Digital Security Lock System

Chris Barr Jett Guerrero

Function

e A security lock that requires a password code to unlock a system. The locking
system has a digital lock display to indicate the current condition, locked or
unlocked. The password code is resettable if one decides to change it.

Operation Process

e Passcode is to be entered using four switches on the DE2 board.

e The passcode values (0 or 1) is displayed on the seven segment display.

e After the password code is entered, the right most push button must be pressed to unlock the
system.

e If password is valid, the digital lock opens and turns green. If invalid, the lock remains red and
locked.

e If one wishes to change the passcode, one must first enter the valid password then switch on
the left most switch to enter a new passcode. In this mode, digital lock turns yellow.

I8 Y I Y Y

gl e A o

e "

Implementation

e VHDL language
o Sequential code using two onboard clocks (25MHz & 50MHz) followed by pin-map.
® Switches & Push Button

o When switch is switched to high(1), the value is stored as a current password code
o If-else statements to check if entered password matches the current password

Implementation

e Lock Logic

if (enter_key = '0') then
if (lock_status = 'l' and reset _code = 'l') then --
current_code <= code_in;

else
if (code_in = current_code) then
lock status <= 'l';

else
lock status <= '0';
end if;
end if;
elsif (enter_key = 'l' and temp lock status = '0') then

lock status <= '0';
end if;

If

lock is

per

Implementation

)

<°>@<->
L

e Seven Segment Display
o Used Hex3-Hex0
o If-else statements to link switches to the seven segment display
o Seven segment controlled by 7 bits. When a segment needs to be turned
on, a “0” is placed in that bit position. Otherwise “1” for off.
m Ex: Display a “1” = “GFEDCBA” --- “1111001”

D

if (code_in = "0000") then

seven_seg3 <= "1000000"; seven seg2 <= "1000000"; seven segl <= "1000000"; seven seg0 <= "1000000";

seven_seg3 <= "1000000"; seven seg2 <= "1000000"; seven segl <= "1000000"; seven seg0 <= "1111001";

seven_seg3 <= "1000000"; seven seg2 <= "1000000"; seven segl <= "1111001"; seven seg0 <= "1000000";

seven_seg3 <= "1000000"; seven seg2 <= "1000000"; seven segl <= "1111001"; seven seg0 <= "1111001";

VGA port, view from Wire Side

Implementation

e VGA Display
o Resolution of 640x480 o-o-o-0e [()
o VGA pins assigned to RGB pin
assignments
o Generated shapes by calculating
the corner pixel coordinates of

eaCh Shape pixel count
begins
0 639| 655! 751|799
-—green (bottom of lock)
b horizon 1 ounte = "101101000" —_— & - =3
if((horizontal counter : 0101101000™) 3¢ - < display area 7 rightretraceIeft
and (horizontal counter < "1000110000") —-- 560
(R ; - A, L I RS) 255 border border border
and (vertical counter >= "0011111 0107) :mm 25
and (vertical counter < "(0111000010")) -- 45
then
red out <= "000000000Q";
green out <= "111111131111";
blue out <= "0000000000";

Implementation

200
250 380 400

Implementation

e Assigning color by outputting 10 bits of “1” or “0” to the RGB output

--yellow(lock ring)

if((horizoncal_counter >= "0101111100") -—- 380
and (horizontal counter < "1000011100") -- 540
and (vertical counter >= "0010010110") -- 150
and (vertical_counter < "0011111010")) -- 250
then

red out <= "1111111111";
green out <= "1111111111";
blue out <= "0000000000";

e If-else statements to output the image on the screen. Each pixel is checked
with every screen refresh.

horizontal counter <= horizontal_counter + "0000000001";

if (horizontal_ counter = "1100100000") then
vertical_ counter<= vertical_counter+"0000000001";
horizontal_counter <="0000000000";

end if;

if (vertical_counter ="1000001001") then
vertical counter <= "0000000000";
end if;

Implementation

e Relays and Actuator

o 3.3v sent to one of two GPIO pins for when status is oN
locked or unlocked Single Pulse
o Two relay switches are needed to open and close the .

actuator. Each controlled by one GPIO pin

Actuators/ Reverse Polarity

I T & fused 12v(+]
57 “5
tem Ht fem +
alarm) 86 Cia 85 86 87 85 alarm)
lock 0 0 unlock
output i output
a2 -

to actuators

Implementation

o if (state = 'l') then
If it’'s unlocked and the last state if (last_state = '0') then
p_outl <= '1';
of the lock was locked, output -= delay 1.5 seconds
counter := counter + _.;
3.3V for 1.5 sec. if (counter = 75000000) then -- 75,000,000 cycles
p_outl <= '0';
last_state <= '1';
counter := 0O;

Else, if the lock goes from

elsif (counter < 750000C 2 and lock status = '0C') then
unlocked to locked before 1.5 sec. Bgw R

end if;
do not output 3.3V. B

Implementation

T = (1/)

3.3Volts

0Volts

——= 20 ns

| e—

——Time —

T
H izﬂ

w\\,‘\ j_‘ T
,

(7))

C P n
O 8o g &
e T 0O dSu
(qv] o O o
C ure.mk
= 0 a&8®E 3
O T O O I
o

A ® © o o o

Encountered Problems

e \When trying to create a new password code, lock automatically locks

e Inputis checked with the rising edge of the 50MHz clock which sometimes
causes input errors.

e Outputting a 3.3v signal from the GPIO pins.

e Setting the counter to count up to 3 seconds with the frequency of the 50MHz
clock.

e GPIO output voltage signal is too low. Decided to increase voltage using an
external battery in series which caused issues with the two relays.

e At the moment, actuator lock can only open but not close.

Roles

e Chris

o Programmed lock logic - setting password, resettable password
o Implemented switches and pushbutton
o Coded to output a signal logic out of the GPIO

o Jett

o Programmed and designed the lock screens
o Seven segment display
o Relay and actuator circuit

Thank you

