UNIVERSITY OF NEVADA L.AS VEGAS. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING LABORATORIES.

Class: CPE300L Semester: | Fall 2021
Points Document author: Jerrod Batu

Author's email: batuji@unlv.nevada.edu

Document topic: Postlab 4

Instructor's comments:

1. Introduction / Theory of Operation

Throughout this lab, I will continue Verilog review by learning more about latches and flip-flops,
synchronous and asynchronous operations, and asynchronous system design. Some of these
latches and flip-flops would include a gated D latch with asynchronous Set” and Clear’, JK
flip-flop with synchronous clear, D flip flop with asynchronous low clear, etc.

1.

A D flip-flop is a digital electronic circuit that delays output state change until its next
rising edge where an input would be called upon. Specifically, the D flip-flop behaves
similar to memory as the output will stay constant until it is altered from the D input at
the rising clock edge. They are, in fact, utilized as building block shift registers that can
store clock cycles. A JK flip-flop, in general, is a gated S-R latch with the AND and
NOR gates replaced as NAND gates. JK flip-flops are the most used flip-flop designs
because they are very universal. The two inputs “J” and “K” are named after the inventor
Jack Kilby. The JK flip-flop acts only at a rising clock edge, and the output would toggle
from state to state. When J and K are both low, the output is retained and no changes
would occur.

Waveforms are used to check the correctness of a circuit by comparing inputs to the
outputs in a “form of a wave”; therefore, the inputs would be clocked at a specific time
period that the output would follow based on the combinational logic of the electronic
circuit. Waveforms would not be ideal for a large number of inputs as this would become
a long and tedious process. Testbenches enhances this process by comparing the user’s
Verilog code to its expected output; hence, comparing a large number of inputs and
outputs would allow the user to efficiently check the correctness of a circuit.

2. Prelab

https://docs.google.com/document/d/ 18 KNmM2I3hURARITZ1100i90gBpmHYE14P/edit?usp=sh

aring&ouid=102808507017671072128&rtpof=true&sd=true

This is the link to my prelab 4 submission.

https://docs.google.com/document/d/18KNm2l3hURA8lTZ1jOOj9OqBpmHYE14P/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true
https://docs.google.com/document/d/18KNm2l3hURA8lTZ1jOOj9OqBpmHYE14P/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true

3. Results of Experiments

Experiment 1

a.
1 module asyncDFF (D, Clock, ClearH, Q, QH):
2 input D, Clock, ClearHN:;
3 output Q, QN;
4 reg Q;
5
[always @ (posedge Clock, negedge Clearl)
7 = begin
8 if (~ClearN)
S Q= 0;
10 else
11 Q=
12 end
13 assign QN = ~Q;
14 endmodule
15 |

This is the Verilog code for a D flip flop with asynchronous low clear and complementary
output.

Q~reg0

Clock D> —C___>»QN

ClearNI >

This is the RTL view for my D flip flop with asynchronous low clear and complementary
output.

Experiment 2

a.

1 timescale 1 ns f 100 ps

3 module regDFF (D, Clock ,ClearN, Q, QN):

4 input [Z:0] D:

] input Clock, ClearH:

& cutput [Z:0] Q, QH:

g asyncDFF DFFO (D[0], Clock, ClearN, Q[0], QHN[O]):
g a3yncDFF DFF1 (D[l], Clock, ClearWN, Q[1], QN[L]):
10 asyncDFF DFF2 (D[2], Clock, ClearN, Q[2], QHN[Z]1):
11 asyncDFF DFF3 (D[3], Clock, ClearN, Q[3], QHN[3]1):
12 endmodnle
13
14 J/ asynchronous D Flip Flop
15 module asyncDFF (D, Clock, ClearN, Q, QH):
16 input D, Clock, ClearN:
17 cutput &, CON:
13 req Q;
15
20 always B (posedge Clock, negedge ClearH)
21 begin
22 if (~ClearH)
23 Q<= 0;
24 else
25 Q<= D:
26 end
27 assign QW = ~{:
28 endmodnle

25 |

This is the Verilog code for instantiating the DFF from experiment 1 into a 4-bit register
which uses D flip-flops.

b.

