pause assists with commands fully being sent, 

whereas if there was no pause, there is a probability where the MATLAB script will run faster 

than the rate at which a SCPI command is sent, resulting in commands being incomplete. Shown 

in Code 2 is the innermost loop that changes the reverse bias voltage. 

 

% Big Loop to pump up voltage 

    counter = 0; 

    for voltage = lowVolt:precision:highVolt 

        fprintf('Current Voltage: %2.4f Volts \n',voltage) 

        tLoop = tic; % For timing purposes 

        fprintf(GPIBport,RBVA); % Addr. Change to Keithley voltage source 

        KeithleyVoltage(voltage,GPIBport); % Voltage set 
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        % Setup the counter address 

        fprintf(GPIBport,SR430A); 

        SR430startCount(GPIBport); % Script will pause and wait 

         

        counter = counter + 1; %Finished counting 

        totalCounter = totalCounter - 1; 

 

         

        SR430GetCounts(GPIBport); % Retrieve data from SR430 

         

        % Read whatever prev command spits out 

        SR430Received = fgetl(GPIBport); 

        counts(counter,68iscounter) = str2double(SR430Received); 

        disp(SR430Received); 

         

        % Done with counting, increment voltage 

        % and do it again 

        photonTimeLeft(tLoop,totalCounter) % functions that calculate 

        photonTimeElapsed    % time remaining/elapsed 

    end 

Code 2 – Reverse Bias Voltage Loop 

 

From the code, there are a few variables which the user is not able to access. For 

example, “RBVA” and “SR430A” correspond to the addresses of the Keithley voltage source 

and the SR430, respectively. The function, “fprintf”, will only accept character arrays. An 

example of converting user-defined values into characters to send is shown in Code 3. The 

function, “int2str” will convert the user-defined integer into a string which can be added onto 

other character strings and stored into a string that can be sent with the “fprintf” function. 

 

 

%%% Saving address labels to MATLAB variables 

RBVA = “++addr “ + int2str(KeithleyRBVAddr); 

SR430A = “++addr “ + int2str(SR430Addr); 

CurrA = “++addr “ + int2str(KeithleyCurrAddr); 

 

Code 3 – Converting integers into strings, combining string arrays 
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 For user-friendly access, user-defined functions are created to describe a set of 

commands. These user-defined functions contain a set of lines that perform a specific task. Prior 

to using functions that use a specific GPIB instrument, the GPIB address must be changed. 

Appendix E demonstrates all the user-defined functions used in this thesis. Note that “sPort” is a 

parameter that is the serial object, which in this case is “GPIBPort”. 

 Concurrently to the main voltage loop, a timer and counter are being used to improve the 

quality-of-life for the user. Shown in Figure 54 in purple boxes are these timers. At the beginning 

of the script, the number of points is calculated based on the user-defined ranges. Based off the 

average time it takes to process one count, an estimation time is calculated so that the user may 

have an estimation on when the photon counting process is complete. As the main voltage loop 

iterates, the functions, “tic” and “toc”, are used to retrieve MATLAB’s local timer. The user-

defined functions, “photonTimeLeft” and “photonTimeElapsed”, were created to return an 

average estimation of how much time is left on the experiment and the amount of time has 

passed from the beginning of the script. This is useful for if the user needs to calculate when to 

check in on the system. 

 After the reverse-bias voltage range has been completed, the discriminator voltage level 

is incremented. The reverse-bias voltage loop begins anew and is then repeated. Once all 

discriminator voltages are tested, the LED current is incremented to begin generating more 

counts, and consequently, photon counts will be produced. The first and secondary loops are 

initialized again, and different intensities of LED brightness are tested. At the final max LED 

brightness, the GPIB code will disable all GPIB devices, turn the outputs of all supplies off, and 

proceed to data processing. This chapter along with what has been presented from chapters 3 and 

4 serve as the basis of this thesis and the results will be presented in chapter 6. 
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Chapter 6 – Data Analysis 

6.1 Data Organization 

 

 

Figure 55 ‒ Data organized in a folder 

 

 The main strength of MATLAB is to process, analyze, and present data. The end of the 

script developed in Chapter 5 will contain count data, user-defined ranges, and workspaces 

where information can be extracted. The main workspace organizes count data as a function of 

reverse bias voltage and SR430 discriminator level, where each set of data is at a certain LED 

current level. MATLAB-generated figures are displayed at the end of the run. Figures are saved 

both as a PNG and a MATLAB figure for visualization purposes. Concurrently, all data is 

exported to Excel into a workspace folder corresponding to LED current. For quick data analysis, 

the script provides a comparison between the highest intensity and the dark counts, seen at the 

bottom of Figure 55. 

Alternative data workspaces that can be created are to organize count data as a function 

of reverse bias current and LED current, where each set of data is at a certain discriminator level. 

This data is useful for viewing how count data varies with varying light intensity. Similar to the 

main workspace, plots and Excel files are generated and can be stored into a workspace folder 

corresponding to the discriminator levels. Once all the data has been organized into folders, the 
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folders are stored into a single folder corresponding to the name of the APD tested. This folder 

can then be accessed to export all data to the user’s preferred data processor such as Excel or 

imported back into MATLAB. 

6.2 APD Data Analysis and Comparison 

 The primary focus of storing all this data is to analyze all the APDs for the counts that are 

produced due to incident photons, or photon counts of the APDs. To process and analyze this 

data, a secondary data processing script is created that reads and processes all APD data folders 

for photon counts. To do this, the script is written where it reads all folders in the current 

workspace and searches for the main data for each light level, the LED current data. Once all 

data has been read into MATLAB, the script can reprint individual APD data where the light 

intensity data can be plotted on the same figure. 

6.3 Analysis of Circle APDs 

The following figures will discuss the data for the circular APD devices discussed in 

Chapter 2. Three APD sizes were used, where the size describes the diameter of the circular 

APD. All APDs are tested with the setup discussed in Chapter 3 and Chapter 4, where the 

wavelength of light that was used is set to 467nm (dark blue light). 

6.3.1 Circle Sizes: Changing Light Intensity 

 The first experiment involves testing the circle APDs at a constant light intensity. Figure 

56, Figure 57, and Figure 58 are the total counts for the 50μm, 24μm, and 5μm circle APDs, 

respectively. Each plot within each figure is a unique light intensity, where the current running 

through the LED is either at the maximum intensity of 200μA, 100μA, and an off state. From the 

figures, as the current increases between each plot, there is a noticeable increase in the amount of 

counts produced. This is due to the increased number of photons hitting the APD’s depletion 
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region and thus creating an increase in counts. Also, within each plot, as the reverse bias voltage 

of the APD increases, so does the number of counts. This is due to an increased breakdown 

probability due to an incident photon with increased bias. Therefore, the photon detection 

probability (PDE) rises with increased reverse bias for a Geiger-mode APD.   

To view the counts produced by incident photons, or photon counts, the off (dark) state of 

the APD plot is subtracted from each of the light intensity levels, which is shown in Figure 59, 

Figure 60, and Figure 61 for the 50μm, 24μm, and 5μm circle APDs, respectively. From Figure 

59 and Figure 60, there is a noticeable increase in counts due to an increase in light intensity. 

