
UNIVERSITY OF NEVADA LAS VEGAS. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING LABORATORIES.

Class: CPE300L Semester: Fall 2021

Points Document author: Jerrod Batu
Author's email: batuj1@unlv.nevada.edu

Document topic: Postlab 7
Instructor's comments:

1. Introduction / Theory of Operation
Throughout this lab, I will continue my knowledge of the general data path implementation.
Specifically, I will design a control unit for the given summation algorithm, test on a testbench,
and debug the circuit.

a. The control unit is designed to decipher when and where the control words are to be
implemented into the general data path. First, the control signal from the datapath would
decide on the proper inputs to be inserted into the control unit. Next, the control unit
would utilize a state transition diagram to determine where the control words are to be
initiated into the proper inputs of the components within the data path. Lastly, the
outputs of the state diagram would be the inputs into the components within the datapath.

b. The control signals that would be encountered are based from the datapath and state
transition diagram. Typically, the input control signal from the datapath would consist of
gate logic that would determine how the inputs of the components of the datapath would
be initiated from the outputs of the control unit. The control words are input signals into
the datapath. The control words consist of IE, WE, WA, RAE, RAA, RBE, RBA, ALU,
SH, and OE. IE is usually initiated when the input is enabled into the datapath; therefore,
one initialization per clock cycle. Then, WE, WA, RAE, RAA, RBE, and RBA are when
the inputs are written or read from the Register File. By determining if the inputs are
read or written, this allows the algorithm to be properly implemented on how the inputs
to the ALU are initiated. Next, the ALU inputs are to be determined on how the state
transition diagram is implemented on where the ALU would be needed. For example, if
the algorithm were to require an increment, then this is where the ALU would be
signaled. The same were to apply to a SHifter as the inputs are determined on where the
state transition diagram would require it. OE is always initiated at the end of the
datapath; therefore, utilizing the buffer to figure out the final output of any algorithm.

2. Prelab
https://docs.google.com/document/d/1STWC6v6QR5H1JHVg2bfFpIqNAMuaD1xW/edit?usp=s
haring&ouid=102808507017671072128&rtpof=true&sd=true
This is the link to my prelab 7.

https://docs.google.com/document/d/1STWC6v6QR5H1JHVg2bfFpIqNAMuaD1xW/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true
https://docs.google.com/document/d/1STWC6v6QR5H1JHVg2bfFpIqNAMuaD1xW/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true

3. Results of Experiments
Experiment 1

module CU (start, clk, rst, neq0, IE, WE, WA, RAE, RAA, RBE, RBA, ALU, SH, OE);
input start, clk, rst;
output IE, WE, RAE, RBE, OE;
output [1:0] WA, RAA, RBA, SH;
output [2:0] ALU;

input wire neq0;
reg [2:0] state;
reg [2:0] nextstate;

parameter S0 = 3'b000;
parameter S1 = 3'b001;
parameter S2 = 3'b010;
parameter S3 = 3'b011;
parameter S4 = 4'b100;

initial
state = S0;

// State register
always @ (posedge clk)
begin

state <= nextstate;
end

// Next State Logic
always @ (*)

case (state)
S0: if (start)

nextstate = S1;
else

nextstate = S0;
S1: if (neq0)

nextstate = S2;
else

nextstate = S4;
S2: nextstate = S3;
S3: if (neq0)

nextstate = S2;
else

nextstate = S4;
S4: if (rst) nextstate = 0;

else nextstate = S4;
default: nextstate = S0;

endcase

// Output Logic
assign IE = state == S1;

assign WE = (state == S0) || (state == S1) || (state == S2) || (state == S3);
assign WA[1] = 0;
assign WA[0] = (state == S1) || (state == S3);
assign RAE = (state == S0) || (state == S2) || (state == S3) || (state == S4);
assign RAA[1] = 0;
assign RAA[0] = (state == S3);

assign RBE = (state == S0) || (state == S2);
assign RBA[1] = 0;
assign RBA[0] = 0;

assign ALU[2] = (state == S0) || (state == S2) || (state == S3);
assign ALU[1] = state == S3;
assign ALU[0] = (state == S0) || (state == S3);

assign SH[1] = 0;
assign SH[0] = 0;
assign OE = state == S4;

endmodule

This is my Verilog code for the control unit implemented with the help of figure 4 and figure 6.

