UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

SAMSUNG ELECTRONICS CO., LTD.
 Petitioner

v.

LYNK LABS, INC.
Patent Owner

Patent No. 10,517,149

PETITION FOR INTER PARTES REVIEW OF U.S. PATENT NO. 10,517,149

TABLE OF CONTENTS

I. INTRODUCTION 1
II. MANDATORY NOTICES 1
III. PAYMENT OF FEES 3
IV. GROUNDS FOR STANDING 4
V. PRECISE RELIEF REQUESTED AND GROUNDS 4
VI. LEVEL OF ORDINARY SKILL 5
VII. OVERVIEW OF THE '149 PATENT 6
VIII. CLAIM CONSTRUCTION 7
IX. DETAILED EXPLANATION OF GROUNDS 8
A. Ground 1: Claims 1 and 2 Are Obvious over Zhang and Salam 8

1. Claim 1 8
2. Claim 2 21
B. Ground 2: Claim 3 Is Obvious over Zhang, Salam, and Mosebrook 23
3. Claim 3 23
C. Ground 3: Claim 4 Is Obvious over Zhang, Salam, and Michael 25
4. Claim 4 25
D. Ground 4: Claims 5-9 Are Obvious over Zhang and Piepgras 30
5. Claim 5 30
6. Claim 6 34
7. Claim 7 35
8. Claim 8 36
9. Claim 9 37
E. Ground 5: Claim 10 Is Obvious over Zhang, Piepgras, and Muthu 38
10. Claim 10 38
F. Ground 6: Claims 11-16 Are Obvious over Zhang and Michael 41
11. Claim 11 41
12. Claim 12 47
13. Claim 13 47
14. Claim 14 50
15. Claim 15 50
16. Claim 16 50
G. Ground 7: Claims 17-19 Are Obvious over Panagotacos, Zhang, and Muthu 52
17. Claim 17 52
18. Claim 18 77
19. Claim 19 77
H. Ground 8: Claim 20 Is Obvious over Panagotacos, Zhang, Muthu, and Michael 79
20. Claim 20 79
X. DISCRETIONARY DENIAL IS NOT APPROPRIATE HERE 81
A. The Fintiv factors favor institution 81
B. The General Plastic analysis favors institution 84
XI. CONCLUSION 87

LIST OF EXHIBITS

Ex. 1001	U.S. Patent No. 10,517,149
Ex. 1002	Declaration of R. Jacob Baker, Ph.D., P.E.
Ex. 1003	Curriculum Vitae of R. Jacob Baker, Ph.D., P.E.
Ex. 1004	Prosecution History of U.S. Patent No. 10,517,149
Ex. 1005	U.S. Patent Application Publication No. 2002/0021573 ("Zhang")
Ex. 1006	U.S. Patent No. 6,633,120 ("Salam")
Ex. 1007	U.S. Patent No. 5,982,103 ("Mosebrook")
Ex. 1008	U.S. Patent No. 4,656,398 ("Michael")
Ex. 1009	U.S. Patent Application Publication No. 2003/0137258 ("Piepgras")
Ex. 1010	U.S. Patent No. 5,663,719 ("Deese")
Ex. 1011	U.S. Patent No. 7,019,662 ("Shackle")
Ex. 1012	U.S. Patent No. 6,061,259 ("DeMichele")
Ex. 1013	U.S. Patent No. 6,396,001 ("Nakamura")
Ex. 1014	U.S. Patent No. 5,923,239 ("Krueger")
Ex. 1015	U.S. Patent Application Publication No. 2002/0118557 ("Ohlsson")
Ex. 1016	U.S. Patent No. 5,519,263 ("Santana")
Ex. 1017	U.S. Patent No. 4,563,592 ("Yuhasz")
Ex. 1018	Watson, J., Mastering Electronics, Third Ed., McGraw-Hill, Inc. (1990)
Ex. 1019	U.S. Patent Application Publication No. 2002/0158590 ("Saito")
Ex. 1020	U.S. Patent No. 6,636,005 ("Wacyk")

Ex. 1021	U.S. Patent No. 5,521,652 ("Shalvi")
Ex. 1022	U.S. Patent No. 5,562,240 ("Campbell")
Ex. 1023	U.S. Patent No. 6,529,126 ("Henry")
Ex. 1024	U.S. Patent No. 4,246,533 ("Chiang")
Ex. 1025	U.S. Patent No. 6,510,995 ("Muthu")
Ex. 1026	International Patent Application Publication No. WO2002/023956 ("Panagotacos")
Ex. 1027	U.S. Patent No. 6,307,757 ("Porter")
Ex. 1028	U.S. Patent Application Publication No. 2003/0230934 ("Cordelli")
Ex. 1029	U.S. Patent No. 6,879,497 ("Hua")
Ex. 1030	U.S. Patent No. 6,324,082 ("Keller")
Ex. 1031	U.S. Patent No. 6,489,754 ("Blom")
Ex. 1032	U.S. Patent No. 5,353,213 ("Paulik")
Ex. 1033	U.S. Patent No. 6,663,246 ("Currens")
Ex. 1034	U.S. Patent No. 3.712,706 ("Stamm")
Ex. 1035	U.S. Patent No. 10,154,551
Ex. 1036	U.S. Patent No. 9,807,827
Ex. 1037	U.S. Patent No. 9,615,420
Ex. 1038	U.S. Patent No. 9,198,237
Ex. 1039	U.S. Patent Application No. PCT/US2010/062235
Ex. 1040	U.S. Patent No. 8,179,055
Ex. 1041	U.S. Patent No. 8,148,905

Ex. 1042	U.S. Patent No. 7,489,086
Ex. 1043	U.S. Patent Application No. PCT/US2010/001597
Ex. 1044	U.S. Patent Application No. PCT/US2010/001269
Ex. 1045	U.S. Patent No. 10,178,715
Ex. 1046	U.S. Provisional Application No. 61/333,963
Ex. 1047	U.S. Provisional Application No. 61/284,927
Ex. 1048	U.S. Provisional Application No. 61/335,069
Ex. 1049	U.S. Provisional Application No. 60/997,771
Ex. 1050	U.S. Provisional Application No. 60/547,653
Ex. 1051	U.S. Provisional Application No. 60/559/867
Ex. 1052	U.S. Provisional Application No. 61/217,215
Ex. 1053	U.S. Provisional Application No. 61/215,144
Ex. 1054	Sedra et al., Microelectronic Circuits, Fourth Ed., Oxford University Press (1998)
Ex. 1055	U.S. Patent No. 5,621,225 ("Shieh")
Ex. 1056	U.S. Patent Application Publication No. 2002/0060530 ("Sembhi")
Ex. 1057	U.S. Patent No. 6,380,693 ("Kast"")
Ex. 1058	U.S. Reissue Patent No. RE42,161 ("Hochstein")
Ex. 1059	U.S. Patent No. 4,145,655 ("Caudel")
Ex. 1060	U.S. Patent No. 5,010,459 ("Taylor")
Ex. 1061	Case docket in Samsung Elecs. Co., Ltd., v. Lynk Labs, Inc. No. 1:21- cv-2665 (N.D. Ill.) (accessed October 25, 2021)

Ex. 1062	Estimated Patent Case Schedule for Northern District of Illinois (available at https://www.ilnd.uscourts.gov/_assets/_documents/_forms/_judges/P acold/Estimated\%20Patent\%20Schedule.pdf)
Exs. 1063- 1065	RESERVED
Ex. 1066	Lynk Labs, Inc.'s Amended Preliminary Infringement Contentions in Samsung Elecs. Co., Ltd. v. Lynk Labs, Inc., No. 1:21-cv-2665 (N.D. Ill.) (served Aug. 31, 2021)
Ex. 1067	Lynk Labs, Inc.'s Exemplary Infringement Charts for U.S. Patent No. 10,517,149 (Apps. A-5, B-5, C-4, D-5, E-3, G-4, H-3, I-3) accompanying Lynk Labs, Inc.'s Amended Preliminary Infringement Contentions in Samsung Elecs. Co., Ltd. v. Lynk Labs, Inc., No. 1:21- cv-2665 (N.D. Ill.) (served Aug. 31, 2021)
Ex. 1068	Notification of Docket Entry (Dkt. \#50) in Samsung Elecs. Co., Ltd., v. Lynk Labs, Inc., No. 1:21-cv-2665 (N.D. Ill. July 27, 2021)
Ex. 1069	Order (Dkt. \#57) in Samsung Elecs. Co., Ltd., v. Lynk Labs, Inc., No. 1:21-cv-2665 (N.D. Ill. Aug. 19, 2021)
Ex. 1070	Notification of Docket Entry (Dkt. \#73) in Samsung Elecs. Co., Ltd., v. Lynk Labs, Inc., No. 1:21-cv-2665 (N.D. Ill. Oct. 18, 2021)
Ex. 1071	Lynk Labs, Inc.'s Answer and Counterclaims (Dkt. \#51) in Samsung Elecs. Co., Ltd., v. Lynk Labs, Inc., No. 1:21-cv-2665 (N.D. Ill. Aug. 3, 2021)
Ex. 1072	Complaint (Dkt. \#1) in Lynk Labs, Inc. v. The Home Depot USA, Inc. et al., No. 6:21-cv-00097 (W.D. Tex. Jan. 29, 2021)
Ex. 1073 1074	First Amended Complaint (Dkt. \#17) in Lynk Labs, Inc. v. The Home Depot USA, Inc. et al., No. 6:21-cv-00097 (W.D. Tex. Mar. 17, 2021)
Case docket in Lynk Labs, Inc. v. The Home Depot USA, Inc. et al., No. 6:21-cv-00097 (W.D. Tex.) (accessed October 25, 2021)	

Petition for Inter Partes Review
Patent No. 10,517,149

Ex. 1075	Supplemental Report of Parties' Planning Meeting (Dkt. \#72) in Samsung Elecs. Co., Ltd., v. Lynk Labs, Inc., No. 1:21-cv-2665 (N.D. Ill. Oct. 14, 2021)
Ex. 1076	Australian Patent Application Publication No. AU2003100206 ("Birrell")
Ex. 1077	GB Patent Application Publication No. 2202414 ("Logan")
Exs. 1078- 1080	RESERVED
Ex. 1081	U.S. Patent No. 7,226,442 ("Sheppard")
Ex. 1082	RESERVED
Ex. 1083	U.S. Patent No. 6,078,148 ("Hochstein")
Ex. 1084	U.S. Patent Application Publication No. 2002/0081982 ("Schwartz")
Ex. 1085	U.S. Patent No. 4,350,973 ("Petryk")
Ex. 1086	U.S. Patent No. 4,797,651 ("Havel")
Ex. 1087	U.S. Patent No. 5,324,316 ("Schulman")
Ex. 1088	RESERVED
Ex. 1089	U.S. Patent Application Publication No. 2004/0207484 ("Forrester")
Ex. 1090	U.S. Patent No. 6,580,228 ("Chen")
Ex. 1091	U.S. Patent Application Publication No. 2003/0122502 ("Clauberg")
Ex. 1092	U.S. Patent Application Publication No. 2005/0128751 ("Roberge")
Ex. 1093	RESERVED
Ex. 1094	Williams, T., The Circuit Designer's Companion, Butterworth- Heinemann Ltd., Inc. (1991) ("Williams") Exs. $1095-$ 1099 RESERVED

Ex. 1100	U.S. Patent No. 6,907,089 ("Jensen")
Ex. 1101	U.S. Patent No. 5,532,641 ("Balasubramanian")

I. INTRODUCTION

Samsung Electronics Co., Ltd. ("Petitioner" or "Samsung") requests inter partes review of claims 1-20 ("challenged claims") of U.S. Patent No. 10,517,149 ("the '149 patent") (Ex. 1001) assigned to Lynk Labs, Inc. ("PO"). For the reasons below, the challenged claims should be found unpatentable and canceled.

II. MANDATORY NOTICES

Real Parties-in-Interest: Petitioner identifies the following as the real parties-in-interest: Samsung Electronics Co., Ltd., Samsung Electronics America, Inc.

Related Matter: The '149 patent is at issue in the following matters:

- Samsung Electronics Co., Ltd. v. Lynk Labs, Inc., No. 1-21-cv-02665 (N.D. Ill.) (seeking declaratory judgment of non-infringement as to the ' 149 patent and also U.S. Patent Nos. $10,492,252,10,499,466,10,966,298$, $11,019,697,10,506,674,10,506,400,10,492,251,10,750,583,10,154,551$, and 10,652,979) ("Illinois-Litigation").
- Lynk Labs, Inc. v. Samsung Electronics Co. Ltd. et al., 6:21-cv-00526 (W.D. Tex.), transferred to Illinois as Case No. 1:21-cv-05126 and consolidated with 1:21-cv-02665 (Illinois-Litigation)
- Lynk Labs, Inc. v. The Home Depot USA, Inc., No. 6-21-cv-00097 (W.D. Tex.) (alleging infringement as to the ' 149 patent and also U.S. Patent Nos.

$$
10,492,251,10,757,783,10,091,842,10,932,341,10,537,001,10,349,479 \text {, }
$$ 10,652,979, and 10,154,551) (W.D. Tex.) ("HD-Litigation")

- The Home Depot USA, Inc. et al. v. Lynk Labs, Inc., IPR2022-00023 ("HDIPR").

