UNIVERSITY OF NEVADA L.AS VEGAS. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING LABORATORIES.

Class: CPE300L Semester: | Fall 2021
Points Document author: Jerrod Batu

Author's email: batuji@unlv.nevada.edu

Document topic: Postlab 6

Instructor's comments:

1. Introduction / Theory of Operation
Throughout this lab I will continue my knowledge about general data paths and their
implementation with each component.

a.

The digital circuit design can be tested through either a testbench or through waveforms.
Testbenches compare Verilog code to its expected output by comparing a large number of
inputs and outputs. This allows the user to efficiently check the correctness of a circuit.
Waveforms can also test a digital circuit design by comparing inputs to the outputs in a
“form of a wave.” Here, the inputs would be clocked at a specific time period where the
outputs are based on the combinational logic of the Verilog code. Waveforms would not
be ideal for a large number of inputs as this would become a long and tedious process;
therefore, testbenches would be more efficient for testing a digital circuit design.

The datapath supports how algorithms may be implemented through condition checking
logic circuits. The general datapath includes a register file, ALU, shifter, and a buffer.
To identify the values of the control signals, functional tables would be utilized such as
the ALU functional table and the shift functional table. An example of a datapath
structure would be for an algorithm that takes a positive number (N) from input and
checks if it is greater than 5. When the N input is greater than 5, the output is 1,
otherwise it is 0. To implement this example onto the datapath, the condition logic would
include an or gate connected to the last 5 bits of an 8 bit N input and an and gate would
connect to the 2nd and 3rd bits. Then a state diagram would show how the input would
be determined rather than using a loop, and the control words would determine where the
data is being written into, read, shifted, outputted, inputted, and possibly using the ALU.
The buffer would determine the final output of the algorithm.

2. Prelab
https://docs.google.com/document/d/1DzrYP 1NJOM1d7LmcRpmQx2F1VEeUCJU/edit?usp=s

haring&ouid=102808507017671072128&rtpof=true&sd=true

This is the link to my prelab 6.

https://docs.google.com/document/d/1DzrYP_1NJ9M1d7LmcRpmQx2F1VEeUCJU/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true
https://docs.google.com/document/d/1DzrYP_1NJ9M1d7LmcRpmQx2F1VEeUCJU/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true

3. Results of Experiments

EXPERIMENT 1
MUX
1 timescale lns f l00ps
3 [2-to-1 mux
4 module gdpMux {(a, b, sel, out);
5 input[7:0] a
c input[7:0]1 Bb;

input sel;

= cutput reg [7:0] out;
10 alwaya B (*)

11 if{sel == 0)

12 out = aj;

13 aelase

14 out = b;

15 endmodule

16 |

This is the Verilog code for the GDP Mux.

1 timescale lns J 100ps

3 module gdpMuxTB;

4 reg [7:0] atk, bth:

5 reg selthk;

£ wire [7:0] outtb;

2 = gdpMux TD |

<, .a flathk),
1a B {btk),
11 .sel (selthk) ,
12 .out {outtb)
13 o HF
14
15 = initial bkegin
1& Zdisplay{"\th\t bthht seltbhYtouttb™) ;
17 fmonitor {("%d WtER", $time,atk,bth, seltk,outth) ;
1a o end
15
20 integer i;
21
22 always begin
23 E for (1 = 0; 1 €= 20; i =i + 1} begin
24 #10;
25 ath = i;
26 bth = i + 1
27 selth = i + 1;
23 e end
2% sdisplay{"\t vt \Test Finished"™)
30 istop;
31 = end
32 endmodule
23 |

This is the Verilog testbench code for the GDP Mux.

Name value

=- Groupl
i 0310
% 0 ath[70]
- 0 bib[7:0]
0 selto

- outth[7:0]

New Group

These are the VCS waveforms for the GDP Mux. The red blocks represent delay.

