UNIVERSITY OF NEVADA L.AS VEGAS. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING LABORATORIES.

Class: CPE300L Semester: | Fall 2020
Points Document author: Jerrod Batu

Author's email: batuji@unlv.nevada.edu

Document topic: Postlab 5

Instructor's comments:

1. Introduction / Theory of Operation
Throughout this lab I will continue my knowledge on finite state machines (FSMs) and their
implementation in FPGA.

1.

The two types of FSMs are Moore and Mealy. The key difference between these two
types of FSMs is how the states lead to the output. Moore Fsms have the output
dependent only on its states rather than on the inputs; therefore, the output only changes
when the state goes to the next or previous state. Mealy Fsms have the output dependent
on both the state and the inputs; therefore, the outputs are asynchronous throughout each
state change. When using a Moore FSM, the best way to model the state diagram is to
use an always and case statement where the always statement would initialize the clock
on every positive edge, and the case statement would dictate how the states would change
and the output logic for each state. When using a Mealy FSM, the best way to model the
state diagram is to, in fact, use two always cases where one always case would describe
the state transitions, and the other always case were to describe the combinational logic
between the next state and the output.

When I approach designing an FSM, I always think about how the states relate to the
desired output. When the problem prompts for a specific locking mechanism, I know it
would be best to use a Mealy FSM because the output depends on the input and where
the state is at for this specific input. When the problem prompts for a specific sequence
of events, such as a traffic light, I prefer Moore FSMs because the output would only be
dependent on the state. FSMs have always been easier to understand to me because they
model real life examples.

2. Prelab
https://docs.google.com/document/d/ 1UAKgNVVO6aogDywW X3o0xZrXacp6nB521/edit?usp=s

haring&ouid=102808507017671072128&rtpof=true&sd=true

This is the link to my prelab5.

https://docs.google.com/document/d/1UAKqNVVO6aogDywWX3oxZrXacp6nB52l/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true
https://docs.google.com/document/d/1UAKqNVVO6aogDywWX3oxZrXacp6nB52l/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true

3. Results of Experiments
Experiment 1

1 module dLock7seqg (inclk, rst, enter, ind, inl, outclk, unlock, lock, seg,
2 input inclk, rst, enter, in0, inl:;

3 output cutclk:

4 output reg unlock, lock:

5 output reg [c:0] seg:

6 ontput reg [5:0] stateprog:

8 parameter 50 = 0, S1 =1, 52 = 2, 53 = 3, 54 = 4, 55 = 5;
g9 reg [0:4] MealyState, NextState:;
10
11 // calls to the onehertz module
12 onehertz U0 {
13 .clk _50mhz (inclk),
14 .clk_lhz ({outclk)
15)
16
17 // reset condition
18 always B (posedge ocutclk or posedge rst)
19 begin
20 if (rst)
21 begin
22 MealyState <= 50;
23 end
24 else
25 MealyState <= NextState:
28 end
28 // nmext state conditions
28 always @ (MealyState or inld or inl)
30 case (MealyState)
31 E 50: kegin fr1
32 stateprog[l] = 1;
33 stateprog[l] = 0
34 stateprogl[2] = 0
35 stateprog[3] = 0;
36 stateprog[4] = 0;
37 stateprogl[s] = 0
38 lock = 1;
38 unlock = 0;
40 if (inl && ({in0 == 0})
41 HNextState = enter ? 31: 50;
42 else
43 HextState = 50;

44 - end

45 = 51: begin i1
E1 stateprog[l] = 0;

47 stateprog[l] = 1;

43 stateprog[2] = 0;

49 stateprog[i] = 0;

50 stateprog[4] = 0;

5l stateprog[s] = 0;

52 lock = 1;

53 unlock = 0;

24 if (inl && (in0 == 0})

55 HNextState = enter ? 52: 50;
12 else

57 HextState = 50;

stateprog) ;

58 Hi end

o8 = 52: begin fra
al stateprog[0] = 0>

6l stateprog[l] = 0>

62 stateprog[Z] = 1:

63 stateprog[3] = 0>

o4 stateprog[4] = 0>

65 stateprog[s] = 0

66 lock = 1;

a7 unlock = 0;

68 if (in0 && {inl == 0})