The ' 149 patent claims the benefit of priority to, inter alia, two provisional applications (U.S. Provisional Application Nos. 60/574,653, filed February 25, 2004, and 60/559,867, filed April 6, 2004). The following patents claim the same benefit of priority to the '653 and '867 applications and have corresponding IPR proceedings:

- U.S. Patent No. 8,531,118 at issue in Acuity Brands Lighting, Inc., v. Lynk Labs, Inc., IPR2016-01133 (terminated);
- U.S. Patent No. 10,506,674 at issue in Samsung Electronics Co., Ltd. v. Lynk Labs, Inc., IPR2021-01299 (pending);
- U.S Patent No. 11,019,697 at issue in Samsung Electronics Co., Ltd. v. Lynk Labs, Inc., IPR2021-01300 (pending);
- U.S Patent No. 10,492,252 at issue in Samsung Electronics Co., Ltd. v. Lynk Labs, Inc., IPR2021-01345 (pending);
- U.S Patent No. 10,499,466 at issue in Samsung Electronics Co., Ltd. v. Lynk Labs, Inc., IPR2021-01346 (pending);
- U.S Patent No. 10,966,298 at issue in Samsung Electronics Co., Ltd. v. Lynk Labs, Inc., IPR2021-01347 (pending);
- U.S Patent No. 10,154,551 at issue in Samsung Electronics Co., Ltd. v. Lynk Labs, Inc., IPR2021-01575 (pending);
- U.S Patent No. 10,652,979 at issue in Samsung Electronics Co., Ltd. v. Lynk Labs, Inc., IPR2021-01576 (pending);
- U.S Patent No. $10,154,551$ at issue in Home Depot USA, Inc. v. Lynk Labs, Inc., IPR2021-01367 (pending).

Counsel and Service Information: Lead counsel: Naveen Modi (Reg. No. 46,224), and Backup counsel are (1) Joseph E. Palys (Reg. No. 46,508), (2) Arvind Jairam (Reg. No. 62,759), (3) Mark Consilvio (Reg. No. 72,065), (4) Howard Herr (pro hac vice admission to be requested). Service information is Paul Hastings LLP, 2050 M St., Washington, D.C., 20036, Tel.: 202.551.1700, Fax: 202.551.1705, email: PH-Samsung-LynkLabs-IPR@paulhastings.com. Petitioner consents to electronic service.

III. PAYMENT OF FEES

The PTO is authorized to charge any fees due during this proceeding to Deposit Account No. 50-2613.

IV. GROUNDS FOR STANDING

Petitioner certifies that the ' 149 patent is available for review and Petitioner is not barred or estopped from requesting review on the grounds identified herein.

V. PRECISE RELIEF REQUESTED AND GROUNDS

Claims 1-20 should be canceled as unpatentable based on the following grounds:

Ground 1: Claims 1 and 2 are unpatentable under pre-AIA 35 U.S.C. § 103(a) as being obvious over Zhang (Ex. 1005) and Salam (Ex. 1006);

Ground 2: Claim 3 is unpatentable under $\S 103(\mathrm{a})$ as being obvious over Zhang, Salam, and Mosebrook (Ex. 1007);

Ground 3: Claim 4 is unpatentable under §103(a) as being obvious over Zhang, Salam, and Michael (Ex. 1008);

Ground 4: Claims 5-9 are unpatentable under §103(a) as being obvious over Zhang and Piepgras (Ex. 1009);

Ground 5: Claim 10 is unpatentable under §103(a) as being obvious over Zhang, Piepgras, and Muthu (Ex. 1025);

Ground 6: Claims 11-16 are unpatentable under §103(a) as being obvious over Zhang and Michael;

Ground 7: Claims 17-19 are unpatentable under §103(a) as being obvious over Panagotacos (Ex. 1026), Zhang, and Muthu; and

Petition for Inter Partes Review
Patent No. 10,517,149
Ground 8: Claim 20 is unpatentable under $\S 103($ a) as being obvious over Panagotacos, Zhang, Muthu, and Michael.

The ' 149 patent issued from Application No. 16/215,502 filed December 10, 2018, and claims priority via a chain of applications to a provisional application filed February 25,2004 , which, for purposes of this proceeding and without concession, Petitioner assumes is the critical date.

Zhang (Ex. 1005) published on February 21, 2002. Mosebrook (Ex. 1007) published on November 9, 1999. Michael (Ex. 1008) published on April 7, 1987. Muthu (Ex. 1025) published on January 28, 2003. Panagotacos (Ex. 1026) published on March 21, 2002. These references therefore qualify as prior art under pre-AIA 35 U.S.C. § 102(b).

Salam (Ex. 1006) published on October 14, 2003 from an application filed March 30, 2001. Piepgras (Ex. 1009) published on July 24, 2003 from an application filed September 17, 2002. These references therefore qualify as prior art at least under pre-AIA 35 U.S.C. §102(a) and §102(e).

None of these references were considered during prosecution. (See generally Ex. 1004.)

VI. LEVEL OF ORDINARY SKILL

A person of ordinary skill in the art as of the claimed priority date of the '149 patent ("POSITA") would have had at least a bachelor's degree in electrical
engineering, computer engineering, computer science, physics, or the equivalent, and two or more years of experience with LED devices and/or related circuit design, or a related field. (Ex. 1002, $\boldsymbol{\Phi} \uparrow\{20-21 .)^{1}$ More education can supplement practical experience and vice versa. (Id.)

VII. OVERVIEW OF THE ' 149 PATENT

The ' 149 patent purports its alleged invention relates to LEDs and drivers, e.g., AC-driven LEDs/circuits. (Ex. 1001, 2:12-14, 3:55-10:40.) Yet, the challenged claims are broadly directed to an LED lighting system including conventional/wellknown generic components arranged to operate according to their known functions. The '149 patent was allowed on first action during prosecution (Ex. 1004, 316-322) and the Examiner's statement of reasons for allowance did not identify any purportedly allowable limitation of independent claims 5 and 11 (compare Ex. 1004, 321, with Ex. 1001, 23:33-42, 24:4-12). Regarding independent claims 1 and 17, the features listed by the Examiner, like all of the other generically claimed features, were already known in the prior art. See In re Gorman, 933 F.2d 982, 986 (Fed. Cir. 1991) ("The criterion ... is not the number of references, but what they would have meant to a person of ordinary skill in the field of the invention."). (Infra §IX; Ex.

[^0] 1077, 1081, 1083-1087, 1089-1092, 1094, 1100, 1101), 56-91; see generally Ex. 1004; Exs. 1035-1053.)

VIII. CLAIM CONSTRUCTION

The Board only construes the claims when necessary to resolve the underlying controversy. Toyota Motor Corp. v. Cellport Systems, Inc., IPR2015-00633, Paper No. 11 at 16 (Aug. 14, 2015) (citing Vivid Techs., Inc. v. Am. Sci. \& Eng'g, Inc., 200 F.3d 795, 803 (Fed. Cir. 1999)). For purposes of this proceeding, no special constructions are necessary to assess whether the challenged claims are unpatentable over the asserted prior art as the asserted grounds demonstrate unpatentability under any reasonable interpretation of the claimed terms. ${ }^{2}$ (Ex. 1002, $\left.\uparrow 55.\right)$

[^1]
IX. DETAILED EXPLANATION OF GROUNDS ${ }^{3}$

A. Ground 1: Claims 1 and 2 Are Obvious over Zhang and Salam 1. Claim 1

a) A lighting system comprising:

Zhang discloses a lighting system. ${ }^{4}$ (Ex. 1002, $\boldsymbol{q} \mid[56-63$, 92-110.) For instance, Zhang discloses a chip-on-board LED lighting system used for various lighting contexts, such as an illuminated exit sign, described with reference to Figure 2.1 (below) and constituting a "lighting system" as claimed. (Ex. 1005, Title ("Lighting Devices Using LEDS"), Abstract, (describing " 5 lighting devices" such as "chip-on-board LED exit signs"), $\boldsymbol{T q [0 0 2 2] , ~ [0 0 3 2] - [0 0 3 9] , ~ [0 0 7 9] ~ (" C h i p - o n - ~}$

[^2] 1066, 2-5; Ex. 1067, 2, 7, 12, 18, 22, 28, 34, 44.) Though not at issue here, because the asserted prior art meets any reasonable definition of "lighting system," Petitioner reserves the right to dispute PO's interpretation of the preamble in the IllinoisLitigation as applied to accused products that are, on their face, not "lighting system[s]."

Petition for Inter Partes Review Patent No. 10,517,149
board LED Exit Signs"), [0089] ("Chip-on-board Back Lights"); see also id., 9ी[0002] ("LED exit signs"), [0005]-[0006] ("LED Exit Signs"), FIG. 2.1 (circuit diagram that a POSITA would have understood is applicable to Zhang's systems, such as the exit sign system), $\mathbb{9}[0090] ;$ Ex. 1002, $\boldsymbol{9} 93$; §IX.A.1(b)-(f).)

Fig. 2.1, Electronic Circuit Board for LED Exit Sign
(Ex. 1005, FIG. 2.1.)
b) at least one LED circuit having a plurality of LEDs, wherein the plurality of LEDs includes same or different colored LEDs;

Zhang discloses this limitation. (Ex. 1002, 9994-96.) For instance, Zhang discloses, e.g., with reference to Figure 2.1, that its lighting system(s) includes at least one LED circuit (red below) having a plurality of LEDs 20:

Fig. 2.1, Electronic Circuit Board for LED Exit Sign
(Ex. 1005, FIG. 2.1 (annotated); see also id., $\mathbb{9} \mathbb{T}[0080]-[0081]$ ("LED chips"), [0082]-[0087], [0088] ("The COBLEDES 19 has n LEDs i[n] one row and m [r]ows in parallel."), [0089]-[0090] ("LED lights"); Ex. 1002, థ94.)

Zhang discloses that the plurality of LEDs includes "same or different colored LEDs," as claimed. (Ex. 1005, $\mathbb{9}[0033]$; Ex. 1002, 995.$)$ Indeed, "same or different colored" spans the entire range of possibilities for colors of LEDs, and no other options are possible, so a POSITA would have understood that Zhang's disclosure meets this aspect of limitation 1(b). (Ex. 1002, 995.$)$ Moreover, Zhang describes that its lighting system has "LED lights with red, yellow, orange, green, blue and white colors" and thus discloses different colored LEDs. (Ex. 1005, $\mathbb{T}[0090]$; Ex. 1002, 996.)

c) a driver, wherein the driver includes at least one transistor and at least one capacitor; and

Zhang discloses this limitation. (Ex. 1002, 997.$)$ For instance, as shown below in Figure 2.1, Zhang discloses a driver (red below), wherein the driver includes a transistor 59 ("at least one transistor") (green below) and capacitors C1, C2, C3 ("at least one capacitor") (orange below). (Id.) A POSITA would have understood that the portion of Figure 2.1 annotated in red below is a driver, e.g., because that portion of the depicted circuit drives voltage and current to LEDs 20. (Id.; Ex. 1005, FIG. 2.1.) Indeed, the red-annotated portion below serves as a power supply that regulates the power required for LEDs 20. (Ex. 1002, 997.$)$

Fig. 2.1, Electronic Circuit Board for LED Exit Sign
(Ex. 1005, FIG. 2.1 (annotated); Ex. 1002, ศ97; see also §IX.A.1(f) (explaining that Zhang's driver (red above) is configured in the manner required by limitation 1(f)).)
d) a package, wherein the package is a heat sinking reflective material;

Zhang in combination with Salam discloses or suggests this limitation. (Ex. 1002, $9 \uparrow 64-65,98-106$.) For instance, Zhang discloses its lighting system includes a circuit board, which a POSITA would have understood to be a "package," consistent with the '149 patent. (Ex. 1005, 99[0079] ("Chip-on-board LED Exit Signs"), [0083] ("The circuit board design is shown in FIG. 2.1."), FIG. 2.1
("Electronic Circuit Board for LED Exit Sign"); infra §IX.A.1(e) (claiming the driver and LED circuit are "mounted on the package"); Ex. 1002, 9 9 $998-99$.)

Fig. 2.1, Electronic Circuit Boardfor LED Exit Sign
(Ex. 1005, FIG. 2.1 (annotated); Ex. 1002, 998.$)$
Zhang discloses that its circuit board ("package") is a reflective material. (Ex. $1005, \mathbb{9}[0081]$ ("coat a layer of high reflection material on the top of the board"); see also id., $\boldsymbol{\Phi} \uparrow[0018],[0034]$, Abstract; Ex. 1002, $\boldsymbol{\Psi} 99.)^{5}$

Additionally, Zhang discloses an LED lamp that includes an "aluminum coated plastic bowl 3 to be used as the heat sink for a circuit board," thus

[^3]recognizing the desire to remove heat from the circuit board. (Ex. 1005, $\mathbb{T}[0092]$,
FIG. 3.1.)

Fig.3.1, LED Lamps
(Id., FIG. 3.1 (annotated); Ex. 1002, $\mathbb{1} 100$.)
Although Zhang does not explicitly disclose that the circuit board ("package") of its lighting system shown in Figure 2.1 is a heat sinking material (e.g., does not explicitly state that the heat sink for a circuit board as in Figure 3.1 is applicable to the circuit board of Figure 2.1), it would have been obvious in view of Zhang and Salam to implement this feature. (Ex. 1002, बq|101-106.) Salam "relate[s] to ... LED lamps," (Ex. 1006, 1:13-14), and Zhang similarly discloses "lighting devices using
 Abstract, 2:13-15; Ex. 1005, Title.) Therefore, a POSITA would have had reason to
consult the teachings of Salam for guidance regarding details of LED-based lighting systems when implementing Zhang's lighting system (e.g., LED exit sign). (Ex. 1002, $\boldsymbol{\text { |l }} 102$.

Figure 13 of Salam (annotated below) shows a "heat sink 86 [red below] which may be of metal," (Ex. 1006, 13:1-3), and which "serves as a final substrate for mounting the device [of Figure 13] onto a heat sink," (id., 13:19-22). (See also id., 17:3-5; Ex. 1002, $\mathbb{1} 103$.) Salam explains that the heat sink is near an active region of an LED. (Ex. 1006, 17:18-21 ("For each of the arrangements of FIGS. 11, $12,13,17 \mathrm{e}, 19 \mathrm{e}$ the LED active region $(10,110)$ is preferably less than 50 microns away from [] the heat sink....").)

FIG. 13
(Ex. 1006 (Salam), FIG. 13 (annotated); Ex. 1002, థ103.)