Type: |3I3 vI Severity: I;’Ii vI Code: |.f-‘-.I| j 4 P

Chronologic YWCS simulator copyright 1991-2017
Contains Synopsys proprietary information,
Compiler wersion N-2017,12-5P2-14: Runtime version H-2017,12-5P2-14: 0Oct 5 18:31 2021
VCO+ Writer H-2017,12-5P2-14 Copyright (o 1991-2017 by Synopsys Inc,
The file 'Ahomedbatujld/Fall20Zlslabesinter,vod' was opened successfully,
time ath bth zelth outth
0] R R = R
10 Q00000 Q000001 1 Q000001
20 Q000001 Q000010 0] Q000001
a0 Q000010 QOO0O0011 1 QOO0O0011
40 QOO0O0011 Q00100 0] QOO0O0011
=] Qa0 100 Q000101 1 Q000101
G0 QOO0O0101 QOO0O0110 0] QOO0O0101
LS QOO0O0110 QOO00111 1 QOO00111
a0 QOO00111 Q001000 0] QOO00111
S0 Q001000 QOO0O1001 1 QOO0O1001
100 QOO0O1001 QOO0O1010 0] QOO0O1001
110 QOO0O1010 QOO01011 1 QOO01011
120 QOO01011 QOO01100 0] QOO01011
130 QOO01100 QO001101 1 QO001101
140 Q001101 Q0001110 0] Q001101
150 Q0001110 QO001111 1 QO001111
160 QO001111 QO L0000 0] QO001111
170 QO L0000 QL0001 1 QL0001
130 QL0001 QL0010 0] QL0001
190 QL0010 QOO10011 1 QOO10011
200 QOO10011 Q10100 0] QOO10011
Tezt. Finished

This is the VCS console for the GDP Mux.

REGISTER FILE

e W

=] oy 1

1=

*timescale lns S 1l00ps

ff register file

module gdpRFi{clk, WE, RRE, RBE, RAR, RBR, W&,

input clk, WE, RARE, RBE;
input [1:0] BARZ, BRBR, WA;
input [7:0]1 inD;

cutput [7:0] Readl, ReadB;
raeg [7:0] regF [0:2];

fFf Write when WE asserted
always B (posedge clk)
if (WE == 1) regF[WR] <= inD;:

ffreading to Port & and B, combinational

assign Readl = (BRE)}? regF [BRA]:O;
asaign ReadB = (REBE}? regF [RBAR]:O;
endmodule

This is the Verilog code for the GDP Register File.

inD, Readh, ReadB):;

“timescale lns / l00os

module gdpRETE;
reg clk, WE, RRAE, REE;
reg [1:0] RAR, HEA, WA;
reg [7:0] inD;
wire [7:0] Readh, ReadB;

“define PERIOD 10

always
#{ FERICD/2) clk = ~clk;

gdpRF U0 {
.clk {clk),
WE (WE),
.RAZ (RRE),
REE (2BE),
_RAR (RAR),
RER (2ER),
WA (WR),
.inD {inD),
.Readh (ReadR],
.Readd (ReadB)

¥i

initial begin
stimeformat (-2
smonitor ("tin
stime, WE, RAE, RBE, RARR, RBA, WR, inD, Readh,
#(PERICD * 1000
$display ("TESTING TIMECUT");
$£inish;

RAE = &b RBE = &b RREL = &b

end
integer i;

always begin

for (i = 0; i €= 20; i = i + 1) begin
#10
WE = i;
RRE = i;
BRBE = i;
RRR =4 + 1;
RBA =41 + 1;
WA =41+ 1;
inD = 1i + 1;
end
3display (["*****Test DASSED*#s+sv 3;
$stop;
end
endmodule

RBL = &b

ReadB) ;

This is the Verilog testbench code for the GDP Register File.

inD

&b

Readh = &b

ReadB = &b",

latne: Value

4 Group3

0 (310

0clk
0 WE

0 RAE

0 REE

0 Raa[10)
0 RBA[0]
0 wag)

0 inD[7:0]
- Reada[7.0]

-~ ReadB[7:0]

These are the VCS waveforms for the GDP Register File. The red blocks to the left represent
delay; however, the red blocks within the output represent don’t cares as any outputs would be
acceptable here.

Type: |3I2: j Severity: |::I:I j Code: |AII j 4 »

Chronologic VLS simulator copyright 1991-2017

Contains Synopsys proprietary information.