69 NextState = enter ? 53: 50;
70 else

7l NextState = 50;

72 - end

73 = 33: begin frl
74 stateprog[0] = 0>

75 stateprog[l] = 0>

76 stateprog[2] = 0>

77 stateprog[3] = 1:

78 stateprog[4] = 0>

75 stateprog[s] = 0

g0 lock = 1:;

Bl unlock = 0;

g2 if (inl && (ind == 0})

83 NextState = enter ¢ 54: 50;
54 else

85 NextState = 50;

86 - end

87 = 54: begin frl
88 stateprog[0] = 0>

89 stateprog[l] = 0>

a0 stateprog[2] = 0>

91 stateprog[3] = 0>

92 stateprog[4] = 1:

93 stateprog[s] = 0

94 lock = 1;

95 unlock = 0;

96 if (inl && (ind == 0})

97 Next5State = enter ? 55: 50;
98 else

Il HextState = 50;

100 b end

101 = 353: begin fra
102 stateprog[0] = 0>

103 stateprog[l] = 0>

104 stateprog[2] = 0>

105 stateprog[3] = 0>

108 stateprog[4] = 0>

107 stateprog[s] = 1:

108 if (in0 && {inl == 0})

109 = begin

114 Hext5State = enter ? 50 : 50;
111 lock = 0;

112 unlock = 1;

113 - end

114 else

115 HextState = 50;
116 \: end

117 endcase

121 always B (unlocck) begin

122 case (unlock)

123] = 8eqg = T'B1110001;
124 l = seqg = 7T'10000OO0L;
125 default: seg = 7'E1111111 :
126 endcase

127 end

125 endmodnle

131 module onehertz (clk_50mhz, clk lhz):
132 input clk_50mhz;

133 cutput clk lhz;

134 req clk_lhz;

135 reg [24:0] count;

136 always @ (posedge clk 5S0mhz)

137 bkegin

138 E if {count == 24523539} begin
135 count <= O

140 Sdumpfile ("L£.vcd™) ;

141 clk lhz <= ~clk_lhz;
142 - end

143 [H else begin

144 count <= count + 1;

145 - end

ldg i end

147 |em:].ml:'-chl.le

This is my FSM Verilog Code for the digital lock.

proutcli
onehertzU0 MealyState
I 50 [
incl ck S0mhz ck 1hz ck -
‘ enter o
I — 1
" s ! comb-0 -y stateprogis 0]
sS4 |
st rEms 55 i J) Tockd atch m
enter always1~1 —_— o DPREU mlock
i unlock ock
in0 25 ™ a-Ena
mD——d J comb~1 CLRN
:D Decoderd
unfocHslatch
o] OUTI1.01 K
s e0ls. 0
L muntock
DECODER

This is my RTL View for the FSM Verilog Code for the digital lock.

|

'Y s
* “;.__ e e

L2p L

00T

ronconooerEL

[- -
- 1.
sjejelainsnua]

$ i §

sislsyyyyy

iy

These are my images of my digital combinational lock implemented onto the DE2 board. The
combination is 110110, and LED11 will be red as well as the 7-segment display showing “L”
when the combinational lock is “locked.” The first two images are when A = 1. The third image
is when A = 0. The fourth and fifth images are when A = 1 again. Lastly, the sixth image is
when A = 0; thus, the output being shown with a green LED and a U displayed for “unlock.”

https://drive.google.com/file/d/1cRACOFEcE2Qc9kZp06RF-yyTNObC-wV g/view?usp=sharin
This is the link to my video describing the digital combinational lock. Included within the zip
file will also be the same video.

https://drive.google.com/file/d/1cRAC0FEcE2Qc9kZp06RF-yyTNQbC-wVg/view?usp=sharing

Experiment 2

1 timescale 1 ns / 100 ps

module famTable(X, clk, rst, Z):

4 input ¥, clk, rst;
= ocutput reg Z:
7 parameter S0 =0, 51 =1, 52 =2, 53 =3, 54 =4, 55 =5, 56 = ¢

reg [3:0] MealyState, NextState;

