
UNIVERSITY OF NEVADA LAS VEGAS. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING LABORATORIES.

Class: CPE300L Semester: Fall 2021

Points Document author: Jerrod Batu
Author's email: batuj1@unlv.nevada.edu

Document topic: Postlab 10
Instructor's comments:

1. Introduction / Theory of Operation
In this lab, I will become familiar with designing a complete CPU. This will be done by
implementing and experimenting with single cycle implementation of a limited subset of MIPS
instructions.

a. The soft processor is a processor that can be implemented entirely by using logic
synthesis. In fact, most systems utilize a single soft processor, and they are implemented
in FPGA fabric. They can be easily modified and altered to specific needs, features,
customizable instructions, et.c Multiple cores can be used for a soft processor, and one
down side to these processors is the speed of the fabric. Compared to hard processors,
they are several disadvantages to the soft processor. Hard processors can use up to 1GHz
or more speed while soft processors are limited to 250MHz and less. In addition, hard
processors are much faster as they are optimized by not being limited by the fabric speed.
One downside to these hard processors is that they are fixed and cannot be modified.
Also, hard processors are implemented to an integrated circuit, but they are connected to
the FPGA fabric.

b. The main difference between single cycle MIPS processor and multicycle MIPS
processor are within the clock cycles. Although single cycle MIPS processors are simple,
and can be easily integrated, they are inefficient due to all of the instructions having the
same clock cycle length. Basically, the instructions all take the same amount of time
independent from what they actually process. Multicycle MIPS processors are much
faster because the amount of cycles per instruction is not limited by the critical path
delay; therefore, it has a faster clock rate.

2. Prelab
https://docs.google.com/document/d/15eEaIPVXo2YMEBWTmh03Y7VzLegkVnQv/edit?usp=s
haring&ouid=102808507017671072128&rtpof=true&sd=true
This is the link to my prelab 10.

https://docs.google.com/document/d/15eEaIPVXo2YMEBWTmh03Y7VzLegkVnQv/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true
https://docs.google.com/document/d/15eEaIPVXo2YMEBWTmh03Y7VzLegkVnQv/edit?usp=sharing&ouid=102808507017671072128&rtpof=true&sd=true

3. Results of Experiments
Experiment 1

module jal (input clk, reset,output [31:0] writedata, dataadr,output memwrite,output [6:0] seg1,seg2); //
seg1 and seg2 added for 7seg display

wire [31:0] pc, instr, readdata;

// instantiate processor and memories
mips mips (clk, reset, pc, instr, memwrite, dataadr,

writedata, readdata);
imem imem (pc[7:2], instr);
dmem dmem (clk, memwrite, dataadr, writedata,readdata);
seg7 display (pc[7:0], seg1, seg2);

// 7 seg display instantiation
endmodule

module mips (input clk, reset,
output [31:0] pc,
input [31:0] instr,
output memwrite,
output [31:0] aluout, writedata,
input [31:0] readdata);

wire memtoreg, branch, alusrc, regdst, regwrite, jr, jump, ori, lui, jal, zero, pcsrc;
//ori and jr and lui and jal wire added
wire [2:0] alucontrol;

controller c(instr[31:26], instr[5:0], zero,memtoreg, memwrite, pcsrc,
alusrc, regdst, regwrite, jr, jump, ori, lui, jal, alucontrol);

// ori and jr and lui and jal wire added to controller
datapath dp(clk, reset, memtoreg, pcsrc,

alusrc, regdst, regwrite, jr, jump, ori, lui, jal,
// ori and jr and lui and jal wire added to DP

alucontrol,
zero, pc, instr,
aluout, writedata, readdata);

endmodule

module imem (input [5:0] a, output [31:0] rd);

reg [31:0] RAM[63:0]; // limited memory

initial

begin
$readmemh ("memfile.dat",RAM);

end
assign rd = RAM[a]; // word aligned

endmodule

module dmem (input clk, we,
input [31:0] a, wd,
output [31:0] rd);

reg [31:0] RAM[63:0];

assign rd = RAM[a[31:2]]; // word aligned
always @ (posedge clk)

if (we)
RAM[a[31:2]] <= wd;

endmodule

module controller (input [5:0] op, funct,
input zero,
output memtoreg, memwrite,
output pcsrc, alusrc,
output regdst, regwrite,
output jr, jump, ori, lui, jal,

// ori and jr and lui and jal signal added to controller
output [2:0] alucontrol);

wire [1:0] aluop;
wire branch;

maindec md(op, funct, memtoreg, memwrite, branch,
// funct port added to main decoder

alusrc, regdst, regwrite, jr, jump, ori, lui, jal,
// ori and jr and lui and jal signal added to list of ports for main decoder

aluop);
aludec ad (funct, aluop, alucontrol);
assign pcsrc = branch & zero;

endmodule

module datapath (input clk, reset,
input memtoreg, pcsrc,
input alusrc, regdst,
input regwrite, jr, jump, ori, lui, jal,

