
UNIVERSITY OF NEVADA LAS VEGAS. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING LABORATORIES.

Class: CPE300L Semester: Fall 2021

Points Document author: Jerrod Batu
Author's email: batuj1@unlv.nevada.edu

Document topic: Postlab 3
Instructor's comments:

1. Introduction / Theory of Operation
Throughout this lab, I will learn about Quartus, VCS, and continue my knowledge of Verilog
HDL. Specifically, I will have a better understanding of VCS for testbenches and combinational
circuit designs. This lab will include a 7-segment in Verilog, magnitude comparators, ripple
adder, and simple ALUS.

1. Megafunction in Quartus are ready-made, pre-tested practical blocks of code that expand
existing design procedures. They decrease design assignments, extremely shorten tasks,
and allow designers to optimize their time and energy on improving their system-level
items and existing intellectual properties. Altera provides a library of megafunctions
necessary to design more efficient logic synthesis and device applications.

2. The MegaWizard Plug-In Manager, provides several applications of custom
megafunction variations to include in a design file. The main goal of these applications is
to lessen the amount of instructions when instantiating specific functions. Some of these
applications include: altfp_abs, altfp_add_sub, lpm_divide, lpm_and, lpm_or, etc.
altfp_abs: floating-point absolute value megafunction
altfp_add_sub: floating-point adder/subtractor megafunction
lpm_divide: parameterized divider megafunction
lpm_and: parameterized AND gate megafunction
lpm_or: parameterized OR gate megafunction

2. Prelab

https://docs.google.com/document/d/10xN_bbupBwU2bnhr079n2DhvzONp04eo/edit?us
p=sharing&ouid=102808507017671072128&rtpof=true&sd=true

This is the link to my prelab 3.

https://docs.google.com/document/d/10xN_bbupBwU2bnhr079n2DhvzONp04eo/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true
https://docs.google.com/document/d/10xN_bbupBwU2bnhr079n2DhvzONp04eo/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true

3. Results of Experiments
Experiment 1

a.

This is my Verilog code for a 7-segment display.

b.

This is my DE2 board
showing the 7-segment
display of “0” when the data
input is 0000.

This is my DE2 board
showing the
7-segment display of
“7” when the data
input is 0111.

This is my DE2 board
showing the
7-segment display of
“C” when the data
input is 1100.

This is my DE2 board
showing the
7-segment display of
“F” when the data
input is 1111.

Experiment 2
a.

This is my Verilog code for the magnitude comparator testbench from prelab 3.

b.

These are my VCS waveforms for the magnitude comparator testbench. The red
waveforms represent the beginning delays at the start of the code.

This is the console output from VCS including the time, inputs, and results of the
magnitude comparator testbench.

c.

This is the DE2 board implementation of the magnitude comparator when a > b as a = 1
and b = 0.

This is the DE2 board implementation of the magnitude comparator when a < b as a = 0
and b = 1.

This is the DE2 board implementation of the magnitude comparator when a = b as a = 1
and b = 1.

This is the DE2 board implementation of the magnitude comparator when a = b as a = 0
and b = 0.

Experiment 3
a.

This is my Verilog code for implementing a Full Adder module into a 4-bit Ripple Carry
Adder including the 7-segment output display.

b.

This is my Verilog code for the 4-bit Ripple Carry Adder testbench including the 7-segment
output display.

c.

These are my waveforms from VCS that display the inputs and outputs of the 4-bit Ripple Carry
Adder testbench including the 7-segment output display. The blocks of red lines indicate delay.

This is my console output from VCS that displays the time for the test to finish, the inputs, and
the outputs for the 4-bit Ripple Carry Adder testbench including the 7-segment output display.

d.

This is my DE2 board with the implementation of the 4-bit RCA displaying the output of
3 + 5 (0011 + 0101 = 1000 and no Cout). The 7-segment display shows the addition to
be “8”, and the LEDs will follow the output of 1000.

This is my DE2 board with the implementation of the 4-bit RCA displaying the output of
8 + 7 (1000 + 0111 = 1111 and no Cout). The 7-segment display shows the addition to be
“F”, and the LEDs will follow the output of 1111.