10 //{ Sequential logic:
11 always B (posedge clk or posedge rst)
12 if (rst)
13 MealyState <= 50;
14 else
15 MealyState <= NextState:
1é
17 // Combinational logic:
8 always B (MealyState or X)
1L, case (MealyState)
20 E 50: begin
21 Z=K7? 01 1;
22 NextState = X ? 52 : 51:
23 o end
24 g 51: begin
25 Z=K7? 01 1;
26 NextState = X ? 54 : 33;
2 o end
28 g 52: begin
29 I=X7?1.:0;
NextState = X ? 54 : 54;
o end
32 o 53: begin
33 Z=K7? 1 :0;
34 NextState = X ? 55 : 55;
5 o end
=] 54: begin
Z=X7?0: 1:
NextState = X ? 56 : 355;
o end
w g 55: begin
41 Z=K7? 1 :0;
42 NextState = X ? 50 : 350;
43 o end
4 [56: begin
435 Z=K7?1: 1;
48 NextState = X ? 50 : 350;
47 o end
48 =] default: begin
49 Z=10;
50 HextState = 50;
50 - end
52 = endcase
53 endmodule
54 |

This is my Verilog code for the FSM machine table.

B T I S R

=
[-

12
13

“timescals 1 ns 4 100 ps

module fsmTabkleTB;
reg Ktb;
reg clkth = 1"kl
reg ratthk
wire Ith:
“define PERIOD 10

1"kl

always
#(PERICD/Z) clktk = ~clkth:

= famTable U0 {
X (¥tk),
.clk (clkth),
.3t (rstth),
.Z (Itk)

{];

=) initial begin
stimeformat (-5, 1, ™na™, 9)
smonitor { "tim
#("EERICD * 100)
sdisplay ("TESTING TIMEQUI™ };:
$finish;

= end

task sxpectedResult (input expected):
if {(Zthk '= expected)

—] begin
Fdisplay ("Zthk=
Fdisplay ("Test Failed™ }:
$finish;

= end

= endtask

initial
= begin
@ (posedge clkth)

{ rstth, Xtb } = l; E({posedge clktb)
{ rstth, Xtb } = l; E({posedge clktb)
{ rstth, Xtb } = l; E({posedge clktb)
{ rsttk, Xtk } = l; E{posedge clktb)
{ rsttk, Xtk } = l; E{posedge clktb)
[rstth, Xth } = 1 B{posedge clktk)
[rstth, Xth } = 1 B{posedge clktk)
[rstth, Xth } = 1 B{posedge clktk)
[rstth, Xth } = 1 B{posedge clktk)
[rstth, Xth } = 1 B{posedge clktk)
{ rstth, Xtb } = 2'bl_1; E(posedge clkth)
fdisplay ("*%***Test PRSSEDVV ¥*™ };
$finish;

= end

endmodule

Zth = %h", ftime,

iz ib", Ztk, expected):

expectedResult
expectedResult
expectedResult
expectedBResult
expectedBResult
expectedBResult
expectedBResult
expectedBResult
expectedBResult
expectedBResult
expectedBesult

This is my testbench Verilog code for the FSM machine table.

g

Eth,

ratth,

Ztk);

ks DVE - Toplevel 2 - [Wave 1] /home/batujt/../lab i ceunlv.edu - o X

% File Edit Wiew Simulator Signal Scope Trace Window Help =18l
I T g - [[[5% [aal S #a [pEcEEE (S a[E8nE-Orar an|[E b 5 T[ree [aaaalale@al]
(4] ommmm@@@@@@aMiq EErAN N

==
ame [value p 190
5 Groupt

0 clkth
0 rstts
0 ¥t
n2th

New Group

These are my VCS waveforms for the FSM machine table. The red blocks represent delay.

