ECE 3450: Digital Electronics
Fall 2009, Lab #3

Dr. Pallav Gupta
pallav.gupta@villanova.edu

I Objectives

The goals of this lab are the following:
1. Use the cells designed in earlier labs to layout the ALU of a simplified MIPS processor.
. Design the schematic of an n-bit datapath by designing a horizontal bitslice.

2
3. Layout the zipper to drive the control signals onto the datapath.
4. Layout the 8-bit datapath of the simplified MIPS processor.

5

. Become proficient in editing relatively large-scale designs.

IT Courses Forum

The forum is located athttp://pandim.ece.villanova.edu/phpbbforum. Please use it to ask questions.

IIT Submission Instructions

The lab must be submitted via the web at http://pandim.ece.villanova.edu. Instructions on how to submit are
on the courses forum. Apply the following information on the Remository form when submitting your lab.

Filename: 1lab3-[first name]-[last name] .zip, e.g., lab3-john-doe.zip
Location: ECE 3450/LAB3

Title: Lab 3

Author: Your name, e.g., John Doe

Note: Follow the above convention strictly. Failure to do so will result in a zero. We request your lab in this
specific format so that the automated scripts at the back-end can run smoothly without breaking. Please adhere
to it.

See Section X on how to name and organize the files that you will need to submit for this lab.

IV Collaboration

You must complete this lab independently; you are not allowed to work in pairs or a group. However, you are
welcome to discuss the material with your colleagues.

http://pandim.ece.villanova.edu/phpbbforum
http://pandim.ece.villanova.edu
http://pandim.ece.villanova.edu/phpbbforum

V Prerequisites

You must have completed Labs #1-2 before proceeding further. If not, then it your responsibility to do that
first. Otherwise, you will be totally lost in this lab.

VI Provided Files

All the files for this lab are provided in 1lab3.zip. Unpack this archive and you will see the following directory
structure:

1ab3/
README readme
lab3-xx.jelib Electric library
sim/ IRSIM test vectors
alu.cmd

datapath.cmd

The Electric file provides a small library of complex cells that will be necessary to complete this lab. Browse
through to understand them. The library does not provide the fulladder. You should use the cell that you
designed in the previous lab. Copy over the necessary cells into this library.

You should focus your attention on the following four cells:
1. Arithmetic Logic Unit (ALU) - alu{sch}, alu{ic}, alu{lay}
2. Bitslice - bitslice{sch}, bitslice{ic}, bitslice{lay}
3. 8-bit datapath - datapath{sch}, datapath{ic}, datapath{lay}
4. Zipper - zipper{sch}, zipper{ic}, zipper{lay}

The alu.cmd / datapath.cmd contains IRSIM test vectors to test the ALU and datapath, respectively. Note
that a lot of the design has already been finished for you. To prevent problems integrating your additions, it is
vital that you do not edit/change what has been provided to you.

VII Block Diagram of the Simplified MIPS Processor

The block diagram of the simplified 8-bit MIPS processor is shown in Fig. 1. It consists of a controller, datapath,
and alucontrol. The controller comprises the control finite-state-machine (FSM) to generate the control signals.
The alucontrol generates the control signals to drive the ALU. The datapath contains the remainder of the chip,
organized as 8 identical bitslices. Study the block diagram until you are familiar with the organization and the
various signals. You may also want to consult Chapter 1 of the textbook.

The processor has no on-chip memory; instead, it provides an interface to external SRAM. The interface consists
of three 8-bit buses. Two are outputs containing the address (adr) and data (writedata) to write to the memory.
The third is an input carrying the data (memdata) read from the external memory.

VII.A Designing the ALU

The design of a simple 1-bit ALU sans overflow detection of the simplified MIPS processor is shown in Fig. 2.
The ALU implements five instructions: ADD, SUB, AND, OR, and SLT. Refer to Chapter 1 of the textbook to see
the operations of these instructions. Study the schematic shown in Fig. 2 until you understand its functionality.

