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7.1)  Show how to derive Eqs. (7.1) and (7.2) from the block diagram seen in Fig. 7.1. 

Sol) Equations 7.1 and 7.2 are given below,        
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The block diagram seen in Fig. 7.1 is shown below. It is the basic 1
st
 order Delta-

Sigma Noise shaping modulator. 
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Figure 1: Block Diagram of a Noise-Shaping (NS) Modulator 

 

The noise shaping property of the modulator can be shown using the transfer 

function of the system. Since the DAC does not add any quantization noise to the system, 

we can assume the transfer function for it to be equal to unity or we can just think of it as 

a wire connecting the output to the input.  
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 This shows that using the 1
st
 order noise shaping modulator with switched 

capacitors we get a signal transfer function that is just a delay through the modulator. The 

input just passes the modulator with a delay. But the quantization noise has a transfer 

function of ( )11 z−− , which is the transfer function of a differentiator (See Section 1.2.2) 

the magnitude response of the differentiator shows that the quantization noise is 

eliminated at DC and low frequencies and it is pushed or shaped into the high frequency 

region away from our signal bandwidth of interest.  

 



Kaijun Li 
Problem 7.2 
After reviewing Sec. 2.2.3, would it be possible to replace the delaying integrator seen in 
Fig. 7.2 with a non-delaying integrator? If so, what is the NTF and STF of the modulator? 
Is the modulator stable? 

 
Fig. 7.2 Circuit implementation of a first-order NS modulator 

Solution: 
As shown in Fig. 7.2, the unit delay for the delaying integrator is caused by clocking the 
clocked-comparator using Φ1 clock. To implement a non-delaying integrator, the clock 
can be replaced by Φ2 clock as shown in the following figure.  

VCM

VCM
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CI

CF

Φ1 Φ2

Φ2

Vout

 
 

Fig. 7.2-1 Circuit implementation of a first-order NS modulator with non-delaying integrator 
 
The block diagram for Fig. 7.2-1 is drawn in Fig. 7.2-2. 
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Fig. 7.2-2 Block diagram of a first-order NS modulator with non-delaying integrator 

 
The signal transfer function (STF) and the noise transfer function (NTF) are found as: 
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It is noted that the pole of the STF and NTF is 
2

1
z which is located inside the unit 

circle and the system is stable. We can prove the stability through impulse response as 
well. 
The impulse responses of STF and NTF are: 
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Therefore, the system is still stable using the non-delaying integrator. 
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7.3 Using SPICE simulations, show how passing the digital signal seen in Fig. 7.3 through an RC 

lowpass filter will reduce the modulation noise in the signal and help to recover the original 

analog input signal.  What happens to the original signal’s amplitude if it’s filtered, by the added 

RC filter, too much? 
 

Before performing the SPICE simulations, let’s take a quick walk through the building blocks of the 

discrete first order noise shaping (NS) modulator. 
 

 

 
 

 

 

 
 

 

The transfer function of the NS modulator seen in F-1 is: 
 

𝑣𝑜𝑢𝑡  𝑧 = 𝑧−1𝑣𝑖𝑛  𝑧 +  1 − 𝑧−1 𝑉𝑄𝑒  𝑧  

 

The transfer function shows that the output signal is the delayed input signal plus the differentiated 
quantization noise.  Differentiation in the z-plane has the magnitude response seen in F-2. 

 

 
 

 

 
 

 

 

The linear plot in F-2 shows that the quantization noise will be modulated to higher frequencies (fs/2).  If 
we have a high sampling frequency or low input signal spectrum we can remove a large amount of the 

quantization noise with filtering.  The output will be the convolution of the input signal along with the 

differentiated quantization noise.  As long as the input frequency remains much less than the sampling 
frequency we can plot the output spectrum (before filtering). 

 

 

 
 

 

 
 

 

 
 

F-3 shows that as long as fin << fs the modulation noise can be removed by sending the output signal 

through a simple lowpass filter (LFP).  F-3 also shows that if the RC values that we choose are too large 

(f3dB < fin) we will attenuate the desired signal.  We can use simulations to validate our understanding. 
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F-3 Output signal with modulation noise and LPF 



Using _Fig7_3_MSD from the website we can set up the simulation by setting fin = 500 kHz, fclk = 100 

MHz, tstart = 2 µs, tstop = 12 µs, and later RC = 100 ns (f3dB = 1.59 MHz).  We can use both the transient 
response and the fast Fourier transform (FFT) to view the output signal before and after filtering. 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

I used a 487 MHz input signal to prevent coherent sampling from the clock.  F-3 shows the FFT and 
transient response of the first order NS modulator.  The log-log FFT plot shows that the noise is 

modulated out to higher frequencies and repeats as expected from F-2.  When we filter the signal we will 

attenuate the high frequency noise. 
 

