

High Speed Op-amp Design: Compensation and Topologies for Two and Three Stage Designs

R. Jacob Baker and Vishal Saxena Department of Electrical and Computer Engineering Boise State University 1910 University Dr., MEC 108 Boise, ID 83725 jbaker@boisestate.edu and vishalsaxena@ieee.org

Abstract :

As CMOS technology continues to evolve, the supply voltages are decreasing while at the same time the transistor threshold voltages are remaining relatively constant. Making matters worse, the inherent gain available from the nano-CMOS transistors is dropping. Traditional techniques for achieving high gain by vertically stacking (i.e. cascoding) transistors becomes less useful in sub-100nm processes. Horizontal cascading (multistage) must be used in order to realize op-amps in low supply voltage processes. This seminar discusses new design techniques for the realization of multi-stage op-amps. Both single- and fully-differential op-amps are presented where low power, small VDD, and high speed are important. The proposed, and experimentally verified, opamps exhibit significant improvements in speed over the traditional op-amp designs while at the same time having smaller layout area.

Outline

Introduction Two-stage Op-amp Compensation Multi-stage Op-amp Design Multi-stage Fully-Differential Op-amps Conclusion

Op-amps and CMOS Scaling

The Operational Amplifier (op-amp) is a fundamental building block in Mixed Signal design.

✓ Employed profusely in data converters, filters, sensors, drivers etc.

- Continued scaling in CMOS technology has been challenging the established paradigms for op-amp design.
- □ With downscaling in channel length (L)
 - ✓ Transition frequency increases (more speed).
 - ✓ Open-loop gain reduces (lower gains).

 $f_T \propto \frac{V_{ov}}{L}$ $g_m r_o \propto \frac{L}{V_{ov}}$

✓ Supply voltage is scaled down (lower headroom) [1].

CMOS Scaling Trends

- \Box VDD is scaling down but V_{THN} is almost constant.
 - Design headroom is shrinking faster.
- □ Transistor open-loop gain is dropping (~10's in nano-CMOS)
 - ✓ Results in lower op-amp open-loop gain. But we need gain!
- □ Random offsets due to device mismatches. $\sigma_{\Delta VTH} \propto \frac{1}{L \cdot W}$ [3], [4].

Integration of Analog into Nano-CMOS?

- Design low-VDD op-amps.
 - Replace vertical stacking (cascoding) by horizontal cascading of gain stages (see the next slide).
- Explore more effective op-amp compensation techniques.
- □ Offset tolerant designs.
- Also minimize power and layout area to keep up with the digital trend.
- Better power supply noise rejection (PSRR).

Cascoding vs Cascading in Op-amps

A Telescopic Two-stage Op-amp

wide-swing biasing [1]

A Cascade of low-VDD Amplifier Blocks.

(Compensation not shown here)

 $VDD_{min}=2V_{ovn}+V_{ovp}+V_{THP.}$

Even if we employ wide-swing biasing for low-voltage designs, three- or higher stage op-amps will be indispensable in realizing large open-loop DC gain.

TWO-STAGE OP-AMP COMPENSATION

Direct (or Miller) Compensation

Compensation capacitor (C_c) between the output of the gain stages causes pole-splitting and achieves dominant pole compensation.
 An RHP zero exists at z₁ = g_{m2}/C_c
 ✓ Due to feed-forward component of the compensation current (i_C).
 The second pole is located at -g_{m2}/C₁+C₂
 The unity-gain frequency is f_{un} = g_{m1}/2πC_c

All the op-amps presented have been designed in AMI C5N 0.5μm CMOS process with scale=0.3 μm and L_{min}=2. The op-amps drive a 30pF off-chip load offered by the test-setup.

Drawbacks of Direct (Miller) Compensation

- The RHP zero decreases phase margin
 - Requires large C_C for compensation (10pF here for a 30pF load!).
- \Box Slow-speed for a given load, $C_{L.}$
- Poor PSRR
 - ✓ Supply noise feeds to the output through C_{C} .
- Large layout size.