This positive count shows that by varying the constant amount of light intensity applied to the 

APD, the APD will proportionally produce extra counts due to the number of photons applied. 

Note that in Figure 61, there is also an increase in counts, however, as the reverse bias voltage is 

increased to a certain point, the amount of counts begins to decrease, suggesting that the smaller 

sized APDs are saturating and therefore increasing the light or bias voltage beyond the peak 

visible in Figure 61 will lead to an apparent reduction in counts. Some papers refer to this 

phenomenon as “paralysis” although it has a simple cause. The reason for this count reduction at 

high bias voltages or high photon flux is because the APD output waveform’s apparent DC level 

shifts due to pulse pile-up. Once enough pulses pile up, the waveform will look like a positive 

DC voltage with negative going pulses instead of a ground-level DC voltage with positive going 

pulses. An even further increase in light will result in a positive DC voltage with no detectable 

pulses. This is an interesting case where very high photon flux will result in “zero” counts. The 

APD should never be operated in this region as there is no useful data to be obtained.  
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Figure 56 ‒ Total counts as a function of bias voltage and light intensity for a 50μm circle APD.  

 

 

Figure 57 ‒ Total counts as a function of bias voltage and light intensity for a 24μm circle APD. 
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Figure 58 ‒ Total counts as a function of bias voltage and light intensity for a 5μm circle APD. 

 

 

Figure 59 ‒ Photon counts as a function of bias voltage and light intensity for a 50μm circle 

APD. 
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Figure 60 ‒ Photon counts as a function of bias voltage and light intensity for a 24μm circle 

APD. 

 

 

Figure 61 ‒ Photon counts as a function of bias voltage and light intensity for a 5μm circle APD.
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6.3.2 Comparing Circle Sizes 

 Figure 62, Figure 63, and Figure 64 is a reorganization of all the circle APD data from 

the previous section, where each circular APD size is compared at constant LED drive currents 

of 200μA, 100μA, and a dark state respectively. From the figures, it is apparent that as the size of 

the APD increases, the counts increase as well. This is due to there being a physically larger 

APD area for the photons to hit. From Figure 64, as the APDs are all under a dark state, the total 

counts produced are roughly equal. Therefore, the size of the APD may not be a main factor 

when it comes to the number of counts produced in a dark state (dark counts). The dark count of 

an APD may depend more on factors such as shape, device material stackup, or guard structures 

used. Figure 65 and Figure 66 represent the photon counts produced at LED currents of 200μA 

and 100μA, respectively. From the figures, the 50μm and 24μm circle APDs generate a 

noticeably large amount of photon counts whereas the smaller sized 5μm circle APD produces 

the least number of counts. Also, as the current is reduced by half, the number of photon counts 

is alco reduced by half, suggesting that the intensity of incident photons is linear to the amount of 

photon counts produced by the APDs. 
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Figure 62 ‒ Total counts of each circular APD at a LED drive current of 200μA. 

 

 

Figure 63 ‒ A Total counts of each circular APD at a LED drive current of 100μA. 



78 

 

 

Figure 64 ‒ Total counts of each circular APD under dark conditions.  

 

 

Figure 65 ‒ Photon counts of each circular APD at a LED drive current of 200μA. 
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Figure 66 ‒ Photon counts of each circular APD at a LED drive current of 100μA. 
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6.3.3: Photons/Area of Circle APDs 

 It is difficult to make conclusions about which APD design is best without having some 

common unit for reference. In this section, all the photon count data from the previous section is 

divided by each APD’s area resulting in photon counts per square micrometer. By doing so will 

demonstrate the effectiveness of the APDs to generate photon counts based on size.  Figure 67 

shows the photon counts per square micrometer for all the circular APDs under illumination 

from an LED driven at 200μA. In Figure 67, it shows that the smallest APD, the 5μm circle 

APD, produces the most photon counts at lower reverse bias voltages but drops after a higher 

reverse bias voltage. While this result may be useful in a future study, this APD will be left out 

in the following few figures. Figure 68 and Figure 69 show the photons produced per square 

micrometer area for the 50μm and 24μm circles at LED currents of 200μA and 100μA 

respectively. From the figures, the 24μm circle APD performs better at generating photon counts 

than the 50μm circle APD over the entire reverse bias range. This therefore suggests that the 

24μm circle device or a similar sized device may the most optimal APD in terms of cost and size. 

Also, as the LED current is reduced by half, the number of photon counts over area is also 

reduced by half, meaning that the intensity of light is linearly proportional to the amount of 

photon counts produced. 
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Figure 67 ‒ Photon counts per μm2 for all three circular APDs with LED current of 200μA. 

 

 

Figure 68 ‒ Photon counts per μm2 for 24μm and 50μm circular APDs with LED current of 

200μA. 
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Figure 69 ‒ Photon counts per μm2 for 24μm and 50μm circular APDs with LED current of 

100μA. 
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6.4 Analysis of Square APDs 

The following figures will discuss the data for the square APD devices discussed in 

Chapter 2. Three APD sizes were used, where the size describes the side of the square APD. All 

APDs are tested with the setup discussed in Chapter 3 and Chapter 4, where the wavelength of 

light that was used is set to 467nm (dark blue light). Note that the analysis will follow a similar 

structure that was used while analyzing the circle APDs. 

6.4.1 Square Sizes: Changing Light Intensity 

 The second experiment conducted involves testing the square APDs at a constant light 

intensity. Figure 70, Figure 71, and Figure 72 are the total counts for the 50μm, 24μm, and 5μm 

square APDs, respectively. Each plot within each figure is a unique light intensity, where the 

current running through the LED is either at the maximum intensity of 200μA, 100μA, and an 

off state. An observation of these figures can be seen that is similar to the observations of the 

circle APDs, where as the current increases between each plot, there is a noticeable increase in 

the amount of counts produced due to the applied light intensity over the APDs. Figure 73, 

Figure 74, and Figure 75 are the photon counts of the APDs, where the dark state current plot is 

subtracted out from the different light intensity plots. Similarly to the circle APDs, with higher 

light intensities, there is a noticeable increase in photon counts. Note that in Figure 75 for the 

5um square APD, there is an increase in photon counts up to a certain reverse bias voltage, 

however, the counts start to decrease after a certain reverse bias voltage, suggesting that the 

smaller sized APD is saturating, has a higher amount of dark counts with high reverse bias 

voltage, and therefore the applied light will have a negative effect on the APD. 
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Figure 70 ‒ Total counts as a function of bias voltage and light intensity for a 50μm square APD 

 

 

Figure 71 ‒ Total counts as a function of bias voltage and light intensity for a 24μm square APD 
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Figure 72 ‒ Total counts as a function of bias voltage and light intensity for a 5μm square APD 

 

 

Figure 73 ‒ Photon counts as a function of bias voltage and light intensity for a 50μm square 

APD 
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Figure 74 ‒ Photon counts as a function of bias voltage and light intensity for a 24μm square 

APD 

 

 

Figure 75 ‒ Photon counts as a function of bias voltage and light intensity for a 5μm square APD  
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6.4.2: Comparing Square Sizes 

 Figure 76, Figure 77, and Figure 78 is a reorganization of all the square APD data from 

the previous section, where each figure corresponds to an LED current of 200μA, 100μA, and a 

dark state, respectively. From the figures, an observation can be seen that is similar to the 

observation made for comparing the size of circle APDs, where as the size of the APD increases, 

the amount of counts increases. From Figure 78, as the square APDs are all under a dark state, 

the total counts produced are roughly equal. This observation is also like the one made with the 

square APDs, which suggests that the size of the APD will not be a main contributor to the 

counts produced under a dark state. Figure 79 and Figure 80 represent the photon counts 

produced at LED currents of 200μA and 100μA, respectively. Similarly to that of the circle 

APDs, as the size of the APD increases, there is a noticeable increase in the amount of photon 

counts produced. 