Compiler wersion M-2017,12-5P2-14: Runtime version M-2017,12-5P2-14: Oct 5 18:36 2021

VCD+ Writer M-2017,12-5P2-14 Copyright {c) 1991-2017 by Synopsys Inc,

The file '/homesbatujl/Fall2021/1abe/inter, vpd' was opened successfully,

time= 0.0ns HE = = RRE = = FBE = x AR = xx RBR = WA = xx iRl = oo ReadA = oo ReadB = oo

time= 10.0ns WE =0 RFAE = O REBE = O RAR = 01 FBR = 01 WA = 01 ind = 00000001 ReadA = 00000000 ReadE = 00000000

time= 20.0ns WE = 1 RFAE = 1 REE = 1 RAA = 10 FBA = 10 WA = 10 ind = 00000010 ReadA = oo ReadE = oo

time= 20.0ns WE = 0O RAE = 0 REE = O RAR = 11 FBA = 11 WA= 11 ind = 00000011 Readd = 00000000 ReadE = 00000000

time= 40.0ns WE = 1 RFAE = 1 REE = 1 RAA = 00 FBA = 00 WA = 00 ind = 00000100 ReadA = sooooeon ReadE = oo

time= G0.0ns WE = 0O RAE = 0 REE = O RAA = 01 FBA = 01 WA = 01 ind = 00000101 Readd = 00000000 ReadE = 00000000
60, 0ns WE = 1 RFAE = 1 REE = 1 RAA = 10 FBA = 10 HA = 10 ind = 00000110 Readd = oo ReadE = oo
70,0ns WE = O RAE = 0 REE = O RAn = 11 FBA = 11 HA = 11 ind = 00000111 Readd = 00000000 ReadE = 00000000
80,0ns WE = 1 FAE = 1 RBE = 1 RAR = 00 FBA = 00 HA = 00 ind = 00001000 ReadA = oo ReadE = wxxxxxxx
90, 0ns WE =0 RFRE = 0 REBE = O RAR = 01 FBA = 01 HA = 01 ind = 00001001 Readd = 00000000 ReadE = 00000000
100, Ons WE = 1 FAE = 1 RBE = 1 RAR = 10 FBA = 10 HA = 10 ind = 00001010 ReadA = oo ReadE = wxxxxxxx
110, 0ns WE = 0O FRE = 0 RBE = O RAR = 11 FBA = 11 WA = 11 ind = 00001011 Readd = 00000000 ReadE = 00000000
120, 0ns WE = 1 FAE = 1 RBE = 1 RAR = 00 FBA = 00 WA = 00 ind = 00001100 Feadd = oo ReadE = oo
130, 0ns WE = 0O FRE = 0 RBE = O RAR = 01 FBR = 01 WA = 01 ind = 00001101 Readd = 00000000 ReadE = 00000000
140, Ons WE = 1 FAE = 1 RBE = 1 RAR = 10 FBA = 10 WA = 10 ind = 00001110 Readf = oo ReadE = oo
150 . Ons WE = 0O FAE = 0 RBE = O RAR = 11 FBA = 11 WA = 11 ind = 00001111 Readd = 00000000 ReadE = 00000000
160 . Ons WE = 1 FAE = 1 RBE = 1 RAR = 00 FBA = 00 WA = 00 ind = 00010000 Readf = oo ReadE = oo
170.0ns WE =1 FRE = 0 REBE = 0 FAR = 01 FBR = 01 WA = 01 ind = 00010001 ReadA = 00000000 ReadE = 00000000
180,0ns WE = 1 RRE = 1 REE = 1 RAA = 10 RBR = 10 WA = 10 ind = 00010010 ReadA = oo ReadB = oo
190, 0ns WE =D RAE = 0 REE = O RAA = 11 FBA = 11 WA = 11 ind = 00010011 ReadA = 00000000 ReadE = 00000000
200, 0ns WE = 1 RRE = 1 RBE = 1 RAR = 00 RBR = 00 WA = 00 inll = 00010100 ReadA = oo ReadB = oo

*xxxxTest PASSED®xxxx

This is the VCS console for the Register File.