EXPERIMENT 2

`timescale 1ns / 100ps

module topLevel (sumGDP, startGDP, rstGDP, clkGDP, nGDP, complete);
input startGDP, clkGDP, rstGDP;
input [7:0] nGDP;
output complete;
output [7:0] sumGDP;

wire WE, RAE, RBE, OE, IE, neq0;
wire [1:0] WA, RAA, RBA, SH;

wire [2:0] ALU;

CU control (~startGDP, clkGDP, ~rstGDP, neq0, IE, WE, WA, RAE, RAA, RBE, RBA,
ALU, SH, OE);

DP datapath (nGDP, clkGDP, IE, WE, WA, RAE, RAA, RBE, RBA, ALU, SH, OE,
neq0, sumGDP);

assign complete = OE;
endmodule

module CU (start, clk, rst, neq0, IE, WE, WA, RAE, RAA, RBE, RBA, ALU, SH, OE);
input start, clk, rst;
output IE, WE, RAE, RBE, OE;
output [1:0] WA, RAA, RBA, SH;
output [2:0] ALU;

input wire neq0;
reg [2:0] state;
reg [2:0] nextstate;

parameter S0 = 3'b000;
parameter S1 = 3'b001;
parameter S2 = 3'b010;
parameter S3 = 3'b011;
parameter S4 = 4'b100;

initial
state = S0;

// State register
always @ (posedge clk)
begin

state <= nextstate;
end

// Next State Logic
always @ (*)

case (state)
S0: if (start)

nextstate = S1;
else

nextstate = S0;
S1: if (neq0)

nextstate = S2;

else
nextstate = S4;

S2: nextstate = S3;
S3: if (neq0)

nextstate = S2;
else

nextstate = S4;
S4: if (rst) nextstate = 0;

else nextstate = S4;
default: nextstate = S0;

endcase

// Output Logic
assign IE = state == S1;

assign WE = (state == S0) || (state == S1) || (state == S2) || (state == S3);
assign WA[1] = 0;
assign WA[0] = (state == S1) || (state == S3);
assign RAE = (state == S0) || (state == S2) || (state == S3) || (state == S4);
assign RAA[1] = 0;
assign RAA[0] = state == S3;

assign RBE = (state == S0) || (state == S2);
assign RBA[1] = 0;
assign RBA[0] = state == S2;

assign ALU[2] = (state == S0) || (state == S2) || (state == S3);
assign ALU[1] = state == S3;
assign ALU[0] = (state == S0) || (state == S3);

assign SH[1] = 0;
assign SH[0] = 0;
assign OE = state == S4;

endmodule

//Data Path
module DP (nIn, clk, IE, WE, WA, RAE, RAA, RBE, RBA, ALU, SH, OE, ne0, out);

input clk, IE, WE, RAE, RBE, OE;
input [1:0] WA, RAA, RBA, SH;
input [2:0] ALU;
input [7:0] nIn;
output ne0;
output wire [7:0] out;

reg [7:0] rfIn;
wire [7:0] rfA, rfB, aluOut, shOut, n;

initial
rfIn = 0;

always @ (*)
rfIn = n;

gdpMux mux (shOut, nIn, IE, n);
gdpRF RF (clk, WE, RAE, RBE, RAA, RBA, WA, rfIn, rfA, rfB);
gdpALU theALU (rfA, rfB, ALU, aluOut);
gdpShift SHIFT (aluOut, SH, shOut);
gdpBuffer buff (shOut, OE, out);

assign ne0 = n != 0; //note: checks the false //condition

endmodule

// 2-to-1 mux
module gdpMux (a, b, sel, out);

input[7:0] a;
input[7:0] b;
input sel;
output reg [7:0] out;

always @(*)
if(sel == 0)

out = a;
else

out = b;
endmodule

// register file
module gdpRF(clk, WE, RAE, RBE, RAA, RBA, WA, inD, ReadA, ReadB);

input clk, WE, RAE, RBE;
input [1:0] RAA, RBA, WA;
input [7:0] inD;
output [7:0] ReadA, ReadB;
reg [7:0] regF [0:3];

// Write when WE asserted
always @(posedge clk)
if (WE == 1) regF[WA] <= inD;

//reading to Port A and B, combinational
assign ReadA = (RAE)? regF [RAA]:0;
assign ReadB = (RBE)? regF [RBA]:0;

endmodule

// arithmetic logic unit
module gdpALU (a,b,sel, out);

input [7:0] a,b;
input [2:0] sel;
output reg [7:0] out;

always @ (*)
begin

case (sel)
3'b000: out = a;
3'b001: out = a & b;
3'b010: out = a | b;
3'b011: out = !a;
3'b100: out = a + b;
3'b101: out = a - b;
3'b110: out = a + 1;
3'b111: out = a - 1;

endcase
end

endmodule

// Shifter
module gdpShift (a,sh,out);

input [7:0] a;
input [1:0] sh;
output reg [7:0] out;

always @ (*)
begin

case(sh)
3'b00: out = a;
3'b01: out = a << 1;
3'b10: out = a >> 1;
3'b11: out= { a[6],a[5],a[4],a[3],a[2],a[1],a[0], a[7] } ;

endcase
end

endmodule

//buffer
module gdpBuffer (a, buff, out);

input [7:0] a;
input buff;
output reg [7:0] out;

always @(*)
if(buff == 1)

out = a;
else

out = 8'bzzzz_zzzz;
endmodule

This is my top-level module utilizing the datapath from lab 6 and the control unit code from
experiment 1 to create a complete general datapath code.