 

 

Figure 76 ‒ Total counts of each square APD at a LED drive current of 200μA 
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Figure 77 ‒ Total counts of each square APD at a LED drive current of 100μA 

 

 

Figure 78 ‒ Total counts of each circular APD under dark conditions 
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Figure 79 ‒ Photon counts of each square APD at a LED drive current of 200μA 

 

 

Figure 80 ‒ Photon counts of each square APD at a LED drive current of 200μA 
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6.4.3: Normalizing photons/area of square: 

 This section will take the photon count data from all the square APDs at 200μA (shown 

in Figure 79) and divides each individual plot by its respective square area, where the size of the 

square APD is the length of one side of a square. Doing so will demonstrate the effectiveness of 

the APDs to generate photon counts based on size. From Figure 81, similarly to what has been 

observed with the circle APDs, the smallest APD, the 5μm square APD, produces the most 

photon counts at lower reverse bias voltages but drops after a certain reverse bias voltage. While 

still being useful data, this APD will be left out in the following figures. Figure 82 and Figure 83 

show the photons produced over a certain area for the 50μm and 24μm square APDs at LED 

currents of 200μA and 100μA, respectively. Similar to what was observed from the circle APDs, 

the 24μm square APD performs better at generating photon counts than the 50μm circle APD 

over the entire reverse bias range. Note that as the LED current is reduced by half, the number of 

counts also decreases by half, suggesting that the amount of light applied on the APD is linear to 

the amount of photon counts produced. 
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Figure 81 ‒ Photon counts per μm2 for all three square APDs with LED current of 200μA 

 

 

Figure 82 ‒ Photon counts per μm2 for 24μm and 50μm square APDs with LED current of 

200μA 



92 

 

 

Figure 83 ‒ Photon counts per μm2 for 24μm and 50μm circular APDs with LED current of 

100μA  
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6.5 Analysis of All APDs 

From this point, all experiments have fully been conducted on all APDs. This section will 

present all the APD data presented in this Thesis from the circular and square APDs and be 

analyzing all the APD data for count data and areas of interest. 

6.5.1 APDs: Changing Light Intensity 

 Each plot shown in Figure 84, Figure 85, and Figure 86 represents a unique APD, where 

each figure is at an LED current of 200μA, 100μA, and a dark state, respectively. From Figure 

84, looking at a discriminator voltage of 100mV, the topmost plot is the 50μm square APD, 

followed by the 50μm circular APD. The next plot down is the 24μm square APD, followed by 

the 24μm circular APD. The final two plots are the 5μm square APD, with the bottommost plot 

being the 5μm circular APD. Within shapes, the larger sizes produce the most counts whereas the 

smaller sized APDs produce the least amount of counts. Within sizes, the square APDs produce 

more counts than the circular APDs. Figure 86 are all of the dark counts of the APDs, where the 

top three plots are the square APDs and the bottom 3 plots are the circle APDs. From this figure, 

the square APDs produce more dark counts than the circle APDs, which is due to the square 

APDs having corners that can likely produce a higher electric field, therefore a higher chance for 

more electrons to flow in a dark state, whereas the circle APDs are more uniform in shape 

around the edges and therefore produce fewer dark counts. 

 Subtracting the light counts from the dark counts, Figure 87 and Figure 88 are the photon 

counts of all APDs at 200μA and 100μA LED driver current, respectively. From Figure 87, the 

topmost plot is the 50μm circle APD, followed by the 50μm square APD. The middle plots are 

the 24μm square and circle APD, which from if viewing Figure 88, the 24μm circle APD 

produces more photon counts than the 24μm square APD. At the bottom of the figures are the 
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5μm circle and square APDs, which from a practical point of view, both produce the least 

amount of photon counts. 

 

 

Figure 84 ‒ Total counts of all APDs at an LED drive current of 200μA 
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Figure 85 ‒ Total counts of all APDs at an LED drive current of 100μA 

 

 

Figure 86 ‒ Total counts of all APDs under a dark state 
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Figure 87 ‒ Photon counts of all APDs at a LED drive current of 200μA 

 

 

Figure 88 ‒ Photon counts of all APDs at a LED drive current of 100μA 
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6.5.2 Comparison of all shapes and sizes: 

 It would be of interest to take all the photon count data and normalize each APD with 

respect to its shape area. Figure 89 is the normalized photon count data for all APDs. One may 

observe that the 5μm circle and 5μm square APDs produce the greatest number of counts for a 

particular voltage range. Although the two small APDs produce interesting results, these two 

APDs will be removed in Figure 90 and Figure 91 for clarity. From Figure 90 the topmost plot 

shown is the 24μm circle APD, followed by the 24μm square and 50μm circle APDs and the 

bottommost plot is the 50μm square APD. The 24μm circle APD performs consistently higher 

than all the other APDs, where with the larger APDs having a larger size and chance of having a 

larger depletion region capacitance, and the square APDs having corners which may produce 

higher electric fields that can produce more dark current pulses. Note that as the intensity of the 

LED current is cut in half, shown in Figure 91, the counts of all APDs also are cut in half, 

suggesting that the photon counts retrieved are linearly proportional to the amount of light 

applied to the APDs. 
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Figure 89 ‒ Photon counts per μm2 for all APDs with LED current of 200μA 

 

 

Figure 90 ‒ Photon counts per μm2 for the 24μm and 50μm APDs with LED current of 200μA 
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Figure 91 Photon counts per μm2 for the 24μm and 50μm APDs with LED current of 100μA 
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Chapter 7 Conclusions 

The process of designing an automated photon counting system utilizing GPIB has created 

a new path for how future APD tests and experiments are conducted. The system in place is 

currently able to vary reverse bias voltages, illumination LED current level, and different SR430 

discriminator thresholds in a much more efficient manner than previous manual testing. An 

additional test parameter that can be explored in the future is using a temperature chamber to 

create a four-dimensional plot of all the tests conducted with temperature. Another expansion of 

this thesis can be in the investigation of how to integrate the current system to communicate with 

instruments built with RS-232 communication instead of GPIB IEEE-488. From the results of 

the APDs tested in this thesis, it can be concluded that there is an effective size and shape of 

SiGe APDs that can be used for future testing. Additional parameters such as testing for quantum 

efficiency, responsivity, power uniformity, and other parameters are needed to fully characterize 

the APDs presented through this thesis. The automated photon counting system presented in this 

thesis has proven itself to extract accurate characterization data from SiGe APDs and will 

certainly serve as a foundation upon which additional test parameters can be added in the future.   
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Appendix A: Automated GPIB MATLAB script 

%% SR430 Photon Counter and Keithley GPIB Communication  

% By David Santiago 

clear variables 

format short 

%%%%%%%% Title Editor %%%%%%%%%%%%% 

% NOTE: If you press pause or stop the code for any reason, 

% send the command: 

% fclose(GPIBport); 

% else, you'll have to restart MATLAB lol. This closes the COM port. 