>
-
(-

1 *timescale lns J 1l00ps

3 fF arithmetic logic unit

4 module gdpdllU {(a,b,sel, out);

5 input [7:0] a,b;

[input [2:0] sel;

7 cutput reg [7:0] out;

g

S always B (*)

10 E begin

11 = case (sel)

1z] I out = aj;

13 out = a & b;
14 out = a | b;
15 out = la;
l& out = a + b;
17 out = a - b;
1a out = a + 1;
15 3'bB111: out = a - 1;
20 - endcase

21 = end

22 endmodule

23 |

This is the Verilog code for the GDP ALU.

1 *timescale lns f 100ps

3 module gdpRLUTE:

4 parameter W = 21; (/32 tests
5 reg [T:0] atk,bth;

LS reg [2:0] selth:

7 wire [7:0] outtbh;

=]

5 =] gdpRLlT U0 (

1a .a {ath),

11 B (btk) ,

12 .sel (seltk),

13 .out {outtb)

14 o 1

15

1& = initial begin

17 :

12

15 = and

20

21 integer i;

22 always begin

23 g for (1 = 0; 1 €<= N; 1 =1 + 1) begin
24 #10;

25 atbk = Srandom;
26 btbk = frandom;
27 selth = Frandom;
et] = and

25 fdisplay ("“t.t'Test Finished™);
30 Fstop;

31 = and

2 endmodnle

33

This is the Verilog testbench code for the GDP ALU.

Nare Value

=1 Group1
&1 1310]
boe N
b0
‘n bto[7.0]
- 0 stz

- Outh[7 0]

New Group

These are the VCS waveforms for the GDP ALU. The red blocks represent delay.

Type: I;”Ii vI Severity: I;”Ii vI Code: |.fl‘-.ll j 4)

Chronologic VCS simulator copyright 1991-2017
Contains Synopsys proprietary information,
Compiler wersion H-2017,12-5P2-14: Funtime version N-2017,12-5P2-14: 0Ot 5 18:43 2021
YWCO+ bWriter W-2017,12-5P2-14 Copyright (o) 1991-2017 by Synopsys Inc,
The file 'Shomedbatujl/sFallz0214lab6esinter,vpd' was opened successfully,
time ath bth zelth outth
0 R R R R A R R
10 Q100100 10000001 ol Q000000
20 Q100011 Q001401 101 Q010110
20 01100101 Q0010010 0ol Q000
40 QO001101 01110110 101 10010111
B0 11101101 10001100 0ol 10001100
B0 11000110 11000101 010 11000111
70 11100101 01110111 010 11110111
a0 10001111 11110010 110 10010000
S0 11101000 11000101 100 10101101
100 10111101 Q01401 101 L0000 L0000
110 01100011 Q0001010 Q00 01100011
120 Q0L Q0000 10101010 101 01110110
130 10010110 QO010011 101 10000011
140 01010011 01101011 101 11101000
150 Q0000010 10101110 101 01010100
160 11001111 QO100011 010 11101111
170 11001010 00111100 010 11111110
180 10001010 (s Ealalalulukl Qi 10001010
190 01111000 10001001 011 Q000
200 10110110 11000110 110 10110111
210 10111100 Q0101010 011 Q000
220 01110001 10000101 111 011 10000
230 00111011 00111010 110 00111100
240 Qoo10101 11110001 0ol Qo0 10001
250 01100010 01001100 111 01100001
260 10001111 11111000 111 10001110
270 10011111 01011100 011 Q000
280 10001001 Q1001001 Q00 10001001
290 11010111 Q1010001 110 11011000
300 Q0001100 11000010 Q00 Q0001100
310 01110111 00111101 010 01111111
320 01111110 01101101 0ol 01101100
Teszt. Finished

This is the VCS console for the GDP ALU.

SHIFTER

1 “timescale lns / l00ps

3 ff Shifter

4 module gdpShift (a,sh,out) ;

5 input [7:0]1 a;

[input [1:0] sh;

7 ocutput reg [7:0] out;

=]

=) always B (*)

1ad begin

11 case (sh)

1z 2'k00: out = a;

13] cut = a << 1;
14 out = a »> 1;
15 3'bll:

1& endcase

17 end

1la endmodule

19 |

cut= { al=],al=]1,a04],al=],al2],al1],al0],

This is the Verilog code for the GDP Shifter.