  

 

 
 

 

 
 

 

 
 

 

 

 
F-5 shows the output signal after being passed through an RC filter in both the time and frequency 

domain.  Note that the transient output is not attenuated, also the FFT shows the filters affect on the high 

frequency noise. 

F-4 _Fig7_3_MSD schematic and simulation results 

F-5 Transient and FFT of the filtered output 



Lincoln Bollschweiler 

7.4 Show the spectrums (modulator input, digital output, and analog output after 

filtering) of the signals in question 7.3. Discuss what the spectrums indicate. 

 

Q. 7.3 asks to pass the output of the circuit that produces Fig. 7.3 through a low-pass 

RC filter and to show how this reduces the modulation noise. 

 
Figure 1.  First-order NS modulator using switched capacitors and an active integrator. 

 

 
Figure 2.  Modulators input signal. 

 

 
Figure 3.  Unfiltered digital output. 

 

 
Figure 4.  Filtered digital output with RC = 1e-9.  1/(2πRC) = 159MHz = filter f3dB. 



Figure 2 shows the input signal to the modulator. As expected, a perfect sine wave has no 

noise and shows a spectrum with only one frequency mode visible, at the input frequency 

of 500kHz. 

 

Figure 3 is the unfiltered digital output, just before the RC filter. This FFT shows both the 

wanted signal at 500kHz as well as all of the modulation noise. 

 

Figure 4 shows the output after going through an RC filter with RC = 1E-9, giving an f3dB 

of 159MHz. Comparing Figs. 3 and 4 we see that the noise has been attenuated after 

going through the lowpass RC filter. The wanted signal at 500kHz, however, has been 

unchanged. 

 

If we were to decrease RC by enough so the f3dB is comparable to, or below, fin, then we 

should see an attenuation of the input signal, in addition to seeing the noise roll off at        

-20dB/dec following the f3dB frequency. Figure 5 shows this situation with RC = 1E-6, 

f3dB=159kHz. Here the wanted signal has been attenuated by approximately 10dB 

 

 
Figure 5.  Filtered digital output with RC = 1e-6.  1/(2πRC) = 159kHz = filter f3dB. 
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-20dB/dec 



Jake Baker

7.5 If an extra delay, z−1, was added to the forward path of the modulator in Fig. 7.2
would the resulting topology be stable? Why or why not?

The block diagram for Fig. 7.2 was shown in Fig. 7.1. Below shows this diagram with the
added delay (a D-Flip-Flop).

The transfer function, see Eq. (7.2), can now be written as

vout(z) =
z−2vin(z)

1 − z−1 + z−2 +
(1 − z−1)z−1

1 − z−1 + z−2 ⋅ VQe(z)

or

vout(z) =
vin(z)

z2 − z + 1
+ (z − 1)

z2 − z + 1
⋅ VQe(z)

We know that for the sy stem to be stable the poles must be inside the unit circle. The
poles are located at

zp1.p2 = 1
2 ± j 3

2
which is right on the edge of the unit circle. While we placed poles right on the unit circle
when we  designed c omb f ilters, which use d inte ger numbe rs, we c an't do this in a
switched-capacitor circuit. The noise will cause the poles to move outside the unit c ircle
and the system will become unstable (so adding the extra delay is very bad).

DAC

Out

Digital
Analog

In
ADCDelta Sigma

Integrator

A(z) = z−1

1 − z−1

VQe(z)

vin(z) vout(z)
z−1



Jason Durand

Problem 7.6 – Show, using timing diagrams, how Equation 7.3 is correct.

Equation 7.3 describes the input/output relationship fed back around the single bit ADC (comparator)

in a first order noise shaping modulator. The relationship is

Desired ADC input /output =
z
−1

1−z
−1
v in−vout 

when implemented with a discrete analog integrator, as in figure 1.

In figure 1, the phi1 and phi2 signals are non-overlapping clock signals, which are shown in figure 2. 