Iype:lili 'I Severity: |22 - Qnde:l.ﬂ.ll j 4

Chronologic YWCS simulator copyright 1991-2017

Contains Synopsys propristary informstion,

Compiler werzion M-2017,12-5P2-14: Runtime version M-2017,12-SP2-1d: Sep 29 10:33 2021
VCO+ Writer H-2017,12-5FP2-14 Copyright {c» 1991-2017 by Synopsys Inc,

The file 'Fhomedoatujl /Fallz2021/1labbfenTabledinter ,wpd' was opened successfully,

time= 0, 0ns Hth = x retth = 1 £th = x
t.ime= 10, 0ns Hth = 1 retth = 0 th = 0
time= A, 0ns Htbh = 1 reztth = 0 fth = 1
time= 40, Ons Htbh = 1 retth = 0 fth =10
time= 50,0ns Hth = 1 retth = 0 £th = 1
time= BQ,0ns Hth = 0 retth = 0 Fth = 1
time= B0,0n= Hth = 0 retth = 0 th = 0
time= 100 ,0n= Htbh = 0 raetth = 1 fth = 1
time= 110,0n= Htbh = 1 retth = 1 fth =10

=xxxx ozt PASSED*#*===

#finish called from file "femlableTB.w". line &2,
#Finizkh at zimulation time 120, 0n=

Simulation complete, time iz 120000 ps,

This is my VCS console for the FSM machine table.

Experiment 3

e = VI B U I

[T]

=
=

]

&

T T I L R T T T O
o T B R e R T

w

“timescale 1lns

S 100p

module segEen (R, clk, rst, W, X, ¥, Z}):
input A, clk, rst:
output reg W, X, Y, Z;

parameter 50 =

i, 51 =1, 52 =
reg [0:3] MealyState, NextState:

// Segquential logic

always E (posedge clk

if ({(rst)
MealyState <= 30;

else

MealyState <=

/¢ Combinational logic
always B (MealyState or A)
case (MealyState)

50z

51:

52:

53:

54

bkegin
W=13a7%1 L2
XE=1a%? 01 0;
Y=1a7%? 01 0;
Z=1a%0: 1;
NextState = 51;

end

begin
W=1a271 H
X=17?1:0;
Y=1R7?0:0;
=170 1;
NextState = 52;

end

bkegin
W= 187)2
XE=1a% 11 0;
Y=1'8a%0: 1;
Z=1a%0: 1;
NextState = 53;

end

begin
W=1a7 I
X=17?1:0;
YT=1137?171:1;
Z =172 01 0;
NextState = 54;

end

bkegin
W L J:
XE=1a7%0C L
YT=14a7%1 L
Z =187 0C H

HextState;

53

or posedge rst)

dr

58 HextState = 55;
=5 - end

&0 35

6l = begin

62 W L iF
63 X L 1;
64 T R 7?1 :
65 z R 7?1 0;
66 HextState = 56&;
&7 - end

6o Se

69 = begin

70 W L 1;
71 X L 1;
72 T L :
73 z R 7?1 3 0;
74 HextState = 57;
75 - end

76 37

77 = begin

78 W R 7?1 1;
79 X L :
20 T L :
81 z R 7?1 0;
g2 HextState = 50;
83 - end

54 defanlt:

85 = begin

86 W ;

a7 X ;

88 ¥ ;

89 Z=10;

S0 HextState = 50;
51 - end

g2 & endcase

03 endmodnle

54 |

This is my Verilog code for an FSM that models a sequence generator.

[Y S T F R B I B o T S

=
=

[

=

ST SR SR S
1 &n on

LRRY S R F T

L Ly
[S -

33

T T T R T R TR T S,
B T, IS % R Y

w

“timescale 1lns / 100ps

module seqgGenTB;

reg Ath:
reg clkth = 1'El;
reqg ratth = 1'kb1;

wire Wth, Xtb, Yth, ZIth:
"define PERIOD 10

always

#("PERIOD/Z) clktk = ~clktb:

= seqGen U0 {

A O(ATk)
.clk {clkthk),
.r3t (rstth),
WO (WEk) ,

X (¥th) ,

X (Tek) ,

L2 (Ztk)

=)i

initial begin
stimeformat (-9, 1,
fmoniter ("time=3%t
Stime,
#(FERIOD * 100)

"ns",

Ath,

2):
= b

ratth,

rattkh =

$display ("TESTING TIMEOUT™ }:

