
ECE 3450: Digital Electronics
Fall 2009, Synopsys Design Compiler Tutorial

Dr. Pallav Gupta
pallav.gupta@villanova.edu

I Introduction

This tutorial provides a brief introduction to using Synopsys Design Compiler1 - an industry-standard tool for
synthesizing gate-level netlists from designs specified in a hardware modeling language such as Verilog or VHDL.
We have done mostly custom design so far in this course. This is because the datapath of our simplified MIPS
processor has a regular structure, and considerable effort can be spent to optimize it manually. However, the
MIPS controller is a finite state machine that comprises of random logic. In practice, it is one of the most difficult
part of a design. The controller logic changes every time there is a bug fix or new feature(s) added. Thus, it is
cumbersome to keep redesigning the logic by hand!

The goal of synthesis is automatically synthesize the logic structure of a circuit, given some design constraints,
and map that logic onto a set of cells (i.e., the target technology library). Given this level of automation, the
designer can focus his/her efforts on modeling the behavior of the circuit correctly.

Modern logic synthesis tools have evolved to a point that entire designs can be synthesized. For example, we
could have synthesized the MIPS datapath as well. However, in microprocessor design, experienced logic and
circuit designers are still employed to squeeze out every inch of performance possible in the datapath. The
resulting design is significantly better than what CAD tools can currently produce. The cost is design time and
labor. However, in application specific integrated circuits (ASICs) (e.g., the chip in a cell phone, PlayStation,
etc) design, the entire design may be synthesized and mapped using a standard cell library.

II Getting Started

You should have the following files available for this tutorial:
/

controller.v Verilog description of controller
std_vill.lib Villanova standard cell library

The controller.v contains the description of the controller to be synthesized. For reference, it is included in
the Appendix.

The std_vill.lib contains the description, area, and timing specifications of the cells in our library. Recall,
that we currently have the following cells: std_nand2, std_nand3, std_nor2, std_nor3, std_inv, std_aoi,
std_latch. Open the file and examine its content carefully. The important parameters are the following:

1. Nominal voltage and temperature: These are the normal operating environment conditions of the cells. In
this case, they are 5V and 25◦C, respectively.

2. Units: All the parameters have units. For example, time is specified in ns, while voltage and current are
specified in V and µA, respectively.

1http://www.synopsys.com

http://www.synopsys.com

3. Operating conditions: Various operating environment conditions are defined including worst case (WC)
and best case (BC) scenarios. Furthermore, three categories are defined: commercial (COM), industrial
(IND), and military (MIL). Synthesis results vary depending upon the targeted operating condition. For
example, worst case commercial (WCCOM) has worst case voltage and temperature of 4.75V and 70◦C
(i.e., the voltage on the circuit could drop to 4.75V while operating in an environment with temperatures
reaching 70◦C), respectively.

4. Wire load models: These models help the tool estimate the delays on interconnects (wires). They are
developed through statistical information specific to a particular technology process. However, in submicron
(< 1µm) technologies, these models are not very accurate. They will suffice for our purpose. Synopsys
has developed “topographical” technology that allows the synthesis engine to do a “virtual” layout of the
circuit to estimate wire delays.

5. Cell description: Each cell has a name, input/output ports, logic function, area, input capacitance and
output timing parameters.

The synthesis tool uses this information to map the synthesized logic onto a a set of cells that meet the design
constraints. Modern libraries contain hundreds of cells including multiplexers, latches and flip-flops, buffers,
half/full adder, static ram (SRAM), etc. Typically, the library is provided by semiconductor vendors.

III Using Design Vision

The Synopsys tools are installed on k2.ece.villanova.edu. In order to run them, you will need to remotely login to
the machine using an ssh client. If you are outside of Villanova, you will need to login to http://gateway.villanova.edu
first to establish a secure connection before you can connect to k2.

If you are on a Windows system, you will also need to enable X11 forwarding/tunneling to allow GUI applications
running remotely to display locally. Consult the documentation of your system. Software such as TightVNC
(http://www.tighvnc.com) or MobaXVT (http://mobaxvt.mobatek.net/en/) might be of assistance. Linux or
Mac OS X users do not have to worry about this.

