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1. Introduction / Theory of Operation

Throughout this lab, I will learn about Quartus, VCS, and continue my knowledge of Verilog
HDL. This includes a review on continuous assignments, primitives, conditional operators,
delays, Verilog value types, number representations, vectors, and Verilog operators.

a.

Primitive, in Verilog, is using gate operations in a more simple term by naming the
specific gate and having the outputs on the left of the port list and inputs on the right of
the port list. This makes instantiating easier as the built in component library would
already assign the inputs to the output values rather than using the “assign” statement.
One of the reasons why primitives could be used is to shorten a module as assigning
continuous assignments with gates would sometimes be repetitive.

Structural model, in Verilog, is the assembly of modules that model basic components
like digital gates and adders. A structural model would also introduce the hierarchy of
how the inputs and outputs get carried out throughout various gates. Structural models
are also digital schematic representations that allow the user to see how the inputs and
outputs are propagated from the Verilog code.

Dataflow, in verilog, describes the flow of information (inputs and outputs). This is used
for combinational circuits and gates as users would see how their Verilog code
corresponds to various logical combinations. Dataflow could be viewed and interpreted
through testbenches, waveforms, etc. This leads continuous assignments to be modelled
through continuous signal flows from input changes to output changes.



2. Prelab

1.
This is my schematic/drawing for “module f1” showing all signals and wires.
2.
a.
1 module boolean (v, a, b, c):
2 output ¥y;
3 input a, b, c:
4 assign vy = (a &% (b + c)) + (b &5 'c) + a;
5 endmodule
6 |
7
This is my Verilog code for the boolean expression: “a(b+c) + bc’ + a” in normal Verilog
style.
b.
1 module an=zi (output v, input a,b,c):
2 assign vy = (a &5 (b + c)) + (b &5 'c) + a;
3 endmoduale
4
s |
This is my Verilog code for the boolean expression: “a(b+c) + bc’ + a” in ANSI-C style.
3.

hﬂdule fourand (v, a, b, c, d):
output v:
input a, b, c, d4d:
and (v, a, b, c, d):
endmodule
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This is my Verilog code for a four input AND gate using gate primitive.



3. Results of Experiments
Experiment 1
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These are my waveforms for the Normal Verilog style of the Boolean expression:
a(b+c)tbc’+a.
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These are my waveforms for the ANSI-C style of the Boolean expression: a(b+c)+bc’+a .
Ideally, it’s the same waveform as Normal Verilog style.
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This is my DE2 board displaying the output of the ANSI-C style Boolean expression:
a(b+c)tbc’+a . The output is 1 when a,b, and c are all 1.



FLASH 4MB

~—RNT_ ANE_ RN25
=== p—

LEDRI LEDR2 LEDR1 LEDRO LEDGT LEDGE LEDGS™ LEDGA LEDG3
P F % F Y F
— - L ~

E o ™
7 p———— e

—_—

y

This is my DE2 board displaying the output of the ANSI-C style Boolean expression:
a(b+c)t+bc’+a . The output is 0 when a and c are 1 but b is 0.

Experiment 2

a.
1 module gateprim (a,b,out):
2 input a;
3 input b;
4 output out;
5 wire aBar,bBar,tl,t2;
3
7 Sf gate primitives
8 not (aBar,a);
9 not (bBar,b):
10 and (tl,a,bBar);
11 and (tZ,b,aBar);
12 or (out,tl,t2):
1LE endmodule
14 |

This is my Verilog code for the provided schematic using gate primitives.
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These are my waveforms for the gate primitive Verilog code.
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This is my DE2 board displaying the output of the gate primitive Verilog code . The
outputis 1 whenais 1 and b is 0.

/
SPANSION®
b

LEDGT LEDGE LEDGS LEDG4 —EEUG3

EEEB@

This is my DE2 board displaying the output of the gate primitive Verilog code . The
output is O when ais 1 and b is 1.



Experiment 3
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These are my waveforms for a 2-to-1 MUX using continuous assignments.
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These are my waveforms for a 2-to-1 MUX using the conditional operator.
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These are my waveforms for a 2-to-1 MUX with 8-bit inputs and 8-bit outputs.
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a.

1 module muxZ 1 (a,kb,sel,out,outkar);

= input a,b,sel;

3 output out,outbar;

4 wire andl,and2,notl;

=

[ continuous assignment

7 assign andl = a & sel;

8 assign notl = !sel;

9 assign and2 = b &£ notl;
10 assign out = andl | and2:;
11 assign outbar = 'out;

12 endmoduale
13 |

This is my Verilog code for the 2-to-1 MUX using continuous assignments.

b.