 

 

TestName = "filename_test"; % The name of the test to be conducted 

 

%%% Parameter Creators 

% Note, all you have to do is CHANGE the Disc Level's highs/lows/precision, 

% also, you can change the LED Currents highs/lows/precision. 

% No need to create any names, the code does it on its own lol 

 

%%% Make sure to check the voltage ranges! 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%   Test Editor     %%%%%%%%%%%%%%%%%%%%%%%% 

% In Volts 

lowVolt = 10;    % Low Voltage range 

highVolt = 20;   % Upper volt range 

precision = 1e0;  % Voltage Precision 

 

lowDisc = 50e-3;     % Low Discriminator range 

precisionDisc = 50e-3; % Disc. Range 

highDisc = 150e-3;    % Upper Disc. Range 

 

discUnit = 1e-3;     % The Units of the Disc Voltage (for mV, type 1e-3) 

 

 

% In amps 

lowCurr = 0;                % Low Current Range 

precisionCurr = 100e-6;     % Precision Current 

highCurr = 100e-6;            % High Current Range 

 

currUnit = 1e-6; % The Units of the LED Current (for uA, type 1e-6) 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%% LEAVE EVERYTHING ALONE BELOW 

 

%%% Filename generator for LED current 

tempCount = 1; 

for CurrNamePos = lowCurr:precisionCurr:highCurr 

     

    if currUnit == 1e-6 

        LEDCVNPrefix = "uA"; 

    elseif currUnit == 1e-3 

        LEDCVNPrefix = "mA"; 
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    elseif currUnit == 1e-0 

        LEDCVNPrefix = "A"; 

    else 

        LEDCVNPrefix = "units"; 

    end 

     

    LEDCurrentValueName(1,tempCount) = num2str(CurrNamePos./currUnit) + 

LEDCVNPrefix; 

    tempCount = tempCount + 1; 

end 

 

LEDCurrentSuffix = "Current"; 

 

%%% Filename generator for discriminator voltage levels 

tempCount = 1; 

for DiscNamePos = lowDisc:precisionDisc:highDisc 

     

    if discUnit == 1e-6 

        DVNPrefix = "uV"; 

    elseif discUnit == 1e-3 

        DVNPrefix = "mV"; 

    elseif discUnit == 1e-0 

        DVNPrefix = "V"; 

    else 

        DVNPrefix = "units"; 

    end 

     

     

    DiscValueName(1,tempCount) = num2str(DiscNamePos./discUnit) + DVNPrefix; 

    tempCount = tempCount + 1; 

end 

DiscSuffix = "DiscLvl"; 

 

LightMinusDarkSuffix = "LightMinusDark"; % Light Minus Dark Title at end of 

file 

 

 

DCount = length(DiscValueName); 

 

%%%% Storing filenames into arrays 

for Fcount2 = 1:DCount 

    filenameDisc(1,Fcount2) = TestName + "_" + DiscValueName(Fcount2) + "_" + 

DiscSuffix; 

     

end 

 

LCount = length(LEDCurrentValueName); 

for Fcount = 1:LCount 

    filenameLight(1,Fcount) = TestName + "_" + LEDCurrentValueName(Fcount) 

+"_" + LEDCurrentSuffix; % just give it a name. Make sure it has quotes 

around it 

 

end 

 

 

for Fcount3 = 2:LCount 
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filenamePhotonDisc(1,Fcount3-1) = TestName + "_" + 

LEDCurrentValueName(Fcount3) + "_" + LightMinusDarkSuffix; 

 

end 

 

 

 

savePic = 1;  % 1 to save pic as a fig and a png.  0 to disable 

saveData = 1; % 1 to save count data. 0 to disable. 

 

 

                 

%%% Hardware Configurations %%% 

Keithley_SenseCurrent_Range = 10e-3; % this in Amps, either 10mA, 100mA, etc. 

% Enter a decimal number, this sets the MAX % 

current range 

Keithley_SourceVolt_Range = 30; % In volts. Upper range for Source voltage. 

Keithley_CurrLimit = 10e-3; % in amps. Current Limiter when using the voltage  

    % power supply 

 

 

LED_SenseVolt_Range = 20;     % in Volts, this sets the MAX voltage range 

LED_SourceCurr_Range = 1e-3;  % in amps, the upper range for source current 

LED_VoltLimit =10;  % in volts. Voltage limiter when using the  

% current power supply 

 

COMAddr = 3;    % This is the Prologix Controller COM Port number 

                % Pleases enter an integer 

 

 

% GPIB address setup, values as integers 

KeithleyRBVAddr = 18;  

SR430Addr = 23; 

KeithleyCurrAddr = 19; 

 

%%% Suppressing read error (not needed, but good to have)  

suppWarn = 'MATLAB:serial:fgetl:unsuccessfulRead'; 

warning('off',suppWarn) 

 

%% Setting up COM Port     

COM = "COM" + int2str(COMAddr); 

GPIBport = serial(COM); % the COM port WILL change, depending on your PC 

% CR (Carriage Return) used to terminate internal query responses 

% LF (Line Feed) is optional but helps 

GPIBport.Terminator = 'CR/LF'; 

 

% Timeout is 1 seconds, default is 10 seconds if left alone 

GPIBport.Timeout = .5; % half a second chose to speed up timeout 

 

%% Using GPIB 

% Opening the port from USB 

fopen(GPIBport); 

 

fprintf(GPIBport,"++auto 0") % Turns off read-after-write feature of the  

     % Prologix controller to prevent unneeded reads  

 

%%% Saving address labels to MATLAB variables 
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RBVA = "++addr " + int2str(KeithleyRBVAddr); 

SR430A = "++addr " + int2str(SR430Addr); 

CurrA = "++addr " + int2str(KeithleyCurrAddr); 

 

%%%% Part one: Prepare Keithleys, GPIB Addr: 18 %%%% 

fprintf(GPIBport,RBVA); % Accessing the Keithley GPIB address 

SensCurr = "SENS:CURR:RANG " + num2str(Keithley_SenseCurrent_Range); 

SourceV = "SOUR:VOLT:RANG " + num2str(Keithley_SourceVolt_Range); 