Thus, Salam discloses a package that is a heat sinking material, consistent with the disclosure of the '149 patent. (Ex. 1001, FIG. 25 (below) (heat sinking material 198 annotated in red); see also id., 17:31-38; Ex. 1002, $\uparrow 104$.

(Ex. 1001 ('149 patent), FIG. 25; Ex. 1002, ©104.)
In light of Zhang and Salam, a POSITA would have been motivated to implement the "package" with (or as) a heat sinking material. (Ex. 1002, $\uparrow 105$.) A POSITA would have recognized that Zhang's LED lighting system generates heat and accordingly would have found it important to address such heat, e.g., to improve circuit reliability and/or performance. (Id.; Ex. 1026, 7:34-8:1.) ${ }^{6}$ Indeed, Zhang's LED lamp of Figure 3.1 includes a heat sink as discussed, confirming that a POSITA implementing Zhang's LED lighting system of Figure 2.1 would have found a heat

[^4]sink to be relevant and desirable. (Id.; see also Ex. 1005, FIG. 4.1 (describing aluminum wall of lamp "[a]s heat sink"), $\mathbb{\Phi}[[0101])$.) Given that Salam discloses a heat sink (e.g., formed as a metal layer) upon which an LED is mounted, and Zhang's contemplation of heat sink material, a POSITA would have been motivated to implement the package in Zhang's lighting system with/as heat sinking reflective material to dissipate heat. (Id.)

A POSITA would have been skilled at circuit design/implementation and capable of achieving the above implementation, which would have been a straightforward combination of known components and technologies, according to known methods, to produce the predictable result of reducing/mitigating heat effects in a circuit, given that it was known that a heat sink was practical and desirable for "draw[ing] heat from the active region of the chip." (Ex. 1006, 3:7-9; Ex. 1002, 9106.) KSR Int'l Co. v. Teleflex Inc., 550 U.S. 398, 416 (2007). For similar reasons, a POSITA would have had a reasonable expectation of success implementing such a configuration. (Ex. 1002, 『106.)

e) the driver and the at least one LED circuit all mounted on the package; and

Zhang (as modified) discloses this limitation. (Ex. 1002, $9 \uparrow 107-108$.) As shown in Figure 2.1, Zhang's circuit board ("package") includes the driver (red below) and LED circuit (green below):

Fig. 2.1, Electronic Circuit Board for LED Exit Sign
(Ex. 1005, FIG. 2.1 (annotated); see also id., $\mathbb{T}[0083]$ ("The circuit board design is shown in FIG. 2.1."); Ex. 1002, 『107.)

A POSITA would have understood that the circuit components shown in
Figure 2.1 (which shows a circuit diagram for the circuit board) are mounted on the circuit board (Ex. 1002, © 108) consistent with the well-known use of a circuit board for mounting various circuit components to achieve a circuit. (Id.; Ex. 1055, 1:60$2: 5.)^{7}$

[^5]f) the driver is configured to receive an AC voltage from a mains power source and provide a voltage and current to the at least one LED circuit.

Zhang (as modified above) discloses or suggests this limitation. (Ex. 1002,
9-109-110.) For instance, Zhang discloses that "circuit design allows the LED board to use 120 VAC or 220 VAC line power" (i.e., "receive an AC voltage from a mains power source"). (Ex. 1005, $\mathbb{T}[0036]$; see also id., $\mathbb{Q}[0083]$ ("The 120 VAC or 220 VAC power from the commercial line is reduced to 9 VAC by the transformer 31...."); Ex. 1002, $\$ 109$.$) As annotated below in red, the AC voltage is received at$ the driver, and a POSITA would have understood that voltage and current are provided to the LED circuit at the node annotated below in green, because LEDs require current to emit light and Zhang explains that "the output of the regulator lights the COBLEDES [chip-on-board LED exit sign] 19 through diode 43." (Ex.

Fig. 2.1, Electronic Circuit Board for LED Exit Sign
(Ex. 1005, FIG. 2.1 (annotated); Ex. 1002, $\boldsymbol{\text { |109.) }}$
A POSITA would have understood that the AC voltage received via the commercial line is received from a mains power source. (Ex. 1012, 1:8-23; Ex. 1058, 1:25-29 ("a.c. mains (120 v.a.c., 60 Hz)"); Ex. 1002, $\uparrow 110.)^{8}$

[^6]
2. Claim 2

a) The lighting system of claim 1 , wherein the driver is configured to receive at least two different AC forward voltages.

Zhang (as modified above) discloses this limitation. (Ex. 1002, 9ी|111-112.) Zhang discloses that "circuit design allows the LED board to use 120 VAC or 220 VAC line power" ("receive at least two different AC forward voltages"). (Ex. 1005, -[[0036]; see also id., $\boldsymbol{q}[0083]$; Ex. 1002, $\mathbb{1} 111$.) Zhang explains that " $[t]$ he 120 VAC or 220 VAC power from the commercial line is reduced to 9 VAC by the transformer $31 "$ shown in Figure 2.1. (Ex. 1005, $\uparrow[0036]$.) Zhang thus discloses that the driver is configured to receive at least two different AC forward voltages via a bridge rectifier (red) as shown in Zhang’s Figure 2.1. (Ex. 1002, $\mathbb{T} 111$.

Fig. 2.1, Electronic Circuit Board for LED Exit Sign
(Ex. 1005, FIG. 2.1 (annotated); Ex. 1002, 9111.$)$
For example, it was understood that a positive voltage corresponds to a current flowing in a forward direction, which enables a diode (e.g., LED) to turn on, and that Zhang's bridge rectifier 35 (red circle) produces positive (forward) voltages where negative voltages were previously present, resulting in positive voltages at both half-cycles of an AC voltage sinusoid (which would otherwise have half its
cycle positive and the other half negative. (Ex. 1015, $\boldsymbol{\uparrow}[0002]$; Ex. 1019, $\boldsymbol{\top}[0068]$,
FIG. 2; Ex. 1002, 『112.) ${ }^{9}$
B. Ground 2: Claim 3 Is Obvious over Zhang, Salam, and Mosebrook 1. Claim 3
a) The lighting system of claim 1 , further comprising a three-way switch controlled by a user, wherein at least two of the plurality of LEDs are different colored LEDs.

Zhang in view of Salam and Mosebrook discloses or suggests this limitation. (Ex. 1002, $\mathbf{4} \uparrow 66-68,113-118$.) Zhang discloses that its lighting system includes "LED lights with red, yellow, orange, green, blue and white colors" ("at least two of the plurality of LEDs are different colored LEDs"). (Ex. 1005, q[0090].) Zhang also discloses the use of a switch in LED lighting devices that control signals connected to LEDs. (Id., $\mathbb{\|}[0119]$, FIG. 5.3.) While the Zhang-Salam combination does not explicitly disclose a three-way switch, it would have been obvious in view of Mosebrook and the state of the art to implement the claimed feature in the ZhangSalam system to provide a lighting system that uses known switch technologies to control lighting. (Ex. 1002, q\|116-119.) Mosebrook describes lighting control systems, and thus would have been a relevant resource for a POSITA to consider

[^7]Petition for Inter Partes Review
Patent No. 10,517,149
when implementing Zhang's lighting system. (Ex. 1007, 1:12-15, 1:40-41; Ex. 1002, $9 \uparrow 66-68,116$.

Mosebrook explains that it was known that "a user can install a so called three-way electrical switch, i.e., an additional light control switch to an existing hardwired single control system," and a POSITA would have known that a threeway switch was a conventional device that was widely used in lighting systems, e.g., to enable a user to control a lighting system from two places (e.g., control a hallway light using switches at both ends of a hallway), or control the selection of functionality in lighting systems. (Ex. 1007, 2:30-35; see also Ex. 1016, 2:1-15, 3:66-4:5, FIGS. 1, 4; Ex. 1017, 5:27-32, FIG. 1 (showing three-way switches 22 and 23); Ex. 1056, ब[0018]; Ex. 1002, 『1117.) ${ }^{10}$

In light of Mosebrook and state of the art knowledge, a POSITA would have been motivated and found obvious to modify the Zhang-Salam system to operate in an application that implements a user-controlled three-way switch. (Ex. 1002, T118.) A POSITA would have found it beneficial, e.g., to provide increased flexibility to a user for controlling Zhang's lighting system. (Id.) A POSITA would have been motivated to consider designs enabling lighting system control, e.g., configuring the lighting system to work in conjunction with known three-way switch

[^8]configurations that would use a three-way switch with the lighting system that operates with another switch at a different location, to provide similar functionality (e.g., allow a user to turn on/off lighting features in the system from different locations). (Id.) Such an implementation would have been a mere combination of known components and technologies, according to known methods, to produce predictable results. (Id.) $K S R, 550$ U.S. at 416. A POSITA would have been skilled at circuit design and would have found a three-way switch to be simple to implement in various electrical systems, including Zhang’s lighting system. (Ex. 1002, $\mathbb{1 1 1 8 .)}$ Therefore, such a skilled person would have had a reasonable expectation of success regarding such an implementation in the combined Zhang-Salam-Mosebrook system. (Id.)

C. Ground 3: Claim 4 Is Obvious over Zhang, Salam, and Michael 1. Claim 4

a) The lighting system of claim 1 , further comprising an
antenna for receiving data.

While Zhang and Salam do not explicitly disclose an antenna for receiving data, it would have been obvious in view of Michael to configure the Zhang-Salam system to include such an antenna. (Ex. 1002, $9 \uparrow 69-72,119-125$.$) Michael "relates$ to lighting assemblies," and (like Zhang) discloses circuitry relating to LED-based lighting. (Ex. 1008, 1:5-7; see also id., Title, 7:20-8:47; Ex. 1005, Title, Abstract;

Ex. 1002, $\boldsymbol{\Phi} \uparrow 69-72,120$.) Accordingly, a POSITA would have had reason to consider the teachings of Michael when implementing Zhang's lighting system. (Id.)

Michael discloses a lighting assembly that includes LED drivers (red below) and LEDs (green below), as shown below in excerpted/annotated Figure 12.

(Ex. 1008, FIG. 12 (excerpted/annotated); see also id., 7:20-21; Ex. 1002, థ121.)
Michael discloses that an operator uses a keyboard 378 to interface with the lighting assembly and control it. (Ex. 1008, 8:23-24, 8:54-58, FIG. 15 (below; showing keyboard 378 at top right); Ex. 1002, $\mathbb{1} 122$.$) For example, Michael$ discloses controlling the color of lighting and/or turning off lighting based on operator input (Ex. 1008, 8:29-34, 8:58-66) and further discloses that a "bulb 34 may
be caused to glow with whatever intensity is desired" based on such operator input (id., 8:67-9:2). (Ex. 1002, $\mathbb{9} 122$.$) Michael explains that, by driving an appropriate$ current to LEDs, the system controls light emitted by the LEDs. (Ex. 1008, 9:2-9; Ex. 1002, $\mathbb{\top} 122$.$) Michael describes using wireless communication for controlling$ the LEDs of the lighting assembly. (Ex. 1008, 10:48-61; Ex. 1002, థ122.) For such wireless communication, Michael discloses a receiving antenna 438 (red below), shown in Figure 15:

(Ex. 1008, FIG. 15 (annotated); Ex. 1002, 『122.)

Michael explains that keyboard 378 is coupled to keyboard encoder IC 328, which provides an encoded signal that is modulated and transmitted to antenna 438, and " $[t]$ he signal received on antenna 438 is inputted to a radio frequency receiver 440 ... [which] outputs to a demodulator 442 which outputs to microcomputer 334 ." (Ex. 1008, 10:48-58.) Michael discloses that the operator enters input via keyboard 378 in the form of commands (represented by the foregoing encoded signal), and a POSITA would have understood the commands and/or the modulated version thereof to be data. (Id., 8:23-29; Ex. 1002, $\mathbb{1} 123$.) As shown above in Figure 15, microcomputer 334 is coupled to LED drivers 338/340/342. (Ex. 1002, $\uparrow 124$.) Thus, antenna 438 receives data for operating/driving LEDs. (Id.)

Usage of an antenna, including for communicating with and controlling a device wirelessly, was conventional and well known in various engineering contexts, including in the context of lighting systems, long before the alleged invention of the '149 patent. (Ex. 1002, $\mathbb{1} 124$.) For example, Wacyk describes antenna-based control of a lamp. (Id.; Ex. 1020, FIGS. 2-5, 7.) ${ }^{11}$ As shown below in Figure 4A of Wacyk, a receive antenna 112 (red below) and a radio transceiver coupled to the antenna 112 are used for receiving data signals, which are sent to a microcontroller 110 for controlling a lamp driver 106. (Ex. 1002, $\mathbb{1} 124$.)

[^9]

FIG. 4A

(Ex. 1020, FIG. 4A (annotated); see also id., 4:7-16; Ex. 1002, ©124.)
In light of Michael's teachings and the state of the art (e.g., as demonstrated by Wacyk), a POSITA would have been motivated to configure the Zhang-Salam system to include an antenna for receiving data. (Ex. 1002, $\boldsymbol{\|} 125$.) A POSITA would have found this to be a predictable, and indeed expected, way to implement wireless communication with the Zhang-Salam lighting system, in order to control it. (Id.) A POSITA would have found it beneficial to enable wireless communication with Zhang-Salam's lighting system via such an antenna, e.g., in order to provide alternative and/or additional ways control lighting, particularly given that wireless control of lighting systems was known. (Id.; Ex. 1009, $\boldsymbol{\text { q }}$ [[0032], [0083], [0177].) ${ }^{12}$ A POSITA would have found such wireless communication/control useful in the context of Zhang's system, e.g., to turn the exit sign on/off, control the lighting to

[^10]be performed in a predictable manner. (Ex. 1020, FIG. 4A; Ex. 1008, 8:23-51, FIG. 13; Ex. 1002, $\mathbb{1} 125$.) A POSITA would have found the above configuration of the Zhang-Salam system to be simple, within the capabilities of an ordinary artisan, and reasonably likely to be successful, as a POSITA would have been knowledgeable about antennas and the above configuration would have been a combination of known components, according to known methods, to produce the predictable result of a system that receives data using an antenna. (Ex. 1002, థ125.) KSR, 550 U.S. at 416.