Indirect Compensation

An indirect-compensated op-amp using a common-gate stage.

- The RHP zero can be eliminated by blocking the feed-forward compensation current component by using
 - ✓ A common gate stage,
 - ✓ A voltage buffer,
 - Common gate "embedded" in the cascode diff-amp, or
 - ✓ A current mirror buffer.
- Now, the compensation current is fedback from the output to node-1 indirectly through a low-Z node-A.
- □ Since node-1 is not loaded by C_C , this results in higher unity-gain frequency (f_{un}) .

Indirect Compensation in a Cascoded Op-amp

İ_c 30pF 30/2 V_{bias3} 100/2 M8T M5T V_{bias4} 30/2 100/2 M8B M5B Unlabeled NMOS are 10/2. Unlabeled PMOS are 22/2. Indirect-compensation using cascoded diff-pair.

VDD

M4

M2T

 \mathcal{V}_p

(1)

(A)

M2B

VDD

220/2

 V_{out}

(2)

 C_{L}

M7

 C_{c}

🛉 1.5pF

VDD

Μ4

10/10

VDD

M3

M1T

M1B

V_m

V_{bias1}

Indirect-compensation using cascoded current mirror load.

□ Employing the common gate device "embedded" in the cascode structure for indirect compensation avoids a separate buffer stage.

- ✓ Lower power consumption.
- \checkmark Also voltage buffer reduces the swing which is avoided here.

Analytical Modeling of Indirect Compensation

Small signal analytical model

Derivation of the Small-Signal Model

The small-signal model for a common gate indirect compensated opamp topology is approximated to the simplified model seen in the last slide.

Analytical Results for Indirect Compensation

$$\begin{split} \frac{v_{out}}{v_s} &= -A_v \bigg(\frac{1+b_1 s}{1+a_1 s+a_2 s^2+a_3 s^3} \bigg) \\ z_1 &\approx -\frac{1}{R_c C_c} \quad \text{LHP zero} \\ p_1 &\approx -\frac{1}{a_1} &= -\frac{1}{g_{m2} R_2 R_1 C_c} \\ p_2 &\approx -\frac{a_1}{a_2} &= -\frac{g_{m2} R_1 C_c}{C_2 (R_c C_c + R_1 C_1)} \approx -\frac{g_{m2} C_c}{C_L C_1} \\ p_3 &\approx -\frac{a_2}{a_3} &= -\Big[\frac{1}{R_c C_c} + \frac{1}{R_1 C_1} \Big] \\ f_{un} &= \frac{|p_1| A_v}{2\pi} \approx \frac{g_{m1}}{2\pi C_c} \end{split}$$

- Pole p₂ is much farther away from f_{un}.
 ✓ Can use smaller g_{m2}=>less power!
- LHP zero improves phase margin.
- □ Much faster op-amp with lower power and smaller C_C .
- \Box Better slew rate as C_C is smaller.

Indirect Compensation Using Split-Length Devices

- As VDD scales down, cascoding is becoming tough. Then how to realize indirect compensation as we have no low-Z node available?
- Solution: Employ split-length devices to create a low-Z node.
 - ✓ Creates a pseudo-cascode stack but its really a single device.
- □ In the NMOS case, the lower device is always in triode hence node-A is a low-Z node. Similarly for the PMOS, node-A is low-Z.

Split-Length Current Mirror Load (SLCL) Op-amp

- □ The current mirror load devices are split-length to create low-Z node-A.
- □ Here, f_{un} =20MHz, PM=75° and t_s =60ns.