// ori and jr and lui and jal signal added

input [2:0] alucontrol,
output zero,
output [31:0] pc,
input [31:0] instr,
output [31:0] aluout, writedata,
input [31:0] readdata);

wire [4:0] writereg, raout;
// ramux output added

wire [31:0] pcnext, pcnextbr, pcplus4, pcbranch, pcnextjr;
// pcnextjr wire added

wire [31:0] signimm, signimmsh, zeroimm, ezimm;
// zero immediate and extend zero wire added

wire [31:0] srca, srcb;
wire [31:0] result, zeout, ezout, jalout;

// zero extend mux and extend zero and jal mux output wire added

// next PC logic
flopr #(32) pcreg(clk, reset, pcnext, pc);
adder pcadd1 (pc, 32'b100, pcplus4);
sl2 immsh(signimm, signimmsh);
adder pcadd2(pcplus4, signimmsh, pcbranch);
mux2 #(32) pcbrmux(pcplus4, pcbranch, pcsrc, pcnextjr);

// pcbrmux output is now pcnextjr
mux2 #(32) pcjrmux (pcnextjr, srca, jr, pcnextbr);

// pcjrmux added
mux2 #(32) pcmux(pcnextbr, {pcplus4[31:28], instr[25:0], 2'b00},jump, pcnext);

// register file logic
regfile rf(clk, regwrite, instr[25:21],
instr[20:16], raout, jalout, srca, writedata);

// change result input to extend zero mux output
mux2 #(5) wrmux(instr[20:16], instr[15:11],regdst, writereg);
mux2 #(5) ramux (writereg,5'b11111, jal, raout);

// ramux to jump to ra register
mux2 #(32) resmux(aluout, readdata, memtoreg, result);
extzero ez(instr[15:0], ezimm);

// extend zero added to DP
signext se(instr[15:0], signimm);
mux2 #(32) ezmux(result,ezimm,lui,ezout);

//extend zero mux added to DP
mux2 #(32) jalmux (ezout, pcplus4, jal, jalout);
zeroext ze(instr[15:0], zeroimm);

// zero extend mux added to DP

// ALU logic
mux2 #(32) zemux (signimm, zeroimm, ori, zeout);

// zero extend mux added to DP
mux2 #(32) srcbmux(writedata, zeout, alusrc, srcb);

// d1 changes to be output of zero extend mux
alu alu(srca, srcb, alucontrol, aluout, zero);

endmodule

module maindec (input [5:0] op, funct, output memtoreg, memwrite, output branch, alusrc,
// funct field added to main decoder

output regdst, regwrite, output jr, jump, ori, lui, jal, output [1:0] aluop);
// ori and jr and lui and jal output signal added

reg [12:0] controls;
// controls register becomes 13-bits because of ori and

jr and jal signal
assign {regwrite, regdst, alusrc, branch, memwrite, memtoreg, jr, jump, ori, lui, jal, aluop} = controls; // ori and

jr and lui and jal output added to list of controls

always @ (*)
case(op)

6'b000000 : begin
//if statement to differentiate between RTYPE

and JR
if (funct == 6'b001000)

controls <= 13'b0000001000010; //JR
//jr control signal added with same op code as Rtyp

else
controls <= 13'b1100000000010; //Rtyp
//now becomes 10-bits wide

end
6'b100011 : controls <= 13'b1010010000000; //LW

//now becomes 10-bits wide
6'b101011 : controls <= 13'b0010100000000; //SW

//now becomes 10-bits wide
6'b000100 : controls <= 13'b0001000000001; //BEQ

//now becomes 10-bits wide
6'b001000 : controls <= 13'b1010000000000; //ADDI

//now becomes 10-bits wide
6'b000010 : controls <= 13'b0000000100000; //J

//now becomes 10-bits wide
6'b001101 : controls <= 13'b1010000010011; //ORI

//ori signal added to controls

6'b001111 : controls <= 13'b1000000001000; //LUI
//lui signal added to controls

6'b000011 : controls <= 13'b1000000100100; //JAL
//jal signal added to controls

default: controls <= 13'bXXXXXXXXXXXXX; //???
//becomes 10-bits wide

endcase
endmodule

module aludec (input [5:0] funct,
input [1:0] aluop,
output reg [2:0] alucontrol);

always @ (*)
case (aluop)

2'b00: alucontrol <= 3'b010; // add
2'b01: alucontrol <= 3'b110; // sub
default: case(funct) // RTYPE