D. Ground 4: Claims 5-9 Are Obvious over Zhang and Piepgras

1. Claim 5

a) A lighting system comprising:

Zhang discloses an LED lighting system implementing the circuit shown in Figure 2.1 which may be used for various lighting contexts, such as an illuminated exit sign or a lighting system for providing backlighting, as discussed above for claim 1. (§IX.A.1(a); Ex. 1005, $9 \uparrow[0032]-[0039],[0079]-[0090]$, FIG. 2.1; Ex. 1002, 9q1126-135; §§IX.D.1(b)-(d).)
b) an LED circuit having a plurality of LEDs, wherein the plurality of LEDs includes same or different colored LEDs;

Zhang discloses this limitation for the reasons discussed above regarding limitation 1(b). (§IX.A.1(b); Ex. 1002, 『128.)

c) a proximity sensing circuit; and

While Zhang does not explicitly disclose a proximity sensing circuit, it would have been obvious of Piepgras to modify Zhang's lighting system to include one. (Ex. 1002, $9 \uparrow 773-76,129-133$.) Piepgras, like Zhang, describes LED-based lighting systems, and thus a POSITA would have had reason to consider the teachings of Piepgras when implementing Zhang's lighting system, which is LED-based as explained above in §§IX.A.1(a)-(b). (Ex. 1009, Title ("Light Emitting Diode Based Products"), Abstract, FIG. 1 (block diagram for lighting LED lighting system); Ex. 1002, $9 \uparrow 773-76,129$.

Piepgras discloses controlling a lighting device based on a proximity sensor signal. (Ex. 1002, $\mathbb{1} 130$.) For example, Piepgras discloses that "any of the lighting devices discussed in connection with FIGS. 32-38 or other figures may be associated with a sensor or other system that generates a signal," (Ex. 1009, $\boldsymbol{\Phi}[0179]$), and that "an LED-illuminated device "may respond to signals from an activation switch that is associated with a control circuit" wherein "[t]he activation switch may respond to ... proximity," (id., $\mathbb{T}[0138]$). (Ex. 1002, $\mathbb{1} 130$; see also Ex. 1009, Abstract, T[0186].) As an example of control, Piepgras explains that the lighting device may change color "based on one or more signals provided by the detector," to emit a particular color. (Ex. 1009, $\mathbb{T}[0179]$; see also id. ("[A] hallway or other area may have several lighting devices where each of them is associated with a proximity

Petition for Inter Partes Review
Patent No. 10,517,149
detector. As a person walks down the hallway, the lighting devices activate...."); Ex. 1002, $\mathbb{1} 130$.) Thus, Piepgras discloses proximity sensing in the context of a lighting device. (Ex. 1002, 『130.)

In light of Piepgras, a POSITA would have been motivated to, and found it predictable and obvious to, modify Zhang's lighting system to implement a proximity sensing circuit as claimed. (Id., $\mathbb{9} 131$.) A POSITA would have recognized that proximity sensing would have been beneficial for controlling Zhang's lighting system based on proximity of objects (or persons), as discussed above and as well known in the art. (Id.; Ex. 1021, 1:54-57; Ex. 1022, 6:24-27; Ex. 1023, 7:34-41, 7:61-64, 8:3-7; Ex. 1024, Title, Abstract, 5:60-63, FIG. 1.) ${ }^{13}$

It would also have been predictable and obvious in view of the knowledge of a POSITA to implement such proximity sensing in the combined Zhang-Piepgras system via a proximity sensing circuit as claimed. (Ex. 1002, $\uparrow 132$.) For example, a POSITA would have known that proximity sensors (including ones in the context of a lighting system), like many other types of sensors, were conventionally implemented using a circuit, and that proximity sensing circuits were widespread

[^11] - 1131.$)$
and predictable to implement. (Id.; Ex. 1024, Title, Abstract, 1:6-9, 2:11-15, 3:5-6, 5:60-63, FIG. 1; Ex. 1022, Abstract; Ex. 1023, FIG. 5, 7:34-41.)

A POSITA would have found the above modification to be simple, would have been capable of implementing it, and would have had a reasonable expectation of success in such an implementation, e.g., because proximity sensors and proximity sensing circuits were well known (as discussed above) and because a POSITA would have been skilled in designing/implementing circuits and various circuit components. (Ex. 1022, 5:54-55; Ex. 1002, $\uparrow 133$.) Indeed, this modification would have been a mere combination of known components and technologies, according to known methods, to produce predictable results. (Ex. 1002, $\uparrow 133$.) $K S R, 550$ U.S. at 416 .
d) a driver, wherein the driver is connected to the LED circuit, the driver configured to receive an input of an AC voltage from a mains power source and provide a voltage and current to the LED circuit in response to the proximity sensing circuit.

Zhang-Piepgras discloses or suggests this limitation. (Ex. 1002, $\mathbb{1 q 1 3 4 - 1 3 5 .)}$ Zhang discloses a driver connected to the LED circuit, wherein the driver is configured to receive an input of an AC voltage from a mains power source and provide a voltage and current to the LED circuit, as discussed for limitations 1(c) and 1(f). (§IX.A.1(c), (f); see also §IX.A.1(b); Ex. 1005, FIG. 2.1; Ex. 1002, థ134.) It would have been obvious to implement providing the voltage/current to the LED
circuit in response to the proximity sensing circuit, for the reasons discussed above for limitation 5(c) (§IX.D.1(c)) and the reasons discussed in this section. (Ex. 1002,【134.)

For example, a POSITA would have known how to control voltage/current in response to circuit-related activities/operations, including activities/operations relating to a proximity sensing circuit. (Ex. 1022, 6:24-27; Ex. 1023, 7:61-64; Ex. $1002, \Phi 135$.) Indeed, controlling voltage and current was known to be a fundamental aspect of circuits, because voltage and current are basic circuit concepts. (Ex. 1002,【135.) A POSITA would have sought to provide voltage/current to the LED circuit of the Zhang-Piepgras system in response to the proximity sensing circuit, so that operation of the LED circuit (including lighting of LEDs) is controlled based on proximity of an object (or person) -a desirable feature, within the capabilities of a POSITA, and predictable for a POSITA to implement with a reasonable expectation of success as explained above for limitation 5(c). (Id.; §IX.D.5(c).)

2. Claim 6

a) The lighting system of claim 5 , wherein the proximity
sensing circuit turns on the light when sensing a
person.

Zhang-Piepgras discloses or suggests this limitation for similar reasons as discussed for limitations 5(c)-5(d). (§§IX.D.1(c)-(d); Ex. 1002, $9 \mathbb{1} 136-137$.$) For$ example, as explained for limitation 5(c), Piepgras discloses that "a hallway or other
area may have several lighting devices where each of them is associated with a proximity detector" so that "[a]s a person walks down the hallway, the lighting devices activate," which a POSITA would have recognized as a common and predictable usage of a proximity sensing circuit. (Ex. 1021, 1:54-57; Ex. 1024, Abstract, 5:60-63, FIG. 1; Ex. 1002, 『136.)

Thus, it would have been predictable and obvious to configure the proximity sensing circuit of the Zhang-Piepgras system (§IX.D.1(c)) to turn on the light when sensing a person. (Ex. 1002, $\mathbb{1} 137$.) This would have been a combination of known components and technologies, according to known methods, to produce predictable results. (Id.) KSR, 550 U.S. at 416. In light of Piepgras and the knowledge of a POSITA (e.g., as demonstrated by the foregoing references), it would have been straightforward for a POSITA, who was skilled at circuit design, to implement the above configuration. (Ex. 1002, $\uparrow 137$.$) Similarly, a POSITA would have had a$ reasonable expectation of success implementing this configuration. (Id.)

3. Claim 7

a) The lighting system of claim 5 , wherein the driver is configured to provide DC voltage and current to the LED circuit.

Zhang (as modified above) discloses this limitation. (Ex. 1002, $\boldsymbol{\|} \mathbb{T} 138$.$) For$ instance, Zhang discloses that "[a]fter filtering by the capacitor 36, the first output of the DC power from the rectifier 35 is sent to the regulator 37 of $\mathbf{5}$ VDC" and
"[a]fter filtering by capacitor 41 , the output of the regulator lights the COBLEDES 19 through diode 43." (Ex. 1005, $\mathbb{9}[0084]$; see also id., FIG. 2.1; Ex. 1002, $\mathbb{1} 138$. A POSITA would have understood that because DC voltage is provided to the LED circuit, DC current is also provided to the LED circuit, because voltage V is the product of current I and resistance R and thus the current is DC current when the voltage is DC voltage. (Ex. 1002, $\uparrow 1138$.)

4. Claim 8

a) The lighting system of claim 5 , wherein at least a portion of the plurality of LEDs is configured to be powered at the same time.

Zhang (as modified above) discloses this limitation. (Ex. 1002, $\mathbb{1} 139$.$) As$ discussed for limitations 1(b) and 5(b), Zhang discloses an LED circuit having a plurality of LEDs (red below). (Id.; §IX.A.1(b), §IX.D.1(b).) Zhang discloses that "the output of the regulator lights the COBLEDES [chip-on-board LED exit sign] 19," which a POSITA would have understood as powering diodes 20 (annotated below) ("at least a portion of the plurality of LEDs") at the same time. (Ex. 1002, ब139.)

Petition for Inter Partes Review Patent No. 10,517,149

Fig. 2.1, Electronic Circuit Board for LED Exit Sign
(Ex. 1005, FIG. 2.1 (annotated); Ex. 1002, 『139.)

5. Claim 9

a) The lighting system of claim 5, further comprising a reflective material.

Zhang (as modified above) discloses this limitation. (Ex. 1002, $\mathbb{\$ 1 4 0 .)}$ As discussed in §IX.A.1(d), Zhang discloses that its lighting system includes a circuit board coated with a "layer of high reflection material." (Ex. 1005, $\mathbb{\text { I [0018]; see }}$ also id., $\boldsymbol{T} \mid[[0034]$, [0081], Abstract.)

E. Ground 5: Claim 10 Is Obvious over Zhang, Piepgras, and Muthu

1. Claim 10

a) The lighting system of claim 5 , wherein the driver includes a field effect transistor and is configured to receive at least two different AC forward voltages.

Zhang in view of Piepgras and Muthu discloses or suggests this limitation. (Ex. 1002, $\boldsymbol{\text { q}} \boldsymbol{\square} 77-83,141-146$.) As discussed regarding claim 2, Zhang discloses that the driver (§IX.A.1(c)) is configured to receive at least two different AC forward voltages. (§IX.A.2; Ex. 1005, ¢[0036], FIG. 2.1.) While Zhang and Piepgras do not explicitly disclose a "field effect transistor" (regarding which the '149 patent does not describe any criticality, see generally Ex. 1001), it would have been obvious in view of Muthu to configure the driver of the Zhang-Piepgras system to include a field effect transistor. (Ex. 1002, ब $\uparrow \uparrow 77-83,141-156$.) Muthu relates to LED circuits for providing lighting for display systems, e.g., displaying products in a retail environment. (Ex. 1025, Title, Abstract, FIGS. 1-3, 1:7-12; Ex. 1002, 『142.) Additionally, Muthu, like Zhang, describes powering LEDs with AC power. (Ex. 1025, 2:62-3:2.) Therefore, a POSITA would have found Muthu to be a relevant resource to consult when implementing Zhang's LED lighting system. (Ex. 1002, -9|777-83, 142.)

Muthu describes an LED lighting system, including mechanisms for providing power to LEDs. (Ex. 1002, $\mathbb{1} 143$.) Figure 1 of Muthu (below) shows a
"microprocessor controlled AC power supply system for [an] RGB LED based freezer driver." (Ex. 1025, 2:62-65.)

(Ex. 1025, FIG. 1; see also id., 2:49-50 ("FIG. 1 represents a block diagram overview of the exemplary embodiment of the present invention.").)

Muthu discloses that "power is supplied by front-end AC/DC converter 10 , high frequency $\mathrm{DC} / \mathrm{AC}$ converter 20, and three load-end $\mathrm{AC} / \mathrm{DC}$ converters 30,31 and 32 for providing RGB LED drive currents" to "[r]ed, [r]reen and [b]lue LED light sources 120, 130 and 140 respectively," where each "is made of a plurality of LEDs connected in a suitable series and/or parallel configuration." (Id., 2:65-3:5; Ex. 1002, $\boldsymbol{q}^{144 .)}$

Muthu describes the use of field effect transistors (FET) for driving LEDs 120/130/140. (Ex. 1002, ©145.) Notably, Muthu describes that "[t]he outputs of [] isolation circuit [61] are fed into individual MOSFET drivers in AC/DC converter 10, DC/AC converter 20, and LED drivers 30, 31, and 32" shown in Figure 1. (Ex. 1025, 4:33-37.) A POSITA would have known that a MOSFET was a type of FET. (Ex. 1018, 110-118; Ex. 1002, $19145-146$.)

In light of Muthu, a POSITA would have been motivated to, and found it predictable and obvious to, configure the driver of the Zhang-Piepgras system to implement known FET design concepts. (Ex. 1002, 『146.) For example, a POSITA would have recognized that Muthu's disclosure of MOSFET drivers in an LED lighting system would have been a predictable usage of existing transistor technology. (Id.) Indeed, FETs were prevalent in various electrical engineering contexts and were well known to a POSITA for controlling circuits/signals. (Ex. 1010, FIG. 5 (FET 272), 10:54-11:13 (describing FET 272); Ex. 1018, 112-117; Ex.

1002, $\boldsymbol{\oplus} 146.)^{14}$ A POSITA would have found the usage of a FET to be beneficial, because it was a reliable technology for conditionally conducting current. (Ex. 1002,【146.) A POSITA would have had a reasonable expectation of success in implementing such a configuration, which would have involved the use of known technologies and techniques to produce the predictable results discussed above. (Id.) $K S R, 550$ U.S. at 416.