Equation 7.3 is valid, and it becomes clear when looking at the clock signals in figure 2. When phi1 is

high, CI tracks Vin and stores a charge, Q1=CI Vin. The clocks then switch after a brief time where both

are turned off (the non-overlapping part) and the fed-back part (Vout) is subtracted from the stored

charge Q1 (from capacitor CI) and integrated through the feedback from the opamp through CF,

appearing at the opamp output, which is the ADC input for this problem. This charge movement is

Figure 1  First-order NS Modulator.

Figure 2  Non-overlapping Clocks



described by the formula

V ADCin=
V in z  z

−1 /2
−V out  z

1−z
−1

⋅
C I

C F

.

Note the similarity of this equation to the two input entry on table 2.2, for the discrete analog integrator.

Since the ADC (comparator) is then clocked at phi1, one half clock cycle after the signal is available at

the comparator input, the equation becomes

V ADCin=
V in z  z

−1
−V out  z  z

−1 /2

1−z
−1

⋅
C I

C F

when the comparator is clocked. The output changes and feeds back to the discrete analog integrator,

but is not actually integrated until the phi2 signal goes high, connecting the path to the integrator. This

is written as

V ADCin=
V in z  z

−1
−V out  z  z

−1

1− z
−1

⋅
C I

C F

,

which can be algebraically rearranged to form equation 7.3, verifying equation 7.3. The gain of the

integrator, or CI / CF drops out of the equation because it cancels with the non-linear gain of the

comparator, which (ideally) acts to normalize the gain of the entire system to one.



Lincoln Bollschweiler 

7.7  For the NS modulator shown in Fig. 7.5 used for digital to analog conversion, what 

component serves as the ADC? What component serves as the DAC? 

 

The accumulator (digital delaying integrator) serves as the DAC and the quantizer circuit 

serves as the ADC. This can be seen more easily by examining the (b) part of Fig. 7.5. 

We see that the digital word formed by the quantizer is fed back to the input and 

subtracted from the input word where the accumulator can integrate the two and send a 

pseudo (quantized) analog signal to the output. 



Lincoln Bollschweiler 

7.8 Explain how the quantizer in Fig. 7.5 functions. 

 

The quantizer is (can be) a simple MUX with two hardwired inputs. The length of the 

word for these inputs is set to match the length of the digital input word arriving at vin. 

The MUX inputs are 011111… (two’s complement of binary offset 111111… [VDD or 

V
+
]) or 100000… (two’s complement of binary offset 000000… [ground or V

-
]). The 

MUX selector is the MSB of the output of the accumulator. If the MSB is a 1, the case 

for VDD is sent. If it is a 0, the case for ground is sent. The word sent back to the summer 

/ accumulator is in two’s complement to accomplish the subtraction at the summer. 

 



Jake Baker

7.9 What are we assuming about an input signal if the modulation noise follows Eq.
(7.5)?

We assume the input signal is changing, that is, not DC. Below shows the simulation
output spectrum (signal and noise) for the modulator in Fig. 7.2 when the input is 500
kHz. The simulation time was increased to 20 us. Below this is the spectrum we get when
we apply a DC input voltage of 500 mV. Note that the spectrum isn't "rounded" as it is in
the top plot but rather has basically a single tone at fs/2. While the shape of the spectrums
will change with input DC voltages the point is that we won't get noise spectrums with
the shape seen in Fig. 7.6 when the input is slow or DC. Modulators using a second-order
topology are much more robust to tones in the output spectrums. The two feedback loops
randomize the noise even for a DC input signal.



Jake Baker

7.10 What is the magnitude of Eq. (7.5) (plot it against frequency)?

Equation (7.5) is

NTF( f )VQe( f ) = ⎛
⎝1 − e−j2π f

fs ⎞
⎠ ⋅

VLSB

12fs

The term in parantheses represents differentiation and its magnitude can be written, with
the help of Eq. (1.46), as

1 − e−j2π f
fs = 2 sinπ f

fs

so

NTF( f )VQe( f ) = 2 sinπ f
fs

⋅ VLSB

12fs
, units V/ Hz

Using and an  this equation is plotted below using  LTspice (see,VLSB = 1V fs = 100 MHz
also, Fig. 7.6).



Jason Durand

Problem 7.11 – What is the difference between quantization noise and modulation noise?

