
UNIVERSITY OF NEVADA LAS VEGAS. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING LABORATORIES.

Class: CPE300L Semester: Fall 2021

Points Document author: Jerrod Batu
Author's email: batuj1@unlv.nevada.edu

Document topic: Postlab 8
Instructor's comments:

1. Introduction / Theory of Operation
In this lab, I will continue my learning about the general datapath’s implementation for a given
algorithm. I will also learn more about timing simulations by setting up timing constraints and
timing information as well as modeling memories.

a. In regards to time quest analysis slack is the range of where the timing requirement is
met or not. When the timing requirement is met, this is called positive slack; hence, the
negative slack is when the timing requirement is not met. Realistic slack values are met
when all of the clocks in the design are constrained with real values.

b. It is important to consider timing analysis in a digital circuit design because incorrect
format and outputs may result in different timing cycles. In addition, the timing analysis
allows the user to easily make a circuit design more feasible and efficient on how fast the
outputs can be processed through the inputs. Timing analysis, specifically, will determine
the amount of time it takes between the inputs and outputs to be initialized. By having
the timing requirement not met and negative slack, the circuit will not be maximized and
efficient as there may be a slight delay between outputs after the clock is on the positive
edge.

2. Prelab
https://docs.google.com/document/d/1PKcaACI4mB_VmDI2OBT4IPvLjs1yjqKz/edit?usp=shari
ng&ouid=102808507017671072128&rtpof=true&sd=true
This is the link to my prelab8.

https://docs.google.com/document/d/1PKcaACI4mB_VmDI2OBT4IPvLjs1yjqKz/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true
https://docs.google.com/document/d/1PKcaACI4mB_VmDI2OBT4IPvLjs1yjqKz/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true

3. Results of Experiments

EXPERIMENT 1

`timescale 1ns / 100ps

module GCD (startGDP, rstGDP, clkGDP, n1GDP, n2GDP, complete, GCDoutDP);
input startGDP, clkGDP, rstGDP;
input [7:0] n1GDP, n2GDP;
output complete;
output [7:0] GCDoutDP;

wire WE, RAE, RBE, OE, IE, neq, gt;
wire [1:0] WA, RAA, RBA, SH;
wire [2:0] ALU;

CU control (~startGDP, clkGDP, ~rstGDP, neq, gt, IE, WE, WA, RAE, RAA, RBE,
RBA, ALU, SH, OE);

DP datapath (n1GDP, n2GDP, clkGDP, IE, WE, WA, RAE, RAA, RBE, RBA, ALU,
SH, OE, neq, gt, GCDoutDP);

assign complete = OE;
endmodule

module CU (start, clk, rst, neq, gt, IE, WE, WA, RAE, RAA, RBE, RBA, ALU, SH, OE);
input start, clk, rst;
output IE, WE, RAE, RBE, OE;
output [1:0] WA, RAA, RBA, SH;
output [2:0] ALU;

input wire neq, gt;
reg [2:0] state;
reg [2:0] nextstate;

parameter S0 = 3'b000;
parameter S1 = 3'b001;
parameter S2 = 3'b010;
parameter S3 = 3'b011;
parameter S4 = 3'b100;
parameter S5 = 3'b101;
parameter S6 = 3'b110;

initial
state = S0;

// State register
always @ (posedge clk)
begin

state <= nextstate;
end

// Next State Logic
always @ (*)

case (state)
S0: if (start) // output a = 0

nextstate = S1;
else

nextstate = S0;
S1: nextstate = S2; // input a

S2: nextstate = S3; // input b
S3: if (neq && gt) // a > b

nextstate = S4;
else if (neq && !gt) // b < a

nextstate = S5;
else

nextstate = S6; // neither
S4: nextstate = S3;
S5: nextstate = S3;
S6: if (rst)

nextstate = S0;
else

nextstate = S6;
default: nextstate = S0;

endcase

// Output Logic
assign IE = (state == S1) || (state == S2);

assign WE = (state == S1) || (state == S2) || (state == S4) || (state == S5);
assign WA[1] = (state == S2) || (state == S5);
assign WA[0] = (state == S1) || (state == S4);
assign RAE = (state == S3) || (state == S4) || (state == S5) || (state == S6);
assign RAA[1] = state == S5;
assign RAA[0] = (state == S3) || (state == S4) || (state == S6);

assign RBE = (state == S3) || (state == S4) || (state == S5);
assign RBA[1] = (state == S3) || (state == S4);
assign RBA[0] = state == S5;