This is my DE2 board with the implementation of the 4-bit RCA displaying the output of
15 + 1 (1111 + 0001 = 0000 and 1 Cout). The 7-segment display shows the addition to be
“0” because the addition goes out of the bit range, and the LEDs will follow the output of
0000 with LEDR5 as the Cout.

This is my DE2 board with the implementation of the 4-bit RCA displaying the output of
11 + 11 (1011 + 1011 = 0110 and 1 Cout). The 7-segment display shows the addition to
be “6” because the addition goes out of the bit range, and the LEDs will follow the output
of 0110 with LEDR5 as the Cout.

Experiment 4
a.

This is my Verilog code for implementing a 4-bit ALU module including the 7-segment
output display.

b.

This is my Verilog code for the 4-bit ALU module testbench including the 7-segment output
display.

c.

These are my waveforms from VCS that display the inputs and outputs of the 4-bit ALU
testbench including the 7-segment output display. The blocks of red lines indicate delay.

This is my console output from VCS that displays the time for the test to finish, the inputs, and
the outputs for the 4-bit ALU testbench including the 7-segment output display.

d.
https://drive.google.com/file/d/1ukPazOBCfBhTPD_-QSV45y_pNUsIS62B/view?
usp=sharing
This is a link to my video displaying the opcode from the table for the 4-bit ALU.
The video will also be included within the submission zip file.

4. Answers to questions
Question 1: What is an unintentional latch in a Verilog Design? Is it a good or bad design
practice?
An unintentional latch in a Verilog Design is when the user inserts a latch in place of where
combinational logic can be found. An example of this is when the user takes out the default case
within a case statement. Instead of a multiplexer being formed, a latch would take its place
because the net is not assigned to any known values. These unintentional latches may also occur
from any missing signals within the sensitivity list. Unintentional latches are also called
unintended latches or inferred latches. These unintentional latches are considered as bad design
practice as the user is unintentionally creating these latches. By accidentally making these
latches, the original design is altered; therefore, the user would need to go back into the Verilog
code and rewrite it to where the combinational logic would form multiplexers.

Question 2: Why do we need a testbench? Is the waveform simulation not good enough?
We need a testbench to verify the functionality of a design and to report the inputs and outputs in
a readable format within the console. The waveform simulation is only good enough in specific
circumstances. By using a testbench, the user can check a large number of signals rather than by
manually inputting them into the waveform simulation. In addition, the testbench, itself, can
generate a periodic clock signal, acquire signal waveforms, and create a simulation report.
Forcing inputs within a waveform simulation may be time consuming when there are multiple
signals; hence, the testbench would make verification of functionality much quicker.

Question 3: Explain the differences between $monitor and $display.
$monitor and $display have several differences. $monitor is a computing program for editing
and viewing, whereas $display is a screen that only shows graphics or text. $display and $write
both display arguments in the order that they are laid out within the argument list. The key
difference between the two is that $display is used when values are to be printed to the console,
and $monitor is to be called only one time to print the value of a variable whenever it is to be
altered. $monitor is utilized to monitor signals when values change throughout the compilation
of the Verilog code, and $display is utilized every time to print values or display the immediate
values of signals.

5. Conclusions & Summary
This lab was pretty straightforward as the lab instructions were somewhat clear. The only parts I
did have confusion was for experiment 2 where the instructions said to create a Magnitude
Comparator from prelab 2; however, this was a typo instead of prelab 2 it should’ve been prelab
3. The ripple adder was a great review because I remember doing a similar lab in CPE 200 L.

https://drive.google.com/file/d/1ukPazOBCfBhTPD_-QSV45y_pNUsIS62B/view?usp=sharing
https://drive.google.com/file/d/1ukPazOBCfBhTPD_-QSV45y_pNUsIS62B/view?usp=sharing

Experiment 1 seemed to have been carried over from CPE 200 L as the 7-segment display
module is somewhat identical to the one in the previous class. Experiment 4 would probably be
the most challenging as the 4-bit ALU implementation involved if statements within cases to
include the cout within the outputs. I enjoyed reading upon testbenches as they were my struggle
in the CPE 200 L class, and I am more comfortable with writing testbenches now than I was
before. In addition, the hardest part of this lab was filming the video for the 4-bit ALU
operations because the video took up a lot of data. Overall, I enjoyed this lab, and my
knowledge of testbenches has increased as well as the implementation of our Verilog code into
the DE2 board.