1 “timescale 1 ns / 100 ps

2 // register D Flip Flop Testbench

4 module regDFF th;

L reg [3:0] Dtk:

& reg Clockth = 1'k1;

7 reg ClearNth = 1'bl;

8 wire [2:0] Qtk, CNtk:

g9

10 "define PERIOD 10

11

2 always

13 # (" PERICD/Z) Clocktk = ~Clockth:

14

15 = regDFF UD (

16 .D (Dthk),

17 .Clock (Clocktk),

g .ClearN (ClearNth),

13 -@ (Qtb),

20 QN (QHth)

21 2o):

23 = initial begin

24 Stimeformat (-9, 1, "na", 9 }:

25 smonitor ("time Dtk = &b ClrNtk = %b otk = b Qith = $k™, stime, Dth, Clearlth, oth, QNthk) ;
26 #("PERICD * 100)

27 $display ("TESTING TIMEQUI™ });

28 $finish:

29 L end

30

31 task expectedResult (input [3:0] expected):

32 if (Oth '== expected)

33 begin
34 $display ({ "Otb=%b, but expected wvalues is %b", Qtb, expected):
35 $display ("Test Failed™ };
36 $finish;
37 end

] endtask
39
40 task expectedResultN (input [3:0] expectedN):
41 if (ONtk '== expectedN)
42 — begin
43 ¢display ("QMtk=%k, but
44 $display ("Test Failed™ };
45 $finish;
4e - end
47 - endtask
4z
49 initial
50 = begin
51 E (negedge Clockth)
52 { ClearNth, Dtbh } = 5'k1 {: B{negedge Clockthk) expectedResult : B({negedge Clocktb) sxpectedResultN
53 { Clear¥th, Dth } = @ {negedge Clocktk) expectedResultc : B({negedge Clocktb) sxpectedResultN
54 { Clearlth, Dtk } = {: B{negedge Clockth) expectedResult ; Bi{negedge Clocktk) expectedResultN
25 { ClearNthk, Dth } = : B({negedge Clocktk) sxpectedResult ; Binegedge Clockth) sxpectedResultd
o6 { ClearNthk, Dth } = : B({negedge Clocktk) sxpectedResult ; Binegedge Clockth) sxpectedResultd
57 { ClearNtk, Dtk } = i: BE{negedge Clockthk) =xpectedResult ; Binegedge Clockth) sxpectedResultd
58 { ClearNtk, Dth } = = {: B{negedge Clocktb) expectedResult ; B(negedge Clocktb) expectedResultH
59 { ClearNtk, Dtk } = = 1: E(negedge Clocktk) expectedResult 1): EB{negedge Clccktk) expectedResultlN
&0 { Cl=arNth, Dtk } = 1101; @(negedge Clocktb) expectedBesult (4':1101 }): @({negedge Clocktb) expectedResultN (4'bO0LC
61 fdisplay ("*****Iest SED ¥ *%%™ §;

62 $finish;

63 end

o4 endmodule

€5

This is the Verilog code for the 4-bit register which uses D flip-flops testbench.

8 DVE - Toplevel2- Wove.] 1 e5OFE ’ _ o x

¥ Flle Edt View Simuator Signal Scope Trace Window Help L8}

I o haronps ~ (|58 gal E N R [ER[|EsEE e [eR oy e H | e @] dlaeel)
|47 CTRDDBRNDEE G S k-] 3

[
s B

Sl
[n

Name [value] A0 o0 o0 [i000 200

= Group1

% 1 Dib[3:0]
1 Clockty st
1 Clearhits st

Gl [3:0]

o Gto[3]
o Gto]2)
rato[)

rathf)

S GINth[3:0]
. GNtB(3)
L GNi[2)

QB[]

QN[

New Group

These are my VCS waveforms for the 4-bit DFF register. The blocks of red indicate
delay or if the output is a “don’t care (X) value”.

Chronologic VCS simulator copyright 1991-2017

Contains Synopsys proprietary information,

Compiler wersion H-2017,12-5P2-14;: Runtime version M-2017,12-5P2-14: Sep 21 23:24 2021
YCO+ MWriter H-2017,12-5P2-14 Copyright (o 1991-2017 by Synopsys Inc,