EXPERIMENT 3

`timescale 1ns / 100ps

module GDPTB;
reg startTB, rstTB, clkTB;
reg [7:0] nTB;
wire displayTotalCount;
wire [7:0] countTest;

// Test Vectors for desired output
reg [7:0] inTest [1:5];
reg [7:0] outExpect [1:5];

integer i;

initial
begin

// initialize inputs to test and their expected outputs
inTest[1] = 8'b00000000;
outExpect[1] = 8'b00000000;

inTest[2] = 8'b00000001;
outExpect[2] = 8'b00000001;

inTest[3] = 8'b00000011;
outExpect[3] = 8'b00000110;

inTest[4] = 8'b00000100;
outExpect[4] = 8'b00001010;

inTest[5] = 8'b11111111;
outExpect[5] = 8'b10000000;

startTB = 1;
rstTB = 1;
clkTB = 0;

// generate clock
forever

#2 clkTB = ~clkTB;
end

always
begin

for(i = 1; i <= 5; i = i + 1) // test for the 5 inputs
begin

nTB <= inTest[i];
startTB = 0;
#40 rstTB = 1;

// Waiting for code to finish then displayResults when done
while (displayTotalCount != 1)

#5 begin end

$write ("Input: %b, Expected: n =%d, Calculated: n =%d: ",
nTB, outExpect[i], countTest);

if (countTest == outExpect[i])
$display("Correct!");

else
$display("Incorrect!");

rstTB = 0;
startTB = 1;

end
$stop;

end

//Instantiate GDP
topLevel mainGDP (countTest, startTB, rstTB, clkTB, nTB, displayTotalCount);

endmodule

This is my testbench for the complete GDP that tests for correctness within my GDP design.

These are my VCS waveforms for the testbench for the complete GDP. The clock here is shown
as a yellow bar because there are several positive clock edges that would be needed for a
11111111 (255) input.

This is my VCS console for the testbench for the complete GDP. The testbench will test for 5
different values: 0, 1, 3, 4, and 255. The expected result will be the output to be compared with
the calculated value as the output that is actually found from the GDP Verilog code.

EXPERIMENT 4

This is my Verilog code for the GDP that is implemented onto the DE2 board along with the 7
segment display. Here, the input is 1 and the output is 1.

This is my Verilog code for the GDP that is implemented onto the DE2 board along with the 7
segment display. Here, the input is 2 and the output is 3.

This is my Verilog code for the GDP that is implemented onto the DE2 board along with the 7
segment display. Here, the input is 4 and the output is 10.

This is my Verilog code for the GDP that is implemented onto the DE2 board along with the 7
segment display. Here, the input is 11 and the output is 66.

https://drive.google.com/file/d/1h29ut75ivcXWp8rHNUDc7__GKVpwOAIl/view?usp=sharing
This is the link to my video explaining the operation of the summation algorithm implemented
onto the GDP using the DE2 board.

https://drive.google.com/file/d/1h29ut75ivcXWp8rHNUDc7__GKVpwOAIl/view?usp=sharing

4. Answers to questions
Question 1: The control unit follows the positive clock edge and will start upon initialization
from the top-level module. The control unit also utilizes finite state machines that would dictate
how the control words of each state would be inputted as the control signals to the general data
path. In addition, the control unit also determines the next state logic based on the condition
given from the data path module. When implementing the control unit onto the summation
algorithm, its role is to properly loop when the condition is not equal to 0, store the input N into
the output every time N is not equal to 0, and decrement N until N is equal to 0. The final output
is determined by the final state of the summation algorithm. In addition, the control signals, IE,
WE, WA, RAE, RAA, RBE, RBA, ALU, SH, and OE, are to be utilized based on the state's
current condition from the control word table.

Question 2: The main disadvantage of using a general datapath and dedicated datapath would lie
where tests are being performed from the testbench. By using the dedicated datapath from the
previous lab, it is clear to see how the inputs are being stored within the register file after they
are added to one another. When using the general datapath, the user is only able to see the final
output, and input to be calculated. The advantage that the dedicated datapath has is its flexibility
when troubleshooting each component to figure out where the code was not properly performing.
By using the general datapath, it is rather hard to tell where the errors occur as the control unit
and datapath are being used at the same time.

5. Conclusions & Summary
This lab was fairly easy, and I was able to complete it within one day. We did a similar
assignment like this in the CPE 300 lecture; therefore, this lab expanded my thinking process and
knowledge on how the control unit is properly implemented onto the datapath; however, I did
prefer last lab as the datapath were easily to be troubleshooted if something went wrong within
my code. In contrast, I do like learning about the control unit, and how the states affect the
overall code and performance. I am becoming very familiar with the general datapath, and I am
looking forward to what is in store for the next lab.