Quantization noise is the noise that is added to a signal when it is converted to a digital signal. A digital

signal can only represent fractional values of VDD, with the number of steps equal to 2N, where N is

number of bits. By contrast, an analog signal can hold all voltage values up to the VDD of the system, a

continuous range. The noise that is added during analog to digital conversion to move the input analog

value to one of the digital steps is the quantization noise. Mathematically, the quantization noise can be

treated as a random variable, with RMS voltage equal to 

V Qe , RMS  f  =
V LSB

12f s

, 

which is spread equally over all frequencies. For ease of calculations and as a worst case assumption,

all the noise is modeled to occur between 0 and fs/2. This is the quantization noise, present in all ADC's.

Modulation noise has the same total power as the quantization noise in a system, but it is shaped

differently (multiplied by the noise transfer function). The goal of most noise shaping data converters is

to move the bulk of the quantization noise to a higher frequency, and then passing the output through a

low-pass filter which (ideally) removes all the noise.
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7.12 Show the steps and assumptions leading to Eq. (7.12). 

 

Equation 7.12 is below: 

 

𝑉𝑄𝑒,𝑅𝑀𝑆 ≈
𝑉𝐿𝑆𝐵

 12
∙

𝜋

 3
∙

1

𝐾3/2
 

 

The steps and assumptions leading up to Eq. 7.12 are discussed in sections 7.1.1 and 7.1.2, but let’s repeat 
them here and add additional information. 

 

The first assumption used when characterizing the spectral characteristics of the quantization noise is that 
Bennett’s criterion holds, that is: 

 

- The input’s signals amplitude falls within VREF+ and VREF- of the ADC. 
- The ADC’s LSB is much smaller than the amplitude of the input signal. 

- The input signal is busy. 

 

When using a 1-bit quantizer (clocked comparator), the second of Bennett’s criteria is not valid.  The 
noise shaping modulators feedback (subtracts) a signal that represents the quantization noise to the input 

signal.  This fed-back signal relaxes the second criteria. 

 
The RMS quantization noise voltage is: 

 

𝑉𝑄𝑒,𝑅𝑀𝑆 =
𝑉𝐿𝑆𝐵

 12
 (𝑉) 

 

The second assumption is that all of the quantization noise falls within the Nyquist frequency (fs/2).  This 
allows us to determine the quantization power spectral density and voltage spectral density as: 

 

𝑉𝑄𝑒
2  𝑓 =
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2

12𝑓𝑠
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 12𝑓𝑠
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 𝐻𝑧
   

 
Equation 7.12 is the quantization noise after being filtered by a digital filter with and OSR = K, and 

therefore a bandwidth B = fs/2K.  So to determine how much of the quantization noise is left after being 

filtered we must determine what the quantization noise voltage/power spectral density is after being 
shaped. 

 

The NTF used to shape the noise is: 
 

𝑁𝑇𝐹 =   1 − 𝑧−1 = 1 − 𝑒
−𝑗2𝜋

𝑓
𝑓𝑠  
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𝑓
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𝑓
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From section 1.2.2 the magnitude of the NTF is: 

 

 𝑁𝑇𝐹 = 2  sin 𝜋
𝑓

𝑓𝑠
  

 

The quantization noise present in a particular bandwidth (B) is then: 

 

𝑉𝑄𝑒,𝑅𝑀𝑆
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Remembering, for an OSR = K the filters bandwidth will be: 
 

𝐵 =
𝑓𝑠

2𝐾
 

 

Also recall the Taylor series expansion of trigonometric functions: 

 

sin 𝑥 =  
 −1 𝑛

 2𝑛 + 1 !
𝑥2𝑛+1

∞

𝑛=0

= 𝑥 −
𝑥3

3!
+

𝑥5

5!
⋯ 

 

So that for small x, sinx ≈ x, which is a good approximation because fs is much greater than f for large 

OSR. 
 