The fFile 'Afhomesbatujl/Fall2021/labd SfreglFF _thdinter,vpd' was opened successtully,
time= 0, 0ns Db = wmx ClrHth = 1 el = oo HHEk = s
time= Z25,0ns Db = === ClrHth = 0 Ctlk = 0000 EHtkh = 1111
time= db,0n= Db = oo ClrHth = 1 Mtk = 0000 Mtk = 1111
time= 50,0ns Db = s ClrHth = 1 Lt = s Bk = s
time= E5,0n= Itk = 1101 ClrHth = 1 el = oo HHEk = s
time= 70,0ns Oth = 1101 ClrHth =1 Gtk = 1101 EHtkh = 0010
time= B5,0n= Oth = 1010 ClrHth = 1 th = 1101 Mtk = 0010
time= 90,0n= Otk = 1010 ClrHth = 1 [th = 1010 Mtk = 0101
time= 105,0n= Db = wmx ClrHth = 0 Mtk = 0000 Mtk = 1111
time= 125,0ns Oth = ==mx ClrHth = 1 Ltk = 0000 LMtk = 1111
time= 130,0n= Ot = oo ClrHtkh = 1 b = oo LMEl = oo
time= 145,0n= Otk = 1010 ClrHth = 1 Lt = s Bk = s
time= 150,0n= Oth = 1010 ClrHth = 1 Mtk = 1010 Mtk = 0101
time= 165,0ns Otk = 1101 ClrHth = 1 Ltk = 1010 HHtk = 0101
time= 170,0n= Ith = 1101 ClrHth = 1 th = 1101 Mtk = 0010
xxxx Tzt PHSSED====x

#finish called from file "regDFF _th,w"., line &2,

#finish at simulation time 185, 0n=

Simulation complete. time iz 180000 p=,

This is my VCS simulation console for the 4-bit DFF register.

Experiment 3

a.
1 “timescale I ms f 100 ps
2
3 module regBehaveDFF (D, Clock, ClearN, Q, QN):
4 input [3:0] D:
5 input Clock, ClearN:
o ocutput reg [3:0] Q!
7 output [2:0] QN:
8
S always B (posedge Clock, negedge ClearH)
10 = hegin
11 if [(~Clearl)
12 O = 4'RK0O000;
13 else
14 Qo= D;
15 end
16 assign QN = ~Q;
17
18 endmodule
19 |
This is my behavioral Verilog code for instantiating the DFF from experiment 1 into a
4-bit register which uses D flip-flops.
b.
asyncOFF.DFF3
CRIEs— D
Clock [Clock 8 —DOEE]
ClearM [0 ClearM

LN

asyncDFF-DFFZ2

D[2] o D
ol nﬁ —Doﬁgz]
ClearM

asyncDFFDFF

' ot

R — o e X
Clock g 0]
A o

LN

asyncDFF.DFFO

DI0] D
- o —Doﬂn]
ClearN

This is the RTL View of the structural 4-bit DFF register.

Q[3]~reqgn
D3]

)
Clock [Tms—— I =

-

ClearM [T
Q[2]~regl

QNI
\—-0[2]

-

Q[1]~regl

CIEQNIT]
\—-0[1]

-

Q[0]~regl

DI0)

CIECNID]
\—-Q[U]

-

This is the RTL View of the behavioral 4-bit DFF register.

From the RTL view of both behavioral and structural, both are quite similar in the lower
hierarchy. For example, by clicking on each “green” block of the structural RTL view,
the instantiation of the DFF is the same as the behavioral RTL view. The reason for the
“green” blocks for the structural RTL view is due to the instantiation of the DFF module.
Since there is no instantiation for the behavioral model, the D flip-flops can easily be
seen in the behavioral view because the 4 bits are designated to each individual D
flip-flop within the code. The “green” blocks of the structural code simply just show
instantiation of another module; whereas, the behavioral code would show the 4 bits
spread to each D flip-flop.

Experiment 4

a.

N o TS Y VI Y VO T 8 T)

ol o
[Ry

14

[PR o R e

[S o R S T G o R S G oS o]
oo =] foWn

(Y sl

rtimescale 1l ns f 100 ps

module modCount (inclk, rst, ud, lead, data, count,

input inclk, rst, ud, load:

input [4:0] data:

cutput reg [4:0] count = 0;

cutput reg [©:0] segmentsl, segments2:;
wire cutclk;

cnehertz U0 {
«clk 50mhz (inclk),
.clk lhz (outclk)
Vi

always B (posedge ocutclk, posedge rst)
kegin
if (st == 1)
count = 0;
else if (load)
count = data:?

else
if (ud = 1)
if (count == 23)
begin
count = 0;
end
else
begin
count = count + 1;
end
else
begin
if (count = 0)
begin
count = 25;
end
else
begin
count = count - 1;
end
end

end

ff T-segment display
always B (count) begin
case (count)

: begin
segmentsl
segmentsid =

end

1 : begin
segmentsl =
Segmentsz =

end

2 : begin
segmentsl =
Segmentsz =

segmentsl, segmentsl):