F. Ground 6: Claims 11-16 Are Obvious over Zhang and Michael 1. Claim 11

a) A lighting system comprising:

Zhang discloses an LED lighting system used for various lighting contexts, such as an illuminated exit sign or a lighting system for providing backlighting, as discussed above for claims 1 and 5. (§IX.A.1(a), §IX.D.1(a); Ex. 1005, $9 \uparrow[0032]-$ [0039], [0079]-[0090]; Ex. 1002, $9 \uparrow 147-158$; §§IX.F.1(b)-(e).)
b) at least one LED circuit having a plurality of LEDs mounted on an insulating substrate;

Zhang discloses this limitation. (Ex. 1002, $\mathbb{1} 149$.) As discussed regarding limitation 1(b), Zhang discloses a plurality of LEDs, and as discussed regarding limitations 1(d)-(e) Zhang discloses that the LEDs are mounted on a circuit board. (Id.; §IX.A.1(b), (d), (e); Ex. 1005, FIG. 2.1.) A POSITA would have understood

[^12]that Zhang discloses that its LEDs are mounted on an insulating substrate, because a circuit board necessarily includes an insulating substrate that enables current flowing through conductive pathways (e.g., copper traces) to be confined the conductive pathways without flowing into the insulating substrate. (Ex. 1013, 1:1013, FIG. 9; Ex. 1014, 1:10-18; Ex. 1002, $\uparrow 149.)^{15}$ Indeed, a POSITA would have understood that without an insulating substrate, a circuit board would not be able to properly provide electrical circuits. (Id.; Ex. 1014, 1:18-21.)

c) a data antenna; and

While Zhang does not explicitly disclose that its lighting system comprises a data antenna, it would have been obvious in view of Michael to implement such an antenna, for the reasons discussed above regarding claim 4. (§IX.C.1; Ex. 1002, - 1150.$)$

d) a driver, wherein the driver is configured to receive data signals from the data antenna to drive the plurality of LEDs in response to signals received by the antenna,

Zhang in view of Michael discloses or suggests this limitation. (Ex. 1002, - \mid |151-155.) As discussed above for limitations 1(c), 1(f), and 5(d), Zhang discloses a driver coupled to the LED circuit and configured to drive the plurality of LEDs (e.g., by providing voltage and current to the LEDs). (Id.; §IX.A.1(c), (f),

[^13]§IX.D.1(d); Ex. 1005, FIG. 2.1.) As discussed for claim 4, Michael discloses an antenna 438 (red below) that receives data signals that are used for sending signals to LED drivers 338/340/342 (green below) to drive LEDs in response to signals received by the antenna. (§IX.C.1; Ex. 1008, 10:48-58, FIG. 15; Ex. 1002, $\mathbb{1} 151$.)

(Ex. 1008, FIG. 15 (annotated); Ex. 1002, 『151.)
As discussed for claim 4, Michael discloses that " $[t]$ he signal received on antenna 438 is inputted to a radio frequency receiver 440 ... [which] outputs to a demodulator 442 which outputs to microcomputer 334 " that sends signals to LED
drivers 338/340/342 for driving LEDs. (§IX.C.1; Ex. 1008, 10:48-58; see also id., FIG. 15.) Michael further discloses LEDs driven in response to commands entered by an operator, where commands are encoded, modulated, and transmitted wirelessly in the form of a signal that is received by antenna 438, as explained for claim 4. (§IX.C.1; Ex. 1008, 8:23-29.)

It would have been obvious in view of the combined teachings of Zhang and Michael to configure Zhang's driver to receive data signals from the data antenna (of the combined Zhang-Michael system discussed for limitation 11(c)) to drive the plurality of LEDs in response to signals received by the antenna. (Ex. 1002, $\mathbb{\$ 1 5 2 -}$ 154.) For example, a POSITA would have recognized that receiving data signals from an antenna was a conventional, expected usage of a data antenna (such as Michael's antenna 438) for wireless communication and that such received data signals would predictably have been used for further processing, e.g., to accomplish a task such as driving LEDs in the context of Zhang's lighting system). (Id.) A POSITA would have found such wireless communication/control useful in the context of Zhang's system, e.g., to turn the exit sign on/off and/or control the lighting to be performed in a predictable manner, as discussed for claim 4. (§IX.C.1; Ex. 1002, 9154 ; see also Ex. 1020 (demonstrating state of the art), FIG. 4A.) Indeed, wireless control of lighting was well known (e.g., as discussed regarding claim 4). A POSITA would have found it desirable to control various types of lighting
systems, including Zhang's lighting system, via a wireless approach. (Ex. 1002, - 1154.$)$

A POSITA would have been capable of implementing the above configuration, including making any needed technical adaptations (e.g., adding circuitry (receiver, demodulator and/or processor/microcomputer) for processing received data signals at the antenna as described in Michael). (Ex. 1008, FIG. 15;
 POSITA to implement, e.g., because such usage of an antenna (including for driving LEDs in response to received data signals) was well within the state of the art, as demonstrated by Wacyk. (Ex. 1002, $\uparrow 155$; Ex. 1020, FIG. 4A, 4:7-16.) Similarly, a POSITA would have had a reasonable expectation of success implementing this configuration, which would have been a combination of known components and technologies, according to known methods, to produce predictable results. (Ex. 1002 , $\uparrow 155.) K S R, 550$ U.S. at 416.

e) wherein the driver is configured to provide DC voltage and DC current to the at least one LED circuit in response to data received.

Zhang-Michael discloses or suggests this limitation. (Ex. 1002, $9 \uparrow 1156-158$.)
As discussed regarding limitations 1(f) and 5(d), Zhang's driver provides voltage/current to Zhang’s LED circuit. (§IX.A.1(f), §IX.D.1(d); Ex. 1002, థ156.) Zhang discloses that its driver " 5 VDC" to the LEDs (through diode 43, see Ex.

1005, FIG. 2.1), and thus a POSITA would have understood that the voltage/current provided to the LED circuit are $D C$ voltage/current. (Id., $\mathbb{\uparrow}[0084]$; Ex. 1002, $\mathbb{4} 156$.) It would have been obvious in view of Zhang and Michael to configure the driver to provide the DC voltage/current to the LED circuit in response to data received, for at least the reasons discussed above regarding limitation 11(d) (analysis regarding driving Michael's LEDs in response to a received signal representing commands entered by an operator) and the additional reasons discussed below. (§IX.F.1(d); Ex. 1002, 『156; see also §IX.C.1, §IX.F.1(c).)

For example, as discussed for claim 4 and limitation 11(d), Michael discloses that LED drivers drive LEDs (e.g., by delivering an appropriate current/voltage to the LEDs, Ex. 1008, 9:2-9) in response to data (operator commands) received from antenna 438 (and also data received from microcomputer 334, which receives a signal that was received and demodulated), to control LED lighting (e.g., by controlling an LED to output light of a desired color or intensity or to turn it off). (§IX.C.1, §IX.F.1(d); Ex. 1008, 8:29-34, 8:54-9:9, FIG. 15; Ex. 1002, 『157.) A POSITA would have understood that an LED driver drives an LED circuit by providing voltage and current. (Ex. 1002, $\mathbb{T}\{25-31,157$.) Therefore, a POSITA would have found it predictable and obvious in light of Zhang and Michael to configure the driver to provide the DC voltage/current to the LED circuit in response to data received, in order to enable the LED circuit to be driven based on wireless
communications, which would have been recognized as a desirable feature. (Ex. 1002, 『157.)

A POSITA would have been skilled at designing/implementing circuits and capable of implementing such a configuration and would have had a reasonable expectation of success implementing it. (Id., $\mathbb{T} 25-37,158$.) Indeed, as discussed above for limitation 5(c) (§IX.D.1(c)), switching circuits were known for conditionally controlling the flow of power to a load in response to a data signal such as a proximity signal, and similarly, a POSITA would have recognized that it was feasible and predictable to control the provision of DC voltage and DC current in response to data received. (Id.; see also §IX.F.1(d) (citations and analysis regarding driving LEDs in response to received signals); Ex. 1002, $\$ \mathbb{\$} \$ 49,158$.

2. Claim 12

a) The lighting system of claim 11, wherein the driver is configured to receive one of at least two different AC forward voltage inputs to the driver.

Zhang (as modified above) discloses this limitation for the reasons discussed above regarding claim 2. (§IX.A.2; Ex. 1002, 『159.)

3. Claim 13

a) The lighting system of claim 11 , wherein data is sent and received via the data antenna.

Zhang-Michael in view of the state of the art discloses or suggests this limitation. (Ex. 1002, $9 \uparrow 160-162$.) As discussed for limitation 11(d) (§IX.F.1(d)),

Zhang-Michael discloses receiving data via a data antenna. To the extent ZhangMichael does not explicitly disclose that data is also sent via the data antenna, it would have been obvious to implement this feature. (Ex. 1002, $9 \mathbb{1} 160-162$.) A POSITA would have known that a data antenna was usable for both sending and receiving data. (Id.) Indeed, sending/receiving data using an antenna were basic aspects of wireless communications, known decades before the alleged invention of the '149 patent, and a POSITA would have found bidirectional communication to be predictable and desirable, e.g., because bidirectional communication enables better interactions with a remote system than unidirectional communication. (Id.) For example, Caudel describes sending and receiving data using an antenna 10. (Ex. 1059, 3:65-68, 4:3-20; Ex. 1002, $\uparrow 160$.

It was also well known to send and receive data using an antenna in the context of a lighting system. (Ex. 1002, $\mathbb{1} 161$.) For example, Wacyk describes sending and receiving data using antenna 112 (red below):

FIG. 4A

(Ex. 1020, FIG. 4A (annotated); see also id., 4:7-16; Ex. 1002, $\uparrow 162.)^{16}$
In light of such knowledge, it would have been obvious to configure the data antenna of the Zhang-Michael system (§IX.F.1(c)) so that data is sent and received via the data antenna. (Ex. 1002, $\mathbb{1} 162$.) For example, a POSITA would have found such a configuration beneficial for enabling status information regarding LEDs to be sent, e.g., as described in Wacyk (Ex. 1020, FIG. 4A), and for enabling acknowledgments to be sent (e.g., in response to received lighting commands), consistent with basic principles of communication systems. (Ex. 1060, 6:21-26; Ex. 1002, $\mathbb{\Phi}$ 162. $)^{17}$ A POSITA would have been skilled in electrical engineering and knowledgeable about bidirectional communications, e.g., using an antenna that

[^14]sends/receives data. Such a skilled person would have been capable of implementing, and would have had a reasonable expectation of success in implementing the data antenna of the Zhang-Michael system so that data is both sent and received via the data antenna, which would have involved the use of known technologies and techniques to produce the expected result of sending and receiving data via an antenna. (Ex. 1002, 9162 .) KSR, 550 U.S. at 416.

4. Claim 14

a) The lighting system of claim 11, wherein at least a portion of the plurality of LEDs is configured to be powered at the same time.

Zhang (as modified above) discloses this limitation for the reasons discussed above regarding claim 8. (§IX.D.4; Ex. 1002, ©163.)

5. Claim 15

a) The lighting system of claim 11, further comprising a reflective material.

Zhang (as modified above) discloses this limitation for the reasons discussed above regarding claim 9. (§IX.D.5; Ex. 1002, ©164.)

6. Claim 16

a) The lighting system of claim 11, wherein the driver includes a smoothing capacitor to smooth ripple from the output voltage.

Zhang (as modified above) discloses this limitation. (Ex. 1002, $9 \uparrow 1165-166$.)
For instance, Zhang discloses that its driver (red below) includes a smoothing

Petition for Inter Partes Review Patent No. 10,517,149
capacitor 41 (green) (labeled "C1") to smooth ripple from the output voltage. ${ }^{18}$

Fig. 2.1, Electronic Circuit Board for LED Exit Sign
(Ex. 1005, FIG. 2.1 (annotated); Ex. 1002, 『165.)
Zhang discloses that "[a]fter filtering by capacitor 41, the output of the regulator lights the COBLEDES 19 through diode 43." (Ex. 1005, $\mathbb{9}[0084]$.) The filtering by capacitor 41 smooths the output voltage. (Ex. 1002, $\boldsymbol{\|} 166$.) For example,

[^15]Saito (Ex. 1019) demonstrates the understanding a POSITA would have had regarding such a capacitor, as Saito describes a capacitor 716 in a similar arrangement in an LED circuit and explains that it "has the function of smoothing the output voltage of [a] switching element 316 (voltage at a node B 715)." (Ex. 1019, $\uparrow[0095]$; see also Ex. 1057, 3:10, FIGS. 3B-3C (smoothing capacitor C1); Ex. 1018, 38-39. $)^{19}$ A POSITA would have understood that Zhang's capacitor 41 achieves the smoothing by charging when the voltage from regulator 37 is above that of capacitor 41 and discharging (providing current from stored charge) when the voltage from regulator 37 is lower than that of capacitor 41. (Ex. 1002, $\mathbb{\$ 1 6 6 .)}$
G. Ground 7: Claims 17-19 Are Obvious over Panagotacos, Zhang, and Muthu

1. Claim 17

a) A lighting system comprising:

As shown in Figures 1-2, Panagotacos discloses a system including light emitting diodes (LEDs) 14 (red below), which system a POSITA would have understood to be a lighting system. (Ex. 1026, FIGS. 1-2; see also id., 1:5, 1:34, 5:25-27; Ex. 1002, Фథ $\mid 84-91,167-199$.

[^16]

FIG. 1

(Ex. 1026, FIG. 1 (annotated); see also id., 2:30-3:7; Ex. 1002, 『168.)

