
UNIVERSITY OF NEVADA LAS VEGAS. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING LABORATORIES.

Class: CPE300L Semester: Fall 2021

Points Document author: Jerrod Batu
Author's email: batuj1@unlv.nevada.edu

Document topic: Postlab 6
Instructor's comments:

1. Introduction / Theory of Operation
Throughout this lab I will continue my knowledge about general data paths and their
implementation with each component.

a. The digital circuit design can be tested through either a testbench or through waveforms.
Testbenches compare Verilog code to its expected output by comparing a large number of
inputs and outputs. This allows the user to efficiently check the correctness of a circuit.
Waveforms can also test a digital circuit design by comparing inputs to the outputs in a
“form of a wave.” Here, the inputs would be clocked at a specific time period where the
outputs are based on the combinational logic of the Verilog code. Waveforms would not
be ideal for a large number of inputs as this would become a long and tedious process;
therefore, testbenches would be more efficient for testing a digital circuit design.

b. The datapath supports how algorithms may be implemented through condition checking
logic circuits. The general datapath includes a register file, ALU, shifter, and a buffer.
To identify the values of the control signals, functional tables would be utilized such as
the ALU functional table and the shift functional table. An example of a datapath
structure would be for an algorithm that takes a positive number (N) from input and
checks if it is greater than 5. When the N input is greater than 5, the output is 1,
otherwise it is 0. To implement this example onto the datapath, the condition logic would
include an or gate connected to the last 5 bits of an 8 bit N input and an and gate would
connect to the 2nd and 3rd bits. Then a state diagram would show how the input would
be determined rather than using a loop, and the control words would determine where the
data is being written into, read, shifted, outputted, inputted, and possibly using the ALU.
The buffer would determine the final output of the algorithm.

2. Prelab
https://docs.google.com/document/d/1DzrYP_1NJ9M1d7LmcRpmQx2F1VEeUCJU/edit?usp=s
haring&ouid=102808507017671072128&rtpof=true&sd=true
This is the link to my prelab 6.

https://docs.google.com/document/d/1DzrYP_1NJ9M1d7LmcRpmQx2F1VEeUCJU/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true
https://docs.google.com/document/d/1DzrYP_1NJ9M1d7LmcRpmQx2F1VEeUCJU/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true

3. Results of Experiments
EXPERIMENT 1
MUX

This is the Verilog code for the GDP Mux.

This is the Verilog testbench code for the GDP Mux.

These are the VCS waveforms for the GDP Mux. The red blocks represent delay.

This is the VCS console for the GDP Mux.

REGISTER FILE

This is the Verilog code for the GDP Register File.

This is the Verilog testbench code for the GDP Register File.

These are the VCS waveforms for the GDP Register File. The red blocks to the left represent
delay; however, the red blocks within the output represent don’t cares as any outputs would be
acceptable here.

This is the VCS console for the Register File.

ALU

This is the Verilog code for the GDP ALU.

This is the Verilog testbench code for the GDP ALU.

These are the VCS waveforms for the GDP ALU. The red blocks represent delay.

This is the VCS console for the GDP ALU.

SHIFTER

This is the Verilog code for the GDP Shifter.

This is the Verilog testbench code for the GDP Shifter.

These are the VCS waveforms for the GDP Shifter. The red blocks represent delay.

This is the VCS console for the GDP Shifter.

BUFFER

This is the Verilog code for the GDP Buffer.

This is the Verilog testbench code for the GDP Buffer.

These are the VCS waveforms for the GDP Buffer. The red blocks represent delay, and
the yellow lines represent Z.

This is the VCS console for the GDP Buffer.

EXPERIMENT 2

This is the Verilog code for my DP (DataPath) module that would instantiate all of the
components verified in experiment 1.

EXPERIMENT 3

This is my Verilog testbench code for the GDP DataPath that would store inputs
“00,01,10,11” into the Register File, add “00” and “11”, and finally restore back into
“00”.

These are the VCS waveforms for my DataPath testbench. The red blocks represent
don’t care as they are not needed to store information within the Register File. The
yellow lines for shift represent pass through, and the yellow lines for out represent that
the value has been restored into the Register File.

This is the VCS console for my DataPath testbench. From time 5-20, the tested values
are being stored within the Register File. From time 25-40, the value in “00” and the
value in “11” are being added together from the ALU. From time 45-60, the ALU output
is being restored back into the Register File.

4. Answers to questions
Question 1: Control words are from the control unit. The control unit will utilize the control
word. Control words indicate the certain cycle number that would utilize the components of the
general data path. The control unit is implemented by a finite state machine, and the control
words are the inputs to the general data path. By utilizing the control words, the data path would
be clocked; therefore, each state would determine at what certain time the control word would be
inputted into the data path.

Question 2: To design a control unit for a general data path, a finite state machine would be used;
therefore, the finite state machine would indicate when to output into the general data path
inputs. Each state would determine where the control words are going into the data path. The
initialization of inputs would take place within the first few states, then the next states would

determine if the inputs are being written or read into the register file, then possibly using a shifter
or alu, and finally going to the buffer to determine the final output of the algorithm. To
determine how each state would go from one to the next, the output of the control signal from the
datapath would be implemented as an input in the control unit.

Question 3: A Clock Domain Crossing (CDC), within a digital design, is the process of passing
the clock signal from one clock domain to another. This occurs when the data is transferred
between flip-flops as one flip-flop would be driven by one clock, and the other flip-flop would
be driven by another clock. More than one clock is utilized for Clock Domain Crossing. The
main issue caused by Clock Domain Crossing is metastability. Metastability happens when the
output of a flip-flop will not reach its expected output and may lead to oscillations between 0’s
and 1’s if one clock domain is clocked relatively close to another clock domain. To prevent
metastability from happening, it would be best to use one clock that drives into multiple
flip-flops rather than multiple clocks that can cause an error.

5. Conclusions & Summary
Overall, this lab was very similar to the homework provided from the CPE 300 lecture. It was
fairly easy, but sometimes it was tedious due to the fact of creating testbenches for every single
component of the Data Path. The main issues I had were with experiment 3 when properly
storing and restoring the values; however, I just rewatched the video in module 6 again to fully
understand how to utilize the Register File. I expect the next lab to implement the control unit
for this datapath.