[/ calls to the onehertz module

f/ dont count if reset

/¢ load input into output

[/ count up

[/ counter is 0 when reached 25

[/ lncrement counter

[/ count down

S/ if there is not count...

f{ counter starts at 25

[/ decrement counter

(A
L Co

LY B T B TR o B P L % I)

LY T N VT o B P L % I]

LA W G [d T

L N Y Y N Y O Y Y Y Y Y S S NS S IS S B NS NS I N e T v T T e T T = T = T = T = T =
[Y e o Y Y ¢ S B

[¥]
ad

94

on

on

end

i begin
gegmentsl =
gegmentsd =

end

i begin
gegmentsl =
gegmentsd =

end

i begin
gegmentsl =
gegmentsd =

end

i begin
gegmentsl =
gegmentsd =

end

i begin
gegmentsl =
gegmentsd =

end

i begin
gegmentsl =
gegmentsd =

end

i begin
gegmentsl =
gegmentsd =

end

: begin
gegmentsl =
gegmentsd =

end

: begin
gegmentsl =
gegmentsd =

end

: begin
gegmentsl =
gegmentsd =

end

: begin
segmentsl =
gegmentsd =

end

: begin
gegmentsl =
gegmentsd =

end

: begin
gegmentsl =
gegmentsd =

end

: begin
gegmentsl =
gegmentsd =

end

I 11id;
'RO0000E 1;
'R1001100;
'RO0000E 1;
'pO100100;
RO0000E 1;

b 100;
RO0000E 1;
'BO0000E 1;
'p1001111;
'p1001111;
'p1001111;
'bO0L0010;
'p1001111;
"ROOOOL10;
'p1001111;
'R1001100;
'p1001111;
'pO100100;
'p1001111;
"RO100000 .
'p1001111;

115

—

—
=

HoEE e e
[T = T Y SN

| T S Y Y o Y o T % Y % % R % %

o e
L
[

=
Ll
i+

&

133
134
135
138
137
138
135
140
141
142
143
144
143
l4g
147
143
145
150
151
152
153
154
155

e e e e

== e
[ra e R = T X

=

[
e e S = T = T = = T = VY O = O Y = T =

=
—

17 & begin
segmental =
segmentsd =

end

12 & begin
segmentsl = T'LRO0CO00OC0;
segments2 = T'L10OC0L111;

end

1% & begin
segmentsl = 7
segmentsd = 7

end

20 % begin
segmentsl = T'LRO0OCOOOL;
segments2 = T'LO0O10010;

end

21 & begin
segmentsl = T'LR1OCL111;
segments2 = T'LO0O10010;

end

22 %+ begin
segmentsl = T 'LRO0OL0O0L1C0;
segments2 = T'LO0O10010;

end

23 % begin
segmentsl = T'LRO0OCOL1C;
segments2 = T'LO0O10010;

end

24 % begin
segmentsl = T'LR1OCL100;
segments2 = T'LO0O10010;

end

i begin
segmentsl = T'LROLCO0OLOC0;
segments2 = T'LO0O10010;

end

2% 1 begin
segmentsl = T 'LROL0000OC0;
segments2 = T'LO0O10010;

end

default:
begin

segmentsl = 7T'kL1111111 :
egmentsd = k1111111 H

(%]
on

I
=
¥

end
endcase
end

endmodule

module onehertz(clk _50mhz, clk lhz):
input clk_50mhz;
output clk_lhz;
reqg clk_lhz;
reg [24:0] count:
always B (posedge clk 50mhz)
bkegin

172 H if {count = 245925%%39) begin

173 count <= 0;
174 Fdumpfile cd™) :
175 clk_lhz <= ~clk_lhz;
76 b end
177 & else begin
75 count <= count + 1;
b end
i end
endmodnle

This is my Verilog code for the 5-bit mod-25 up/down counter including a clock divider
and a 7 segment display.

timescale 1 ns / 100 ps

3 // modCount Testbench
4 module modCount_th;

:0] datatb:
:0] countth;

always
#("FERIOD/Z) clktb = ~clkth;
modCount U0 (
.clk (clktb),
.rst (rstth),
.ud (udth),
.load (loadtb),
.data (datatb),
.count {counttb),
.segmentsl (segl),
.segments? (seg2)
)i

initial begin
stimeformat (-9,
$monitor (™
("PERIOD *
$display (
$finish;
end

", ftime, datatb, rstth, udtb, counttk) ;

task expectedResult (imput [4:0] expected):
if (counttbk == expected)
begin
$display (
&display (

k", countth, expected):;