FIG. 2
(Ex. 1026, FIG. 2 (annotated); see also id., 3:8-6:16; Ex. 1002, $\boldsymbol{\text { |168; §§IX.G.1(b)- }}$ (f).)
b) an LED circuit having at least two LEDs mounted on a substrate, wherein the at least two LEDs may produce the same or different color of light,

Panagotacos in view of Zhang discloses or suggests this limitation. (Ex. 1002, $\boldsymbol{\Phi} \mid 1169-172$.) As illustrated, Panagotacos discloses an LED circuit (red below) having multiple LEDs 14 . (Ex. 1026, FIG. 2; see also id., 2:19-20 ("FIGURE 2 is a schematic circuit diagram..."), 2:30 ("light-emitting diodes (LEDs) 14"), 5:25-27, 5:33-34; Ex. 1002, 9169 .) LEDs 14 "may produce the same or different color of light" as claimed since there are no other possible options for the colored light emitted by the LEDs. (Ex. 1002, $\mathbb{1} 169$.

FIG. 2
(Ex. 1026, FIG. 2 (annotated); Ex. 1002, 『169.)
To the extent Panagotacos does not explicitly disclose that LEDs 14 are mounted on a substrate, it would have been obvious in view of Zhang to implement this feature. (Ex. 1002, $\boldsymbol{\Phi} \uparrow 170-172$.) Both Panagotacos and Zhang describe circuits
and lighting systems including LEDs. (Ex. 1026, Title, Abstract, 1:3-4; Ex. 1005, Title, Abstract, $\boldsymbol{9}[0016]$ (same); see also id., बTT[0002], [0080]-[0090], FIG. 2.1; Ex. 1002, $\mathbb{4} 170$.) Therefore, a POSITA would have had reason to consider the teachings of Zhang when contemplating implementing Panagotacos' lighting system. (Ex. 1002, $\boldsymbol{\text { @ }} 170$.

Zhang discloses LEDs mounted on a circuit board. (§IX.F.1(b); Ex. 1005, FIG. 2.1; see also §IX.A.1(e) (explaining that components of Zhang's Figure 2.1 circuit are mounted on circuit board); Ex. 1002, 『171.) A POSITA would have understood that the circuit board is a substrate, on which Zhang's LEDs are mounted. (§IX.F.1(b); Ex. 1002, 『171.)

In light of Zhang, a POSITA would have been motivated to mount Panagotacos' LEDs 14 ("at least two LEDs") on a substrate. (Ex. 1002, 9172.) For example, a POSITA would have found implementing LEDs in a working system predictable, and would have found a substrate to be beneficial for providing stability for the LEDs and as a base structure for forming the circuits to facilitate the flow of current between components on the substrate as known in the art. (Id.) A POSITA would have been skilled in circuit design and would have been capable of implementing this configuration with a reasonable expectation of success, as this would have been a mere combination of known components and technologies,
according to known LED mounting methods, to produce predictable results. (Id.) $K S R, 550$ U.S. at 416.
c) a driver having an input and an output, wherein the input is a high voltage low frequency input from a mains AC power source, and the output is a DC voltage and DC current provided to the LED circuit,;

As shown below in Figure 2, Panagotacos discloses that its lighting system comprises a driver (red) having an input (blue) and an output (orange).

(Ex. 1026, FIG. 2 (annotated); Ex. 1002, $9 \mathbb{T}[173-180$.$) A POSITA would have$ understood that the circuitry (red) constitutes a driver, e.g., because it drives voltage/current to LEDs 14, serving as a power supply that regulates the required power. (Ex. 1002, ©173.)

Panagotacos discloses that the driver receives, at its input, AC line voltage 12, which "may be a residential or commercial AC electrical line" (Ex. 1026, 2:30-
34), such as "a 120 volt (V) residential line ... or 240 volt commercial line" or a " 220 V [line] as is standard for residences in Europe." (Id., 3:9-11; see also id., 6:1, 6:4, 7:28-29, 9:24-26, 10:1-4, 10:14-15, 10:28, 10:32, 11:25-27, 11:28, 12:5; Ex. $1002, \boldsymbol{9} 174$.$) A POSITA would have understood that such disclosure is a voltage$ input from an AC power source (Ex. 1026, 6:1; Ex. 1002, $4 \mid 125-31$ (explaining that $P=V \times I$ and thus the AC line providing voltage/current also provides power)) and that residential/commercial lines refer to a mains AC power source. (Ex. 1027, 9:31-36; Ex. 1028, $\boldsymbol{\uparrow}[0041]$, FIG. 1A; Ex. 1029, 1:9-28; Ex. 1002, $\mathbb{T} 175) .{ }^{20}$

A POSITA would have understood that Panagotacos' AC line is a high voltage input. ${ }^{21}$ (Ex. 1002, 9176.$)$ AC line voltage 12 is attenuated by voltage attenuator (e.g., a step-down capacitor 32) and thus (prior to attenuation) is a "high" voltage relative to the attenuated voltage. (Ex. 1026, 3:16-17, 3:24-27, FIGS. 1-2 (voltage attenuator 18); Ex. 1002, $\uparrow 176$.$) A POSITA would further have understood$ that Panagotacos' AC voltage input, having a frequency of 60 Hz (see, e.g., Ex.

[^17]1026, 10:14-15), is a low frequency input. (Ex. 1030, 2:34-37; Ex. 1002, $\mathbb{1} 176.)^{22}$ Moreover, in the Panagotacos-Muthu combination discussed in §IX.G.1(d), the 60 Hz AC voltage is converted to a DC voltage and then converted to a high frequency AC voltage, and thus the 60 Hz voltage (prior to such conversion to a high frequency voltage) is a low frequency voltage relative to the high frequency AC voltage for that additional reason. (Ex. 1002, $\uparrow 176$.)

A POSITA would have understood that the output of Panagotacos' driver is a DC voltage/current provided to the LED circuit. (Ex. 1002, $\mathbb{1} 177$.$) As shown in$ Figure 2 (above), the driver output (orange) is provided to the LED circuit having LEDs 14. (Ex. 1026, FIG. 2; Ex. 1002, థ177.) Regarding the "DC current," Panagotacos discloses that power supply 10 (Ex. 1026, 3:1-2), "convert[s] AC line voltage into a DC regulated current that is delivered to the LEDs." (Id., 6:4-5; see also id., 6:9-13, 7:8-9, 8:7, 8:13-14, 8:35, 9:14, 9:23, generally pp.10-12; Ex. 1002, 9T48-49, 177.)

Because a DC current is provided to Panagotacos' LED circuit, a POSITA would have understood that the driver output is a DC voltage provided to the LED circuit. (Ex. 1002, $\mathbb{1} 178$.) For example, according to Ohm's Law, for a given LED having a constant resistance R, the voltage V is equal to current I (which is a DC

[^18]current, as explained above) multiplied by R. (Ex. 1002, $\mathbb{1} 178$.) Moreover, a POSITA would have understood the driver output provides a DC voltage to the LED circuit based on the circuit shown in Figure 2, as explained below. (Id.)

For example, Panagotacos discloses that "FIGURE 3D depicts the voltage across the plus and minus conducting lines 40 a and 40 b [shown in Figure 2] electrically connected to two of the junctions 38 c and 38 d of the diode bridge 34 and to the ripple suppression capacitor 42" (Ex. 1026, 6:25-27), and a POSITA would have understood that Figure 3D (below) shows a DC voltage at the solid line plot. (Ex. 1002, 『179.)

(Ex. 1026, FIG. 3D.)
Therefore, the voltage at node 52 (the input terminal of voltage regulator 48), which is equal to the voltage across lines 40 a and 40 b (because a voltage of a given node in a circuit is expressed relative to another node), is a DC voltage. (Id., FIG. 2; Ex. 1002, $\mathbb{9} 180$.) Panagotacos discloses "maintain[ing] an operating voltage
across the input terminal 52 and the output terminal 54 of the voltage regulator 48, corresponding to $\mathbf{2 5} \mathbf{V}$ " (Ex. 1026, 9:29-32), and thus the voltage at output terminal 54 of the voltage regulator 48 is the voltage at node 52 minus 25 V , which is also a DC voltage because a DC voltage minus a constant is another DC voltage. (Id., FIG. 2; Ex. 1002, $\mathbb{1} 180$.) As shown in Figure 2 of Panagotacos, " $[t]$ he voltage at the output terminal 54 is reduced by a voltage drop across the set-point resistor 50 , and this reduced voltage is applied to the reference terminal 56." (Ex. 1026, 6:34-7:1.) The voltage drop across resistor 50 is a constant, and thus the voltage at terminal (which is the same as the voltage at node 58 coupled to the LED circuit) is also a DC voltage, because it is the DC voltage at terminal 54 minus a constant. (Ex. 1002, \$943-49, 180.)
d) wherein the driver comprises a high frequency stage, the high frequency stage providing an output frequency higher than an AC mains input frequency to the driver;

While Panagotacos does not explicitly disclose this limitation, it would have been obvious in view of Muthu to configure Panagotacos' system so that the driver comprises a high frequency stage, the high frequency stage providing an output frequency higher than an AC mains input frequency to the driver. (Ex. 1002, $\boldsymbol{T} \uparrow 1181-$ 192.) Muthu, like Panagotacos, relates to an LED-based lighting system and associated circuitry, including circuitry for providing power to LEDs. (§IX.E. 1 (analysis regarding Muthu), §IX.G. 1 (analysis regarding Panagotacos); Ex. 1025,

Title, Abstract, FIGS. 1-3, 1:7-12, 2:62-65 ("AC power supply system for RGB LED based freezer driver"); Ex. 1026, Title ("Power Supply for Light Emitting Diodes"), Abstract, 1:34-2:1 ("an apparatus comprises a light emitting diode and a power supply for powering the light emitting diode"), FIGS. 1-2); Ex. 1002, 『181.) Therefore, a POSITA would have had reason to consider the teachings of Muthu when contemplating implementing Panagotacos' LED-based lighting system as modified by Zhang above. (Ex. 1002, $\uparrow 181$.

As explained for claim 10 (§IX.E.1), Figure 1 of Muthu (below) shows a "microprocessor controlled AC power supply system for [an] RGB LED based freezer driver." (Ex. 1025, 2:62-65.)

(Ex. 1025, FIG. 1; see also id., 2:49-50; Ex. 1002, 『182.)
Muthu discloses that $\mathrm{AC} / \mathrm{DC}$ converter 10 converts an AC mains voltage to a DC voltage. (Ex. 1025, 3:25-29 ("The primary function of the front-end AC/DC converter 10 is to convert the AC supply voltage to a DC voltage. In addition, the $\mathrm{AC} / \mathrm{DC}$ converter 10 is made to perform the power factor correction at the AC
mains..."); Ex. 1002, 9183 .) "The output of the AC/DC converter system is connected to the input section of the high frequency DC/AC inverter system 20," which "converts the DC voltage to a high frequency AC voltage." (Ex. 1025, 3:4548.) Muthu discloses that the output of $\mathrm{DC} / \mathrm{AC}$ inverter 20 is provided as an input to AC/DC converters 30-32 (id., FIG. 1), and "the outputs of the AC/DC converters 30-32 are connected to the RGB LED light sources, and provide regulated drive currents to the LED light sources 120, 130 and 140." (Id., 4:1-4.)

Muthu describes that a system represented in block diagram format in Figure 1 is realized in circuitry in, e.g., the schematic diagram of Figure 3 (below). (Id., 3:48-67; Ex. 1002, 9184.$)$

Petition for Inter Partes Review Patent No. 10,517,149

(Ex. 1025, FIG. 3.)

The circuit shown in Figure 3 of Muthu implements functionality corresponding to the block diagram of Figure 1, e.g., as seen by comparing annotated Figures 1 and 3 below, where colors exemplify corresponding components:

(Ex. 1025, FIGS. 1 (left), 3 (right) (each figure annotated to show AC mains in yellow, $\mathrm{AC} / \mathrm{DC}$ converter in orange, $\mathrm{DC} / \mathrm{AC}$ converter in gray, red/green/blue LED drivers in red/green/blue rectangles, red/green/blue LEDs in red/green/blue ovals, control subsystem in purple); Ex. 1002, $\mathbb{9} 185$.

Muthu explains that Figure 3 shows "three [f]lyback converters ..., connected in parallel" for operating red, green, and blue LEDs, respectively. (Ex. 1025, 3:6365.) Flyback converters were well known to a POSITA. (Ex. 1031, Title, Abstract,

1:15-27 (citing Ex. 1032), FIGS. 1-9; Ex. 1032, Abstract; Ex. 1002, $\uparrow 186.)^{23}$ Each of Muthu's three flyback converters shown in Figure 3 sends a control signal (e.g., from Muthu's control subsystem shown above in Figure 3 in purple) to a switch (e.g., Muthu's transistors Q1/Q2/Q3 shown in the gray annotation), to control the switch to switch on and off repeatedly and rapidly to produce a high frequency signal, which is coupled to a transformer (transformers for red, green, and blue channels are shown coupled to diodes $\mathrm{D}_{4}, \mathrm{D}_{5}, \mathrm{D}_{6}$, respectively), which produces an AC voltage that is rectified by a diode (e.g., diode $\mathrm{D}_{4} / \mathrm{D}_{5} / \mathrm{D}_{6}$). (Ex. 1002, $\boldsymbol{\text { @ }}$ 186.)