This tutorial assumes you are operating from a Linux/Mac OS X machine. Type the following on a terminal:
1 # Connect to server. Use the user/pass assigned to you. -Y is to enable X11 forwarding.
2 [Kanchenjunga:~] pgupta% ssh -Y pgupta@k2.ece.villanova.edu
3 pgupta@k2.ece.villanova.edu’s password:
4 Warning: No xauth data; using fake authentication data for X11 forwarding.
5 Last login: Wed May 6 21:53:03 2009 from 153.104.2.197
6

7 # Create a directory called controller.
8 [pgupta@k2 ~]$ mkdir -p controller
9

10 % Change directory.
11 [pgupta@k2 ~]$ cd controller
12

13 # Copy controller.v and std_vill.lib into this directory.
14 # If the files sit on your local machine, use a SSH FTP client to transfer them.
15 [pgupta@k2 controller]$ cp ../tmp/controller.v ../tmp/std_vill.lib .
16 [pgupta@k2 controller]$ ls -l
17 total 28
18 -rw-rw-r-- 1 pgupta pgupta 8062 May 6 22:14 controller.v
19 -rw-r--r-- 1 pgupta pgupta 10408 May 6 22:14 std_vill.lib
20

21 # Start Design Vision in GUI mode. Make sure you are in the controller directory.
22 [pgupta@k2 controller]$ design_vision -gui

The last command starts the Synopsys Design Vision Environment which is a collection of tools including Design
Compiler. If your X11 forwarding is working properly, you should see a GUI pop up that looks like Fig. 1. The
main components of the application are text-annotated. All of the viewers will not be visible because you have
not loaded a design yet.

2

http://k2.ece.villanova.edu
http://gateway.villanova.edu
http://www.tightvnc.com
http://mobaxvt.mobatek.net/en/

Command line
Output log

Design Hierarchy

I/O, Cell list viewer

Symbol viewer

Schematic viewer

Figure 1: Synopsys Design Vision Environment.
.

III.A The Target Technology Library

Before we can perform synthesis, we need to do a little preparatory work and convert the cell library into a
format that Synopsys can understand. This is done by reading the library and writing it back out into a different
format. In order to do this, we need to supply some commands. There are two ways to input commands. You
can either type them on the command prompt design_vision> at the bottom of the GUI application or you
can enter them on the terminal in which you started Design Vision. You’ll notice a design_vision> prompt
there as well.

Type the following on the GUI command prompt:
1 design_vision> read_lib std_vill.lib
2 Reading ’/home/pgupta/controller/std_vill.lib’ ...
3 Technology library ’std_vill’ read successfully
4 1
5 design_vision> write_lib -format db -output std_vill.db std_vill
6 Wrote the ’std_vill’ library to ’/home/pgupta/controller/std_vill.db’ successfully.
7 1

The first command reads the cell library, while the second command writes it into std_vill.db using the
Synopsys database format. If you check the controller directory, you should see this file present there now.

Type help to see the list of available commands. If you need to see usage information for a particular command,
type <command> -help. For example, try write_lib -help. You can also view the online documentation at
http://k2.ece.villanova.edu/syn. Note that the online documentation does not work properly in Firefox. Try a
different browser.

3

http://k2.ece.villanova.edu/syn

III.B Performing Synthesis

In order to synthesize a design, we must perform the following steps:

1. Setup the target, link, and symbol libraries.

2. Read in a design.

3. Setup the process environment operating conditions.

4. Setup conditions on the input/output boundary of the design.

5. Setup optimization constraints.

6. Compile the design and map it using the technology library.

7. Perform incremental synthesis if necessary.

8. View the synthesis reports.

III.B.1 Setting up Libraries

To setup the libraries, choose File → Setup. A dialog box will open up. Replace the link, target, and symbol
libraries with ‘* std_vill.db’, ‘std_vill.db’, and ‘generic.sdb’, respectively (without the quotes). The
link library is used to define any technology input to the synthesis process. The ‘*’ is necessary as it tells
Design Compiler to search existing databases in its memory first. Do NOT remove it! The target library is the
technology library. The symbol library provides icons for the cells of the target or link libraries in the Schematic
Viewer. Finally, do not modify the search path. Otherwise, the tool will have difficulty finding the libraries.
Click OK to apply the changes.

III.B.2 Reading the Design

Next, we can read in the design file using the read_file command. Since the source is a Verilog file, we need
to let the command know the input format. Type the following and observe the command log.