SLCL Op-amp Analysis

$$\begin{split} f_{un} &= \frac{g_{m1}}{2\pi(2C_c)} \\ p_1 &\approx -\frac{1}{2g_{m2}R_2R_1C_c} \\ \left| Re(p_{2,3}) \right| &= \frac{g_{m2}}{C_L} \sqrt{\frac{g_{mp}C_L}{g_{m2}C_1}} \\ z_1 &\approx -\frac{4g_{mp}}{3(C_c + C_A)} = -\frac{4\sqrt{2}g_{m1}}{3(C_c + C_A)} \approx \frac{8\sqrt{2}}{3}\omega_{un} \end{split}$$

 $\Box \text{ Here } f_{z1} = 3.77 f_{un}$

LHP zero appears at a higher frequency than f_{un}.

Split-Length Diff-Pair (SLDP) Op-amp

- □ The diff-pair devices are split-length to create low-Z node-A.
- \Box Here, f_{un}=35MHz, PM=62°, t_s=75ns.
- Better PSRR due to isolation of node-A from the supply rails.

SLDP Op-amp Analysis

 $\Box \text{ Here } f_{z1} = 0.94 f_{un},$

- ✓ LHP zero appears slightly before f_{un} and flattens the magnitude response.
- This may degrade the phase margin.
- Not as good as SLCL, but is of great utility in multi-stage op-amp design due to higher PSRR.

Test Chip 1: Two-stage Op-amps

□ AMI C5N 0.5µm CMOS, 1.5mmX1.5mm die size.

Test Results and Performance Comparison

Performance comparison of the op-amps for $C_L=30pF$.

Op-amp Topology	A _{DC} (dB)	f _{un} (MHz)	C _C (pF)	PM	t _s (ns)	Power (mW)	Layout area
							(mm ⁻)
Miller	57	2.5	10	74°	270	1.2	0.031
Miller	57	2.7	10	85°	250	1.2	0.034
with R _z							
SLCL	66	20	2	75°	60	0.7	0.015
(this work)							
SLDP	60	35	2	62°	75	0.7	0.015
(this work)							

SLCL Indirect (t_s=60ns)

- \Box 10X gain bandwidth (f_{un}).
- □ 4X faster settling time.
- □ 55% smaller layout area.
- \Box 40% less power consumption.

MULTI-STAGE OP-AMP DESIGN

Three-Stage Op-amps

- Higher gain can be achieved by cascading three gain stages.
 - ✓ ~100dB in 0.5µm CMOS
- Results in at least a third order system
 - ✓ 3 poles and two zeros.
 - RHP zero(s) degrade the phase margin.
- □ Hard to compensate and stabilize.
- □ Large power consumption compared to the two-stage op-amps.

Pole-zero plot

Biasing of Multi-Stage Op-amps

Diff-amps should be employed in inner gain stages to properly bias second and third gain stages

- Current in third stage is precisely set.
- ✓ Robust against large offsets.
- Boosts the CMRR of the opamp (needed).
- Common source second stage should be avoided.
 - Will work in feedback configuration but will have offsets in nano-CMOS processes.

Conventional Three-Stage Topologies

Nested Miller Compensation (NMC) [6]

- □ Requires $p_3=2p_2=4\omega_{un}$ for stability (Butterworth response)
 - ✓ Huge power consumption
- RHP zero appears before the LHP zero and degrades the phase margin.
- □ Second stage is non-inverting
 - Implemented using a current mirror.
 - Excess forward path delay (not modeled or discussed in the literature).

Conventional Three-Stage Topologies contd.

Nested Gm-C Compensation (NGCC) [7]

- □ Employs feed-forward g_m's to eliminate zeros.
 - \checkmark g_{mf1}=g_{m1} and g_{mf2}=g_{m2}
- Class AB output stage.
- ❑ Hard to implement g_{mf1} which tracks g_{m1} for large signal swings.
 - ✓ Also wasteful of power.
- $g_{mf2} is a power device and will not always be equal to g_{m2}.$
 - ✓ Compensation breaks down.
- □ Still consumes large power.

Conventional Three-Stage Topologies contd.