Thus, a POSITA would have understood that Muthu's system includes a driver (e.g., $\mathrm{AC} / \mathrm{DC}$ converter 10 (orange above) and $\mathrm{DC} / \mathrm{AC}$ converter 20 (gray above), considered together) that comprises DC/AC converter 20 ("a high frequency stage"), the high frequency stage providing an output frequency higher than an AC mains input frequency to the driver. (Ex. 1025, FIGS. 1, 3; Ex. 1002, $\mathbb{1} 187$.) For example, Muthu explains that its DC/AC converter produces a "high frequency AC voltage" and it was known that such a DC/AC converter (also called an inverter) produces an AC voltage having a frequency on the order of several kilohertz, orders

[^19]of magnitude higher than Panagotacos 60 Hz mains AC. ${ }^{24}$ (Ex. 1025, 3:45-48; Ex. 1011, 6:33-38, FIGS. 1, 2-3 (showing inverter 32); Ex. 1002, $\uparrow 187.)^{25}$

In light of Panagotacos and Muthu, a POSITA would have been motivated to modify the Panagotacos-Zhang system to implement the features of limitation 17(d), e.g., by configuring Panagotacos' voltage regulator as a switching voltage regulator (e.g., flyback converter) as described by Muthu. (Ex. 1002, $\mathbb{1} 188$. .) For example, Panagotacos discloses a voltage regulator 48 and Muthu describes (regarding Figure 3) a known type of voltage regulator-namely a switched mode voltage regulator known as a flyback converter (which includes the features of limitation 17(d), as explained). (Ex. 1002, $\$ 188$. .) A POSITA would have found the above modification to be predictable and desirable, e.g., given that "[s]witched mode power supplies find ready use as power regulators in view of characteristics, such as, a high efficiency, a relatively light weight, a relatively small dimension, and a relatively low power dissipation" (Ex. 1031, 1:15-27) and further given that a POSITA would have sought to leverage existing known and reliable technologies (such as switched mode voltage regulator, described in Muthu and well known in the

[^20]Petition for Inter Partes Review
Patent No. 10,517,149
art) for implementing Panagotacos' system. (Ex. 1002, $\mathbb{9} 188$.) A POSITA would have recognized that producing a higher frequency than the mains frequency would have been beneficial, e.g., for promoting small size of the lighting system, because by converting to a high frequency AC voltage, a large transformer would not be needed. (Ex. 1002, $\mathbb{1} 188$.)

A POSITA would have been capable of implementing the above modification of the Panagotacos-Zhang system in view of Muthu with a reasonable expectation of success. (Id., $\mathbb{\Phi 1 8 9 .)}$ For example, a POSITA would have been skilled in circuit design, would have been knowledgeable about voltage regulators, and would have recognized the pertinence, relevance, desirability, and predictability of implementing the above modification. (Id.) This would have been a straightforward and feasible modification, given that Panagotacos describes using a voltage regulator and Muthu describes a known, voltage regulator that would have been recognized as beneficial. (Id.) For example, as shown below, Figure 2 of Panagotacos discloses voltage regulator 48 having an input coupled to an output of a bridge rectifier 34 formed by four diodes 36 , and having an output that (via resistor $50)$ is coupled to LEDs 14 .

(Ex. 1026 (Panagotacos), FIG. 2 (annotated); Ex. 1002, $\mathbb{1} 189$.)
Similarly, Muthu's DC/AC inverter (grey below) produces high frequency AC voltage has an input coupled to the output of a four-diode rectifier (in the orangeannotated region below) and is coupled at its output to an $\mathrm{AC} / \mathrm{DC}$ converter (e.g., red/green/blue annotated regions below) that provides DC voltage to LEDs:

(Ex. 1025 (Muthu), FIG. 3 (annotated); Ex. 1002, $\mathbb{1} 190$.)
Thus a POSITA would have been motivated to configure the Panagotacos-Zhang-Muthu system such that the driver in the modified system includes a high frequency stage (similar to Muthu (e.g., grey region in Figure 3)) that provided an output frequency higher than the 60 Hz AC mains input frequency to the driver described by Panagotacos. (Ex. 1002, $\mathbb{\text { I191.) }}$

A POSITA would have had the skill and capability to make any needed adaptations to produce a working combined Panagotacos-Zhang-Muthu system
consistent with the principles of operation of Panagotacos' system. (Ex. 1002,【192.) For example, a POSITA would have known how to implement an AC/DC converter for processing the high frequency AC output of the high frequency stage, and also known how to implement control signals to switches (e.g., transistors) of the high frequency stage, particularly given that Muthu describes such features in detail and a POSITA was skilled at circuit design/implementation, including implementation of voltage regulators. (Id.)

e) wherein the driver includes at least one capacitor and at least one transistor;

The Panagotacos-Zhang-Muthu combination discloses or suggests this limitation. (Ex. 1002, $9 \mathbb{1} \mid 193-195$.$) For example, Panagotacos’ driver (red below)$ includes capacitors 32, 42, and 61 (green below) ("at least one capacitor"), as shown in Figure 2:

(Ex. 1026, FIG. 2 (annotated); Ex. 1002, © 193.)

Additionally, as discussed for limitation 17(d), Muthu discloses a high frequency DC/AC inverter (gray below) that includes transistors Q1/Q2/Q3 and thus a POSITA would have been motivated and found obvious to configure the combined Panagotacos-Zhang-Muthu system with a switching voltage regulator configuration that included transistors for similar reasons explained. (§IX.G.1(d); Ex. 1025, FIG. 3; Ex. 1002, 『194.)

(Ex. 1025, FIG. 3 (annotated); Ex. 1002, 『194.)

Thus, it would have been obvious to configure the driver in the Panagotacos-Zhang-Muthu system to include capacitor(s) and transistor(s) to facilitate the known operations of such a driver in the modified system for reasons similar to those explained, and because the use of transistors and capacitors in such circuitry was known (as demonstrated by Panagotacos and Muthu). (Ex. 1002, ©195.)

f) wherein the driver includes a bridge rectifier; and

Panagotacos (as modified) discloses this limitation. (Ex. 1002, $\mathbb{1} 196$.$) For$ instance, Panagotacos' driver (red below) includes a diode bridge 34 (green below) ("bridge rectifier"), as shown in Figure 2:

(Ex. 1026, FIG. 2 (annotated); see also id., 4:1-3 ("diode bridge 34, a type of fullwave rectifier’’; Ex. 1002, $\uparrow 1196$.) Such features would have been included in the driver of the combined Panagotacos-Zhang-Muthu system for the reasons explained for claim elements 17(c)-(e). (Ex. 1002, 『196.)
g) wherein the driver includes a voltage regulator that regulates the DC voltage and the DC current provided to the LED circuit at a relatively constant level when connected to and driving the at least two LEDs.

The Panagotacos-Zhang-Muthu combination discloses or suggests this limitation. (Ex. 1002, $9 \uparrow 197-199.)^{26}$ As discussed for limitations 17(c)-(d), Panagotacos' system includes a voltage regulator 48 that enables a regulated DC current to be provided to the LED circuit at a relatively constant level (e.g., 50 mA) when connected to and driving LEDs 14 ("the at least two LEDs"). (§IX.G.1(c) (citations and analysis regarding a DC current of, e.g., 50 mA), §IX.G.1(d); Ex. 1002, $\boldsymbol{\top} 197$.) By selecting one of resistors $51 / 50$ using switch 60 , the current through node 54 is controlled at a desired level, and that enables the DC current through LEDs 14 to be similarly controlled at a desired level. (Ex. 1026, 7:3-6; Ex. 1002, T197.) As explained for limitation 17(d), it would have been predictable and obvious

[^21]in view of Muthu to implement Panagotacos' voltage regulator 48 using a switching voltage regulator (e.g., flyback converter). (§IX.G.1(d); Ex. 1002, ๆ197.) Thus, a POSITA would have understood that the driver of the combined Panagotacos-Zhang-Muthu system similarly includes a switching voltage regulator that regulates the DC current provided to the LED circuit at a relatively constant level when connected to and driving LEDs 14. (Ex. 1002, $\mathbb{1 9 7 .)}$ For example, a POSITA would have had this understanding because a switching voltage regulator was a wellknown, favorably-regarded type of voltage regulator and thus would have been recognized as a way to achieve the functionality disclosed by Panagotacos. (Id.)

A POSITA would further have understood that the switching voltage regulator of the combined Panagotacos-Zhang-Muthu system regulates the DC voltage provided to the LED circuit at a relatively constant level when connected to and driving LEDs 14. (Id., $\mathbb{1} 198$.$) For example, a POSITA would have known that an$ LED, being a diode, has a characteristic current-voltage (I-V) curve, with current (I) being a one-to-one function of voltage (V) where one current value corresponds to one voltage value. (Id.) For instance, up to a certain voltage (known as the turn-on voltage of the diode), very little (or no) current flows across the diode's terminals. Beyond that certain voltage, current flows, in a manner uniquely specified by the diode's I-V curve. (Id.) At a given regulated current (of a relatively constant level, such as 50 mA as disclosed in Panagotacos, see §IX.G.1(c)), the I-V curve for a
given LED (e.g., the topmost LED 14 (red below) of Figure 2 of Panagotacos) thus specifies one point on the I-V curve, corresponding to one voltage. (Ex. 1002, $₫ 198$.)

FIG. 2
(Ex. 1026, FIG. 2 (annotated); Ex. 1002, ©198.)
Therefore, a POSITA would have understood that the voltage regulator of the combined system would have regulated the DC voltage provided to the LED (red circle) at the one voltage ("a relatively constant level") that is the point on the I-V curve corresponding to regulated DC current, when connected to and driving LEDs 14. (Ex. 1002, 『199.) Accordingly, the driver in the Panagotacos-Zhang-Muthu system would have included a voltage regulator for the reasons discussed in §§IX.G.1(c)-(f). (Id.)

2. Claim 18

a) The lighting system of claim 17, wherein the high frequency stage is an inverter.

The Panagotacos-Zhang-Muthu combination discloses or suggests this limitation, as discussed in §IX.G.1(d). (Ex. 1002, q[200.) Particularly, the Panagotacos-Zhang-Muthu combination includes, at a high-frequency stage, a DC/AC converter ("inverter") that produces a high frequency AC voltage. (§IX.G.1(d); Ex. 1025, 3:45-47; Ex. 1002, q1200.)

3. Claim 19

a) The lighting system of claim 17, wherein the substrate is mounted to a reflective heat sink.

The Panagotacos-Zhang-Muthu combination discloses or suggests this limitation. (Ex. 1002, $\mathbb{1 9 2 0 1 - 2 0 2 .) ~ A s ~ d i s c u s s e d ~ i n ~ § I X . G . 1 (b) , ~ P a n a g o t a c o s - Z h a n g ~}$ discloses/suggests LEDs 14 mounted on a substrate. As discussed in §IX.A.1(d), Zhang discloses an LED lamp that includes an "aluminum coated plastic bowl 3 to be used as the heat sink for a circuit board." (Ex. 1005, $\mathbb{\$ [0 0 9 2] .) ~ A ~ P O S I T A ~ w o u l d ~}$ have understood that Zhang's aluminum coating is a reflective heat sink. (Ex. 1005, FIGS. 3.1-4.1, Ex. 1002, 9201.) For example, a POSITA would have known that aluminum was commonly used as a reflective material. (Ex. 1033, Title, Abstract, 1:16-17, 1:63-2:10 (citing Ex. 1034), 3:28-33, FIG. 3; Ex. 1034, 21:47-48; Ex. 1002,

In light of Zhang, a POSITA would have found it obvious to configure the Panagotacos-Zhang-Muthu substrate to be mounted to a reflective heat sink. (Ex. $1002, \boldsymbol{q} \mid 202$.$) A POSITA would have found a heat sink to be advantageous in the$ context of the Panagotacos-Zhang-Muthu lighting system, in order to reduce deleterious thermal effects associated with lighting. (Id.) Indeed, Panagotacos describes "limiting the heat reaching the LEDs" and thus suggests the desirability of a heat sink. (Ex. 1026, 7:34-8:1; Ex. 1002, 『|202.) Moreover, Zhang illustrates that a reflective heat sink in the combined system would have been a predictable, beneficial feature. (Ex. 1002, $\$ 202$.

Therefore, a POSITA would have found it straightforward to implement with a reasonable expectation of success the claimed combination of known components, according to known methods, to predictably reduce adverse heat effects. (Id.) $K S R$, 550 U.S. at 416. Such features would have been implemented in the combined Panagotacos-Zhang-Muthu system for the reasons stated above. (Ex. 1002, \boldsymbol{q} 202; §§IX.G.1(c)-(g).)

[^22]H. Ground 8: Claim 20 Is Obvious over Panagotacos, Zhang, Muthu, and Michael

1. Claim 20
a) The lighting system of claim 17, wherein the lighting system receives data from an antenna or a data transmission line.

To the extent Panagotacos, Zhang, and Muthu do not disclose this feature, it would have been obvious in view of Michael. (Ex. 1002, $\boldsymbol{T} \uparrow$ 203-205.) As discussed for claim 4, Michael discloses a lighting assembly that includes LED drivers and LEDs that can be wirelessly controlled using a receiving antenna 438 (red below) that receives data for operating/driving LEDs. (§IX.C.1; Ex. 1008, 10:48-58 (disclosing antenna 438), FIG. 15; Ex. 1002, q[204.) In Figure 15, Michael shows controller 132 includes an RF receiver that receives data from antenna 438. (Ex. 1002, $\mid 204$.

(Ex. 1008, FIG. 15 (annotated); Ex. 1002, $\mid 204$.)
In light of Michael, a POSITA would have been motivated to configure the Panagotacos-Zhang-Muthu system to receive data from an antenna ("from an antenna or a data transmission line"). (Ex. 1002, $\{205$.) A POSITA would have recognized that receiving data from an antenna was a predictable, conventional, and expected way of implementing wireless communication for lighting systems. (§IX.C. 1 (demonstrating state of the art usage of antenna for lighting systems); Ex. 1002, $\mid 205$.$) A POSITA would have been capable of implementing this$ configuration with a reasonable expectation of success, as it would have been a mere
combination of known components and technologies, according to known methods, to produce predictable results. (Ex. 1002, $\mathbb{\|} 205.) K S R, 550$ U.S. at 416.

X. DISCRETIONARY DENIAL IS NOT APPROPRIATE HERE

A. The Fintiv factors favor institution

An evaluation of the factors under Apple Inc. v. Fintiv, Inc., IPR2020-00019, Paper 11 (Mar. 20, 2020) (precedential), weighs against the Board exercising its discretion to deny institution. Rather, the strong invalidity showing on the merits favors institution, notwithstanding Illinois-Litigation and HD-Litigation. (§II).