6'b100000: alucontrol <= 3'b010; // ADD
6'b100010: alucontrol <= 3'b110; // SUB
6'b100100: alucontrol <= 3'b000; // AND
6'b100101: alucontrol <= 3'b001; // OR
6'b101010: alucontrol <= 3'b111; // SLT
6'b000100: alucontrol <= 3'b101; // SLLV

//SLLV added to alu decoder
default: alucontrol <= 3'bxxx; // ???

endcase
2'b11: alucontrol <= 3'b001; // ori

//ori control added to alu decoder
endcase

endmodule

module flopr # (parameter WIDTH = 8)
(input clk, reset,
input [WIDTH-1:0] d,
output reg [WIDTH-1:0] q);

always @ (posedge clk, posedge reset)
if (reset) q <= 0;
else q <= d;

endmodule

module adder (input [31:0] a, b, output [31:0] y);

assign y = a + b;
endmodule

module sl2 (input [31:0] a, output [31:0] y);

// shift left by 2
assign y = {a[25:0], 2'b00};

endmodule

module mux2 # (parameter WIDTH = 8)
(input [WIDTH-1:0] d0, d1, input s,
output [WIDTH-1:0] y);

assign y = s ? d1 : d0;
endmodule

module regfile (input clk, input we3,
input [4:0] ra1, ra2, wa3,
input [31:0] wd3,
output [31:0] rd1, rd2);

reg [31:0] rf[31:0];

// three ported register file
// read two ports combinationally
// write third port on rising edge of clock
// register 0 hardwired to 0
always @ (posedge clk)

if (we3) rf[wa3] <= wd3;
assign rd1 = (ra1 != 0) ? rf[ra1] : 0;
assign rd2 = (ra2 != 0) ? rf[ra2] : 0;

endmodule

module signext (input [15:0] a,
output [31:0] y);

assign y = {{16{a[15]}}, a};
endmodule

module zeroext (input [15:0] a,
// zero extend created

output [31:0] y);

assign y = {16'b0000000000000000, a};

endmodule

module extzero (input [15:0] a,
//extend zero circuit added

output [31:0] y);
assign y = {a, 16'b0000000000000000};

endmodule

module alu (a,b,sel, out, zero);
input [31:0] a,b;
input [2:0] sel;
output reg [31:0] out;

output reg zero;

initial
begin

out = 0;
zero =1'b0;

end

always @ (*)
begin

case(sel)
3'b000:

begin
out=a & b;
if (out == 0)

zero = 1;
else

zero = 0;
end

3'b001:
begin

out= a | b;
if (out == 0)

zero = 1;
else

zero = 0;
end

3'b110:
begin

out=a-b;
if (out == 0)

zero = 1;

else
zero = 0;

end
3'b010:

begin
out=a+b;
if (out == 0)

zero = 1;
else

zero = 0;
end

3'b111:
begin

if (a < b)
out = 1;

else
out=0;

end
3'b101:

//add check for left shift
begin

out = b << a;
//shift logic added to ALU

if (out == 0)
zero = 1;

else
zero = 0;

end
endcase

end
endmodule

// 7 Seg Display
module seg7 (out, segments1, segments2);

// seg7 module created
input [7:0] out;
output reg [6:0] segments1, segments2;

always @ (out) begin
case (out)

0 : begin // 0
segments1 = 7'b0000001;
segments2 = 7'b0000001;

end

4 : begin // 4
segments1 = 7'b1001100;
segments2 = 7'b0000001;

end
8 : begin // 8

segments1 = 7'b0000000;
segments2 = 7'b0000001;

end
12 : begin // c

segments1 = 7'b0110001;
segments2 = 7'b0000001;

end
16 : begin // 10

segments1 = 7'b0000001;
segments2 = 7'b1001111;

end
20 : begin // 14

segments1 = 7'b1001100;
segments2 = 7'b1001111;

end
24 : begin // 18

segments1 = 7'b0000000;
segments2 = 7'b1001111;

end
28 : begin // 1c

segments1 = 7'b0110001;
segments2 = 7'b1001111;

end
32 : begin // 20

segments1 = 7'b0000001;
segments2 = 7'b0010010;

end
36 : begin // 24

segments1 = 7'b1001100;
segments2 = 7'b0010010;

end
40 : begin // 28

segments1 = 7'b0000000;
segments2 = 7'b0010010;

end
44 : begin // 2c

segments1 = 7'b0110001;
segments2 = 7'b0010010;

end

48 : begin // 30
segments1 = 7'b0000001;
segments2 = 7'b0000110;

end
52 : begin // 34

segments1 = 7'b1001100;
segments2 = 7'b0000110;

end
56 : begin // 38

segments1 = 7'b0000000;
segments2 = 7'b0000110;

end
60 : begin // 3c

segments1 = 7'b0110001;
segments2 = 7'b0000110;

end
64 : begin // 40

segments1 = 7'b0000001;
segments2 = 7'b1001100;

end
68 : begin // 44

segments1 = 7'b1001100;
segments2 = 7'b1001100;

end
default:

begin
segments1 = 7'b1111111;
segments2 = 7'b1111111;

end
endcase

end
endmodule

This is my verilog code for the JAL instruction added to the single cycle MIPS processor. Along
with the JAL instruction, ORI, JR, SLLV, and LUI instructions are also added as they were done
for homework 9 in the CPE 300 lecture. All of the comments would describe the changes made
to the single cycle MIPS processor.