CurrLim = "SOUR:VOLT:ILIM " + num2str(Keithley_CurrLimit); 

 

%%% SETTING UP KEITHLEY VOLTAGE SOURCE, SENDING GPIB COMMANDS 

fprintf(GPIBport,SensCurr); % This range setting is required 

fprintf(GPIBport,SourceV); 

fprintf(GPIBport,CurrLim); 

pause(1/10); % a delay of 0.1 seconds in MATLAB 

 

KeithleyOn(GPIBport)    % Turn on output of First Keithley Voltage Source 

          

pause(1/2) 

%%% Setup 2nd Keithley, GPIB Addr: 19 %%% 

fprintf(GPIBport,CurrA);        % Addr. of 2nd Keithley 

SensVoltLED = "SENS:VOLT:RANG " + num2str(LED_SenseVolt_Range); 

SourceC = "SOUR:CURR:RANG " + num2str(LED_SourceCurr_Range); 

VoltLim = "SOUR:CURR:VLIM " + num2str(LED_VoltLimit); 

 

%%% SETTING UP KEITHLEY CURRENT SOURCE, SENDING GPIB COMMANDS 

fprintf(GPIBport,"SOUR:FUNC CURR"); 

fprintf(GPIBport,"SENS:FUNC ""VOLT"""); 

fprintf(GPIBport,"SOUR:CURR 0"); 

fprintf(GPIBport,SensVoltLED); 

fprintf(GPIBport,SourceC); 

fprintf(GPIBport,VoltLim); 

 

KeithleyOn(GPIBport)    % Turn on output of 2nd Keithley  

          

 

%%% Setting up ranges and a MATLAB timer 

% Here, storing ranges into vectors. 

voltRange = (lowVolt:precision:highVolt).'; 

discLvlRange = (lowDisc:precisionDisc:highDisc).'; 

currLvlRange = (lowCurr:precisionCurr:highCurr).'; 

 

totalCounter = length(voltRange)*length(discLvlRange)*length(currLvlRange); 

 

% Timer setup 

Time = 8.51*totalCounter; % An estimate for how long it will take to perform  

  % a test 

if(Time >= 60) 

    Time = Time/60; 

    minTime = fix(Time); 

    secTime = (Time - minTime)*60; 

    fprintf('Estimated Time left: %6.0f minutes and %2.0f seconds 

\n',minTime,secTime) 

else 

    fprintf('Estimated Time left: %6.2f seconds \n',Time) 

end 

tic; 



105 

 

 

% The BIGGEST loop 

currCounter = 0; 

for curr = lowCurr:precisionCurr:highCurr 

fprintf(GPIBport,CurrA); 

fprintf('\nStarting at Current Level %d \n',curr); 

 

KeithleyCurrent(curr,GPIBport); 

 

currCounter = currCounter + 1; 

 

% Even Bigger loop to do discriminator levels 

discCounter = 0; 

for disc = lowDisc:precisionDisc:highDisc 

    fprintf(GPIBport,SR430A);   % SR430 address 

    strDiscLvlCMD = "DCLV"; 

    strDiscLvlVal = num2str(disc); 

    DiscLvlString = strDiscLvlCMD + strDiscLvlVal; 

    fprintf('\nStarting at Disc Level %s \n',DiscLvlString); 

    fprintf(GPIBport,DiscLvlString); 

    discCounter = discCounter + 1; 

     

    % BIIIG Loop to pump up voltage 

    counter = 0; 

    for voltage = lowVolt:precision:highVolt 

        fprintf('Current Voltage: %2.4f Volts \n',voltage) 

        tLoop = tic; 

        fprintf(GPIBport,RBVA); 

        KeithleyVoltage(voltage,GPIBport); %Voltage set 

         

        % Setup the counter address 

        fprintf(GPIBport,SR430A); 

        SR430startCount(GPIBport); % Script will pause and wait 

         

        counter = counter + 1; %Finished counting 

        totalCounter = totalCounter - 1; 

 

         

        SR430GetCounts(GPIBport); 

         

        % Read whatever prev command spits out 

        SR430Received = fgetl(GPIBport); 

        counts(counter,discCounter) = str2double(SR430Received); 

        disp(SR430Received); 

         

        % Done with counting, increment voltage 

        % and do it again 

        photonTimeLeft(tLoop,totalCounter) 

        photonTimeElapsed 

    end 

end 

 

% Store Complete counts to a bigger array 

KompleteCounts(:,:,currCounter) = counts; 
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end 

 

 

 

fprintf(GPIBport,RBVA); % Turning off the Keithley 

KeithleyOff(GPIBport); 

 

pause(1/10) 

fprintf(GPIBport,CurrA); % Turning off the Keithley 

KeithleyOff(GPIBport); 

 

 

% Close the port, send data to Excel and a graph 

fclose(GPIBport); 

%% Workspace 

% Graphing 3D plot, X -> disc, Y-> Volts, Z-> Counts, each graph is a 

% different light state 

mkdir(TestName, 'LED_Current') 

currentFolder = pwd; 

 

for k = 1:currCounter 

     

[row,col] = size(KompleteCounts(:,:,k)); 

 

for i = 1:row 

    for j = 0:col-1 

        discAxis(i,j+1) = j*precisionDisc+lowDisc; 

        voltAxis(i,j+1) = lowVolt +(i-1)*precision; 

    end 

end 

 

figure 

if col == 1 

    plot(voltAxis,KompleteCounts(:,col,k)) 

    ylabel('Counts') 

    xlabel('Reverse Bias Voltage') 

 

else 

    surf(discAxis,voltAxis,KompleteCounts(:,:,k)) 

    xlabel('Discriminator Level') 

    ylabel('Reverse Bias Voltage') 

    zlabel('Counts') 

end 

title(filenameLight(k),'Interpreter','none') 

prettyGraph 

picFN = filenameLight(k) + "_pic"; 

     

LEDFigPath = fullfile(currentFolder,TestName,'LED_Current',picFN); 

if(savePic) 

     

    print(LEDFigPath,'-dpng') 

    savefig(LEDFigPath) 

end 

 

countsFile = KompleteCounts(:,:,k); 
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voltFile = voltRange; 

 

data1 = [voltFile,zeros(length(voltFile),1),countsFile]; 

data1Disc = [NaN(1,2),discLvlRange.']; 

data1T = vertcat(data1Disc,data1); 

 

LEDFN = filenameLight(k)+".xlsx"; 

 

LEDDataPath = fullfile(currentFolder,TestName,'LED_Current',LEDFN); 

 

if(saveData) 

    xlswrite(LEDDataPath,data1T) 

end 

 

end 

 

 

 

%% Workspace 

% 3D plots of X -> curr, Y-> Volts, Z-> Counts, each graph is a different 

% discriminator level 

mkdir(TestName,'Disc_Level') 

for m = 1:discCounter 

 

countsDisc = squeeze(KompleteCounts(:,m,:)); 

     

[row,col] = size(countsDisc); 

 

 

[currAx,voltAx] = meshgrid(currLvlRange,voltRange); 