Ffinish;
end
43 - endtask
44
45 initial

8 B begin
47 @ (posedge clktb)

g { rsttb, loadtb, udtb, datatb } ; B(posedge clktb) expectedBesult (°
49 { rattk, lcadtb, udtbk, datatb } ; @(posedge clktb) expectedResult (
50 { rstth, lcadtb, udth, datatb } ; B{posedge clkthb) expectedResult (
51 { rsttb, loadtb, udtb, datatb } @ (posedge clktb) expectedResult (

{ rstth, lcadtb, udth, datatb } @ {posedge clktk) expectedResult (
{ rsttb, loadtb, udtb, datatb } ; B{posedge clktb) expectedResult (
{ rstth, loadtb, udth, datath } ; B{posedge clktb) expectedResult (
{ rsttb, loadtb, udtb, datatb } ; B{posedge clktb) expectedResult (
{ rsttb, loadtb, udtk, datatb } : B{posedge clkthb) expectedResult (
{ rsttb, loadtb, udtb, datatb } ; B(posedge clktb) expectedBesult (©
{ rsttb, lecadth, udtk, datatbh } = 0; @(posedge clktb) expectedResult (
{ rattb, locadtb, udck, datatb } 0: @(posedge clktb) expectedResult (
{ rsttb, lecadth, udtk, datatbh } = ; B(posedge clkthb) expectedResult (
gdisplay ("‘*¢4Test
$finish;

- end

endmodule

65 |

This is my Verilog code for the 5-bit mod-25 up/down counter testbench.

C.

% DVE - TopLevel.2 - [Wave.1] /home/batuj1/.../lab4/modCount/simv@csimeluster.ee.unlv.edu - [m)

B2 File Edit ¥iew Simulator Signal Scope Trace Window Help =18l
I 2 ioops - |[[28 | ga HealepEga(s sl |Eern-O-a-mam-||£3[nwen o e Naa@alnle sl |

I+] CORBHBRDEOF S k- EEEANE

ﬂmﬂﬁﬂ;

ame |Va|ue

- Groupl
LD clkt st |ff
LoD st str (|

10 Ioacty St
b 0 udth Y
4. countthl:0]

Mew Group

These are my VCS waveforms for the 5-bit mod-25 up/down counter.

|Iype:|3l3 'I Severity: |22 - Qude:|.ﬁ.ll j 4 b

Chronologic VC5 =imulator copuyright 1991-2017

Contains Synopsys proprietary information,

Compiler verzion M-2017,12-5P2-14: Runtime wersion H-2017,12-SP2-14: Sep 26 16127 2021
VCO+ Writer M-2017,12-5P2-14 Copyright (o) 1991-2017 by Synopsys Inc,

The file '‘horedbhatuils Fall2021/ 1labd /mocdCount f inter, vpd' was opened successfully,
time= 0, 0N datath = waoe retth = 1 udth = = counttlh = Q0000
time= 10, 0ns datath = 00111 retth = 0 udth = 1 counttlh = 00111
time= 20,0ns datath = 10101 retth = 0 udth = 1 countth = 01000
time= 30, 0ns datath = 01010 retth = 0 udth = 1 countth = 01001
time= d0,0ns datath = Q0000 retth = 0 udth = 1 countth = 01010
time= 50, Ons datath = 01010 retth = 0 udth = 1 countth = 01011
time= B, Ons datath = 11001 retth = 0 udth = 0 countth = 01010
time= 0, 0ns datath = 11111 retth = 0 udth = 0 countth = 01001
time= a0, 0ns datath = 01010 retth = 0 udth = 0 counttlh = 01010
time= a0, Ons datath = 01010 retth = 0 udth = 0 countth = 01001
time= 100,0ns datath = Q01011 retth = 0 udth = 0 countth = 01000
time= 110,0n= datath = 01000 retth = 0 udth = 1 counttlh = 01001
time= 120,0n= datath = 01010 retth = 1 udth = 0 countth = 00000
time= 130,0n= datath = 10101 retth = 1 udth = 1 counttlh = Q0000
#xxxxTezt PASSED®=s=s

This is my VCS console for the 5-bit mod-25 up/down counter.

dataf4..0] >

Decoderd

Equalt

IN.E] QUT[31.0)

countl4. 0]~regd l |—Dsegmentsﬂ[5.ﬂ]
DECODER

couni~]14..10]

count-}19.15]

EQUAL

Equal0

EQuaL count~|..0]
Addo

o DuTAB

ADDER
onehertzU0

inclk olk_Somhz o_thz.