Experiment 2
a.

20040014
20080004
200c0001
0c100006
01821004
08100008
00881020
03e00008
ad020008

This is my MIPS code that would provide instructions for (a + b) * 2 to be properly
outputted. The two numbers I chose are 20 (0x14) for a and 4 (0x4) for b. The final
result displayed is 48 as (20 + 4) * 2 = 48.

b.

These are my VCS waveforms for the single cycle MIPS processor including the JAL
instruction.

This is my VCS console for the single cycle MIPS processor including the JAL instruction. I
modified the testbench to display the address and its contents in order to get a successful
simulation.

c.
https://drive.google.com/file/d/1XlJFuOLnNe-Wgr99oDKa-gshAbW-2DH8/view?usp=s
haring
This is the link to my video describing the operation of (a + b) * 2 with the DE2
implementation of the single cycle MIPS processor including the JAL instruction.

Experiment 3
a.

20010001
20020001
20030040
20040001
00821004
10620001
08000004
00821006
1022fffc
08000007

This is my MIPS code that would provide instructions for a rotating light to be properly
outputted onto the DE2 board. I utilized the SLLV instruction for the LED light to rotate
to the left, and I created a SRLV instruction for the LED light to rotate to the right. The
one second interval is where a BEQ instruction is used to check to shift left or right
depending on what state the LED is at.

b.
https://drive.google.com/file/d/1XmyXf7R3e-20DHnC6A8Z6JevMc5kaHCh/view?usp=s
haring
This is the link to my video explaining how my single cycle MIPS processor code will
implement MIPS code for a rotating light on the DE2 board.

4. Answers to questions

Question 1:
There are several ways to implement delay for experiment 3. The more instructions placed in
between the branch and jump instructions, the more delay there would be. For example, by
placing 2 addi instructions in between branch and jump that would be a 4 second delay. By
placing 5 addi instructions in between branch and jump, there would be a 10 second delay.
These instructions would not be taken into consideration because they would hold 0 value;
therefore, one of the best methods to implement a 10 second delay would be to include any 0
value instructions that would occur between the branch and jump instructions.

https://drive.google.com/file/d/1XlJFuOLnNe-Wgr99oDKa-gshAbW-2DH8/view?usp=sharing
https://drive.google.com/file/d/1XlJFuOLnNe-Wgr99oDKa-gshAbW-2DH8/view?usp=sharing
https://drive.google.com/file/d/1XmyXf7R3e-20DHnC6A8Z6JevMc5kaHCh/view?usp=sharing
https://drive.google.com/file/d/1XmyXf7R3e-20DHnC6A8Z6JevMc5kaHCh/view?usp=sharing

Question 2:
In single cycle MIPS, the jump instruction goes to a specified address in the program counter
without returning any value. This is similar to a void function in C++ programming language.
In addition, the jump instruction requires one multiplexer that connects to the PC counter. In
comparison, the JAL (jump and link) instruction jumps to a specified address in the program
counter and saves the return address in ra. This is similar to a return function in C++
programming language. JAL in single cycle mips is implemented with a JR mux as well as a
link mux. This is because the JR function will jump to the register and the link function will link
the register with the return address in ra.

5. Conclusions & Summary
This lab was the hardest for CPE 300 L because I am fairly new to single cycle MIPS. I

encountered several issues with experiment one because I did not know how to properly create
JR nor JAL. I got some assistance from the TA, and a few of my classmates on how to approach
experiment one. I realized that the main issue occurred with my datapath as my $ra register was
not properly initialized. At first I had it at 32’b01111, which would not be the proper constant
value for $ra; therefore, my classmate pointed out to change it to 5’b11111 as this is how $ra is
called. In addition, I was having some struggles with experiment two on how to handle the jr
$ra. In order to fix this problem, I had to watch the MIPSII.mp4 video over and over to fully
understand how jr $ra works. Last, experiment three I had some trouble with. I did not know
how to properly rotate the LEDs, and I initially only utilized addi and sub instructions. I figured
out that looping and branching would cause the LEDs to be stuck within a loop to properly rotate
within a one-second interval. In addition, I had to reread what the experiment was asking for
because I originally had the code increment and decrement by one rather than shifting left and
shifting right. In the end, this was the hardest lab of the semester, but I am becoming more and
more familiar with single cycle MIPS processors through practice.