1 design_vision> read_file -format verilog controller.v
2 Loading db file ’/home/pgupta/controller/std_vill.db’
3 Loading db file ’/usr/local/synopsys/current/synthesis/libraries/syn/gtech.db’
4 Loading db file ’/usr/local/synopsys/current/synthesis/libraries/syn/standard.sldb’
5 Loading link library ’std_vill’
6 Loading link library ’gtech’
7 Loading verilog file ’/home/pgupta/controller/controller.v’
8 Detecting input file type automatically (-rtl or -netlist).
9 Running DC verilog reader

10 Reading with Presto HDL Compiler (equivalent to -rtl option).
11 Running PRESTO HDLC
12 Compiling source file /home/pgupta/controller/controller.v
13 Warning: /home/pgupta/controller/controller.v:110: Case statement is not a full case. (ELAB-909)
14

15 Statistics for case statements in always block at line 86 in file
16 ’/home/pgupta/controller/controller.v’
17 ===
18 | Line | full/ parallel |
19 ===
20 | 90 | auto/auto |
21 | 110 | user/auto |
22 ===
23

24 Statistics for case statements in always block at line 130 in file
25 ’/home/pgupta/controller/controller.v’
26 ===
27 | Line | full/ parallel |
28 ===

4

29 | 148 | auto/auto |
30 ===
31

32 Inferred memory devices in process
33 in routine controller line 80 in file
34 ’/home/pgupta/controller/controller.v’.
35 ===
36 | Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
37 ===
38 | state_s1_reg | Latch | 4 | Y | N | N | N | - | - | - |
39 ===
40

41 Inferred memory devices in process
42 in routine controller line 82 in file
43 ’/home/pgupta/controller/controller.v’.
44 ===
45 | Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
46 ===
47 | state_s2_reg | Latch | 4 | Y | N | N | N | - | - | - |
48 ===
49 Presto compilation completed successfully.
50 Current design is now ’/home/pgupta/controller/controller.db:controller’
51 Loaded 1 design.
52 Current design is ’controller’.
53 controller
54 Current design is ’controller’.

The tool reads in the libraries and the design file. It then compiles the design to generate an initial circuit.
However, this circuit is a starting point for optimization. It is not the final result! Note that there is a warning
displayed. In general, you should be extremely paranoid about any warnings. They usually indicate possible
problems that will come back to haunt you later if you are not careful. In this case, it is safe to ignore the
warning.

Now that the design has been read, go to the Logical Hierarchy panel in the GUI and select controller. Click on
the icon Create Design Schematic. This will generate the current logic schematic of the circuit. Click on the icon
Create Symbol View next to the the Create Design Schematic icon. This will create a symbol for the controller
module with the input/output ports.

Go to the Cell List Viewer and select Cells (All). This will show all the cells contained in the current circuit. Note
the reference names such as GTECH_NOT, GTECH_OR2, etc. These gates are clearly not present in our standard cell
library. Design Compiler is currently using a generic technology library to represent the circuit. We have not
optimized and and performed technology mapping using our library. If you select a particular cell, that cell will
get highlighted in the schematic.

Go to the Cell List Viewer and select Pins/Ports. This will list all the inputs/outputs of the controller module.
Selecting a pin will highlight in the schematic. Nets are the ultra hip term used in the chip design community
for wires.

Now that you are familiar with the basic components of the GUI, spend some time browsing through the various
menu items. Keep in mind that only a few of the commands are available through the GUI. The bulk of the
commands are available via the command prompt. This is because the commands are typically written in scripts
to automate the entire process. We will talk about this in Section III.E.

III.B.3 Setting up Operating Conditions

Choose Attributes → Operating Environment → Operating Conditions to setup the process environment. In the
dialog box, ensure that Single is selected, std_vill is the Library, and WCCOM (worst case commercial) is the
Condition. Observe the command log and you will see that typing set_operating_conditions -library std_vill
WCCOM would have had the same effect.

Choose Attributes → Operating Environment → Wire Load and select 20x20. This is the wire model that will be

5

used to calculate net delays. Note that the command set_wire_load_model -name 20x20 -library std_vill would
have had the same effect.

Remember that the process environment conditions are set for the top module in a design hierarchy only. In this
case, we only have a single module.

III.B.4 Setting up Boundary Design Conditions

The next thing we need to do is setup boundary conditions at the inputs/outputs of the controller. We need
to specify the drive strength for the input pins and the load being driven by the output pins. These conditions
help the tool ensure that the synthesized circuit can drive the given output load. Since the output pins of the
controller go into the zipper (which is responsible for driving the signals onto the datapath), it is not necessary
for them to drive a big load. Thus, we can set an output load of 4 on these pins. For the inputs, we set the drive
strength to 1.