assign ALU[2] = (state == S3) || (state == S4) || (state == S5);
assign ALU[1] = 0;
assign ALU[0] = (state == S3) || (state == S4) || (state == S5);

assign SH[1] = 0;
assign SH[0] = 0;
assign OE = state == S6;

endmodule

//Data Path
module DP (n1In, n2In, clk, IE, WE, WA, RAE, RAA, RBE, RBA, ALU, SH, OE, neq, gt,
out);

input clk, IE, WE, RAE, RBE, OE;
input [1:0] WA, RAA, RBA, SH;
input [2:0] ALU;
input [7:0] n1In, n2In;
output neq, gt;
output wire [7:0] out;

reg [7:0] rfIn1, rfIn2;
wire [7:0] rfA, rfB, aluOut, shOut, n1, n2;

initial begin
rfIn1 = 0;

rfIn2 = 0;
end

always @ (*)
begin

rfIn1 = n1;
rfIn2 = n2;

end

gdpMux1 mux1 (shOut, n1In, IE, n1);
gdpMux2 mux2 (shOut, n2In, IE, n2);
gdpRF RF (clk, WE, RAE, RBE, RAA, RBA, WA, rfIn1, rfIn2, rfA, rfB);
gdpALU theALU (rfA, rfB, ALU, aluOut);
gdpShift SHIFT (aluOut, SH, shOut);
gdpBuffer buff (shOut, OE, out);

assign neq = (|aluOut [7:0]);
assign gt = (~aluOut[7]) && (|aluOut[6:0]);

endmodule

// 2-to-1 mux
module gdpMux1 (a, b, sel, out);

input [7:0] a, b;
input sel;
output reg [7:0] out;

always @(*) begin
if(sel == 0)

out = a;
else

out = b;
end

endmodule

// 2-to-1 mux
module gdpMux2 (a, b, sel, out);

input [7:0] a, b;
input sel;
output reg [7:0] out;

always @(*) begin
if(sel == 0)

out = a;
else

out = b;
end

endmodule

// register file
module gdpRF(clk, WE, RAE, RBE, RAA, RBA, WA, inD1, inD2, ReadA, ReadB);

input clk, WE, RAE, RBE;
input [1:0] RAA, RBA, WA;

input [7:0] inD1, inD2;
output [7:0] ReadA, ReadB;

reg [7:0] regF1 [0:3];
reg [7:0] regF2 [0:3];

// Write when WE asserted
always @(posedge clk)

begin
if (WE == 1)

begin
regF1[WA] <= inD1;

regF2[WA] <= inD2;
end

end

//reading to Port A and B, combinational
assign ReadA = (RAE)? regF1 [RAA]:0;
assign ReadB = (RBE)? regF2 [RBA]:0;

endmodule

// arithmetic logic unit
module gdpALU (a,b,sel, out);

input [7:0] a,b;
input [2:0] sel;
output reg [7:0] out;

always @ (*)
begin

case (sel)
3'b000: out = a;
3'b001: out = a & b;
3'b010: out = a | b;
3'b011: out = !a;
3'b100: out = a + b;
3'b101: out = a - b;
3'b110: out = a + 1;
3'b111: out = a - 1;

endcase
end

endmodule

// Shifter
module gdpShift (a,sh,out);

input [7:0] a;
input [1:0] sh;
output reg [7:0] out;

always @ (*)
begin

case(sh)
3'b00: out = a;
3'b01: out = a << 1;
3'b10: out = a >> 1;
3'b11: out= { a[6],a[5],a[4],a[3],a[2],a[1],a[0], a[7] } ;

endcase

end
endmodule

// Buffer
module gdpBuffer (a, buff, out);

input [7:0] a;
input buff;
output reg [7:0] out;

always @(*)
if(buff == 1)

out = a;
else

out = 8'bzzzz_zzzz;
endmodule

This is the general datapath for the GCD algorithm.

`timescale 1ns / 100ps

module GDPTB;
reg startTB, rstTB, clkTB;
reg [7:0] n1TB, n2TB;
wire displayGCD;
wire [7:0] GCDTest;

// Test Vectors for desired output
reg [7:0] inTest1 [1:5];
reg [7:0] inTest2 [1:5];
reg [7:0] outExpect [1:5];

integer i;

initial
begin

// initialize inputs to test and their expected outputs
inTest1[1] = 8'b00000000;
inTest2[1] = 8'b00000000;

outExpect[1] = 8'b00000000;

inTest1[2] = 8'b00010110;
inTest2[2] = 8'b00010110;

outExpect[2] = 8'b00010110;

inTest1[3] = 8'b00000010;
inTest2[3] = 8'b00000100;
outExpect[3] = 8'b00000010;

inTest1[4] = 8'b10101010;
inTest2[4] = 8'b01010101;
outExpect[4] = 8'b01010101;

inTest1[5] = 8'b11111111;
inTest2[5] = 8'b00001010;
outExpect[5] = 8'b00000101;

startTB = 1;
rstTB = 1;
clkTB = 0;

