
ECE 3450: Digital Electronics
Fall 2009, Lab #5

Dr. Pallav Gupta
pallav.gupta@villanova.edu

I Objectives

The goals of this lab are the following:

1. Assemble and layout the entire 8-bit MIPS processor.

2. Generate the pad frame and connect the “core” to the external world via I/O pads.

3. Become proficient in editing relatively large-scale designs.

II Courses Forum

The forum is located at http://pandim.ece.villanova.edu/phpbbforum. Please use it to ask questions.

III Submission Instructions

The lab must be submitted via the web at http://pandim.ece.villanova.edu. Instructions on how to submit are
on the courses forum. Apply the following information on the Remository form when submitting your lab.

Filename: lab5-[first name]-[last name].zip, e.g., lab5-john-doe.zip
Location: ECE 3450/LAB5
Title: Lab 5
Author: Your name, e.g., John Doe

Note: Follow the above convention strictly. Failure to do so will result in a zero. We request your lab in this
specific format so that the automated scripts at the back-end can run smoothly without breaking. Please adhere
to it.

See Section X on how to name and organize the files that you will need to submit for this lab.

IV Collaboration

You must complete this lab independently; you are not allowed to work in pairs or a group. However, you are
welcome to discuss the material with your colleagues.

V Prerequisites

You must have completed Labs #1-4 before proceeding further. If not, then it your responsibility to do that
first. Otherwise, you will be totally lost in this lab.

http://pandim.ece.villanova.edu/phpbbforum
http://pandim.ece.villanova.edu
http://pandim.ece.villanova.edu/phpbbforum

Inputs Outputs

ph1 adr[7:0]
ph2 writedata[7:0]
reset memread
memdata[7:0] memwrite

Figure 1: Top-level schematic of the MIPS processor.

VI Provided Files

All the files for this lab are provided in lab5.zip. Unpack this archive and you will see the following directory
structure:
lab4/

README readme
lab5-xx.jelib Electric library
iopads-ami05.jelib Pads for AMI 0.5 µm
mips8-sch.arr Pad arrangement file for schematic
mips8-lay.arr Pad arrangement file for layout
sim/ IRSIM test vectors

mips.cmd

The lab5-xx.jelib file provides all the cells for this lab. However, the cells std_nand3, fulladder, alu,
alucontrol, bitslice, zipper, controller, and datapath are incomplete. Replace them with those that you
have designed in the previous labs. The iopads-ami05.jelib file contains the I/O pads. The *.arr are the
pad arrangement files. To test the complete MIPS processor, a sample (yet incomplete) test program is given in
mips.cmd.

VII Assembling the MIPS Processor

Follow the directions in each subsection to assemble the processor in its entirety.

VII.A Top-level Schematic Simulation

The top-level schematic of the MIPS processor is present in mips8{sch}. It is also shown in Fig. 1, and includes
the datapath, alucontrol, and controller icons. The system’s exported inputs and outputs are also shown. All

2

; Sample t e s t program to t e s t the 8− b i t MIPS micorprocessor

; Assembly code E f f e c t Machine code
main: lb $2 , 68($0) ; i n i t i a l i z e $2 = 5 80020044

lb $7 , 64($0) ; i n i t i a l i z e $7 = 3 80070040
lb $3 , 69($7) ; i n i t i a l i z e $3 = 12 80 e30045
or $4 , $7 , $2 ; $4 <= (3 or 5 = 7) 00 e22025
and $5 , $3 , $4 ; $5 <= (12 and 7 = 4) 00642824
add $5 , $5 , $4 ; $5 <= (4 + 7 = 11) 00a42820
beq $5 , $7 , end ; shouldn ’ t be taken 10a70008
slt $6 , $3 , $4 ; $6 <= (12 < 7 = 0) 0064302a
beq $6 , $0 , around ; shou ld be taken 10 c00001
lb $5 , 0($0) ; shouldn ’ t happen 80050000

around :
slt $6 , $7 , $2 ; $6 <= (3 < 5 = 1) 00 e2302a
add $7 , $6 , $5 ; $7 <= (1 + 11 = 12) 00 c53820
sub $7 , $7 , $2 ; $7 <= (12 − 5 = 7) 00 e23822
j end ; shou ld be taken 0800000 f
lb $7 , 0($0) ; shouldn ’ t happen 80070000

end:
sb $7 , 0($2) ; wr i t e adr 5 <= 7 a0470000

Figure 2: Sample test program for the MIPS processor.

the interconnections have been made so there is nothing that you have to add to the schematic. Notice that the
internal wires and icons are also named to simplify debugging. Once you have copied over the necessary cells
from the previous labs, run DRC on this schematic. Do not proceed further until all the problems have been
fixed and hierarchical DRC passes.