It is very cumbersome to set the aforementioned conditions individually on each input/output pin. Thus, we
make use of the command line to do this quickly. Type the following:

1 % Set the drive strength of all inputs to be 1.
2 design_vision> set_drive 1 [get_ports [all_inputs]]
3 1
4 % Set the output load of each output to be 4.
5 design_vision> set_load 4 [get_ports [all_outputs]]
6 1

III.B.5 Setting up Optimization Constraints

The final step is to set the optimization constraints. In our case, we want to minimize the delay of our circuit. In
practice, there are many paths through a circuit. However, only a subset of these paths are actually critical. As
the design progresses, designers usually know what the critical paths are, and focus their efforts on minimizing
its delay (to increase the operation frequency).

In our case, we do not know what the critical path in the controller is. If we knew it, we would set the constraints
on only those input/output pins that lie on the critical path! What we are going to do is tell the tool that it
must optimize the circuit in such a way that the maximum delay from any input to output be no more than
10 units. It is possible that the tool fails to synthesize such a circuit. If that were the case we would relax the
constraint (set it to say, 15) and repeat the process.

To set the optimization constraint, type the following:
1 % Set the maximum delay of the circuit to be 10.
2 design_vision> set_max_delay -from [get_ports [all_inputs]] -to [get_ports [all_outputs]] 10.0
3 1

III.B.6 Performing the Optimization and Technology Mapping

We can now do the actual optimization and technology mapping. Type the following:
1 % Perform optimization.
2 design_vision> compile -exact_map -map_effort high -area_effort high
3 Information: Evaluating DesignWare library utilization. (UISN-27)
4

5 ==
6 | DesignWare Building Block Library | Version | Available |
7 ==
8 | Basic DW Building Blocks | B-2008.09-DWBB_0902 | * |
9 | Licensed DW Building Blocks | | |

10 ==
11

12

6

13 Warning: Operating condition WCCOM set on design controller has different process,
14 voltage and temperatures parameters than the parameters at which target library
15 std_vill is characterized. Delays may be inaccurate as a result. (OPT-998)
16

17 Beginning Pass 1 Mapping
18 ------------------------
19 Processing ’controller’
20

21 Updating timing information
22 Information: Updating design information... (UID-85)
23

24 Beginning Mapping Optimizations (High effort)
25 -------------------------------
26

27 ELAPSED WORST NEG TOTAL NEG DESIGN
28 TIME AREA SLACK SLACK RULE COST ENDPOINT
29 --------- --------- --------- --------- --------- -------------------------
30 0:00:00 159.0 0.00 0.0 0.0
31 0:00:00 159.0 0.00 0.0 0.0
32 0:00:00 159.0 0.00 0.0 0.0
33 0:00:00 159.0 0.00 0.0 0.0
34 0:00:00 159.0 0.00 0.0 0.0
35 0:00:00 159.0 0.00 0.0 0.0
36 0:00:00 159.0 0.00 0.0 0.0
37 0:00:00 159.0 0.00 0.0 0.0
38

39

40 Beginning Delay Optimization Phase
41 ----------------------------------
42

43 ELAPSED WORST NEG TOTAL NEG DESIGN
44 TIME AREA SLACK SLACK RULE COST ENDPOINT
45 --------- --------- --------- --------- --------- -------------------------
46 0:00:00 159.0 0.00 0.0 0.0
47

48

49 Beginning Area-Recovery Phase (cleanup)
50 -----------------------------
51

52 ELAPSED WORST NEG TOTAL NEG DESIGN
53 TIME AREA SLACK SLACK RULE COST ENDPOINT
54 --------- --------- --------- --------- --------- -------------------------
55 0:00:00 159.0 0.00 0.0 0.0
56 0:00:00 159.0 0.00 0.0 0.0
57 0:00:00 153.0 0.00 0.0 0.0
58 0:00:00 149.0 0.00 0.0 0.0
59 0:00:00 148.0 0.00 0.0 0.0
60 0:00:00 147.0 0.00 0.0 0.0
61 0:00:00 147.0 0.00 0.0 0.0
62 0:00:00 147.0 0.00 0.0 0.0
63 0:00:00 147.0 0.00 0.0 0.0
64 0:00:00 147.0 0.00 0.0 0.0
65 0:00:00 147.0 0.00 0.0 0.0
66 0:00:00 147.0 0.00 0.0 0.0
67 0:00:00 147.0 0.00 0.0 0.0
68 0:00:00 147.0 0.00 0.0 0.0
69 0:00:00 147.0 0.00 0.0 0.0
70 Loading db file ’/home/pgupta/controller/std_vill.db’
71