Transconductance with Capacitive Feedback Compensation (TCFC) [14]

- □ Four poles and double LHP zeros
 - \checkmark One LHP zero z_1 cancels the pole p_3 .
 - ✓ Other LHP zero z_2 enhances phase margin.
- □ Set $p_2=2\omega_{un}$ for PM=60°.
- □ Relatively low power.
- Still design criterions are complex.
- □ Complicated bias circuit.
 - ✓ More power.
- □ Excess forward path delay.

Three-Stage Topologies: Latest in the literature

Reverse Nested Miller with Voltage Buffer and Resistance (RNMC-VBR) [8]

- Employs reverse nesting of compensation capacitors
 - ✓ Since output is only loaded by only C_{C2}, results in potentially higher f_{un}.
 - \checkmark Third stage is always non-inverting.
- Uses pole-zero cancellation to realize higher phase margins.
 - Excess forward path delay.
 - Biasing not robust against process variations. How do you control the current in the output buffer?

Three-Stage Topologies: Latest in the literature contd.

Active Feedback Frequency Compensation (AFFC) [9]

- Reversed nested with elimination of RHP zero.
 - High gain block (HGB) realizes gain by cascading stages.
 - High speed block (HSB) implements compensation at high frequencies.
- Complex design criterions.
- Excess forward path delay. Again, uses a non-inverting gain stage.
 - Employs a complicated bias circuit.
 - ✓ More power consumption.

Three-Stage Topologies: Latest in the literature contd.

- Various topologies have been recently reported by combining the earlier techniques.
 - ✓ RNMC feed-forward with nulling resistor (RNMCFNR) [17].
 - ✓ Reverse active feedback frequency compensation (RAFFC) [17].
- □ Further improvements are required in
 - Eliminating excess forward path delay arising due to the compulsory noninverting stages.
 - ✓ Robust biasing against random offsets in nano-CMOS.
 - ✓ Further reduction in power and circuit complexity.
 - ✓ Better PSRR.

Indirect Compensation in Three-Stage Op-amps

- Indirectly feedback the compensation currents i_{c1} and i_{c2}.
 - ✓ Reversed Nested
 - □ Thus named RNIC.
- Employ diff-amp stages for robust biasing and higher CMRR.
- Use SLDP for higher PSRR.
- □ Minimum forward path delay.
- No compulsion on the polarity of gain stages.
 - Can realize any permutation of stage polarities by just changing the sign of the fed-back compensation current using 'fbr' and 'fbl' nodes.
- Low-voltage design.
- Note Class A (we'll modify after theory is discussed).

Indirect Compensation in Three-Stage Op-amps contd.

- □ Note the red arrows showing the node movements and the signs of the compensation currents.
 - ✓ fbr and fbl are the low-Z nodes used for indirect compensation (have resistances R_{c1} and R_{c2} attached to them).
- □ The C_C 's are connected across two-nodes which move in opposite direction for overall negative feedback the compensation loops.
- □ Note feedback and forward delays!

Analysis of the Indirect Compensated 3-Stage Op-amp

Plug in the indirect compensation model developed for the two-stage opamps.

$$\frac{v_{out}}{v_s} = A_v \left(\frac{b_0 + b_1 s + b_2 s^2}{a_0 + a_1 s + a_2 s^2 + a_3 s^3 + a_4 s^4 + a_5 s^5} \right)$$

$$z_{1} = -\frac{1}{R_{c1}C_{c1}}$$

$$p_{1} \approx -\frac{a_{0}}{a_{1}} = -\frac{1}{g_{m3}R_{3}g_{m2}R_{2}R_{1}C_{c2}}$$

$$z_{2} = -\frac{1}{R_{c2}C_{c2}}$$

$$f_{un} = \frac{|p_{1}|A_{v}}{2\pi} \approx \frac{g_{m1}}{2\pi C_{c2}}$$

Two LHP zeros

Four non-dominant poles.

Pole-zero Cancellation

 \square Poles $p_{4,5}$ are parasitic conjugated poles located far away in frequency.