To demonstrate basic functionality of your processor, you will simulate it with a test program shown in Fig. 2.
Since this is a multi-cycle processor, each instruction will require several steps. The mips.cmd file has been
provided to you with the commands to simulate most of the instructions. However, instructions 3 (lb $3,
69($7)) and 4 (or $4, $7, $2) are missing. Add them to the command file with the appropriate assertions.
Use IRSIM to simulate the schematic. If you receive any Pending events warnings, these can be ignored.
However, there should not be any assertion violations. Fix any errors that you encounter in the design.

VII.B Top-level Layout

Create the layout of the processor in mips8{lay}. In this top-level layout, place the datapath, alucontrol, and
controller cells so that they will be easy to connect. Wire together the modules. Don’t forget to connect the power
and ground lines with fat (width = 20) wires and arrays of vias to handle the higher levels of current that may
flow! You will avoid creating problems and headaches for yourself if you systematically reserve metal1/metal3
and metal2 for horizontal and vertical lines, respectively. You may wish to consider placing a large number
of long horizontal wires between the datapath and the controller/alucontrol, and then drop vertical lines in a
systematic fashion to connect the signals between the cells together.

Export all inputs, outputs, and power and ground lines. Label the internal signals for ease of debugging. Make
sure all your labels and exports agree with the schematic (mips8{sch}). Verify that the entire layout passes
DRC, ERC, NCC, and IRSIM simulation. Fix any problems that might arise. Choose Preferences→Tools→DRC
and click on Clear valid DRC dates to reset the DRC timestamps. Then, rerun DRC, ERC, and NCC on the
top-level layout to ensure everything is passing.

VII.C Pad Frame Assembly

The tiny transistors on a chip must eventually be attached to the external world with a pad frame. A pad
frame consists of metal pads about 100 µm2; these pads are large enough to be attached to the package during

3

manufacturing with thin gold bonding wires. Each pad contains large transistors to drive the relatively enormous
capacitances of the external environment.

Electric provides a handy pad frame generator that automatically assembles a pad frame for you from your
library. To use the pad frame generator, you need your library, a I/O pad library, and a pad arrangement file.
The I/O pad library is provided in iopads-ami05.jelib. Two pad arrangements are provided in mips8-sch.arr
and mips8-lay.arr.

Open and browse mips8-sch.arr. The celllibrary defines the library containing the I/O pads. The cell and
views defines the name of the cell and facet to generate. The core defines the top-level cell to be used as the
chip’s core (in this case, its mips8). The place commands list the I/O pads, its type, and the connection to the
core. The export command is used to export the signal name. Note that there are 10 I/O pads on each side of
the chip with at least two pads each dedicated to supply power and ground to the pads and core.

Choose Tools→Generation→Pad Frame Generator. Select the mips8-sch.arr file. This will create a new facet
named chip{sch} with generic unrouted arcs connecting the pads to the mips8 core. Inspect the pad frame to
ensure it is reasonable. Each pad has a VDD and GND export on both edges that must be connected to the
adjacent pad. These connections should have already been made for you by the pad frame generator. If they are
not present, make the connections manually. Run DRC to make sure there are no errors.

Generating chip{sch} will open iopads-ami05.jelib and leave you with two open libraries. You can change
the “current library” by selecting a library, right clicking, and choosing Make This the Current Library. Make sure
lab5-xx.jelib is the “current library”.

Repeat the above process for the layout using mips8-lay.arr. This will generate chip{lay}. The core might
not be positioned at the center of the chip. If so, select the core and drag it until it is approximately in the
center. You will note that generic unrouted arcs are connected between the pads and core. In a real design, you
will need to delete the generic unrouted arcs in the layout and replace them with real metal lines. This is called
global routing and is sufficiently tedious that it is usually done with an automatic routing tool. Unfortunately,
we do not have such a tool available so you will have to do it manually.

Delete the generic unrouted arcs and systematically connect the core outputs with the pads. Use metal3 and
metal2 wires for horizontal and vertical routing, respectively. Once the routing is complete, ensure that your
layout passes DRC, ERC, and NCC. Fix any problems that might arise.