1 “timescale lms J 100ps

3 module gdpShiftTB;

4 reg [7:0] atk;

= reg [1:0] shthk;

[wire [7:0] outth;

g = gdpShift U0 {

=} .a f(atk),

1a .sh {shthk)},

11 .out {outth)

2 = H

13

14 = initial begin

15 fdisplay{"\thvttime\tatkh\t shtb\touttb"™) ;
1& fmonitor {"%dh\t¥b\tEkN\NtER" ,, $time, ath,shth,outtb) ;
17 o end

1z

15 integer i;

20 always begin

21 for (1 = 0; 1 €= 20; i = i + 1) begin
22 #10;

23 atb = Frandom;

24 shth = frandom;

25 end

2& idisplay ("“t \t\Test Finished");
27 istop;

28 end

25 endmodule

20 |

This is the Verilog testbench code for the GDP Shifter.

al

71

}

x

Name value

=- Groupl
& 01[31:0]

0 ato[70]

- 0 shta[1:0]
- rooUtto[7:0]

New Group

These are the VCS waveforms for the GDP Shifter. The red blocks represent delay.

Type: |3I3 vI Severity: |3I3 vI Code: |P-.II j 4 P

Chronologic VCS simulator copyright 1991-2017
Contains Synopsys proprietary information.,
Compiler werzion H-2017,12-5PZ2-14; Funtime version N-2017.12-5P2-14: 0Oct 5 18:49 2021
VCD+ Writer H-2017,12-SP2-14 Copyright (o) 1991-2017 by Synopsys Inc,
The file 'dhomedbatujl/FallZ021/lab6es inter,vwpd' was opened successfully,
Lime ath shthb outth
8] R o R
10 [l h Ealu b ol 01 L0 00
20 QOO01001 11 Q0010010
30 QOO01101 01 Q0011010
4o 01100101 10 Q0110010
50 Q0000001 01 Q0000010
1] 01110110 01 11101100
0 11101101 00 11101101
a0 11111001 10 01111100
S0 11000101 10 QL0000
100 11100101 11 11001011
110 Q0010010 11 Q0100100
120 11110010 10 01111001
130 11101000 01 11010000
140 01011100 01 10111000
150 Qo101101 01 01011010
150 01100011 10 Q0110001
170 10000000 i 10000000
180 10101010 01 Q1010100
190 10010110 11 Q0101101
200 QOO01101 11 Q0011010
Test Finished

This is the VCS console for the GDP Shifter.

BUFFER

1 “timescale lns Jf 100ps

3 ffbuffer

4 module gdpBuffer (a, buff, out):
5 imput [7:0]1 a;

E input buff;

7 cutput reg [7:0] out;

g

G always B(*)

10 if{buff = 1}

11 out = aj;

12 elae

13 out = 8'bzzzz_ zZzEz;
14 endmodule

1z |

This is the Verilog code for the GDP Buffer.

“timescale lns § 1l00ps

1 I

3 module gdpBufferTB;

4 reg [7:0] atk:;

5 reg buffth;

- wire [7T:0] outtk;

2 = gdpBuffer T0 (

=} .a f(athk),

10 buff (buffth),

11 .out {outth)

1z b ¥

13

14 = initial bkegin

15 Fdisplay ("t ythht bufftbh touttb™) ;
1& smonitor {("%4d\tE¥bh\tEk\tER" ,,$time, ath, buffth,outtb) ;
17 b end

1=

9 integer i;

20 always begin

2 for (i = 0; 1 €= 20; i =1 + 1) kegin
22 #10;

2 atbh = Frandom;

2 bufftk = jrandom;

25 end

26 ftdisplay ("“t t\Test Finished")};
27 Fs5top;

28 end

29 endmodule

20 |

This is the Verilog testbench code for the GDP Buffer.

ame value

Groupl

& 01(31:0)

4. 0 atb[7:0]
0 huitta

. rOUtta[7:0]

Hew Group

These are the VCS waveforms for the GDP Buffer. The red blocks represent delay, and
the yellow lines represent Z.