72 Optimization Complete
73 ---------------------
74 1
75 Current design is ’controller’.

We told the tool to put in maximum effort in optimizing the circuit for best area while meeting the given delay
constraints. We also specified that it should put in maximum effort in technology mapping. From the report,
you can see that the tool generated a circuit with an area of 147. We could try running the same command

7

again on this circuit to further improve the result. This is called incremental improvement or refinement.
However, we are content with this result.

You may have noticed that during the optimization, the Schematic Viewer window disappeared. Now that the
circuit structure has changed, we need to generate a new schematic by clicking on the Create Design Schematic
icon. Observe the structure of this circuit and you will realize that is looks significantly different from the original
circuit. If you look at all the cells in the Cells (All) panel, you will observe that the reference name for each cell
is that from our library only. They are all std_*.

III.C Viewing Reports

The tool generates various reports for the designer to examine to see synthesis results. Before trusting the results,
it is worthwhile to check the design to ensure it has no errors. Type check_design to ensure that everything is
OK.

You can view the reports from the various menu items in the GUI. Alternatively, type the following:
1

2 % Area report.
3 design_vision> report -area
4 report_area
5

6 **
7 Report : area
8 Design : controller
9 Version: B-2008.09-SP4

10 Date : Thu May 7 02:58:40 2009
11 **
12

13 Information: Updating design information... (UID-85)
14 Library(s) Used:
15

16 std_vill (File: /home/pgupta/controller/std_vill.db)
17

18 Number of ports: 28
19 Number of nets: 103
20 Number of cells: 93
21 Number of references: 7
22

23 Combinational area: 107.000000
24 Noncombinational area: 40.000000
25 Net Interconnect area: undefined (Wire load has zero net area)
26

27 Total cell area: 147.000000
28 Total area: undefined
29 1
30 % Timing report
31 design_vision> report -timing
32

33 **
34 Report : timing
35 -path full
36 -delay max
37 -max_paths 1
38 Design : controller
39 Version: B-2008.09-SP4
40 Date : Thu May 7 02:58:44 2009
41 **
42

43 Operating Conditions: WCCOM Library: std_vill
44 Wire Load Model Mode: top
45

46 Startpoint: zero (input port)
47 Endpoint: pcen (output port)
48 Path Group: default

8

49 Path Type: max
50

51 Des/Clust/Port Wire Load Model Library
52 --
53 controller 20x20 std_vill
54

55 Point Incr Path
56 ---
57 input external delay 0.00 0.00 f
58 zero (in) 1.86 1.86 f
59 U26/Y (std_aoi) 2.43 4.29 r
60 U25/Y (std_nand2) 1.02 5.31 f
61 pcen (out) 0.00 5.31 f
62 data arrival time 5.31
63

64 max_delay 10.00 10.00
65 output external delay 0.00 10.00
66 data required time 10.00
67 ---
68 data required time 10.00
69 data arrival time -5.31
70 ---
71 slack (MET) 4.69
72

73

74 1
75 design_vision>

Spend some time studying the reports. The area report indicates the number of cells (93) used in the design. The
total area of the circuit is 147 (not accounting for interconnect). The timing report indicates that the longest
path in the circuit has a delay of 5.31 and goes from the input pin in via cells U26 and U2 to output pcen.
There is a slack of 4.69 indicating that the circuit meets the specified timing requirements. If the slack were
negative, it would indicate that the circuit fails to compute the outputs at the required time.

III.D Saving the Design, Netlist, and Constraints

The final step is to save the entire design should we wish to return to it later. Choose File→ Save. This will save
the design in controller.ddc in Synopsys format. This is equivalent to the command write -hierarchy -format
ddc.

We also have the option of saving the structural circuit netlist as a Verilog or VHDL file. The netlist can then be
fed into place-and-route tools such as Electric or Cadence to place and route the design. We prefer to save the
netlist in VHDL format. Choose File→ Save As. On the dialog box, change the format from Auto to VHDL. Type
controller in the filename. Choose OK. This should save the netlist in controller.vhdl. Browse through
this file to see the netlist. We can accomplish the same with the command write -hierarchy -format vhdl -output
controller.vhdl.