The schematic and icon of the ALU are already provided in alu{sch} and alu{ic}, respectively. Verify that the
schematic passes DRC. Simulate the schematic using the IRSIM test vectors provided in alu.cmd, and observe

memread
memwrite
Controller aluop[1:0]
Alucontrol
—> I
=y
Lo} . Hh
£ 8 s . |2 I
AR ERE | |3 g |7 5|9
— N = 2] el = 8 o - o) - — 2]
i) & Q aQ o ¢ [m |o R ol o
] [o o 3 o o |R H |o)
o (o] a ™ B —] 1] Q = — o —
= © = 5N 0‘3 ot g w = R
2 S, 2 S
phi
ph2
reset Datapath
-—
adr[7:0]
writedata[7:0]
memdatal[7:0]

Figure 1: Block diagram of the simplified 8-bit MIPS processor.

the waveforms. Make sure you understand the behavior of the ALU (i.e., instruction execution). You should be
able to identify which instruction is being executed at a given time.

Your job is to layout the ALU of Fig. 2 in alu{lay}. Place the various gates in a horizontal line and route
the connections to match the schematic. Use metall and metal2 wires for horizontal and vertical routing,
respectively. You can also use metal3 wires for horizontal routing (if there is congestion) but keep in mind that
they run on a 10X pitch (5A width, 5\ spacing). Export all the inputs, outputs, control signals, and power and
ground lines. Refer to alu{sch} to see all the exports.

Verify the layout by running DRC, ERC, and NCC. Simulate your ALU layout using alu.cmd in IRSIM to
ensure it functions correctly. Check that all instructions are working properly. Periodically check and repair

your library to catch other problems. Remember to save your work at regular intervals. Electric is known to
crash.

Here are a few hints and tips to keep in mind while drawing the layout:
1. Start from the left of the schematic and work your way to the right, placing the cells in order.
. Draw a rough sketch before starting the actual layout.
. The cells must be placed horizontally with a 90\ center-to-center spacing.
. Use metall (8 pitch), metal3 (10X pitch) for horizontal routing and metal2 (8 pitch) for vertical routing,.

2

3

4

5. Strive to keep everything aligned on a 1\ grid.

6. Use Cell — Cross — Library Copy to copy necessary cells from your other libraries.
7

. Use Cell — Expand Cell Instances — All the Way to view the contents of a cell; choose Unexpand Cell Instances
to zoom out of a cell.

8. Use ctrl-click to cycle through the various layers when you have lines drawn on top of facets. Review
the Electric manual to pick up the finer nuances of selecting from a stack of many different objects.

9. Place large pure-layer nodes for the N-well and P-well to avoid difficulties with gaps between wells.

bi ki b

oR (1]
u }
—l
3
c
i

or2

1ZXnw

e T + |

cin

Figure 2: Schematic of a 1-bit ALU.

10. Use metall, metal2, or metal3d pins from the palette to give yourself a destination to connect to when
Electric gets confused about snapping a connection to an undesired destination. Select two nodes, then
right click on a blank space to connect the nodes.

11. Use the red boxes in the palette window to choose which layer will be drawn in the event of ambiguity.
For example, when connecting two vias, select the appropriate metal line to indicate the connection.

12. Use Export — {List|Show} Exports to get the name(s) and type(s) of export(s) on a network.
13. Export all signals on Metall-Metal2 contacts.

14. Expect to spend some time playing around with Electric to become familiar with how it makes connections
when there are many layers of stuff (i.e., stack).

VII.B Designing the Datapath

Next, you will design the datapath of the simplified MIPS processor. Since this is an 8-bit processor, the datapath
is 8 bits wide. However, because of a very regular structure, we can construct an 8-bit datapath from 8 identical
horizontal bitslices. Data signals travel horizontally along the bitslice. Control signals run vertically to all 8
bitslices of the datapath. A small amount of logic is required to generate the control signals. For example,
a multiplexer in the datapath requires true and complementary select signals. Rather than provide a local
inverter in each of the 8 bitslices, the inverter could be placed on top of the datapath in a zipper to drive the
complementary signal to all the bitslices.

The slice plan of the datapath is shown in Fig. 3. The diagram illustrates the ordering of cells in the bitslice
and the allocation of wiring tracks. Wires at the left and right side of a cell are inputs and outputs, respectively.
Dots indicate that a wire passes over a cell and is also used in that cell. Each cell is annotated with its type
and approximate width (could change depending upon the layout of the cell). For example, the program counter
(pc) is an output of the PC flop and is also used as an input to the srcA and address (adrmux) multiplexers.
Study the slice plan in detail until you understand it.