1 modiale max2 1 con (a,b,sel,out,cutkar);
2 input a,b,sel;

3 output out,ocutbar;

4

£ conditional operator

6 assign out = sel ? a : b;

7 assign outkbar = lout:

g endmodule

k]

This is my Verilog code for the 2-to-1 MUX using the conditional operator.

C.
1 module muxZ 1 8bit (a,b,sel,out,outbar):
= input [7:0] a,b;
3 input sel;
4 output [7:0]1 out,outbar;
5
[ conditional operator
7 assign out = sel ? a : b;
8 assign outkar = !out:
g endmodule
10 |

This is my Verilog code for the 2-to-1 MUX with 8-bit inputs and 8-bit outputs.



1 module muxZ 1 demux (a,b,=sel,out,outkar, aout,boat) ;
2 input [7:0] a,b:

3 input =el:;

4 ocutput [7:0] out,outbhar;

5 ocutput reg [7:0] aout,bout;
6

7 ff conditional operator

8 assign out = sl ? a : b;

L] assign outbar = lout;

10

11 Jf demuax

12 = alwayzs B (out) bkegin

13 = case [3=l)

14 1'k1l: aout = out;

15 1'kO: bout = out;

1& endcase

17 end

18 endmodule

19 |

This is my Verilog code for the 1-to-2 DEMUX using the output of the 2-to-1 MUX.
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This is my DE2 board d1splay1ng the output of the 1-to-2 DEMUX using the output of the
2-to-1 MUX . The output for the 2-to-1 MUX is displayed with the green LEDS;
therefore, when all of the a-inputs are 1 and when sel is 1. The output for the 1-to-2
DEMUX is displayed with red LEDS; therefore, the output is the same as the input to the
2-to-1 MUX.



Experiment 4
a.

This is my D
2-to-1 MUX .
LED; therefore, when all of the b-inputs are 1 and when sel is 1.
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The output (outbar) for the 2-to-1 MUX is displayed with the 1 green
The output for the

1-to-2 DEMUX is displayed with red LEDS; therefore, the output is the same as the input
to the 2-to-1 MUX.
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“timescale 1 ns f 100D ps

module OrGateDelay (a,b,out);

input a,b;
output out;

or #5(out,a,b):

endmodule

This is my Verilog code modeling the OR gate having the 5ns gate delay.
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These are my waveforms for the simulation of the OR gate for the gate input state
changing every 10 ns.



“timescale 1 ns / 100 ps

module OrGateDelay (a,b,out):
input a,b:
output out;

or #5(out,a,b):
endmodule

|
This is my Verilog code modeling the OR gate having the 5ns gate delay.
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These are my waveforms for the simulation of the OR gate for the gate input state
changing every 2 ns.

The difference between the 10 ns delay and the 2 ns delay is quite clear. When the input
changes for every 10ns, the output is simulated with the 5 ns delay; therefore, the
waveforms show that the output is 1 when a and b are 0. Here, the output is revealed to
have the delay at the beginning of the output wave simulation. In contrast, the 2ns delay
reveals the output to consist of only X (the simulator can’t decide the value). There is no
output and there is no 5ns delay shown here. The reason behind this is because the input
signal changes more often than the Sns as the input state changes for every 2 ns. In
conclusion, the OR gate having the 5ns gate delay would only show the output if the
input state changes for 5ns or more.

Experiment 5

a.

module add8bit (a,b,out);
input [7:8] a,b;
output reg [7:8] out;

always @ (*) begin
out = a + b; // 8 bit addition

J/ condition if unsigned overflow occurs
if (((a »>= 4'b10e8) && (b >= 4'bleed)) || (((a '= 4'beeed) || (b != 4'beeOR)) && (out == 4°b@OBA)Y)) begin
out = @;
end
else begin
out = a + b;
end
end
endmodule

This is my Verilog code for implementing 8-bit addition. There is also an if statement
that also includes a situation where there is unsigned overflow.
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This is my VCS waveform for the 8-bit addition. Included in this screenshot are
situations where output would be 0 where unsigned overflow occurs.

4. Answers to questions

Question 1: What is the Verilog preprocessor directive?