 

figure 

if col == 1 

    plot(voltAxis,squeeze(KompleteCounts(:,m,col))) 

    ylabel('Counts') 

    xlabel('Current Level') 

 

else 

    surf(currAx,voltAx,countsDisc) 

    xlabel('Current Level') 

    ylabel('Reverse Bias Voltage') 

    zlabel('Counts') 

end 

title(filenameDisc(m),'Interpreter','none') 

prettyGraph 

picFN = filenameDisc(m) + "_pic"; 

 

DiscFigPath = fullfile(currentFolder,TestName,'Disc_Level',picFN); 

 

 

if(savePic) 

    print(DiscFigPath,'-dpng') 

    savefig(DiscFigPath) 

end 

 

countsFile = countsDisc; 

voltFile = voltRange; 
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data2 = [voltFile,zeros(length(voltFile),1),countsFile]; 

data2Curr = [NaN(1,2),currLvlRange.']; 

data2T = vertcat(data2Curr,data2); 

 

DiscFN = filenameDisc(m)+".xlsx"; 

DiscDataPath = fullfile(currentFolder,TestName,'Disc_Level',DiscFN); 

 

 

if(saveData) 

    xlswrite(DiscDataPath,data2T) 

end 

 

end 

 

 

%% Workspace 

% Light Minus Dark in 2D, Subtracting all current levels with 0uA current 

mkdir(TestName,'Light_Minus_Dark') 

 

darkCounts = KompleteCounts(:,:,1); % 0uA matrix 

for k = 2:currCounter 

 

 

[row,col] = size(KompleteCounts(:,:,k)); 

 

[discAx,voltAx] = meshgrid(discLvlRange,voltRange); 

 

photonCounts = KompleteCounts(:,:,k) - darkCounts; 

 

 

figure 

if col == 1 

    plot(voltAxis,KompleteCounts(:,col,k)) 

    ylabel('Counts') 

    xlabel('Reverse Bias Voltage') 

 

else 

    surf(discAx,voltAx,photonCounts) 

    xlabel('Discriminator Level') 

    ylabel('Reverse Bias Voltage') 

    zlabel('Counts') 

end 

 

 

 

title(filenamePhotonDisc(k-1),'Interpreter','none') 

prettyGraph 

picFN = filenamePhotonDisc(k-1) + "_pic"; 

 

LMDFigPath = fullfile(currentFolder,TestName,'Light_Minus_Dark',picFN); 

 

if(savePic) 

    print(LMDFigPath,'-dpng') 

    savefig(LMDFigPath) 

end 
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countsFile = photonCounts; 

voltFile = voltRange; 

 

data3 = [voltFile,zeros(length(voltFile),1),countsFile]; 

data3Disc = [NaN(1,2),discLvlRange.']; 

data3T = vertcat(data3Disc,data3); 

 

LMDFN = filenamePhotonDisc(k-1)+".xlsx"; 

 

LMDDataPath = fullfile(currentFolder,TestName,'Light_Minus_Dark',LMDFN); 

 

 

if(saveData) 

    xlswrite(LMDDataPath,data3T) 

end 

 

end 

 

 

%% Adding plots - Light Vs Dark 

 

if currCounter == 1 % If just one curve 

    disp('Nothing to add :)') 

else 

    [row,col] = size(KompleteCounts(:,:,1)); 

 

        for i = 1:row 

            for j = 0:col-1 

                discAxis(i,j+1) = j*precisionDisc+lowDisc; 

                voltAxis(i,j+1) = lowVolt +(i-1)*precision; 

            end 

        end 

     

    figure 

 

    if col == 1 

        plot(voltAxis,KompleteCounts(:,col,1),'-k','linewidth',2) 

        ylabel('Counts') 

        xlabel('Reverse Bias Voltage') 

     

        hold on 

        plot(voltAxis,KompleteCounts(:,col,end),'-b','linewidth',2) 

        hold off 

     

    else 

        

surf(discAxis,voltAxis,KompleteCounts(:,:,1),'FaceAlpha',0.5,'FaceColor','k') 

        xlabel('Discriminator Level') 

        ylabel('Reverse Bias Voltage') 

        zlabel('Counts') 

     

        hold on 

        

surf(discAxis,voltAxis,KompleteCounts(:,:,end),'FaceAlpha',0.5,'FaceColor','b

') 

        hold off 

    end 
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end 

 

filenameAddLightDark = TestName + "_" + "Dark_and_" + 

LEDCurrentValueName(1,end); 

 

title(filenameAddLightDark,'Interpreter','none') 

prettyGraph 

 

lgd = legend('Dark',LEDCurrentValueName(1,end)); 

title(lgd,'LED Current') 

 

 

picFN = filenameAddLightDark + "_pic"; 

 

LMDFigPath2 = fullfile(currentFolder,TestName,picFN); 

 

 

if(savePic) 

    print(LMDFigPath2,'-dpng') 

    savefig(LMDFigPath2) 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%% Functions %%%%%%%%%%%%%%%%%%%%%%%%% 

function KeithleyOn(sPort) 

% This Function will make the Keithley 

% turn ON whatever is the Source mode 

    fprintf(sPort,'OUTP:STAT ON');   % Command to turn Keithley ON 

end 

function KeithleyVoltage(inputVolt,sport) 

% This function will set the voltage of the Keithley. 

% The first parameter is a value of type double 

% The second parameter is your port 

% EX. 

% KeithleyVoltage(1.0,yourPort); 

    voltToStr   = num2str(inputVolt); 

    cmdVoltStr  = 'SOUR:VOLT'; 

    sourceStr = cmdVoltStr + " " + voltToStr; 

    fprintf(sport,sourceStr); 

    pause(1/10) 

end 

 

function KeithleyCurrent(inputCurr,sport) 

% This function will set the Current of the Keithley. 

% The first parameter is a value of type double 

% The second parameter is your port 

% EX. 

% KeithleyCurrent(1e-3,yourPort); 

    currToStr   = num2str(inputCurr); 

    cmdCurrStr  = 'SOUR:CURR'; 

    sourceStr = cmdCurrStr + " " + currToStr; 

    fprintf(sport,sourceStr); 

    pause(1/10) 

end 

 

function KeithleyOff(serialp) 
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% This Function will make the Keithley 

% turn OFF the Output. 

% Make sure you have your port as a parameter 

% EX. 

% KeithleyOFF(yourPort); 

        fprintf(serialp,'OUTP:STAT OFF');    %Turn off 

end 

function SR430startCount(sp) 

% This Function starts a new photon count record 

% Make sure you make the first parameter your port 

% EX: SR430startCount(yourPort); 

    fprintf(sp,'PAUS'); 

    fprintf(sp,'CLRS'); 

    fprintf(sp,'SSCN'); 

     

    % Automatic Code 

%     fprintf(sp,'*STB? 0'); 

%     fprintf(sp,'++read'); 

%     r = fgetl(sp); 

%     bool = str2double(r); 

%     while bool ~= 1 

%         fprintf(sp,'*STB? 0'); 

%         fprintf(sp,'++read'); 

%  

%         r = fgetl(sp); 

%         bool = str2double(r); 

%     end 

%     disp('End') 

    % End of Automatic  

     

    % Manual Code 

    pause(6.3); 

    % End of Manual 

end 

function SR430GetCounts(port) 

% This Function will sum up all visible bins (locally 

% in the SR430) and send the total sum 

    fprintf(port,'STAT'); 

    pause(1) 

    fprintf(port,'SPAR ? 2'); % Get all counts 

    fprintf(port,'++read'); 

end 

function exportData(stringF,v,d) 

% This Function will export data to a new Excel File 

% Make First parameter have a string of your choice (NO "-" or ".") 

