Signals and Systems I
 Computer Assignment 4

Exercises

For this assignment, use the discrete system described by the difference equation,

$$
y(n)-2 r \cos \left(\omega_{0}\right) y(n-1)+r^{2} y(n-2)=r \sin \left(\omega_{0}\right) x(n-1)
$$

where $x(n)$ is the system's input, $y(n)$ is the system's output and

$$
\omega_{0}=\pi / 7 .
$$

1. Draw a Direct Form I block diagram of the system, and determine the system's impulse response.
2. Determine the values of r for which this system stable?

3 Using a for loop or a while loop, write a program that implement your Direct Form I block diagram. Using this program, calculate the first 51 outputs of the system's impulse response when
i) $r=0.99$
ii) $r=1$
iii) $r=1.01$.

Plot the input and the outputs using the stem, title and subplot functions. (You should generate 4 plots on 1 page.) Compare ($\mathbf{m a x}(\mathbf{a b s}($ difference $))$) your results with your result in Exercise 1.
4. Using your program, calculate the first 51 outputs of the system's zero input response (ZIR) when the system's initial conditions are $y(-1)=-r^{-1} \sin \left(\omega_{0}\right), y(-2)=-r^{-2} \sin \left(2 \omega_{0}\right)$ and
i) $r=0.99$
ii) $r=1$
iii) $r=1.01$.

Plot the outputs using the stem, title and subplot functions. (You should generate 3 plots on 1 page.)
5. Using your program, calculate the first 51 outputs of the system's impulse response when the system's initial conditions are $y(-1)=-r^{-1} \sin \left(\omega_{0}\right), y(-2)=-r^{-2} \sin \left(2 \omega_{0}\right)$ and
i) $\quad r=0.99$
ii) $r=1$
iii) $r=1.01$.

Plot the input and the outputs using the stem, title and subplot functions. (You should generate 4 plots on 1 page.)
6. Add your results from Exercises 3 and 4 and compare them to your results in Exercise 5. Comment on your comparison.