- ✓ Appear due to the loading of the nodes fbr and fbl.
- □ The small signal transfer function can be written as

$$A(s) = \frac{(b_0 + b_1 s + b_2 s^2)}{(1 + s/p_1)\left(1 + \frac{a_2}{a_1}s + \frac{a_3}{a_1}s^2\right)\left(1 + \frac{a_4}{a_3}s + \frac{a_5}{a_3}s^2\right)}$$

□ The quadratic expression in the denominator describing the poles p_2 and p_3 can be canceled by the numerator which describes the LHP zeros.

✓ Results in LHP zeros z_1 and z_2 canceling the poles p_2 and p_3 resp.

□ The resulting expression looks like a single pole system for low frequencies. \rightarrow Phase margin close to 90°.

$$\frac{v_{out}}{v_s} \approx \frac{-A_v}{\left(1 - \frac{s}{p_1}\right)\left(1 + \frac{a_4}{a_3}s + \frac{a_5}{a_3}s^2\right)} \approx \frac{-A_v}{\left(1 - \frac{s}{p_1}\right)} \text{ for } f \ll f_T$$

Pole-zero Cancellation contd.

- Place pole-zero doublets (p₂-z₁ and p₃-z₂) out of f_{un} for clean transients.
 - ✓ i.e. f_{p2} , $f_{p3} > f_{un}$.
- Best possible pole-zero arrangement for low power design.
- □ Results into design equations independent of parasitics (C₃≈C_L here).
- □ R_{c1} and R_{c2} are realized by adding poly R's in series with C_{C1} and C_{C2} .
 - ✓ Also R_{c1} , $R_{c2} \ge R_{c0}$, the impedance attached to the low-Z nodes fbr/fbl.
- Robust against even 50% process variations in R's and C's as long as the pole-zero doublets stay out of f_{un}.

Pole-zero cancelled Class-A Op-amp

Unlabeled NMOS are 10/2. Unlabeled PMOS are 22/2.

- □ A Here, the poly resistors are estimated as $R_{kc} = R_{ck} \frac{1}{\sqrt{2}g_{m1}}$, k=1,2
- Low power, simple, robust and manufacturable topology*.
- The presented three-stage op-amps have been designed with transient and SR performances to be comparable to their two-stage counterparts.

Pole-zero cancelled Class-AB Op-amp 1

Unlabeled PMOS are 22/2.

- A dual-gain path, low-power Class-AB op-amp topology (RNIC-1).
- ☐ The design equation for R_{c1} is modified as $R_{c1} \approx \frac{C_3}{g_{m3}C_{c2}} \frac{1}{g_{m2}}$

Pole-zero cancelled Class-AB Op-amp 2

Unlabeled PMOS are 22/2.

- □ A single-gain path, Class-AB op-amp topology for good THD performance.
 - ✓ Floating current source for biasing the output buffer.

Here,
$$V_{ncas} = 2V_{GS}$$
 and $V_{ncas} = VDD - 2V_{SC}$

✓ Note the lack of gratuitous forward delay.

Simulation of Three-stage Op-amps

- Analytical model of the Class-AB (RNIC-1) topology is simulated in MATLAB.
- □ The pole-zero plot illustrates the double pole-zero cancelation (collocation).
 - ✓ p_4 and p_5 are parasitic poles located at frequencies close to that of the f_T limited (or mirror) poles.
- □ Here, fun≈30MHz and PM=90° for C_L =30pF.

Simulation of Three-stage Op-amps contd.

- SPICE simulation of the same Class AB op-amp.
- □ C_L =30pF: f_{un} =30MHz, PM≈88°, t_s =70ns, 0.84mW, SR=20V/µs.
- As fast as a two-stage op-amp with only 20% more power, at 50% VDD and with the same layout area (simpler bias circuit).
- \Box Operates at VDD as low as 1.25V in a 5V process (25% of V_{DD}).
- SPICE simulation match with the MATLAB simulation
 - ✓ Our theory for three-stage indirect compensation is validated.