// generate clock
forever

#2 clkTB = ~clkTB;
end

always
begin

for(i = 1; i <= 5; i = i + 1) // test for the 5 inputs
begin

n1TB <= inTest1[i];
n2TB <= inTest2[i];

startTB = 0;
#40 rstTB = 1;

// Waiting for code to finish then displayResults when
done

while (displayGCD != 1)
#5 begin end

$write ("InputA: %b InputB: %b Expected: n =%d Calculated: n =%d: ",
n1TB, n2TB, outExpect[i], GCDTest);

if (GCDTest == outExpect[i])
$display("Correct!");

else
$display("Incorrect!");

rstTB = 0;

startTB = 1;
end

$stop;
end

//Instantiate GDP
GCD mainGDP (startTB, rstTB, clkTB, n1TB, n2TB, displayGCD, GCDTest);

endmodule

This is the testbench for the general datapath for the GCD algorithm.

These are my VCS waveforms for the general datapath for the GCD algorithm. The clock is a
yellow bar because there are several instantiations of clock within the full waveform view. The
yellow line for the GCDTest represents “Z” as “Z” would only be outputted if there is no GCD.

This is my VCS console for the general datapath for the GCD algorithm.

https://drive.google.com/file/d/1CBf2H-Cdq6xv_JaxTidzjIVeSvzgOlaM/view?usp=sharing
This is the link to my video delivery of the GCD general datapath implemented onto the DE2
board.

https://drive.google.com/file/d/1CBf2H-Cdq6xv_JaxTidzjIVeSvzgOlaM/view?usp=sharing

EXPERIMENT 2

This is the timing analysis of Experiment 1 before setting up the constraints.

This is the timing analysis of Experiment 1 after setting up the constraints.

EXPERIMENT 3

module sngPrtRAM (WE, CLK, Inp, Addr, opd);
input WE, CLK;
input [3:0] Addr;
input [7:0] Inp;
output wire [7:0] opd;

//16x8 ram
reg [15:0] RAM [0:7];

always@(posedge CLK)
begin

if(WE == 1'b1)
RAM[Addr] <= Inp;

end

assign opd = RAM[Addr];
endmodule

This is my Verilog code for the single port RAM.

This is my RTL View for the single port RAM.

https://drive.google.com/file/d/1BAPfnyEVVPpajUcIp9QMVUPvnrNUuBL6/view?usp=sharing
This is the link for my video delivery of the single port RAM implementation onto the DE2
board.

https://drive.google.com/file/d/1BAPfnyEVVPpajUcIp9QMVUPvnrNUuBL6/view?usp=sharing

4. Answers to questions
Question 1:

input RE, CLK
input Addr
output read

reg RAM

always @ (posedge CLK)
if (RE == 1'b1)

read <= RAM[Addr]
else

read <= 0

Question 2:
Memory initialization in Quartus II is actually created through a Memory Initialization File
(.mif).
Purposes:

● Specifies initial content of a memory block
○ Specifies the initial values for each address
○ Used during project compilation or simulation

● Serves as input file for memory initialization in compiler and simulator
● Can be used in Hexadecimal file to provide memory initialization data
● Contains initial values for each address in memory
● Specifies memory depth and width values

○ Specifies data radixes in different representations (binary, hexadecimal, decimal,
etc.)

● Overall purpose of initializing memory is to ensure proper range of memory is to be used
within a program to prevent any overflow or underflow when coding

○ Overflow or underflow of memory will result into a program to crash as not
enough memory is allocated for any functions to process

5. Conclusions & Summary
Experiment 1 and the last prelab question were the hardest parts in regards to the lab.

The main issue that I kept having was using two inputs for the general datapath because we have
been using only one input for almost all of the labs. In addition, I had a hard time implementing
the ALUout to determine if a is equal to b. To solve these issues, I kept rewatching the lab video
over and over to try to fully understand what was meant to be achieved from my problems.
Eventually, I was able to figure out my Verilog code and register file implementations with the
two different inputs. I am very familiar with the general data path after this lab, and I am getting
a much better understanding of how timing and delay can affect the overall performance of
Verilog code. In addition, this lab definitely assisted my understanding of the importance of
RAM, and it’s implementation in Verilog code.