$finish;
end

task expectedBesult (input [3:0] expected):
if ((Wth '= expected[3])

bkegin

sdisplay ("WXYZ
sdisplay ("Expected = ib",expected[3] ,expected[i] ,expected[l] ,expected[0]);

ik

{¥th '= expected[2]) ||

$b",Wth,Xth, Yth, Zth) ;

sdisplay ("Test Failed" }:

zfinish;
end
endtask

initial
= begin
& {posedge clkth)
{ ratth, Atb

rstth, Atk
ratthk, Atbh
rattk, Atk
rstth, Atk
ratthk, Atbh
rattk, Atk
ratth, Ath

e e e e e e

{ rattk, Atk
{ rsttk, Atk
{ ratth, Atb

e et e e e e

2'b1_0; B(posedge

1: E{posedge
1; B{posedge
1: B(posedge
1: E{posedge
1; B{posedge
1: B(posedge
1: E{posedge

1 B(posedge
; B(posedge
;B (posedge

clkth)

clkth)
clkth)
clkth)
clkth)
clkth)
clkth)
clkth)

clkth)
clkth)
clkth)

o o om o omim
W, X, Y, 2 = 3kb",

Wth,Xthk,Yth,Ztk) ;

{Ytk != expected[l])

expectedResult

expectedResult
expectedResult
expectedResult
expectedResult
expectedResult
expectedResult
expectedResult

expectedResult
expectedResult
expectedResult

{Ztk !'= expected[0]))

5 { rsttk, Atk } = : B{posedge clkth) sxpectedBesult |)
5 { rsttk, Atk } = : B{posedge clkth) sxpectedBesult |)
{ rsttk, Atk } = : B{posedge clkth) sxpectedBesult |)

1 { rsttk, Atk } = : B{posedge clkth) sxpectedBesult |)

2 { rattk, Ath]} = ; B{posedge clkth) sxpectedBesult ()

L { rsttk, Atk } = : B{posedge clkth) sxpectedBesult |):

H5 { rsttk, Rtk } = : B {posedge clktk) expectedBesult | Yz

H 6 sdisplay (7 Test PASSEL R

7 $finish;

ki end

38 |enu:1mu:>u:1ule
This is my testbench Verilog code for an FSM that models a sequence generator.
s DVE - TopLevel2 - [Wave.1] /home/batujl/.../lab5/seqGen/simv@csimcluster.ee.unlv.edu - [u] X
% File Edit View Simulator Signal Scope Trace Window Help =lelx
] 0 ao0ps + |58 | aa | B E:EE] [Co[ESwE A= - ham €3 = (RGNl el =N
Ia7 CTRBBDBRE S G S [lah] = %

Narme [vaiue

=- Groupl
0 cikty
0 rstlo
0 At
Wi

Xt
ot
)

New Group

These are my VCS waveforms for an FSM that models a sequence generator. The red blocks
indicate delay.

IIype: |3I3 vl Severity: |3I3 j Code: |.f-‘~II j d P

Containz Synopsys proprietary information,
Compiler verszion H-2017,12-5PZ-14: Runtime version M-2017,12-5P2-14:; Sep 30 13:56 2021
VCD+ Writer M-2017,12-5P2-14 Copyright {(c) 1991-2017 by Synopsys Inc,
The file '/homesbatujl/Fallz2021/labb/zeqbensinter ,vod' was opened successfully,
time= 0, 0ns Ath = = retth = 1 W.HY .2 = 100%
time= 10,0ns Bth = 0 retth = 1 WX Y2 = 1000
time= 20,0ns Ath = 0O retth = 0 WoH.Y .2 = 1100
time= 20,0ns Atk = 0O retth = 0 WoH.Y.Z = 0100
time= 40,0ns fth = 0 retth = 0 W.H.Y.Z2 = 0110
time= 50,0ns Bth = 0 retth = 0 MoH Y2 = 0010
time= B0,0ns Ath = 0O retth = 0 W.H.Y.£ = 0011
time= 70,0ns Atk = 0O retth = 0 FoH.Y.Z = 0001
time= B0,0ns fth = 0 retth = 0 FoH.Y.Z2 = 1001
time= 90,0ns Ath = 1 retth = 0 WLH.Y .2 = 1001
time= 100 ,0ns Ath = 1 retth = 0 WoH.Y .2 = 0001
time= 110,0ns Atk = 1 retth = 0 MoH.Y.Z = 0011
time= 120 ,0ns fth = 1 retth = 0 WK .2 = 0010
time= 130,0ns Ath = 1 retth = 0 W.H.Y .2 = 0110
time= 140,0ns Atk = 1 retth = 0 WoH.Y.Z = 0100
time= 150,0ns Ath = 1 retth = 0 W.H.Y.Z = 1100
time= 160,0ns fth = 1 retth = 0 WK Y2 = 1000
time= 170,0ns Ath = O retth = 1 WLRY .2 = 1000
time= 180,0ns Atk = 1 retth = 1 MoH.Y.Z = 1001
zxxanxTazt PHSSED=#xx=
#finizh called from file "zegGenTB.w". line B7.
#Finizh at =simulation time 190 . 0ns
Simulation complete, time iz 190000 p=,
1