Finally, we should also save the constraints and design setup should we need to re-synthesize the controller from
scratch. Choose File → Design Setup and supply the filename controller. A file named controller.dc will
be created. Browse through the file and compare it with everything we did above. The same can done with the
command write_script > controller.dc.

III.E Writing Synthesis Scripts

Now that you have learned synthesis the hard way, it is time to learn the shortcuts. Designers usually have to
synthesize a design many times to achieve convergence. This is because there are bug fixes in the logic, new
features adfded, and the results do not match with post-synthesis layout. Thus, synthesis, technology mapping,
and layout are an iterative process. It would be extremely painful for a designer to reenter the above commands
each time he/she wanted to re-synthesize the design.

9

Designers usually write synthesis scripts that automate the procedure described above. The script is nothing
but a text file containing the above commands. Once the script is written, it can be executed by the tool. In
this way, it easy to automate the process. Furthermore, it is also possible to have different synthesis scripts with
varying parameters that produce different results. This can be useful in analyzing trade-offs in a design to pick
the best one suited for the designer’s needs.

First, create a hidden file named .synopsys_dc.setup in the controller directory. This file is read during tool
initialization to setup the libraries and search path. The contents of this file should be the following:

1 # Setup the search path, target/symbol/link libraries.
2 set search_path "$search_path"
3 set target_library "std_vill.db"
4 set link_library "* std_vill.db"
5 set symbol_library "generic.sdb"

Next, create a script file named controller.scr in the same directory. The contents of this file should be the
following:

1 # Controller synthesis script
2 # Read design
3 read_file -format verilog controller.v
4 # Setup process environment
5 set_wire_load_model -name 10x10 -library std_vill
6 set_operating_conditions -library std_vill WCCOM
7 # Setup conditions on design boundary
8 set_drive 1 [get_ports [all_inputs]]
9 set_load 4 [get_ports [all_outputs]]

10 # Setup optimization constraints
11 set_max_delay -from [get_ports [all_inputs]] -to [get_ports [all_outputs]] 10.0
12 # Compile the design
13 compile -exact_map -map_effort high -area_effort high
14 # Check the design
15 check_design
16 # View reports
17 report -area > area.txt
18 report -timing > timing.txt
19 # Save the netlist
20 write -hierarchy -format vhdl -output controller.vhdl
21 # Save design constraint setup
22 write_script > controller.dc
23 # Save the design
24 write -hierarchy -format ddc

Now, restart design_vision. Then, type source controller.scr on the command prompt to run the script.
The tool will start executing each command. It will write out the area and timing reports in area.txt and
timing.txt, respectively. The netlist and design constraints setup will also be saved. You should get the same
results as before. If there are any errors, look at the command log and fix the problems.

IV Parting Words

Congratulations on finishing this tutorial. This should have given you a quick introduction to Synopsys Design
Compiler and how to synthesize designs. It should also have provided you with some experience in writing scripts
to automate tasks. You can now apply your knowledge in synthesizing larger designs!

V Courses Forum

The forum is located at http://pandim.ece.villanova.edu/phpbbforum. Please use it to ask questions.

10

http://pandim.ece.villanova.edu/phpbbforum

VI Errors

I usually write precise tutorials and bug-free code. However, I am human (do not be surprised) and do make
mistakes. In addition, CAD tools get updated frequently and the interface might change, rendering parts of the
writeup ineffective. If you find any mistakes or inconsistencies while doing this tutorial, please bring it to my
attention immediately.

Appendix

// −∗− Mode: Verilog −∗−
// Filename : control ler . v
// Description : Description of the control ler log ic for our simpl i f ied MIPS processor .
// Author : Pallav Gupta
// Created On : Thu Oct 23 20:34:04 2008
// Last Modified On: Time−stamp : <2009−05−05 17:17:50 pgupta>
// Update Count : 0
// Status : Unknown, Use with caution !

// This module describes a control ler for a multicycle MIPS processor l i k e that
// given in Patterson and Hennessy . I t contains the control FSM and the
// additional AND/OR logic for branching . I t does not contain the alucontrol
// log ic .

// Using busses would be cleaner , but i s not supported wel l by the Electric
// Sil icon Compiler .