% Second parameter is the volt range as 1 big column 

% Third parameter is the count data, already as a big column 

% EX.   exportData('myFile',voltRange,counts); 

    filename = strcat(stringF,'.xlsx'); % new filename 

    xlswrite(filename,[v,d]) % Creates new Excel File 

end 

function photonTimeLeft(t,totalCounter) 

% This will tell you how much time is left using the total counts left 

% t is of type unsigned integer 64bit. Just use t = tic before you use 

% this function 

    T = toc(t); 

    estTime = T*totalCounter; 
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    if(estTime >= 60) 

         

        estTime = estTime/60; 

        minTime = fix(estTime); 

        secTime = (estTime - minTime)*60; 

         

        fprintf('Estimated Time left: %4.0f minutes and %2.0f seconds 

\n',minTime,secTime) 

    else 

        fprintf('Estimated Time left: %4.2f seconds \n',estTime) 

    end 

    fprintf('Points left: %u \n',totalCounter) 

end 

function photonTimeElapsed 

% This Function will tell you how much time has passed 

    Q = toc; 

    if(Q >= 60) 

             

         Q = Q/60; 

         minTime = fix(Q); 

         secTime = (Q - minTime)*60; 

             

         fprintf('Time Elapsed: %4.0f minutes and %2.0f seconds 

\n',minTime,secTime) 

    else 

         fprintf('Time Elapsed: %4.2f seconds \n',Q) 

    end 

 

end 

function prettyGraph % This function is just to 

grid on              % Have nice looking graphs 

ax = gca;            %  

ax.FontSize = 11; 

ax.LineWidth = 1; 

set(gcf,'color','w'); 

end 
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Appendix B: MATLAB Script to Generate Plots  

%% Data Processing 

% By David Santiago 

% 

% This script takes the data folders obtained 

% from the Automated GPIB MATLAB script and  

% combines all data into a single figure. 

% Create a new folder, where data folders of 

% interest are saved into that folder. Save this 

% script in same folder and run.  

clc 

clear variables 

close all 

LED_curr_low = 0; 

LED_curr_high = 200e-6; 

precision = 10e-6; 

curr_levels = length(LED_curr_low:precision:LED_curr_high); 

 

%% Find the Data Folders 

folderName = findPhotonFolder; 

numPhotonFolders = length(folderName); 

%% EXTRACT DATA 

indexCurr = [1,3,14:21,2,4:13]; % For indexing purposes 

 

 

for i = 1:numPhotonFolders 

    folder = string(folderName(i)); 

    tempDirLED = "./" + folder + "/LED_Current"; 

     

    d=dir(fullfile(tempDirLED,'*.xlsx*'));  % return the .xls files in the 

given folder 

    for j=1:length(d) 

        tempF = d(indexCurr(j)).name;  % take filename and convert 

        tempF = tempF(1:end-5);   % to string 

        tempS = convertCharsToStrings(tempF); 

         

        KompleteFileNames(j,i) = tempS; % store ALL filenames 

        % Set up the Import Options and import the data 

        opts = spreadsheetImportOptions("NumVariables", 2); 

         

        % Specify sheet and range, x: disc voltage, y: count data 

        opts.Sheet = "Sheet1"; 

        opts.DataRange = "C2:D302"; 

         

        % Specify column names and types, discriminator voltage 

        opts.VariableNames = [tempF+"_100mV", tempF+"_150mV"]; 

        opts.VariableTypes = ["double", "double"]; 

         

        % Import the data 

        tbl = readtable(tempDirLED+"/"+tempF, opts, "UseExcel", false); 

         

        % Convert to output type 

        temp100mV = table2array(tbl(:,1)); 

        temp150mV = table2array(tbl(:,2)); 

        countTemp = [temp100mV,temp150mV]; 
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        %% Clear temporary variables 

        clear opts tbl 

        KompleteCounts(:,:,j,i) = countTemp; % store all counts into matrix 

    end 

end 

warn = warning('query','last'); % turn off warning 

warnID = warn.identifier; 

warning('off',warnID) 

 

%% DATA REPRINTING 

% This reprints all data into individual figures 

% This will produce the most figure windows, so be prepared 

% for many windows to pop up 

voltage = 10:20e-3:16; % voltage range 

V = [voltage;voltage].'; 

disc = 100e-3:50e-3:150e-3; % disc range 

D = disc.*ones(301,2); 

 

for k = 1:i % Sweeping different test result folders 

 

    for m = 1:j % Sweeping different current tests 

        figure 

        surf(V,D,KompleteCounts(:,:,m,k)) 

        title(KompleteFileNames(m,k),'interpreter','none') 

        ylabel('DISC'); 

        xlabel('VOLT'); 

        zlabel('COUNTS'); 

    end 

end 

 

 

%% DATA PROCESSING: All APDS 

% This recombines all APD data into a figure. 

% Each figure represents an LED current drive 

color = ['b','g','r','c','m','y']; 

current = 0:10:200; 

for m = 1:j 

    

        figure 

    for k = 1:i 

        

surf(V,D,KompleteCounts(:,:,m,k),'FaceAlpha',0.9,'EdgeAlpha',0.2,'FaceColor',

color(k)) 

        hold on 

    end 

    title({"Total counts", "Current at "+ 

num2str(current(m))+"uA"},'interpreter','none') 

    ylabel('DISC'); 

    xlabel('VOLT'); 

    zlabel('COUNTS'); 

    hold off 

    legend(folderName,'interpreter','none','location','best') 

    title(legend,'All APDS') 

    prettyGraph 

 

end 
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%% Photon Processing: All APDS 

% This will take the dark (low reference) counts 

% and subtract this value from all the light counts. 