This is my VCS console for an FSM that models a sequence generator.

SRAM 512KB
e

SO _CARD

LEDGT LEDGE LEDGS— LEDG4 LEDG3 LEDG2 LEDG1 LEDGC

LEDGT LEDG6 LEDGS— LEDG4 LEDG1

LEDGS— " LEDG4 LEDG3 LEDG2 LEDGY LEDGC

LEDGS LEDG4 LEDG3 LEDG2 LEDG1 LEDGC

iHEEEE

These are my images of the sequence generator. The first and fourth image show where the
sequence starts and when reset is 1 for both cases. The 2nd and 3rd image start the sequence of
decreasing from 1000 to 0001 then back up to 1000. The 5th and 6th image start the sequence of
increasing from 0001 to 1001 then back down to 0001.

Experiment 4

1 timescale lns / 100ps

3 moedule fsmWait (serial_in, clk, rstWN, downcount, shift en, data_rdy, cntr_rstH):;
4 input serial_in, clk, rstH;

5 input [2:0] downcount;

& cutput reg shift_en, data_rdy, cntr_rstH;

7 reg [2:0] counter:

G parameter Reset = 2'bL00, Waite = 2'k0l, Load = 2'k10, Beady = 2'kL11;
10 reg [0:1] MealyState, NextState;

11

12 always B (posedge rstl or peosedge clk)

13 if (rsth)

14 MealyState <= Reset;

15 else

le MealvState <= MNextState:;

17

18 always B (posedge MealvyState or ssrial_in)

15 E case (MealvState)
= Eeset: begin

21 shift en = 0;
22 data_rdy = 0;
23 cntr_rsth = 0
24 MealyState <= rstN 7 Reset : Waite:
25 B end
26 [H Waite: begin
27 shift_en = 0;
28 data _rdy = 0;
29 cntr_rath = 0;
30 MealyState <= serial_in ? Waite : Load:
3l b end
32 4 Load: begin
33 counter = downcount:
34 shift _en = 0;
35 data_rdv = 0;
& if (counter ==)
37 cntr_rsth = 0;
38 else
= = bkegin
40 cntr_rstH = 1;
41 counter = counter - 3'bBO01;
42 b end
43 MealyState <= cntr_rstH ? Load: Ready:
44 o end
45 [H Beady: begin
46 shift en = 0;
47 data_rdy = L:
45 MealyState <= Waite;
49 o end
50 & endcase
51 endmodule
52 |

This is my Verilog code for the FSM figure implementation.