Chip 2: Low-VDD 3-Stage Op-amps

□AMI C5N 0.5µm CMOS, 1.5mmX1.5mm die size.

Performance Comparison

Topology	CL (pF)	V _{DD} (V)	I _{DD} (mA)	Power (mW)	f _{un} (MHz)	Avg. SR (V/µs)	C _{c1,} C _{c2} (pF)	FoM _S (MHz.pF/mW)	FoM _L (V/µs.pF/mW)	IFoM _S (MHz.pF/mA)	IFoM _L (V/µs.pF/mA)
MNMC [10]	100	8	9.5	76	100	35		132	46	1053	368
NGCC [10]	20	2	0.34	0.68	0.61	2.5		18	74	36	147
NMCFNR[11]	100	2	0.2	0.4	1.8	0.79	30, 5.3	450	198	900	395
DFCFC [12]	1000	2	0.2	0.4	1	0.36	55, 3	2500	900	5000	1800
AFFC [9]	100	1.5	0.17	0.255	5.5	0.36	5.4, 4	2157	141	3235	212
ACBCF [13]	500	2	0.162	0.324	1.9	1	10, 3	2932	1543	5864	3086
TCFC [14]	150	1.5	0.03	0.045	2.85	1.035	1.1, 0.92	9500	3450	14250	5175
DPZCF [15]	500	1.5	0.15	0.225	1.4	2	30, 20	3111	4444	4667	6667
RNMCVBNR [16]	15	3	0.48	1.44	19.46	13.8	3, 0.7	203	144	608	431
SMFFC [17]	120	2	0.21	0.42	9	3.4	4	2571	971	5143	1943
RNMCFBNR [18]	500	3	0.085	0.255	2.4	1.8	11.5, 0.35	4706	3529	14118	10588
RAFFC [18]	500	3	0.105	0.315	2.4	1.95	11.5, 0.35	3810	3095	11429	9286
RAFFC Low- Power [18]	500	3	0.035	0.105	1.1	1.29	11.5, 0.35	5238	6143	15714	18429
RNIC-1 (This work)	30	3	0.28	0.84	30	20	1, 2	1071	714	3214	2143
RNIC-2 (This work)	500	3	0.18	0.54	12	8	5, 0.2	11111	7407	33333	22222
RNIC-3 (This work)	500	3	0.5	1.5	35	20	10, 0.2	11667	6667	35000	20000
RNIC-1A (This work)	30	2	0.28	0.56	15	20	1, 2	804	1071	1607	2143
RNIC-2A (This work)	500	2	0.18	0.36	6	20	5, 0.2	8333	27778	16667	55556
RNIC-3A (This work)	500	2	0.5	1	17	20	10, 0.2	8500	10000	17000	20000

- **G** Figures of Merit
 - \checkmark FoM_S=f_{un}C_L/Power
 - \checkmark FoM_L=SR.C_L/Power
 - \checkmark IFoM_S=f_{un}C_L/I_{DD}
 - ✓ IFoM_L=SR.C_L/I_{DD}
- RNIC op-amp designed for 500pF load for a fair comparison.
- □ FoMs>2X than state-ofthe-art at V_{DD} =3V.
- Comparable performance even at lower $V_{DD}=2V$.
- Practical, stable and production worthy.

Performance Comparison contd.

- □ Higher performance figures than state-of-the-art.
- □ 10X faster settling.
- Better phase margins.
- □ Layout area same or smaller.

