
UNIVERSITY OF NEVADA LAS VEGAS. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING LABORATORIES.

Class: CPE300L - 1001 Semester: Fall 2018

Points Document author: Chris Barr

 Author's email: Barrc1@unlv.nevada.edu

Document topic: Final Project

Instructor's comments:

1. Introduction / Theory of Operation
To use knowledge learned from lab 8 and create a functioning calculator with four operators -

addition, subtraction, multiplication and division. Aside from the operations, the device also

became a binary to binary and decimal converter. We implemented Verilog code in order complete

the design.

2. Description of Project

Board implementation

Code Directory of the module instantiations

Because our calculator deals with 4-bit inputs, the green box indicates the four switches used. So,

our program will run based off of these operator equations:

A + B = RESULT

A – B = RESULT

A * B = RESULT

A / B = RESULT

The image below this text shows the Verilog code associated to grabbing the result from these

specific operands:

There are four module instantiations, Addition, Subtractor, Multiplier, and Divider. Each of those

four modules are imperative to grabbing the result of the operand and sending that signal to the

board.

This module acts similarly to a MUX. Dependent on what butt (pushbutton) is selected, it will grab

that specific result and send it out as the output. We call this module the ‘control’ portion of our

code.

Parallel Array Multiplier

The parallel array multiplier was instantiated from the Calculator module. First, it will multiply

each bit in parallel. Then, it will call the FullAdder and HalfAdder module to add the resulted

multiplication of each bit. The result will be sent back through the instantiation seen from the

Calculator module.

Parallel Array Divider

The parallel array divider was instantiated from the Calculator module. This module works

based off the clock because it needs to determine when to restart and start the module.

Afterwards, the algorithmic portion of the code will begin and computer the quotient. Thus,

sending back the result to be outputted onto the DE2 Board.

Note that this operator module is the only one that carries the actual algorithm within its code.

Every other operator calls their algorithm module to do the actual adding, subtracting, etc.

Single bit Addition

The single bit addition module was instantiated from the Calculator module. How this works is

that the module will take in both the input that are to be added, X and Y. Then, it will add the

least significant bit and carry over any overflow to the next significant bit. The process will

repeat until the sum of the two numbers are calculated.

Single bit Subtractor

The single bit subtractor module was instantiated from the Calculator module. This module,

similar to the Addition module, will start from the least significant bit and start calculating bit-

by-bit. However, this module will borrow from the most significant bit when needed.

This module can also account for 2’s compliment.

The code below is considered our algorithmic portion of the code. Meaning, every operator,

excluding Division, used either the FullAdder, FullSubtractor, HalfAdder, or multiple of the

three. Here are those three modules:

FullAdder

FullSubtractor

HalfAdder

BCD

This is our BCD (Binary Coded Decimal), which is used to convert our binary to decimal for the

seven segment display. Here’s how the program works:

In this example, our 8-bit binary code is valued at 162. We will shift the value by 1 for every bit

until the value detected in the one’s, ten’s, or hundred’s spot reaches the value of 101 (5), once

that happens we add the value 11 (3). The result of these calculations will make our 1010 0010

(162) value look like this:

The value of the right-hand side will then be transferred to the seven segment decoder.

Seven Segment Decoder

This Verilog code will receive the binary coded decimal via module instantiation. Then,

dependent on the value given, it will determine what the number will be for the three seven

segment displays we used on our DE2 board.

Seven segments controlled by 7 bits. When a segment needs to be turned on, a “0” is placed in that

bit position. Otherwise “1” for off.

Here’s an example output of what we would get for the value 0000 0000 (0) in the picture on the

right hand side.

Input and Output File (Top)

This is our top file, which collects all the inputs and outputs for the whole program; top-level. We

used this file to clean up any messes in the module parameters. Just as seen in the Code Directory

of the module instantiations. This file instantiates the modules Calculator and 7Seg.

Here are two example outputs that we would get on our board for the binary portion of the

calculations.

3. Encountered Problems
The Divider module was fairly difficult to deal with. Because there was a lot to it compared to the

other three operands, it made it difficult to figure out how to approach it. We decided to go with a

parallel array divider method. In the end, we’ve come to realize that we could have gone without

the clock.

The seven segment display was not grabbing the output of the result. This caused the board to not

output the 7 segment correctly.

4. Summary
 Utilizing the boards 7 segment display, LED’s, switches, and pushbuttons, we were able to

simulate a binary to decimal calculator. We used the basic four operators (addition, subtraction,

multiplication, and division) and calculated two 4-bit inputs to get an 8-bit result. Thereafter, we

showcased the binary result on 8 green LED’s and the decimal result on 3 7-segment displays.

5. Conclusions
This project was a bit more difficult than we thought. We originally had less modules and assumed

we could use behavioral Verilog code for most of it, but that was not the case. We also knew the

division portion of the Verilog code was going to be the most difficult, so we tried to reflect the

division code from lab 8 onto our project. But, we ended up really customizing that code. The

division operation probably did not need a reset and start switch; it was poorly optimized. And

strangely enough, we were getting more errors in our 7-segment display code than we were in our

division.

I was very happy that I could do this kind of project, because this project helped solidify my

knowledge in Verilog.