1 “timescale 1ns / 1
3 module fsmHaitIB:
4 reg s=rial_inth:
L reg clkth = 1 H
[reg rsthth:
7 reg [2:0]downcountth;
g wire shift_entb, data_rdytk, cntr_rstNtk:
g “define PERIOD 10
10
11 always
12 #(PERIOD/Z) clktb = ~clkth:
13
14 famdait TO
15 .3erial_in (serial_intb),
16 .clk (clkth),
17 .ratN (rstNthk),
a8 .downcount (downcounttb),
1L .shift_en (shift_entb),
20 .data_rdy (data_rdytb),
21 .cntr_rsti (cntr_rstNtb)
22 ¥
23
24 initial begin
25 stimeformat (-9, 1, "ns", 9)
26 smonitor ("ti T rstlith = %b gerial_inth = %b downcounttk = 3b shift_enth = %b cnte_rathiith = b data_rdy = %b",
27 stime, ratlth, serial_intk, downcounttb, shift_enth, cntr_rstlthk, data_rdythk) ;
28 #("PERICD * 100)
29 #display ("TESTING TIMEQUI™ });
30 #finish;
31 end
32
33 task expectedResult (input [2:0] expected):
34 if ((shift_entb != expected[2]) || (cntr_ratltbh !'= expected[1]) || (data rdyth != expected[0]))
a5 = begin
36 sdisplay CnR3TN, DataRDY = %b", shift_entb, cntr_rstNtb, data_rdytb):
37 sdisplay o" expected[2] ,expected[l] ,expected[0])
38 sdisplay
35 sfinish;
40 - end
41 L endtask
42
43 initial
4 [begin
45 E (posedge clktk)
45 { rstltb, serial intb , downcounttb ; B({posedge clkth) expectedResult ()i
47 { ratlth, serial intb , downcountth ; B({posedge clkth) sxpectedBesult (: |
45 { rstltk, serial intbk , downcountth : E({posedge clktk) expectedBesult { = H
50 { rstltk, serial intbk , downcountth 1: B{posedge clktb) expectedResult (: H
51 { ratltb, serial intb , downcounttb : B(posedge clktb) expectedResult (= H
52 { ratltb, serial intb , downcountth B (posedge clktb) sxpectedResult (;
53 { ratltk, serial intk , downcountth B {posedge clktb) sxpectedBResult | H
54 { rstltk, serial intbk , downcountth J: B{posedge clktb) expectedResult (H
55 { rstltb, serial intb , downcounttb 1; B({posedge clkth) expectedResult (H
L1 { ratlth, serial intb , downcountth B (posedge clktbh) sxpectedBesult | H
57 { rstltk, serial intk , downcountthk i (posedge clktb) expectedBesult ({ : H
58
55 { rstlthk, serial_intk , downcounttb } 101; @ ({posedge clkth) expectedBesult (: 10)
&0 { rstlthk, serial_intk , downcounttb } 10; @ (posedge clktb) expectedBesult (: 1):
61
62 fdisplay ("****¥Test PRSSED¥**4x™ };
63 $finish;
o4 end
65 endmodule
6 |

This is my testbench Verilog code for the FSM figure implementation.

s DVE - TopLevel2 - [Wave.1] /home/batujl/.../lab! ceunlv.edu - o X

¥2 File Edit View Simulator Signal Scope Trace Window Help =18l
1 T onps ~ |59 4] HenEpPElEE e [Epwe-0-a-nan-|leslyee = lbae i aaaelnlaeel]
L 4] owmmmmm@a(@«ama\uﬁq He&e &

¥ £

Name [alue

=- Groupl
0 clkib
0 rsfhit
0 serial_inth

- 1 downeountto[z:0] B

_shifl_ent
L Crir_rsthits

L data_rdyth

New Group

These are my VCS waveforms for the FSM figure implementation.

Type: |:’>I3 'l Severity: |:’>IZ’> 'l Code: |AII -] 4 P

Chronologic VCS simulator copyright 1991-2017

Containz Sunopsys proprietary information,

Compiler wversion MN-2017,12-SP2-1d: Runtine version MN-2017,12-5P2-14; 0Oct 3 17349 2021
YCO+ MWriter M-2017,12-5P2-14 Copyright (o) 1991-2017 by Synopsys Inc,

The file '/homesbatujl/Fallz20Z21/1ab5 Fsmnkait/inter,vpd' was operned successfully,