Open up bitslice{sch} and compare it to Fig. 3. On the left side of the bitslice is the address multiplexer
(adrmux) selecting the address for external memory. The 32-bit instruction is stored in four 8-bit instruction
registers (it takes four cycles to fetch an instruction from memory), so four flip-flops named ir3, ir2, iri, and
ir0 are required in each bitslice. The memory data register is named mdr. Next comes the interface to the

writedata Y T T e !
memdata bitlines qrcA
addr lurgsult
iminediate
pc
alyout
hd hd 11 |
AN O © O © O R N T B OS = 00 O = O o 0w © ke oo ow ow e e
B e K T R A R - I T S
5 B o oo 5 o VRV TR = = 5o ® o g o =
EEoooooéﬁécz:cSgoéoégoébogﬁgbgié
3 ¢ T Y9 YTy SR e RS 54T XT Y TR g g g X
& N @ @ m @ ® N S aoN IO SIS
2 2 8 2 8 - B a
5P P oD oo 2 E 5
< BB B E E~ =
9] o £
= = T
L I R || | |
adrmux IR[3:0] 2 = register file ramslice srcB srcA £ PC 8 ALU
o Z g g
o]
= 2 : &
£ 3
X a
c+

Figure 3: Datapath slice plan.

register file. This consists of the write data multiplexer, wdmux, the 8-word register file itself (ramslice), and the
source registers (areg, breg). Interdigitated with the registers are srcimux and src2mux multiplexers that chose
the operands for the ALU and the aluoutreg register. The program counter logic consists of the multiplexer to
choose the next value of the program counter, an AND gate to reset the program counter to 0 on startup (reset),
and the program counter flop (pcreg) itself. At the very right end of the bitslice is the ALU.

Your job is to design the bitslice schematic, bitslice{sch}. To ease your task, all the necessary cells have been
placed in their appropriate destinations. All the relevant signals have been exported. In addition, the various
clock signals to the flip-flops and the multiplexer select signals have already been connected. You are required to
finish the design by making the remaining connections. Table 1 indicates the signals that need to be connected
to the various inputs of the various multiplexers. Make sure you do not violate Table 1. The other connections
that are required can be deduced from the slice plan in Fig. 3. Once the wiring is complete, verify the schematic
by running DRC.

After designing the bitslice schematic, finish the layout in bitslice{lay}. You only need to add and connect the
ALU that you designed earlier to the remainder of the pre-designed bitslice. Do not change or move anything
in the existing layout (otherwise you will have many problems assembling the datapath). Verify that your
layout passes DRC, ERC, and NCC. Ensuring that the layout passes NCC will also validate your schematic.
Fig. 5a shows a screenshot of the entire bitslice. Finally, verify the datapath by simulating it in IRSIM using
datapath.cmd.

VII.C Designing the Zipper

The zipper takes the control signals generated by the controller and drives them onto the datapath. If necessary,
it also produces the complement of the control signals. The design of the zipper is shown in Fig. 4. It consists of
some multiplexers which feed into decoders that generate the signals to select the appropriate registers (source
operands) in the register file (ramslice). It also contains strong buffers (4x) that generate the complement of a
control signal and drive both signals onto the datapath. Study Fig. 4 until you understand it.

The schematic and icon of the zipper are already provided in zipper{sch} and zipper{ic}, respectively. Verify
that the schematic passes DRC. Your job is to layout the zipper in zipper{lay}. To ease your task a little,

Table 1: Multiplexer Input Connections

Mux name Input Input Signal

D
adrmux 0 Qpcreg
Dl Qaluoutreg
. DO Qaluoutreg
writemux
Dl der
Do Qbreg
D1 four
src2mux
Do instr0 (Qiro)
D3 instrshift
D
srclmux 0 Qpcreg
Dl Qareg
Do resultaiy
D
mux4 1 Qalucutreg
D2 instrshift
D3 GND

the cells have been placed in their exact locations. Do not move the cells (otherwise, you will encounter many
problems in assembling the datapath). Finish the layout by routing the connections to match the schematic.
Use metall and metal3 for horizontal and metal2 for vertical routing. Export all the signals on Metali-Metal2
contacts. Also export power and ground lines. See zipper{sch} for the complete list of exports. Verify the
layout by running DRC, ERC, and NCC. Fig. 5b shows a screenshot of the zipper.

