
UNIVERSITY OF NEVADA LAS VEGAS. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING LABORATORIES.

Class: CPE300L Semester: Fall 2020

Points Document author: Jerrod Batu
Author's email: batuj1@unlv.nevada.edu

Document topic: Postlab 5
Instructor's comments:

1. Introduction / Theory of Operation
Throughout this lab I will continue my knowledge on finite state machines (FSMs) and their
implementation in FPGA.

1.
The two types of FSMs are Moore and Mealy. The key difference between these two
types of FSMs is how the states lead to the output. Moore Fsms have the output
dependent only on its states rather than on the inputs; therefore, the output only changes
when the state goes to the next or previous state. Mealy Fsms have the output dependent
on both the state and the inputs; therefore, the outputs are asynchronous throughout each
state change. When using a Moore FSM, the best way to model the state diagram is to
use an always and case statement where the always statement would initialize the clock
on every positive edge, and the case statement would dictate how the states would change
and the output logic for each state. When using a Mealy FSM, the best way to model the
state diagram is to, in fact, use two always cases where one always case would describe
the state transitions, and the other always case were to describe the combinational logic
between the next state and the output.

2. When I approach designing an FSM, I always think about how the states relate to the
desired output. When the problem prompts for a specific locking mechanism, I know it
would be best to use a Mealy FSM because the output depends on the input and where
the state is at for this specific input. When the problem prompts for a specific sequence
of events, such as a traffic light, I prefer Moore FSMs because the output would only be
dependent on the state. FSMs have always been easier to understand to me because they
model real life examples.

2. Prelab
https://docs.google.com/document/d/1UAKqNVVO6aogDywWX3oxZrXacp6nB52l/edit?usp=s
haring&ouid=102808507017671072128&rtpof=true&sd=true
This is the link to my prelab5.

https://docs.google.com/document/d/1UAKqNVVO6aogDywWX3oxZrXacp6nB52l/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true
https://docs.google.com/document/d/1UAKqNVVO6aogDywWX3oxZrXacp6nB52l/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true

3. Results of Experiments
Experiment 1

This is my FSM Verilog Code for the digital lock.

This is my RTL View for the FSM Verilog Code for the digital lock.

This is my State Machine Diagram View for the FSM Verilog Code for the digital lock.

These are my images of my digital combinational lock implemented onto the DE2 board. The
combination is 110110, and LED11 will be red as well as the 7-segment display showing “L”
when the combinational lock is “locked.” The first two images are when A = 1. The third image
is when A = 0. The fourth and fifth images are when A = 1 again. Lastly, the sixth image is
when A = 0; thus, the output being shown with a green LED and a U displayed for “unlock.”

https://drive.google.com/file/d/1cRAC0FEcE2Qc9kZp06RF-yyTNQbC-wVg/view?usp=sharing
This is the link to my video describing the digital combinational lock. Included within the zip
file will also be the same video.

https://drive.google.com/file/d/1cRAC0FEcE2Qc9kZp06RF-yyTNQbC-wVg/view?usp=sharing

Experiment 2

This is my Verilog code for the FSM machine table.

This is my testbench Verilog code for the FSM machine table.

These are my VCS waveforms for the FSM machine table. The red blocks represent delay.

This is my VCS console for the FSM machine table.

Experiment 3

This is my Verilog code for an FSM that models a sequence generator.

This is my testbench Verilog code for an FSM that models a sequence generator.

These are my VCS waveforms for an FSM that models a sequence generator. The red blocks
indicate delay.

This is my VCS console for an FSM that models a sequence generator.

These are my images of the sequence generator. The first and fourth image show where the
sequence starts and when reset is 1 for both cases. The 2nd and 3rd image start the sequence of
decreasing from 1000 to 0001 then back up to 1000. The 5th and 6th image start the sequence of
increasing from 0001 to 1001 then back down to 0001.

Experiment 4

This is my Verilog code for the FSM figure implementation.

This is my testbench Verilog code for the FSM figure implementation.

These are my VCS waveforms for the FSM figure implementation.

This is my VCS output console for the FSM figure implementation.

4. Answers to questions
Question 1:
Mealy FSMs have a benefit over the Moore FSM when initializing the output instantaneously
rather than the output depending on the state; however, the main disadvantage of the Mealy FSM
is that the outputs are not held after each clock cycle. This means that Mealy FSMs are
dependent on both the state and the inputs rather than only the state. Since the Mealy FSM
considers the state and the inputs, there are more faults that may happen upon the output of the
Mealy FSM.

Question 2:
Encoding styles of an FSM refer to how the states are represented for clarity and ease of
maintenance. A few examples of encoding styles include binary encoding, one-hot encoding,
and gray coding. These different coding styles depend on how the FSM is designed. Binary
encoding has the states enumerated with binary numbers such as 0000, 0100, 0110, 1010, etc.
One-hot encoding refers to states as bit patterns with only one ‘1’. An example of this would be:

00001, 00010, 00100, 01000, or 10000. Gray encoding only differs from one bit such as 00, 01,
10, or 110. Each of these encoding styles have benefits over one another. Binary encoding
minimizes the length of state vectors. One-hot encoding is faster, but uses more registers and
less logic. Gray encoding reduces faulty errors within an FSM. Encodings basically represent
how the states are encoded within an FSM’s design.

Question 3:
The combinational section of an FSM is to determine the next state logic. It’s to show how one
state transitions from another as well as where the output would be determined inside the FSM.
Within the combinational section, there are two different logics: next state and output.
Sometimes, the combinational section can be split up into one for the next state and one for
output. The sequential section of an FSM is to store the current state of the FSM. It is to show
when one state goes to the next rather than how one state goes to the next. For example, the
sequential section of an FSM may include a reset where the current state will be set to the
beginning, then the next state will start when no reset is initiated and at the positive clock edge.

5. Conclusions & Summary
Overall, this was probably one of the most time consuming labs. It wasn’t necessarily hard
understanding what was being asked for within the lab; however, there was just a lot of work to
be done for the lab. The main issues for the first experiment were implementing the clock
divider into the code again, but it was a simple fix that took about 10 minutes. In addition, trying
to input the correct code within the DE2 was also rough as the next state transitioned at the clock
edge, so I had to input the code very quickly on the DE2 board. The second and third
experiments were quite easy. The fourth experiment took the most time trying to understand
what was being outputted. The video provided did clarify some of my questions on what some
of the inputs and outputs meant. My main concern was with the down counter because I had no
idea how to implement this within an FSM. My first idea was to create the down counter in a
separate module, but that idea did not work; therefore, I included the down counter within the
state itself and made the next state condition based on cntr_rstN. Choosing between Mealy and
Moore ended up being very confusing, but I remember now which one to use.