First factor. Petitioner intends to seek a stay in Illinois-Litigation upon institution. The Board has previously explained that it will not speculate as to the outcome of such unresolved issues before a district court, Google LLC et al. v. Parus Holdings, Inc., IPR2020-00847, Paper 9 at 12-13, and that this factor is neutral where no such stay motion has yet been filed, Hulu LLC v. SITO Mobile $R \& D I P$, $L L C$, IPR2021-00298, Paper 11 at 10-11 (May 19, 2021). Accordingly, this factor does not favor discretionary denial.

Second factor. Regarding Illinois-Litigation, the court has not set a trial date. ${ }^{28}$ (Exs. 1061, 1069, 1070, 1075.) There has not been significant resource

[^23]investment by the court and the parties, particularly compared to the resource expenditures leading up to a trial.

Moreover, any trial (if it occurs) would likely only occur at least 102 weeks after the service of the complaint (and indeed the complaint has been amended twice)—and thus after a final written decision in this IPR. (Ex. 1061, 13; Ex. 1062, 1-2.)

The HD-Litigation is not relevant to this analysis, but nonetheless has a "tentative" trial date for December 7, 2022. (See IPR2021-01367, Paper 1 at 8-9; Ex. 1074, 8.) As Home Depot noted in its own petition, however, more than a dozen other trials are scheduled before the same judge-calling into question whether trial could practically take place as scheduled. (Id.)

Third factor. The minimal investment by the court and parties in IllinoisLitigation weighs against discretional denial. Discovery is at an early stage. Expert discovery is not open, no depositions have occurred, and no substantive efforts toward claim construction have begun. In short, little has happened and the most resource intensive period in the district court case will occur after the institution decision in this proceeding. (See Exs. 1061, 1069.) This alone weighs against denial. See, e.g., Hulu, IPR2021-00298, Paper 11 at 13.

Fourth factor. There is currently little overlap between issues raised in the petition and in the parallel proceeding. In the Illinois-Litigation, PO asserted only
claims 11 and 13 of the ' 149 patent, while this Petition challenges all 20 claims. (§IX; Ex. 1066, 2-5; Ex. 1067, 2-43.) This weighs against denial. See Vudu, Inc. v. Ideahub, Inc., IPR2020-01688, Paper 16 at 14-15 (Apr. 19, 2021). Nonetheless, to mitigate any potential concerns, Petitioner stipulates that it will not pursue invalidity of the ' 149 patent in district court based on any instituted IPR grounds here.

Fifth factor. Although Petitioner is a party to Illinois-Litigation, this factor does not outweigh the other factors that strongly weigh against discretionary denial. Petitioner is not a party to HD-Litigation.

Sixth factor. Petitioner diligently filed this Petition with strong grounds (§IX) within three months of PO's assertion of the '149 patent (Ex. 1071, $9 \mathbb{1 / 1 0 9 -}$ 119), within two months of PO's amended preliminary infringement contentions in Illinois-Litigation (Ex. 1066), and more than nine months before the statutory deadline for filing an IPR (Ex. 1071, 67). Such diligence weighs against exercising discretion. See, e.g., Hulu, IPR2021-00298, Paper 11 at 13; Facebook, Inc. v. USC IP P'ship, L.P., IPR2021-00033, Paper 13 at 13.

Further, the ' 149 patent issued on first office action without any prior art analysis of issued independent claims. (Ex. 1004, 316-322.) Institution is thus consistent with the significant public interest against "leaving bad patents enforceable." Thryv, Inc. v. Click-To-Call Techs., LP, 140 S. Ct. 1367, 1374 (2020). Moreover, this Petition is the sole challenge to claims 3, 6, and 17-20 of the '149
patent before the Board, thus favoring institution. See Google LLC v. Uniloc 2017 $L L C$, IPR2020-00115, Paper 10 at 6 (May 12, 2020).

B. The General Plastic analysis favors institution

The Board should not exercise its discretion to deny institution based on HD-
IPR (§II). Indeed, the facts and issues relevant to the factors concerning discretionary denial favor institution. General Plastic Industrial Co., Ltd. v. Canon Kabushiki Kaisha, IPR2016-01357, Paper No. 19 at 3, 8, 15-19 (Sept. 6, 2017).

First factor. Petitioner is not (and was not) a party in HD-Litigation or HDIPR. And Home Depot is not a party to Illinois-Litigation. In short, Petitioner has no "significant relationship" with Home Depot. See Valve Corp. v. Electronic Scripting Product, Inc., IPR2019-00062, Paper No. 11 at 8-10 (Apr. 2, 2019) (precedential). Home Depot and Petitioner are not co-defendants and there was/is no direction or control between the parties relating to this petition or HD-IPR. The accused products in HD-Litigation and Illinois-Litigation are different. Indeed, there is no overlap in the originally asserted claims of HD-Litigation and IllinoisLitigation. (Ex. 1071, 9母109-119 (asserting claims 11 and 13 against Petitioner); Ex. 1072, $\mathbb{4} \uparrow 155-167$ (asserting claim 1 against Home Depot); Ex. 1073, $\mathbb{4} \uparrow 170-182$ (same).) Also, the challenged claims do not completely overlap: claims 1-20 are challenged here whereas HD-IPR challenges only $1,2,4,5$, and 7-16 (hence, HDIPR does not challenge claims 3, 6, and 17-20). Petitioner and Home Depot thus
remain distinct parties, with ultimately distinct interests and litigation strategies. ${ }^{29}$ Paypal, Inc. v. IOENGINE, LLC, IPR2019-00884, Paper 22 at 3-11 (Oct. 3, 2019).

Second to fifth factors. Since Petitioner has not previously filed a petition against the same patent, factors 2-5 bear little relevance. Id. Nevertheless, Petitioner has diligently invested significant effort to prepare the detailed grounds presented in this Petition, and has not delayed the preparation or filing of this Petition. When HD-IPR was filed (October 21, 2021), Petitioner was working on its strategies and challenges against the ' 149 patent. Petitioner continued its efforts to prepare and file its petition soon thereafter. This is significant because of the various different compilations of conventional arrangements claimed in those claims. Thus any delay between its filing and HD-IPR was reasonable and warranted, regardless of whether Petitioner knew at the time of HD-IPR about the prior art it ultimately asserted in this petition. If anything, any delay between the filing of the petitions is a product of PO's litigation strategy. Indeed, PO staggered its assertion of the ' 149
${ }^{29}$ A general common interest by defendants seeking to invalidate asserted unpatentable claims should not create a significant relationship to warrant discretionary denial, especially where Petitioner asserts different prior art and challenges claims without any coordination or direction/control with Home Depot.
patent against Home Depot and Petitioner by more than 6 months. (Ex. 1072, $\mathbf{9} \mid 1155-$ 167; Ex. 1071, $9 \uparrow 109-119$ (counterclaim asserting infringement of the '149 patent).) Moreover, Petitioner filed its petition 1 week after HD-IPR. Also, Petitioner has gained no advantage in filing its own petition. No preliminary response has been filed in HD-IPR. Moreover, as noted, Petitioner asserts different prior art, based on a different expert's opinions, against different claims (3, 6, and 17-20). Thus, factors two through five do not support discretionary denial. Indeed, Petitioner would be prejudiced by the denial of institution given its reasonable and significant efforts and invested resources to diligently file its petition following PO's recent infringement contentions.

Sixth and Seventh factors. Instituting this Petition would be no more a burden on the Board's finite resources than instituting any other petition. Indeed, this Petition challenges a finite set of claims based on a limited set of primary references. (§IX.) Nor are there any readily identifiable roadblocks for the Board to issue a final determination within the statutory one-year limit like those found in other cases where discretionary denial was exercised. See, e.g., Valve Corp., at 15.

XI. CONCLUSION

Accordingly, Petitioner requests institution of IPR for the challenged claims based on the specified grounds.

Respectfully submitted,
Dated: October 27, 2021
By:/Joseph E. Palys/
Joseph E. Palys (Reg. No. 46,508)
Counsel for Petitioner

CERTIFICATE OF COMPLIANCE

Pursuant to 37 C.F.R. § 42.24(d), the undersigned certifies that the foregoing Petition for Inter Partes Review of U.S. Patent No. 10,517,149 contains, as measured by the word-processing system used to prepare this paper, 13,851 words. This word count does not include the items excluded by 37 C.F.R. $\S 42.24$ as not counting towards the word limit.

Respectfully submitted,
Dated: October 27, 2021
By: /Joseph E. Palys/
Joseph E. Palys (Reg. No. 46,508)
Counsel for Petitioner

CERTIFICATE OF SERVICE

I hereby certify that on October 27, 2021, I caused a true and correct copy of the foregoing Petition for Inter Partes Review of U.S. Patent No. 10,517,149 and supporting exhibits to be served via express mail on the Patent Owner at the following correspondence address of record as listed on PAIR:

K\&L Gates LLP-Chicago
P.O. Box 1135

Chicago IL 60690

By: /Joseph E. Palys/
Joseph E. Palys (Reg. No. 46,508)

[^0]: ${ }^{1}$ Petitioner submits the declaration of R. Jacob Baker, Ph.D., P.E. (Ex. 1002), an expert in the field of the ' 149 patent. (Ex. 1002, $1 \uparrow 11-19$; Ex. 1003.)

[^1]: ${ }^{2}$ Petitioner reserves all rights to raise claim construction and other arguments, including challenges under 35 U.S.C. $\S 101$ or 112, in district court as relevant to those proceedings. See, e.g., Target Corp. v. Proxicom Wireless, LLC, IPR202000904, Paper 11 at 11-13 (Nov. 10, 2020). A comparison of the claims to any accused products in litigation may raise controversies that are not presented here given the similarities between the references and the patent.

[^2]: ${ }^{3}$ §IX references exhibits, other than the asserted prior art for each ground, to reflect the state of the art consistent with the testimony of Dr. Baker.
 ${ }^{4}$ In the Illinois-Litigation, Lynk asserts various products, including, e.g., a refrigerator, washing machine, and dryer each constitute a "lighting system." (Ex.

[^3]: ${ }^{5}$ Emphasis added unless indicated otherwise.

[^4]: ${ }^{6}$ In Ground 1, Exhibit 1026 is cited to demonstrate the state of the art. (Ex. 1002, - 1105.$)$

[^5]: ${ }^{7}$ Exhibit 1055 demonstrates the state of the art. (Ex. 1002, $\boldsymbol{\|} 108$.)

[^6]: ${ }^{8}$ Exhibits 1012 and 1058 demonstrate state of the art. (Ex. 1002, $\mathbb{9} 110$.)

[^7]: ${ }^{9}$ Exhibits 1015 and 1019 demonstrate the state of the art. (Ex. 1002, $\left.\uparrow 112.\right)$

[^8]: ${ }^{10}$ Exhibits 1016, 1017, and 1056 demonstrate state of the art. (Ex. 1002, $\mathbb{1} 117$.)

[^9]: ${ }^{11}$ Exhibit 1020 demonstrates the state of the art. (Ex. 1002, థ124.)

[^10]: ${ }^{12}$ Exhibit 1009 demonstrates the state of the art. (Ex. 1002, $\left.\mathbb{4} 125.\right)$

[^11]: ${ }^{13}$ Exhibits 1021, 1022, 1023, and 1024 demonstrate the state of the art. (Ex. 1002,

[^12]: ${ }^{14}$ Exhibits 1010 and 1018 demonstrate the state of the art. (Ex. 1002, $\mathbb{1} 146$.)

[^13]: ${ }^{15}$ Exhibits 1013 and 1014 demonstrate state of the art. (Ex. 1002, $\left.\mathbb{1} 149.\right)$

[^14]: ${ }^{16}$ Exhibit 1020 demonstrates the state of the art. (Ex. 1002, $\mathbb{4} 161$.)
 ${ }^{17}$ Exhibit 1060 demonstrates the state of the art. (Ex. 1002, $\mathbb{\top} 162$.)

[^15]: ${ }^{18}$ For purposes of this proceeding, Petitioner assumes that "the output voltage" refers to the "DC voltage" recited in limitation 11(e).

[^16]: ${ }^{19}$ Exhibits 1019 and 1057 demonstrate the state of the art. (Ex. 1002, $\mathbb{1} 166$.)

[^17]: ${ }^{20}$ Exhibits 1027, 1028, and 1029 demonstrate state of the art. (Ex. 1002, $\mathbb{1} 176$.)
 ${ }^{21}$ The '149 patent does not describe what qualifies as a "high" voltage input. For purposes of this proceeding, Petitioner submits that Panatgotacos' AC line voltage is a high voltage input. (Ex. 1002, $\mathbb{4} 176$.)

[^18]: ${ }^{22}$ Exhibit 1030 demonstrates the state of the art. (Ex. 1002, థ176.)

[^19]: ${ }^{23}$ Exhibits 1031 and 1032 demonstrate state of the art. (Ex. 1002, $\left.\uparrow 186.\right)$

[^20]: ${ }^{24}$ Thus, as explained in §IX.G.1(c), Panagotacos' 60 Hz AC mains signal is a low frequency input. (Ex. 1002, $\mathbb{9} 176$.)
 ${ }^{25}$ Exhibit 1011 demonstrates the state of the art. (Ex. 1002, థ187.)

[^21]: ${ }^{26}$ The '149 patent discloses an "AC regulator 208" that "maintain[s] a relatively constant voltage output" but does not disclose a single regulator that "regulates [both] the DC voltage and the DC current provided to the LED circuit at a relatively constant level." (Ex. 1001, 18:21-26; see also id., FIG. 29; Ex. 1002, థ197.) Petitioner reserves the right to assert lack of written description support and indefiniteness in other proceedings. For purposes of this proceeding, Petitioner maps the prior art under the words of the claim.

[^22]: ${ }^{27}$ Exhibits 1033 and 1034 demonstrate state of the art. (Ex. 1002, 9201.$)$

[^23]: ${ }^{28}$ Although PO moved to transfer the Illinois-Litigation to Texas, that motion was denied. (Ex. 1068.)