VII.D Assembling the Datapath

Now that the bitslice and zipper have been completely designed, you can assemble the datapath in datapath{sch}.
The datapath consists of eight bitslices and the zipper for driving the control signals. Study the schematic to
understand the organization. Again, all the cells have been placed on the schematic. The relevant signals have
been exported. Some of the non-trivial connections have already been completed. You are required to finish the
design by making the remaining connections. Essentially, all bitslices are fed the same control signals from the
zipper. Thus, connect the remaining signals vertically in the bitslices. Verify the schematic by running DRC.

Finally, finish the layout of the datapath in datapath{lay}. To ease your task a little, the bitslices have been
placed, and the power and ground lines have been routed. The top bitslice has been connected with the zipper.
Observe the wiring tracks between the top bitslice and zipper. Zoom in to analyze the existing connection and
understand them well. All the appropriate signals have been exported. If there are any that are missing, just
add them. Connect the other signals on the remaining bitslices appropriately. You should use metal2 for vertical
routing, and metall and metal3 for horizontal routing. Verify the datapath by running DRC, ERC, and NCC.
Fig. 6 shows a screenshot of the entire datapath including the zipper. Notice the regularity in structure and the
denseness. This is because we started with a detailed and well-crafted slice plan which guided our design. Had
we not done this, the layout could have been inefficient (more area, irregular, etc) or taken a lot more time to
assemble.

VIII Technical Report

A technical report (not to exceed 10 pages) is to be written that details everything you have done in this lab.
You should present the design of the ALU, bitslice, datapath, and zipper. You should present the appropriate
schematics and layouts. Furthermore, you should show the results of any simulations, and whether the layout
passed DRC, ERC, and NCC or not. Elaborate on any difficulties faced in this lab and the employed workarounds.
Summarize what you have learned from doing this lab.

Temamu

dagonw [dagonm e appee Guped GENIAT GIRETT G SOPGIAT G SRR

ik bk i T an & Rl 6 oprl P P

oGIa (TG [ZRaIma [ERas

ol gz apg AR Az
3ok
k-4 k-1
i i
wihg L .
i

umtas

ipper.

Schematic of the z

Figure 4

The technical report must be of the highest standards. Otherwise, it runs a high risk of being rejected which will
impact your lab grade. You can consult some technical publications to see how to write a good technical report.
It must be written using the IXTEX template that was provided earlier. The template can be downloaded at
http://pandim.ece.villanova.edu.

IX Parting Words

Congratulations on finishing this lab! Hopefully, you now have some experience in handling relatively large-scale
designs and know the basics of ALUs, slice plans, bitslices and datapaths, and zippers. Remember that good
layouts come from good slice plans/floorplans! Thus, it is critical to spend time creating one before performing
any actual layout.

X What to Submit

For this lab, you must submit the following files:
1. The Electric library. Name it 1ab3-xx. jelib where xx are your initials.

2. The BTEX PDF file which contains the technical report. Name it report-xx.pdf where xx are your
initials.
Take both the files and archive (zip) them into a folder. Name the folder 1ab3-[first name]-[last name].zip.

See Section IIT on how to submit the archive. Failure to follow these instructions will result in a zero for the
lab. No ifs, buts, etc.

Important: The Electric library must contain the schematics, icons, and layouts of the ALU, bitslice, datapath,
and zipper. All schematics must pass DRC and IRSIM simulation. The layouts must pass DRC, ERC, NCC,
IRSIM simulation, and be drawn as per specification (outlined above). Icons must be of the correct size.
Furthermore, if you are using any cells from previous labs, their complete design needs to be present in the
library.

XI Errors

I usually write precise tutorials and bug-free code. However, I am human (do not be surprised) and do make
mistakes. In addition, CAD tools get updated frequently and the interface might change, rendering parts of
the writeup ineffective. If you find any mistakes or inconsistencies while doing this lab, please bring it to my
attention immediately. You will earn extra points if what you report is indeed a bug.

http://pandim.ece.villanova.edu

(a) Bitslice. (b) Zipper.

Figure 5: Screenshots of the bitslice and zipper.
9

Figure 6: Screenshot of the datapath of our 8-bit MIPS processor.

10

	Objectives
	Courses Forum
	Submission Instructions
	Collaboration
	Prerequisites
	Provided Files
	Block Diagram of the Simplified MIPS Processor
	Designing the ALU
	Designing the Datapath
	Designing the Zipper
	Assembling the Datapath

	Technical Report
	Parting Words
	What to Submit
	Errors