Op-amp Topology	VDD (V)	C _L (pF)	Power (mW)	f _{un} (MHz)	Avg. SR (V/µs)	PM	t _s (ns)	Area (mm ²)
RNMCFBNR [18]	3	500	0.255	2.4	1.8	58°	810	0.025
RAFFC [18]	3	500	0.315	2.4	1.95	58°	560	0.025
RAFFC Low-Power [18]	3	500	0.105	1.1	1.29	56°	1000	0.024
RNIC-1 (This work)	3	30	0.84	30	20	89 °	70	0.018
RNIC-2 (This work)	3	500	0.54	12	8	88 °	250	0.022
RNIC-3 (This work)	3	500	1.5	35	20	72 °	100	0.031
RNIC-1A (This work)	2	30	0.56	15	20	89 °	90	0.018
RNIC-2A (This work)	2	500	0.36	6	20	88 °	350	0.022
RNIC-3A (This work)	2	500	1	17	20	72 °	150	0.031

Flowchart for RNIC Op-amp Design

N-Stage Indirect Compensation Theory

□ The three-stage indirect compensation theory has been extended to N-stages and the closed form small signal transfer function is obtained.

MULTI-STAGE FULLY-DIFFERENTIAL OP-AMPS

Fully Differential Op-amps

- Analog signal processing uses 'only' fully differential (FD) circuits.
 - Cancels switch non-linearities and even order harmonics.
 - ✓ Double the dynamic range.
- Needs additional circuitry to maintain the output common-mode level.
 - Common-mode feedback circuit (CMFB) is employed.

Three-Stage FD Op-amp Design: Problems

Block Diagram

Circuit Implementation

□ The CMFB loop disturbs the DC biasing of the intermediate gain stages.

✓ Degrades the gain, performance and may cause instability.

Three-Stage FD Op-amp Design: Solutions

Employ CMFB

- 1. Individually across all the stages.
- 2. Only across the last two stages as the biasing of the output buffer need not be precise.
- 3. Only in the third stage (output buffer).

Three-Stage FD Op-amp Design

Block Diagram

 \Box Use CMFB only in the output (third) stage. \rightarrow Manufacturable design.

 \checkmark Leaves the biasing of second and third stage alone without disturbing them.

Employ diff-amp pairs in the second stage for robust biasing.

Three-Stage FD Op-amp: Enlarged

Chip 3: Low-VDD FD Op-amps

□AMI C5N 0.5µm CMOS, 1.5mmX1.5mm die size.

Simulation and Performance Comparison

Topology	C _L (pF)	V _{DD} (V)	I _{DD} (mA)	Power (mW)	f _{un} (MHz)	Avg. SR (V/μs)	C _{c1,} C _{c2} (pF)	t _s (ns)	FoM _S (MHz.pF/mW)	FoM_L (V/μs.pF/mW)
Buffered RNMC [19]	100	1.2	0.285	0.342	8.9	5.5	2, 0.65	2400	2602	1608
RNIC-1-FD (This work)	30	3	0.4	1.2	12	10	4, 4	275	300	250
RNIC-2-FD (This work)	500	3	0.4	1.2	20	8	5, 0.2	370	8333	3333

 \square >2.5X figure of merit (FoM).

Flowchart for Three-Stage FD Op-amp Design

Conclusions

- □ Indirect compensation leads to significantly faster, lower power op-amps with smaller layout area.
- Indirect compensation using split-length devices facilitates low-VDD opamp design.
- □ Novel pole-zero canceled three-stage RNIC op-amps exhibit substantial improvement over the state-of-the-art.
- □ A theory for multi-stage op-amps is presented.
- □ New methodologies for designing multi-stage FD op-amps proposed which improve the state-of-the-art.
- □ All proposed op-amps are low voltage
 - ✓ Open new avenues for low-VDD mixed signal system design.

Future Scope

- □ Mathematical optimization of PZC op-amps.
- Design of low-VDD systems in nano-CMOS process
 - ✓ Pipelined and Delta-Sigma data converters,
 - ✓ Analog filters,
 - ✓ Audio drivers, etc.

□ Further investigation into indirect-compensated op-amps for $n \ge 4$ stages.

