
UNIVERSITY OF NEVADA LAS VEGAS. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING LABORATORIES.

Class: CPE300L Semester: Fall 2021

Points Document author: Jerrod Batu
Author's email: batuj1@unlv.nevada.edu

Document topic: Postlab 4
Instructor's comments:

1. Introduction / Theory of Operation
Throughout this lab, I will continue Verilog review by learning more about latches and flip-flops,
synchronous and asynchronous operations, and asynchronous system design. Some of these
latches and flip-flops would include a gated D latch with asynchronous Set’ and Clear’, JK
flip-flop with synchronous clear, D flip flop with asynchronous low clear, etc.

1. A D flip-flop is a digital electronic circuit that delays output state change until its next
rising edge where an input would be called upon. Specifically, the D flip-flop behaves
similar to memory as the output will stay constant until it is altered from the D input at
the rising clock edge. They are, in fact, utilized as building block shift registers that can
store clock cycles. A JK flip-flop, in general, is a gated S-R latch with the AND and
NOR gates replaced as NAND gates. JK flip-flops are the most used flip-flop designs
because they are very universal. The two inputs “J” and “K” are named after the inventor
Jack Kilby. The JK flip-flop acts only at a rising clock edge, and the output would toggle
from state to state. When J and K are both low, the output is retained and no changes
would occur.

2. Waveforms are used to check the correctness of a circuit by comparing inputs to the
outputs in a “form of a wave”; therefore, the inputs would be clocked at a specific time
period that the output would follow based on the combinational logic of the electronic
circuit. Waveforms would not be ideal for a large number of inputs as this would become
a long and tedious process. Testbenches enhances this process by comparing the user’s
Verilog code to its expected output; hence, comparing a large number of inputs and
outputs would allow the user to efficiently check the correctness of a circuit.

2. Prelab

https://docs.google.com/document/d/18KNm2l3hURA8lTZ1jOOj9OqBpmHYE14P/edit?usp=sh
aring&ouid=102808507017671072128&rtpof=true&sd=true
This is the link to my prelab 4 submission.

https://docs.google.com/document/d/18KNm2l3hURA8lTZ1jOOj9OqBpmHYE14P/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true
https://docs.google.com/document/d/18KNm2l3hURA8lTZ1jOOj9OqBpmHYE14P/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true


3. Results of Experiments

Experiment 1
a.

This is the Verilog code for a D flip flop with asynchronous low clear and complementary
output.

This is the RTL view for my D flip flop with asynchronous low clear and complementary
output.



Experiment 2
a.

This is the Verilog code for instantiating the DFF from experiment 1 into a 4-bit register
which uses D flip-flops.



b.

This is the Verilog code for the 4-bit register which uses D flip-flops testbench.



c.

These are my VCS waveforms for the 4-bit DFF register. The blocks of red indicate
delay or if the output is a “don’t care (X) value”.

d.

This is my VCS simulation console for the 4-bit DFF register.



Experiment 3
a.

This is my behavioral Verilog code for instantiating the DFF from experiment 1 into a
4-bit register which uses D flip-flops.

b.

This is the RTL View of the structural 4-bit DFF register.



This is the RTL View of the behavioral 4-bit DFF register.

c.
From the RTL view of both behavioral and structural, both are quite similar in the lower
hierarchy. For example, by clicking on each “green” block of the structural RTL view,
the instantiation of the DFF is the same as the behavioral RTL view. The reason for the
“green” blocks for the structural RTL view is due to the instantiation of the DFF module.
Since there is no instantiation for the behavioral model, the D flip-flops can easily be
seen in the behavioral view because the 4 bits are designated to each individual D
flip-flop within the code. The “green” blocks of the structural code simply just show
instantiation of another module; whereas, the behavioral code would show the 4 bits
spread to each D flip-flop.



Experiment 4
a.







This is my Verilog code for the 5-bit mod-25 up/down counter including a clock divider
and a 7 segment display.

b.

This is my Verilog code for the 5-bit mod-25 up/down counter testbench.



c.

These are my VCS waveforms for the 5-bit mod-25 up/down counter.

This is my VCS console for the 5-bit mod-25 up/down counter.



d.

This is my RTL view for the 5-bit mod-25 up/down counter including a clock divider and
a 7 segment display.

e.

This is my compilation report of the total utilization, combinational ALUTs, and dedicated
logic registers for the 5-bit mod-25 up/down counter including a clock divider and a 7
segment display.

f. https://drive.google.com/file/d/1hoacqdml03irNyL9vXW9phvNSH5imaPM/view?usp=sh
aring
This is the link to my video delivery of 4(b). The video will also be included within the
batuj1_postlab_4.zip file.

https://drive.google.com/file/d/1hoacqdml03irNyL9vXW9phvNSH5imaPM/view?usp=sharing
https://drive.google.com/file/d/1hoacqdml03irNyL9vXW9phvNSH5imaPM/view?usp=sharing


4. Answers to questions
Question 1:

Regarding Logic Utilization from the Quartus Compilation Report, the ALUT is utilized
to show half-ALMS (half-adaptive logic modules). Half-ALMS are half-adaptive logic modules,
meaning that the ALUT has 2 combinational logic look up tables (LUTs) and 2 registers
becoming one total adaptive look up table (ALUT). ALUTs show the actual number of partial or
final half-ALMs in the design after it is placed. In general, the ALUT reveals the combinational
logic needed for each register or flip-flop to form. The Dedicated Logic Registers are the two
registers within the ALM. The ALM is the essential building block of supported device families
and is made to maximize the performance of registers as well as resource usage. Each adaptive
logic module can hold up to 8 inputs and 8 outputs. The reason for the ALM is to show the logic
registers used to complete the total logic elements within the Verilog code design.

Question 2:
Clock-gating is when the clock is directed to each flip-flop within the design to reveal

that each flip-flop is clocked continuously rather than individually. The purpose of clock-gating
is to reduce unnecessary clocking to each register; thus, registers do not need to be clocked if the
input data does not change. Clock-gating is inserted in two ways: local clock-gating and global
clock-gating. Local clock-gating has the logic synthesizer find and utilize local gating
opportunities and the RTL code would have the clock-gating cell instantiated within it. Global
clock-gating specifically specifies the clock gating within the RTL code and follows the local
clock-gating where the clock-gating cell is instantiated within it. Overall, clock-gating saves
unnecessary clocking to each register by continuous clocking rather than individual clocks
assigned to each individual register.

Question 3
The key difference between tasks and functions is that a function is to return a single

value in regards to processing the input; whereas, a task can return multiple values and return
these values using the output arguments. Tasks can also contain timing simulations where
functions cannot utilize any timing. Tasks and functions are used when an operation is
continuously repeated throughout the Verilog code. Instead of rewriting that same code, the task
or function operation can be used. This reduces copy and paste errors and permits faster
development time as well as making a code cleaner and easier to read.

5. Conclusions & Summary
This lab was one of the easier labs, and I was able to go more in depth with my

knowledge of flip-flops and registers. In the CPE 200 lab, I had a hard time implementing the
clock within my code; therefore, the provided clock divider definitely helped for the 4th
experiment. The main issues within this lab occurred with experiment 4. When I originally
coded my design, I did not take into account the clock behaving differently than my own
interpretation of it; therefore, I used the clock divider. Although I had already completed the
testbench, VCS console, and the VCS waveforms of my code, the clock divider gave several
issues within my assignment. Without the clock divider, I would not be able to properly output
my code into the DE2 board and make it properly output. I hope this issue does not continue into
more labs, and I will be able to fix it for the future.