// reference time unit i s 1 nanosecond
‘timescale 1ns /1 ps

module controller (/∗AUTOARG∗/
// Outputs
memread , memwrite , irwrite3 , irwrite2 , irwrite1 , irwrite0 , pcen , regwrite ,
aluop1 , aluop0 , alusrca , alusrcb1 , alusrcb0 , pcsource1 , pcsource0 , iord ,
memtoreg , regdst ,
// Inputs
ph1 , ph2 , reset , op5 , op4 , op3 , op2 , op1 , op0 , zero
);

input ph1 , ph2;
input reset ;
input op5 , op4 , op3 , op2 , op1 , op0;
input zero;
output reg memread ;
output reg memwrite ;
output reg irwrite3 , irwrite2 , irwrite1 , irwrite0 ;
output pcen;
output reg regwrite ;
output reg aluop1 , aluop0 ;
output reg alusrca ;
output reg alusrcb1 , alusrcb0 ;
output reg pcsource1 , pcsource0 ;
output reg iord;
output reg memtoreg ;
output reg regdst ;

// multicycle state machine state def ini t ions
parameter FETCH1 = 4’ b0000 ; // instruction fetch (4 cycles , 8−b i t datapath)
parameter FETCH2 = 4’ b0001 ;
parameter FETCH3 = 4’ b0010 ;
parameter FETCH4 = 4’ b0011 ;
parameter DECODE = 4’ b0100 ; // instruction decode
parameter MEMADR = 4’ b0101 ; // memory address computation
parameter LBRD = 4’ b0110 ; // load byte read
parameter LBWR = 4’ b0111 ; // load byte writeback
parameter SBWR = 4’ b1000 ; // store writeback
parameter RTYPEEX = 4’ b1001 ; // R−type instruction execution
parameter RTYPEWR = 4’ b1010 ; // R−type instruction writeback
parameter BEQEX = 4’ b1011 ; // branch on equal execution
parameter JEX = 4’ b1100 ; // jump execution
// add extra states for ADDI here , use unique code (continue above sequence)
parameter ADDIEX = 4’ b1101 ;
parameter ADDIWR = 4’ b1110 ;

11

// instruction opcodes (do not modify !)
parameter LB = 6’ b100000 ;
parameter SB = 6’ b101000 ;
parameter RTYPE = 6’ b000000 ;
parameter BEQ = 6’ b000100 ;
parameter J = 6’ b000010 ;
parameter ADDI = 6’ b001000 ;

// internal s ignals
reg [3:0] nextstate_s2 ;
reg [3:0] state_s1 , state_s2 ;
reg pcwrite , pcwritecond ;

// update state regi ter (comprised of master/slave latch)
always @(/∗AUTOSENSE∗/nextstate_s2 or ph2) // update master latch

if (ph2) state_s1 = nextstate_s2 ;
always @(/∗AUTOSENSE∗/ph1 or state_s1) // update slave latch

if (ph1) state_s2 = state_s1 ;

// next state log ic
always @(/∗AUTOSENSE∗/op0 or op1 or op2 or op3 or op4 or op5 or reset

or state_s2)
// state transit ion figure is given in the write up
if (reset) nextstate_s2 = FETCH1 ; // synchronous reset
else case (state_s2)

// fetch
FETCH1 : nextstate_s2 = FETCH2 ;
FETCH2 : nextstate_s2 = FETCH3 ;
FETCH3 : nextstate_s2 = FETCH4 ;
FETCH4 : nextstate_s2 = DECODE ;

// decode , look at opcode
DECODE : case ({op5 , op4 , op3 , op2 , op1 , op0 })

LB: nextstate_s2 = MEMADR ;
SB: nextstate_s2 = MEMADR ;
RTYPE : nextstate_s2 = RTYPEEX ;
BEQ: nextstate_s2 = BEQEX ;
J: nextstate_s2 = JEX;
// add support for ADDI here

default : nextstate_s2 = FETCH1 ;
endcase // case ({op5 , op4 , op3 , op2 , op1 , op0})

// memory adress compute (for load/store)
MEMADR : case ({op5 , op4 , op3 , op2 , op1 , op0 }) // synopsys full_case

LB: nextstate_s2 = LBRD;
SB: nextstate_s2 = SBWR;
// no default needed becaus of full_case direct ive

endcase // case ({op5 , op4 , op3 , op2 , op1 , op0})