Important: When you run NCC on chip{lay}, Electric will complain about “implied” VDD/GND signals
present in the schematic that are not present in the layout. You can ignore these errors. However, make sure
you fix any other errors.

Do a thorough final check of the top-level chip layout using the following steps and fix any errors:

1. Choose File→Check Libraries→Check: Makes sure library is stable before verification proceeds.

2. Choose File→Preferences→Tools→DRC and click on Clear valid DRC dates.

3. Run DRC, ERC, and NCC (ignore implied VDD/GND errors) on chip{lay}.

4. Simulate chip{lay} using IRSIM and mips.cmd (you will have to change the signal names of the buses to
match those on the chip). The command file can also be used to test the chip after it is manufactured.

VII.D Tapeout

The final step in designing a chip is creating a file containing the geometry needed by the semiconductor vendor
(e.g., MOSIS, TSMC, etc) to manufacture masks. In the older days, these files were written to magnetic tape,
and the process is still known as tapeout. The two popular output formats are Caltech Interchange Format (CIF)
and Graphic Data System (GDS); we will use GDSII. Choose File→Export→GDS II (Stream). Save your design
in mips8-chip.gds. This file can be sent to the vendor to fabricate the chip.

GDSII is a binary stream format. Thus, it is not possible to inspect the format through a text editor. However,
you can view the file in a GDSII viewer. A free publicly available viewer is OwlVision which also allows you to

4

Figure 3: Screenshot of our 8-bit MIPS processor.

save a screenshot of the chip. Fig. 3 shows a screenshot of the 8-bit MIPS processor (your chip layout should be
similar to this)!

VIII Technical Report

A technical report (not to exceed 10 pages) is to be written that details everything you have done in this lab.
You should present the design of the entire chip. You should present the appropriate schematics and layouts.
Furthermore, you should show the results of any simulations, and whether the layout passed DRC, ERC, and
NCC or not. You should also include an OwlVision screenshot of your chip. Elaborate on any difficulties faced
in this lab and the employed workarounds. Summarize what you have learned from doing this lab.

The technical report must be of the highest standards. Otherwise, it runs a high risk of being rejected which will
impact your lab grade. You can consult some technical publications to see how to write a good technical report.

5

It must be written using the LATEX template that was provided earlier. The template can be downloaded at
http://pandim.ece.villanova.edu.

IX Parting Words

Congratulations on finishing this lab! You have successfully designed, assembled, and tested your own micropro-
cessor. You are now familiar with the major aspects of custom VLSI design:

• Datapath and standard cell design

• Datapath design (sliceplan, floorplan) and assembly

• Standard cell synthesis and place & route

• Top-level system assembly

• Pad frame generation and routing

• Switch-level simulation (IRSIM) and logic debug

• Verification: DRC, ERC, and NCC

You will put these skills to use as you proceed with your final project!

X What to Submit

For this lab, you must submit the following files:

1. The Electric library. Name it lab5-xx.jelib where xx are your initials.

2. The IRSIM test vector file for the entire MIPS that includes instructions 3 and 4. Name it mips.cmd.

3. A GDSII file containing your design. Name it mips8-chip-xx.gds where xx are your initials.

4. The LATEX PDF file which contains the technical report. Name it report-xx.pdf where xx are your
initials.

Take all the files and archive (zip) them into a folder. Name the folder lab5-[first name]-[last name].zip.
See Section III on how to submit the archive. Failure to follow these instructions will result in a zero for the
lab. No ifs, buts, etc.

Important: The Electric library must contain the schematics, icons, and layouts of the cells used in constructing
the chip. All schematics must pass DRC and IRSIM simulation. The layouts must pass DRC, ERC, NCC, IRSIM
simulation, and be drawn as per specification. Icons must be of the correct size.

XI Errors

I usually write precise tutorials and bug-free code. However, I am human (do not be surprised) and do make
mistakes. In addition, CAD tools get updated frequently and the interface might change, rendering parts of
the writeup ineffective. If you find any mistakes or inconsistencies while doing this lab, please bring it to my
attention immediately. You will earn extra points if what you report is indeed a bug.

6

http://pandim.ece.villanova.edu

	Objectives
	Courses Forum
	Submission Instructions
	Collaboration
	Prerequisites
	Provided Files
	Assembling the MIPS Processor
	Top-level Schematic Simulation
	Top-level Layout
	Pad Frame Assembly
	Tapeout

	Technical Report
	Parting Words
	What to Submit
	Errors