The Verilog preprocessor directive is a compile instruction used to run the compilation of a
Verilog code. Some examples of a Verilog preprocessor directive include: “include, “timescale,
‘define, etc. Preprocessor directive will always include a “ * ” mark before the directive
instruction. The directive is effective from when it is stated to when another directive overrides
it. They can be put anywhere within the module; however, it is common to see these directives
utilized outside the module statement.

Question 2: What is the difference between == and === operators?

The == operator is a logical equality operator, and the === operator is a logical case equality
operator. The main difference between the two is that the == operator is used to test for 1s and
0s, otherwise being a result of x; the === operator tests for 1s, Os, z’s, and x’s. For example, a
== b would compare a being equal to b with the result being unknown. In comparison, a ===
would compare a equal to b as well as x and z.

Question 3: Is Verilog case sensitive? If yes, what does it mean?

Verilog HDL is case-sensitive. This means that lowercase and uppercase letters would dictate
which keywords or identifiers are to be used within the module. Keywords, Quartus II primitive
names, gate primitives, etc. must all be lowercase; thuse, a syntax error would occur if they were
to be capitalized. For example, the keyword “module” must only be lowercase. In addition,
constants would be capitalized as such: “parameter EXAMPLE = 0;”. The “EXAMPLE” is
indicated as a constant and the “parameter” would be a keyword.




Question 4: List types of nets in Verilog.

Nets (networks) represent structural connections between hardware entities. These nets do not
hold any values; thus, they can constantly alter throughout the circuit. Some types of nets
include: wire, wor, trior, tri, wand, triand, trireg, etc.

wire / tri: connects input and output ports of a module instantiation to another element

wor / trior: depends on logical “or” of the drivers connected to it

wand / triand: depends on logical “and” of the drivers connected to it

trireg: retains the last value when driven by a tristate

Question 5: Label the structural and behavioral model in experiment 3.

a.
1 module muxZ 1 (a,kb,sel,out,outkar);
= input a,b,sel;
3 output out,outbar;
4 wire andl,and2,notl;
5
[ '/ continuous assignment
7 assign andl = a & sel;
8 assign notl = !sel;
9 assign and2 = b &£ notl;
10 assign out = andl | and2;
11 assign outbar = 'out;
12 endmoduale
13 |
The 2-to-1 MUX using continuous assignments is a behavioral model (describes the
output as a function of inputs).
b.

1 module max2 1 con (a,b,sel,out,outbar);
= input a,b,sel;

3 output out,ocutbar;

4

= / conditional operator

[ assign out = sel 7 a : b;

i) assign outbar = lout;

8 endmodule

9

The 2-to-1 MUX using the conditional operator is a behavioral model (describes the
output as a function of inputs).



1 module mux2 1 8bit (a,b,sel,out,outbar):;
2 input [7:0] a,b:

3 input sel;

4 output [7:0] out,outbar;

5

& f/ conditional operator

7 assign out = sel ? a : b:

8 assign outkar = l'out;

= endmodule

10 |

The 8-bit 2-to-1 MUX is a behavioral model (describes the output as a function of

inputs).
d.
1 module mux2 1 demux (a,k, 3el,out,outkar, aocut,kout) ;
2 input [7:0] a,b:
3 input =sel;
4 output [7:0] out,outbar;
5 output reg [7:0] aout,bout;
g
7 'f conditional operator
8 assign out = sl ? a : b;
S assign outbar = 'out;
10
11 J fdemax
12 = always @ (out) begin
13 = caze (sel)
14 1'kl: aout = out;
15 1'k0: bout = out;
le endcase
17 end
18 endmodule
19 |

The 8-bit 1-to-2 DEMUX connected to an 8-bit 2-to-1 MUX consists of only behavioral
models as lines 8 to 9 describe the output as function of inputs, and lines 12 to 17
describe the function of a circuit by manipulating the variables of the input data types.

Since a structural model describes a module composed of built-in gate primitives and
simpler modules, none of experiment 3 is structural.

5. Conclusions & Summary

This lab was pretty easy until Experiment 3 part d. I solved Experiment 3 part d, by doing some
research on how a demux was built as I’ve never used a demux before. By knowing that the
demux only takes one input and outputs two values, I came to the conclusion that the inputs of
the mux should match the outputs of the demux. In addition, I came across some problems
regarding the delay as I’ve never done delay within a module without using a testbench. The
only time I’ve used delay was to create testbenches; therefore, I solved this issue by watching the
Lab 2 video and asking the TA for assistance. This lab was quite a challenge compared to the
first lab; however, I did learn a lot of new tools that would help me throughout the lab in the
future.7