time= 0,0ns retMth = = zerial_inth = x downcountth = xxx shift_enth = = chtr_rathth = x data_rdy = x
time= 10,0ns retMth = 1 zerial_inth = 0 downcountth = 000 shift_enth = x cntr_ratMth = » data_rdy = x
time= 20.0ns retMth = 1 zerial_inth = 1 downcountth = 111 shift_entkh = 0 chntr_ratMth = 0 data_rdy = 0
time= 30, 0= retMth = 0 zerial_inth = 0 downcountth = 111 shift_enth = 0O chtr_rstMth = 0 data_rdy = 0
time= 40,0ns retMth = 0 serial_inth = 1 downcountth = 110 shift_enth = 0 cntr_ratMth = 1 data_rdy = 0
time= G50,0ns retMth = 0 zerial_inth = 0 downcountth = 101 shift_enth = 0 chtr_ratHth = 1 data_rdy = 0
time= 60,0ns retMth = 0 serial_inth = 1 downcountth = 110 shift_enth = 0 cntr_ratMth = 1 data_rdy = 0
time= F0,0ns retMth = 0 zerial_inth = O downcountth = 011 shift_enth = 0 chtr_ratMth = 1 data_rdy = 0O
time= a0, On= retMth = 0 zerial_inth = 1 downcountth = 010 shift_enth = 0 chtr_rstMth = 1 data_rdy = 0
time= 90,0ns retMth = 0 zerial_inth = 0 downcountth = 001 shift_entkh = 0 chtr_ratHth = 1 data_rdy = 0
time= 100,0ns retMth = 0 zerial_inth = 1 downcountth = Q00 shift_enth = 0 cntr_rzthth = 0 data_rdy = 1
time= 110,0n= retMth = 0 serial_inth = 0 downcountth = 000 shift_enth = 0 cntr_ratMth = 0 data_rdy = 0
time= 120,0ns retMth = 0 zerial_inth = 1 downcountth = Q01 shift_enth = 0 chtr_ratMth = 1 data_rdy = 0O
time= 130,0n= retMth = 0 zerial_inth = 0 downcountth = 000 shift_enth = 0 cntr_ratMth = 0 data_rdy = 1

#xxxx ezt PASSED®==xx

#inish called from file "fspkaitTB.v". line 63,
#finish at simulation time 140, 0ns

Simulation complete. time iz 140000 ps,

This i1s my VCS output console for the FSM figure implementation.

4. Answers to questions

Question 1:

Mealy FSMs have a benefit over the Moore FSM when initializing the output instantaneously
rather than the output depending on the state; however, the main disadvantage of the Mealy FSM
is that the outputs are not held after each clock cycle. This means that Mealy FSMs are
dependent on both the state and the inputs rather than only the state. Since the Mealy FSM
considers the state and the inputs, there are more faults that may happen upon the output of the
Mealy FSM.

Question 2:

Encoding styles of an FSM refer to how the states are represented for clarity and ease of
maintenance. A few examples of encoding styles include binary encoding, one-hot encoding,
and gray coding. These different coding styles depend on how the FSM is designed. Binary
encoding has the states enumerated with binary numbers such as 0000, 0100, 0110, 1010, etc.
One-hot encoding refers to states as bit patterns with only one ‘1’. An example of this would be:

00001, 00010, 00100, 01000, or 10000. Gray encoding only differs from one bit such as 00, 01,
10, or 110. Each of these encoding styles have benefits over one another. Binary encoding
minimizes the length of state vectors. One-hot encoding is faster, but uses more registers and
less logic. Gray encoding reduces faulty errors within an FSM. Encodings basically represent
how the states are encoded within an FSM’s design.

Question 3:

The combinational section of an FSM is to determine the next state logic. It’s to show how one
state transitions from another as well as where the output would be determined inside the FSM.
Within the combinational section, there are two different logics: next state and output.
Sometimes, the combinational section can be split up into one for the next state and one for
output. The sequential section of an FSM is to store the current state of the FSM. It is to show
when one state goes to the next rather than how one state goes to the next. For example, the
sequential section of an FSM may include a reset where the current state will be set to the
beginning, then the next state will start when no reset is initiated and at the positive clock edge.

5. Conclusions & Summary

Overall, this was probably one of the most time consuming labs. It wasn’t necessarily hard
understanding what was being asked for within the lab; however, there was just a lot of work to
be done for the lab. The main issues for the first experiment were implementing the clock
divider into the code again, but it was a simple fix that took about 10 minutes. In addition, trying
to input the correct code within the DE2 was also rough as the next state transitioned at the clock
edge, so I had to input the code very quickly on the DE2 board. The second and third
experiments were quite easy. The fourth experiment took the most time trying to understand
what was being outputted. The video provided did clarify some of my questions on what some
of the inputs and outputs meant. My main concern was with the down counter because I had no
idea how to implement this within an FSM. My first idea was to create the down counter in a
separate module, but that idea did not work; therefore, I included the down counter within the
state itself and made the next state condition based on cntr rstN. Choosing between Mealy and
Moore ended up being very confusing, but I remember now which one to use.