Add1

i
smE[s' +

LDDER

rst [
ud [
load [

This is my RTL view for the 5-bit mod-25 up/down counter including a clock divider and
a 7 segment display.

Successful - Sun Sep 26 16:58:40 2021

Quartus II o4-Bit Version 13.0.1 Build 232 06/12/2013 5P 1 51 Web Edition

Revision Name modCount

Top-evel Entity Mame modCount

Family Cydone II

Device EP2C35F672CH

Timing Models Final

Total logic elements a5 ,/33,216 (< 1%)
Total combinational functions a5 /33,216 (< 1%)
Dedicated logic registers 31/33,216(=<1%)

Total registers 31

Total pins 28 /475(6 %)

Total virtual pins 0

Total memory bits 0/483,840(0 %)

Embedded Multiplier 9-bit elements O/70(0%)

Total PLLs 0/4(0%)

This is my compilation report of the total utilization, combinational ALUTs, and dedicated
logic registers for the 5-bit mod-25 up/down counter including a clock divider and a 7
segment display.

https://drive.google.com/file/d/1hoacqdml03irNyLIvXWIphvINSHSimaPM/view?usp=sh

aring
This is the link to my video delivery of 4(b). The video will also be included within the

batujl_postlab 4.zip file.

|—D:egment52[5 0]

>Cuum[4. 0]

https://drive.google.com/file/d/1hoacqdml03irNyL9vXW9phvNSH5imaPM/view?usp=sharing
https://drive.google.com/file/d/1hoacqdml03irNyL9vXW9phvNSH5imaPM/view?usp=sharing

4. Answers to questions
Question 1:

Regarding Logic Utilization from the Quartus Compilation Report, the ALUT is utilized
to show half-ALMS (half-adaptive logic modules). Halt-ALMS are half-adaptive logic modules,
meaning that the ALUT has 2 combinational logic look up tables (LUTs) and 2 registers
becoming one total adaptive look up table (ALUT). ALUTs show the actual number of partial or
final half-ALMs in the design after it is placed. In general, the ALUT reveals the combinational
logic needed for each register or flip-flop to form. The Dedicated Logic Registers are the two
registers within the ALM. The ALM is the essential building block of supported device families
and is made to maximize the performance of registers as well as resource usage. Each adaptive
logic module can hold up to 8 inputs and 8 outputs. The reason for the ALM is to show the logic
registers used to complete the total logic elements within the Verilog code design.

Clock-gating is when the clock is directed to each flip-flop within the design to reveal
that each flip-flop is clocked continuously rather than individually. The purpose of clock-gating
is to reduce unnecessary clocking to each register; thus, registers do not need to be clocked if the
input data does not change. Clock-gating is inserted in two ways: local clock-gating and global
clock-gating. Local clock-gating has the logic synthesizer find and utilize local gating
opportunities and the RTL code would have the clock-gating cell instantiated within it. Global
clock-gating specifically specifies the clock gating within the RTL code and follows the local
clock-gating where the clock-gating cell is instantiated within it. Overall, clock-gating saves
unnecessary clocking to each register by continuous clocking rather than individual clocks
assigned to each individual register.

Question 3

The key difference between tasks and functions is that a function is to return a single
value in regards to processing the input; whereas, a task can return multiple values and return
these values using the output arguments. Tasks can also contain timing simulations where
functions cannot utilize any timing. Tasks and functions are used when an operation is
continuously repeated throughout the Verilog code. Instead of rewriting that same code, the task
or function operation can be used. This reduces copy and paste errors and permits faster
development time as well as making a code cleaner and easier to read.

5. Conclusions & Summary

This lab was one of the easier labs, and I was able to go more in depth with my
knowledge of flip-flops and registers. In the CPE 200 lab, I had a hard time implementing the
clock within my code; therefore, the provided clock divider definitely helped for the 4th
experiment. The main issues within this lab occurred with experiment 4. When I originally
coded my design, I did not take into account the clock behaving differently than my own
interpretation of it; therefore, I used the clock divider. Although I had already completed the
testbench, VCS console, and the VCS waveforms of my code, the clock divider gave several
issues within my assignment. Without the clock divider, I would not be able to properly output
my code into the DE2 board and make it properly output. I hope this issue does not continue into
more labs, and I will be able to fix it for the future.