Type: |:§I:§ j Severity: |:§I:§ j Code: |.fl‘-.ll j 4 P
Chronologic VCS simulator copuyright 1991-2017
Contains Synopsys proprietary information,
Compiler werzion H-2017,12-5P2-14: Funtime version M-2017,12-5P2-14: 0Oct 5 18:53 2021
YCO+ Writer H-2017,12-SP2-14 Copyright (o) 1991-2017 by Synopsys Inc,
The file 'Ahomedbatujl/sFall20214lab6edinter,ved' was opened successfully,
time ath buffth outth
0 R R = R R
10 Q0100100 1 Q0100100
20 QOO0 1001 1 QOO0 1001
20 QO001101 1 QO001101
dn Q1100101 0 ZZZZIZZZ
50 Q000001 1 Q000001
B0 01110110 1 01110110
70 11101101 8] ZZZZZZZZ
a0 11111001 0] FETTTTEE
S0 11000101 0] FETTTTEE
100 11100101 1 11100101
110 Q0010010 1 Q0010010
120 11110010 0 ZZZZIZZZ
130 11101000 1 11101000
140 01011100 1 01011100
150 00101101 1 00101101
160 Q1100011 0] FETTTTEE
170 1000000 0] FETTTTEE
180 10101010 1 10101010
190 10010110 1 10010110
200 QO001101 1 QO001101
Test Finished

This is the VCS console for the GDP Buffer.

EXPERIMENT 2

1 timescale lns J 100ps
3 f/Data Path
4 module DF (nIn, clk, IE, WE, WA, RRE, RRA, RBE, EBAR, ALU, 5H, CE, ned, ocut);
5 input clk, IE, WE, RRE, RBE, CE:
& input [1:0] WA, RRR, EBAR, S5SH:
7 input [Z:0] ALU:
8 input [7:0] nIn:
g output ned;
1a output wire [7:0] out:;
11
12 reg [7:0] rflIn:
13 wire [7:0] rfaA, rfB, alulut, shlut, n:
14
15 initial
1& rfIn = 0;
17
18 always B (*)
1% rfIn = n;
20
21 gdpMux mux (shOut, nIn, IE, n):
22 gdpRF RF (clk, WE, RRE, RBE, RRLA, RBA, WA, rfIn, rfk, rfB):
23 gdphLU theALU (rfiA, rifB, ALU, alulut):
24 gdpShift SHIFT (aluCut, SH, shOut):
25 gdpBuffer buff (shOut, CE, out):
27 assign ned = n '= 0; //note: checks the false //condition
25 endmodule
30
31 ff 2-to-1 mux
32 module gdpMux {a, b, sel, out):
33 input[7:0] a:r
34 input[7:0] b
35 input sel;
36 output reg [7:0] ocut:
B
38 always E(*)
39 if(sel == 0}
40 out = a;
41 else
42 out = b»
43 endmodule
44
45 S/ register file
48 moedule gdpRF{clk, WE, RRE, RBE, BRA, BFBA, WA, inD, EeadhA, ReadB):
47 input clk, WE, RLE, RBE:;
48 input [1:0] RRA, RBR, WA;
49 input [7:0] inD:
50 output [7:0] Read’d, ReadB:
51 reg [7:0] regF [0:3]:
52
23 // Write when WE asserted
54 always E(posedge clk)
55 if (WE == 1) regF[WA] <= inD;
20

|

//reading to Port A and B, combinaticnal

o

woCo

assign Readh
assign ReadB
endmodule

(RRE)? regF [RRA]:0;
(EBE)? r=gF [RBA]:0;

// arithmetic logic unit
module gdpilU {a,b,sel, out):
input [7:0] &,b:
input [2:0] =el;
output reg [7:0] out:

S R

=1 &

always B (*)

B I O T N . M .]
* = U

g begin
u] E case (3el)
Tl ! Jr out = a;
72 "BOOLs: out = & b;
73 "bO10;: out = | b
T4 "bOl11: out = la;
75 "Bl out = a + b;
T8 "B1l01: out = a - b;
T7 'B11 out = a + 1;
T8 3'b111: out = a - 1;
78 B endcase
&0 S end
31 endmodule
83 // Shifter
84 module gdpShift (a,sh,out);
85 input [7:0] &:
13 input [1:0] sh:
87 output reg [7:0] out:
24 always B (*)
40 begin
41 case (sh)
42 'b00: out = a;
93 S'b0l: out = a << 1;
494 i'bll: out = a »» 1;
&5 i'bll: out= { al[:]l,a[=],al4],al],al2),all],al0], al7] } i
496 endcase
47 end
48 endmodule
140 S /buffer
101 module gdpBuffer (a, buff, out):
102 input [7:0] &:
103 input buff;
104 output reg [7:0] out:
105
106 always E(*)
1407 if (buff = 1)
108 out = a;
104 else
110 out = Z'bzZZz =ZEZZzZ;
111 endmodule
112 |