LBRD: nextstate_s2 = LBWR;
LBWR: nextstate_s2 = FETCH1 ;
SBWR: nextstate_s2 = FETCH1 ;
RTYPEEX : nextstate_s2 = RTYPEWR ;
RTYPEWR : nextstate_s2 = FETCH1 ;
BEQEX : nextstate_s2 = FETCH1 ;
JEX: nextstate_s2 = FETCH1 ;
// add support for ADDI here

default : nextstate_s2 = FETCH1 ;
endcase

// output log ic
always @(/∗AUTOSENSE∗/state_s2)

begin
// provide default values for signals not speci f ied
memread = 0;
memwrite = 0;
irwrite3 = 0; irwrite2 = 0; irwrite1 = 0; irwrite0 = 0;
pcwrite = 0;
pcwritecond = 0;
regwrite = 0;
alusrca = 0;
alusrcb1 = 0; alusrcb0 = 0;
aluop1 = 0; aluop0 = 0;
pcsource1 = 0; pcsource0 = 0;
iord = 0;
memtoreg = 0;
regdst = 0;

// specify the outputs for reach state according to FSM

12

case (state_s2)
FETCH1 : begin

memread = 1;
alusrca = 0;
iord = 0;
irwrite3 = 1; // endianness
alusrcb1 = 0; alusrcb0 = 1;
aluop1 = 0; aluop0 = 0;
pcwrite = 1;
pcsource1 = 0; pcsource0 = 0;

end
FETCH2 : begin

memread = 1;
alusrca = 0;
iord = 0;
irwrite2 = 1; // endianness
alusrcb1 = 0; alusrcb0 = 1;
aluop1 = 0; aluop0 = 0;
pcwrite = 1;
pcsource1 = 0; pcsource0 = 0;

end
FETCH3 : begin

memread = 1;
alusrca = 0;
iord = 0;
irwrite1 = 1; // endianness
alusrcb1 = 0; alusrcb0 = 1;
aluop1 = 0; aluop0 = 0;
pcwrite = 1;
pcsource1 = 0; pcsource0 = 0;

end
FETCH4 : begin

memread = 1;
alusrca = 0;
iord = 0;
irwrite0 = 1; // endianness
alusrcb1 = 0; alusrcb0 = 1;
aluop1 = 0; aluop0 = 0;
pcwrite = 1;
pcsource1 = 0; pcsource0 = 0;

end
DECODE : begin

alusrca = 0;
alusrcb1 = 1; alusrcb0 = 1;
aluop1 = 0; aluop0 = 0;

end
MEMADR : begin

alusrca = 1;
alusrcb1 = 1; alusrcb0 = 0;
aluop1 = 0; aluop0 = 0;

end
LBRD: begin

memread = 1;
iord = 1;

end
LBWR: begin

regdst = 0;
regwrite = 1;
memtoreg = 1;

end
SBWR: begin

memwrite = 1;
iord = 1;

end
RTYPEEX : begin

alusrca = 1;
alusrcb1 = 0; alusrcb0 = 0;
aluop1 = 1; aluop0 = 0;

end
RTYPEWR : begin

regdst = 1;
regwrite = 1;
memtoreg = 0;

end
BEQEX : begin

alusrca = 1;
alusrcb1 = 0; alusrcb0 = 0;
aluop1 = 0; aluop0 = 1;
pcwritecond = 1;
pcsource1 = 0; pcsource0 = 1;

end

13

JEX: begin
pcwrite = 1;
aluop0 = 1; // not l o g i c a l l y required , but a hack to ensure aluop0

// and pcsource0 aren ’ t always ident ica l . I f they
// were identical , Synopsys would optimize one away,
// which confuses the Sil icon Compiler .

pcsource1 = 1; pcsource0 = 0;
end
// add support for ADDI here

default : begin
end

endcase // case (state_s2)
end // always @ (state_s2)

// compute pcen , the write enable for the program counter
assign pcen = pcwrite | (pcwritecond & zero);

endmodule

14

	Introduction
	Getting Started
	Using Design Vision
	The Target Technology Library
	Performing Synthesis
	Setting up Libraries
	Reading the Design
	Setting up Operating Conditions
	Setting up Boundary Design Conditions
	Setting up Optimization Constraints
	Performing the Optimization and Technology Mapping

	Viewing Reports
	Saving the Design, Netlist, and Constraints
	Writing Synthesis Scripts

	Parting Words
	Courses Forum
	Errors