% This will result in counts due to incident photons 

color = ['b','g','r','c','m','y']; 

current = 0:10:200; 

for m = 2:j 

    

        figure 

    for k = 1:i 

        surf(V,D,KompleteCounts(:,:,m,k)-

KompleteCounts(:,:,1,k),'FaceAlpha',0.9,'EdgeAlpha',0.2,'FaceColor',color(k)) 

        hold on 

    end 

    title({"Photon counts", "Current at "+ 

num2str(current(m))+"uA"},'interpreter','none') 

    ylabel('DISC'); 

    xlabel('VOLT'); 

    zlabel('COUNTS'); 

    hold off 

    legend(folderName,'interpreter','none','location','best') 

    title(legend,'All APDs') 

    prettyGraph 

 

end 

%% Data Processing: Normalized Photon/Area Counts 

% This will take the photon data and divide it by the area of 

% the APD. Note you may have to change the area 

diameter = [24e-6,50e-6,5e-6]; 

radius = diameter./2; 

AreaCircle = pi.*radius.^2; 

AreaSquare = diameter.^2; 

Area = 

[AreaCircle(1),AreaSquare(1),AreaCircle(2),AreaSquare(2),AreaCircle(3),AreaSq

uare(3)]; 

 

color = ['b','g','r','c','m','y']; 

current = 0:10:200; 

for m = 2:j 

    

        figure 

    for k = 1:i 

        surf(V,D,1e-12*(KompleteCounts(:,:,m,k)-

KompleteCounts(:,:,1,k))./Area(k),'FaceAlpha',0.9,'EdgeAlpha',0.2,'FaceColor'

,color(k)) 

        hold on 

    end 

    title({"Normalized Photon/Area counts", "Current at "+ 

num2str(current(m))+"uA"},'interpreter','none') 

    ylabel('DISC'); 

    xlabel('VOLT'); 

    zlabel('COUNTS (counts/um^2)'); 

    hold off 

    legend(folderName,'interpreter','none','location','best') 

    title(legend,'All APDs') 

    prettyGraph 
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end 

%% Functions 

function photonFolderNames = findPhotonFolder(string) 

% This function will look at current working directory for photon data 

% folders.  

 

if (nargin==1) 

    cd = string; 

else 

    cd = pwd; 

end 

files = dir(cd); % pwd is the command to look at current directory 

flag = [files.isdir]; % marks which file is a directory 

photonFolder = files(flag); % returns only directories 

photonFolderNames = {photonFolder(3:end).name}; % Start at 3 to  

                                               % skip . and .. directories 

End 

 

function prettyGraph % This function is just to 

grid on              % Have nice looking graphs 

ax = gca;            %  

ax.FontSize = 10; 

ax.LineWidth = 2; 

set(gcf,'color','w'); 

end 
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Appendix C: First-Time MATLAB Global Variable Setup  

 

First-Time MATLAB Setup 

Variable Data Notes 

COMAddr 3 The COM port address 

assigned to the GPIB 

Prologix controller 

Keithley Voltage Source (to reverse bias the diode) 

Keithley_SenseCurrent_Range 10e-3 (10mA) Sets the sense current setting 

to 10mA 

Keithley_SourceVolt_Range 30 Sets the voltage range to 30V 

Keithley_CurrLimit 10e-3 (10mA) Sets max current to output at 

10mA 

Keithley Current Source (for LED) 

LED_SenseVolt_Range 20V Sets the sense voltage setting 

to 20V 

LED_SourceCurr_Range 1e-3 (1mA) Sets the current range to 

1mA 

LED_VoltLimit 10V Sets max voltage to output at 

10V 

GPIB Settings 

SR430Addr 23 The GPIB address of the 

SR430 

KeithleyRBVAddr 18 The GPIB address of the 

Keithley Voltage source 

KeithleyCurrAddr 19 The GPIB address of the 

Keithley Current source 
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Appendix D: MATLAB User-Defined Test Variables 

 

MATLAB User-Defined Test Variables 

Variable Data Notes 

TestName “your_testName” The name of the test. Must 

start with a letter, and can 

contain alphabetical 

chracters, digits, or 

underscores 

Keithley Voltage Source (to reverse bias the diode) 

lowVolt 10 The lowest voltage to be 

tested 

highVolt 20 The highest voltage to be 

tested 

precision 1e-3 (1mV) Upward increments from 

lowest voltage to highest 

voltage 

SR430 Photon Counter 

lowDisc 50e-3 (50mV) Lowest discriminator voltage 

highDisc 150e-3 (150mV) Highest discriminator voltage 

precisionDisc 50e-3 (50mV) Upward increments from 

lowest discriminator voltage 

to highest. 

Keithley Current Source (for LED) 

lowCurr 0 (or reference) Lowest current to output. For 

dark counts, set this to 0. 

highCurr 100e-6 (100μA) Highest current to output. 

This may be set as the 

maximum current the LED 

can be safely tested. 

precisionCurr 10e-6 (10μA) Upward increments from 

lowest current to highest. 

Miscellaneous  

discUnit 1e-3 (1mV) For labeling purposes. 

Attaches appropriate 

engineering metric unit 

currUnit 1e-6 (1μA) For labeling purposes. 

Attaches appropriate 

engineering metric unit 
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Appendix E: MATLAB User-Defined Functions 

 

User-Defined Functions 

Keithley SourceMeter (General) 

Function Notes 

KeithleyOn(sPort) This function will turn on the source output of a Keithley 

power supply. The supply to be turned on is determined by 

the current GPIB address set on the Prologix controller.  

KeithleyOff(sPort) This function will turn off the source output of a Keithley 

power supply. The supply to be turned off is determined 

by the current GPIB address set on the Prologix controller.  

Keithley Voltage Supply 

KeithleyVoltage(inputVolt,sPort) This function will set the voltage on the Keithley voltage 

supply. This function must be sent after setting the correct 

GPIB address on the Prologix controller. A small arbitrary 

pause of 1/10 of a second occurs at the end of the function. 

“inputVolt” is a value of type double. Ex: 

KeithleyVoltage(1.0,sPort) sets the voltage on the Keithley 

to 1 volt. 

Keithley Current Supply 

KeithleyCurrent(inputCurr,sPort) This function will set the current on the Keithley current 

supply. This function must be sent after setting the correct 

GPIB address on the Prologix controller. A small arbitrary 

pause of 1/10 of a second occurs at the end of the function.  

“inputCurr” is a value of type double. Ex: 

KeithleyCurrent(1e-3,sPort) sets the current on the 

Keithley to 1 milliamp. 

SR430 

SR430startCount(sPort,mode) This function starts a scan on the SR430. Prior to running 

this function, the GPIB address on the Prologix controller 

must be changed to the SR430. By default, the automatic 

mode is set. “mode” is an integer, where a value of 1 will 

turn on the user-defined mode. The time inside this 

function must be calculated from Ch. 2 of this thesis. 

SR430GetCounts(sPort) This function will sum all visible time bins (locally on the 

SR430 screen, see Ch. 2) and send the total count to 

MATLAB. 
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Miscellaneous  

exportData(string,v,d) This function will export data to a new Excel file. 

“stringF” is a character string, and will serve as the 

filename of the Excel file. “v” is a vector of type double, 

which is defined by the reverse bias voltage range. “d” is a 

vector of type integer, and is the count data. 

photonTimeLeft(t,totalCounter) This function will output the estimated time left using the 

total counts left. “t” is of type unsigned integer, which is 

the function “tic” which when used with “toc” will return 

the difference in time between the two functions, in 

minutes and seconds. 

photonTimeElapsed This function will output the total time elapsed at the time 

of execution, in minutes and seconds. 

prettyGraph This function will format the current MATLAB figure 

with a grid, font size, width of the gridlines, and color the 

background white. This function is for presentation 

purposes. 
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