This is the Verilog code for my DP (DataPath) module that would instantiate all of the
components verified in experiment 1.

EXPERIMENT 3

S/ initialize test inputs and expected outputs

i+ 1)

1 “timescale lns f 100ps

3 module gdpDETE:

4 reg clk, IE, WE, BRE, RBE, CQE;
5 reg [1:0] WA, RRRL, EBA, 35H:
[reg [2:0] ALU;

7 reg [7:0] nIn:

i wire nel;

L, wire [7:0] out:
10
11 wire [7:0] shOut;
12 reg [7:0] inTest [0:3]:
13 reg [7:0] exStore [0:3]:
14 reg [7:0] exSuam [0:3]:
15 reg [7:0] exBestore [0:3]:
la
17 integer 1i:
13 initial
20 = begin
21
22 inTest [0] = S'bO0OCOOOC
23 inTest [1] = ¢
24 inTest [2] =
25 inTest [3] =
26 exStore [0
27 exStore [1
28 exStore [2
29 exStore [
30 exium [0]
31 exSum [1] =
32 exSum [2] =
33 exSum [3]
34 exRestore
35 exRestore
36 exRestore
37 exRestore
34 f/ generate clock
40 clk = 0;
41 forever
42 #2 clk = ~clk:
43 5 end
44
45 always
4g kegin
47 for (1 = 0; 1 <= 5}
g = kegin
449 nIn <= inTest [i]:
50 IE = 1:
51 WE = 1:
52 WA i
53 BRE = [;
54 RBE = [;
55 #5:
56 if {nIn '= exStore[i])
57 Eﬂ begin

/f store into

Begister File

[}
LA o= W [= O

oo =1 o

[Y]

LA o= L [= O L

o0 =1 &

LY BT o Y N Y Y Y Y Y Y S S NS TS NS BT B I IS IS I T = T T VN = T VY (Y = V= VN = 1
| e TN] A T I Y T O RO L Y % I

1]
ad

94

swrite ("Stored incorrectly!™);

Satop:

swrite("time: %d
sdisplay (""):

end
for (1 =0; 1 «<=3; 1 =1+ 1)

WA = 0

ALU = 3'k100;

SH = 2'B00;

Q0E = 1;

#5:

if {out '= exSum[i])

begin

Stored: k", $time, nln);

S/ summation

Swrite ("Wrong Sum!™):

Satop:

swrite("time: %d
sdisplay (""):
end
end
for (1 =0; 1 «<=3; 1 =1+ 1)
begin
IE = 0
WE = 1;
WA = 00 :

EBA = 11;

ALU = 3'k100;

SH = 2'B00;

QE = 0;

#5:

if {out '= exRestore[i])

begin

swrite ("Inproper

Satop:

swrite("time: %d
sdisplay (""):

Summation: k", $time, out);

S/ store summaticon into 00

Storing!™):

SumStored: 3b", $time, out);

115 end
116 $finish;

11 end

~HdLadlalll

11% //Instantiat
120 [DPUO (

121 nIn (nlIn),

122 .clk (clk) .,

12: .IE (IE),

WE (WE),

125 WA (WR),

12¢ .RRE (RAE),

127 .RAL (RAR),

12¢ .RBE (RBE),

12¢ .RBA (REA),

13 ALU (ALT),

131 .SH (SH),

132 .OE (CE),

133 el (n=d),

134 LUt {out)

135 L);

136 endmodule

137 |

This is my Verilog testbench code for the GDP DataPath that would store inputs

“00,01,10,11” into the Register File, add “00” and “11”, and finally restore back into
GCOO’,.