- [1] Baker, R.J., "CMOS: Circuit Design, Layout, and Simulation," 2nd Ed., Wiley Interscience, 2005.
- [2] Saxena, V., "Indirect Compensation Techniques for Multi-Stage Operational Amplifiers," M.S. Thesis, ECE Dept., Boise State University, Oct 2007.
- [3] The International Technology Roadmap for Semiconductors (ITRS), 2006 [Online]. Available: http://www.itrs.net/Links/2006Update/2006UpdateFinal.htm
- [4] Zhao, W., Cao, Yu, "New Generation of Predictive Technology Model for sub-45nm Design Exploration" [Online]. Available: <u>http://www.eas.asu.edu/~ptm/</u>
- [5] Slide courtesy: bwrc.eecs.berkeley.edu/People/Faculty/jan/presentations/ASPDACJanuary05.pdf
- [6] Leung, K.N., Mok, P.K.T., "Analysis of Multistage Amplifier-Frequency Compensation," IEEE Transactions on Circuits and Systems I, Fundamental Theory and Applications, vol. 48, no. 9, Sep 2001.
- [7] You, F., Embabi, S.H.K., Sanchez-Sinencio, E., "Multistage Amplifier Topologies with Nested Gm-C Compensation," IEEE Journal of Solid State Circuits, vol.32, no.12, Dec 1997.
- [8] Grasso, A.D., Marano, D., Palumbo, G., Pennisi, S., "Improved Reversed Nested Miller Frequency Compensation Technique with Voltage Buffer and Resistor," IEEE Transactions on Circuits and Systems-II, Express Briefs, vol.54, no.5, May 2007.
- [9] Lee, H., Mok, P.K.T., "Advances in Active-Feedback Frequency Compensation With Power Optimization and Transient Improvement," IEEE Transactions on Circuits and Systems I, Fundamental Theory and Applications, vol.51, no.9, Sep 2004.
- [10] Eschauzier, R.G.H., Huijsing, J.H., "A 100-MHz 100-dB operational amplifier with multipath Nested Miller compensation," IEEE Journal of Solid State Circuits, vol. 27, no. 12, pp. 1709-1716, Dec. 1992.
- [11] Leung, K. N., Mok, P. K. T., "Nested Miller compensation in low-power CMOS design," IEEE Transaction on Circuits and Systems II, Analog and Digital Signal Processing, vol. 48, no. 4, pp. 388-394, Apr. 2001.
- [12] Leung, K. N., Mok, P. K. T., Ki, W. H., Sin, J. K. O., "Three-stage large capacitive load amplifier with damping factor control frequency compensation," IEEE Journal of Solid State Circuits, vol. 35, no. 2, pp. 221-230, Feb. 2000.

References contd.

- [13] Peng, X., Sansen, W., "AC boosting compensation scheme for low-power multistage amplifiers," IEEE Journal of Solid State Circuits, vol. 39, no. 11, pp. 2074-2077, Nov. 2004.
- [14] Peng, X., Sansen, W., "Transconductances with capacitances feedback compensation for multistage amplifiers," IEEE Journal of Solid State Circuits, vol. 40, no. 7, pp. 1515-1520, July 2005.
- [15] Ho, K.-P., Chan, C.-F., Choy, C.-S., Pun, K.-P., "Reverse nested Miller Compensation with voltage buffer and nulling resistor," IEEE Journal of Solid State Circuits, vol. 38, no. 7, pp. 1735-1738, Oct 2003.
- [16] Fan, X., Mishra, C., Sanchez-Sinencio, "Single Miller capacitor frequency compensation technique for low-power multistage amplifiers," IEEE Journal of Solid State Circuits, vol. 40, no. 3, pp. 584-592, March 2005.
- [17] Grasso, A.D., Palumbo, G., Pennisi, S., "Advances in Reversed Nested Miller Compensation," IEEE Transactions on Circuits and Systems-I, Regular Papers, vol.54, no.7, July 2007.
- [18] Shen, Meng-Hung et al., "A 1.2V Fully Differential Amplifier with Buffered Reverse Nested Miller and Feedforward Compensation," IEEE Asian Solid-State Circuits Conference, 2006, p 171-174.