hd | B
Name Value =
< Group1

0iE 2 ¢ e 4 4 ¢ f 3 p o 4L g 2 |
0 inTest|0:3][7:0] {0,1,2,3}
D exStore[0:3][7:0] {0,1,2,3}
0 exSum(0:3)[7:0] £3,3,3,3}
1 exRestore[0:3][7:0] (zz)]
0chk sto |
0 nin[7:0] o
nE E
0 WE E
0 WA[:0] ol
0 RAE sto |[f
0 REE sto |[f
0 ReALD] %

0 RBA[0] %

0 ALURT) %

0 SH0) %

0 OE St
rnetl sto |[f
o shOut7:0] - |
oul[7:0] x

New Group

These are the VCS waveforms for my DataPath testbench. The red blocks represent
don’t care as they are not needed to store information within the Register File. The
yellow lines for shift represent pass through, and the yellow lines for out represent that
the value has been restored into the Register File.

Type: I:’;I:’; vI severity: I:’;I:’; vI Code: I.ﬂ-.ll j d

Chronologic YWCS simulator copyright 1991-2017

Contains Synopsys proprietary information,

Compiler wersion H-2017,12-5P2-14: Funtime version H-2017,12-5F2-14:; Oct & 10:40 2021
VCO+ Writer H-2017,12-5P2-14 Copyright (z! 1991-2017 by Sunopsus Inc.,
The file 'Ahomedbatujl/Fall2021/labedinter,ved' was opened successfully,
times 5 Stored: QOO0

time? 10 Stored: 0OO00001

timet 15 Stored: Q00010

time? 20 Stored: Q00011

time: 25 Summation: 00000011

time? a0 Summation: 00000011

time: 35 Summation: OQOO00011

time: 40 Summat ion: OOO00011

time: d5 SumStored: zzzzzzzz

time? 50 SumStored: zzzzzrzz

time: 55 SumStored! zzzzzzzz

time: B0 SumStored: zzzzzzzz

#f'iniszh called from file "gdelPTE.v". line 115,

#finizh at simulation time 00

Simulation complete. time is BOO00 b=,

This is the VCS console for my DataPath testbench. From time 5-20, the tested values
are being stored within the Register File. From time 25-40, the value in “00” and the
value in “11” are being added together from the ALU. From time 45-60, the ALU output
is being restored back into the Register File.

4. Answers to questions

Question 1: Control words are from the control unit. The control unit will utilize the control
word. Control words indicate the certain cycle number that would utilize the components of the
general data path. The control unit is implemented by a finite state machine, and the control
words are the inputs to the general data path. By utilizing the control words, the data path would
be clocked; therefore, each state would determine at what certain time the control word would be
inputted into the data path.

Question 2: To design a control unit for a general data path, a finite state machine would be used;
therefore, the finite state machine would indicate when to output into the general data path
inputs. Each state would determine where the control words are going into the data path. The
initialization of inputs would take place within the first few states, then the next states would

determine if the inputs are being written or read into the register file, then possibly using a shifter
or alu, and finally going to the buffer to determine the final output of the algorithm. To
determine how each state would go from one to the next, the output of the control signal from the
datapath would be implemented as an input in the control unit.

Question 3: A Clock Domain Crossing (CDC), within a digital design, is the process of passing
the clock signal from one clock domain to another. This occurs when the data is transferred
between flip-flops as one flip-flop would be driven by one clock, and the other flip-flop would
be driven by another clock. More than one clock is utilized for Clock Domain Crossing. The
main issue caused by Clock Domain Crossing is metastability. Metastability happens when the
output of a flip-flop will not reach its expected output and may lead to oscillations between 0’s
and 1’s if one clock domain is clocked relatively close to another clock domain. To prevent
metastability from happening, it would be best to use one clock that drives into multiple
flip-flops rather than multiple clocks that can cause an error.

5. Conclusions & Summary

Overall, this lab was very similar to the homework provided from the CPE 300 lecture. It was
fairly easy, but sometimes it was tedious due to the fact of creating testbenches for every single
component of the Data Path. The main issues I had were with experiment 3 when properly
storing and restoring the values; however, I just rewatched the video in module 6 again to fully
understand how to utilize the Register File. I expect the next lab to implement the control unit
for this datapath.