8
𝑉𝐿𝑆𝐵

2

12𝑓𝑠
 sin2  𝜋

𝑓

𝑓𝑠
 𝑑𝑓

𝐵

0

≈ 8
𝑉𝐿𝑆𝐵

2

12𝑓𝑠
  𝜋

𝑓

𝑓𝑠
 

2

𝑑𝑓

𝑓𝑠
2𝐾

0

= 8
𝜋2𝑉𝐿𝑆𝐵

2

12𝑓𝑠
3  𝑓2𝑑𝑓

𝑓𝑠
2𝐾

0

= 8
𝜋2𝑉𝐿𝑆𝐵

2

12𝑓𝑠
3  

1

3

𝑓𝑠
3

8𝐾3
 =

𝑉𝐿𝑆𝐵
2

12

𝜋2

3

1

𝐾3
 

 

𝑉𝑄𝑒,𝑅𝑀𝑆
2  𝑓 ≈

𝑉𝐿𝑆𝐵
2

12

𝜋2

3

1

𝐾3
  𝑉2

𝐻𝑧   

 
So that the RMS modulation noise is: 

 

𝑉𝑄𝑒 ,𝑅𝑀𝑆  𝑓 ≈
𝑉𝐿𝑆𝐵

 12

𝜋

 3

1

𝐾3/2
  𝑉

 𝐻𝑧
   

 

To summarize the assumptions: 

 

- Bennett’s criteria holds (the noise spectral content is flat for a quantizer) 
- All of the quantization noise falls within the Nyquist band 

 

   
 

 



Kaijun Li 
Problem 7.13 
Is the statement on page 238 that “every doubling in the oversampling ratio results in 1.5 
bits increase in resolution” really true if K is small? Explain. 

 
Solution: 
Ideal SNR for a first order noise shaping data converter is: 

SNR =6.02N+1.76-5.17 +30·log10(K) 
This leads to the effective number of bits (ENOB) as  

1.76

6.02

SNRENOB 
  =N + 1.5·log2(K)- 5.17/6 

Which indicates that there is 1.5 bits increase for every doubling in oversampling ratio K. 
However, we also notice that for above equations to be valid, K needs to be greater than 2. 
So, if K is small but greater than 2, the statement on page 238 that “every doubling in the 
oversampling ratio results in 1.5 bits increase in resolution” is still valid. 



  Avinash Rajagiri 

  ECE 615 CMOS Mixed Signal Design 

  Spring 2009 

7.14) Does noise-shaping work for DC input signals? If so, how? 

Sol)  

Yes noise-shaping works for DC input signals too. The noise-shaping modulator 

has a feedback loop to get a running average of the analog input signal. The modulator’s 

digital output is averaged to get a representation of the analog input signal.  

The noise transfer function of the NS modulator is a magnitude response of a 

digital differentiator, whose magnitude is zero at DC and peaks at a high frequency of 

fs/2. In other words, the noise is shaped or modulated towards high frequencies, as this is 

an unwanted signal being added to the input signal, the output needs to be low-pass 

filtered and the high frequency noise can be eliminated.  
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7.15. Show the steps leading up to Eq. (7.22). 

 

Sol. Analysis of how the SNR of the first order modulator (data 

converter) is affected because of filtering by Sinc filter 
 

In order to achieve better SNR for a first order modulator L averaging (sinc) filters are 

cascaded for modulator of order M. L is given by  L=M+1 (eq 7.17 in book). We know 

M=1 for a first order modulator, hence L=2. 

 
L 2

K K

1 1

1 1 z 1 1 z
H(z)

K 1 z K 1 z

− −− −− −− −

− −− −− −− −

− −− −− −− −            
= ⋅ = ⋅= ⋅ = ⋅= ⋅ = ⋅= ⋅ = ⋅            

− −− −− −− −            
 

Hence    

2
j2K f

fs

j2 f

fs

1 1 e
H(f )

K
1 e

π

π

−−−−

−−−−

    
−−−−    = ⋅= ⋅= ⋅= ⋅

    
−−−−    

 

2

2K f 2K f
1 cos jsin

1 fs fs
H(f )

2 f 2 fK
1 cos jsin

fs fs

π π

π π

                
− −− −− −− −                

                = ⋅= ⋅= ⋅= ⋅
                

− −− −− −− −                                

  

   

   

2

s

s

K f
sin

1 f
H(f )

fK
sin

f

π

π

    
    
    

= ⋅= ⋅= ⋅= ⋅
    
    
    

 

 
4

2 s

s

K f
sin

1 f
H(f )

fK
sin

f

π

π

    
    
    

= ⋅= ⋅= ⋅= ⋅
    
    
    

                    (1) 

   

RMS-Quantization noise on the output of a cascaded first order modulator with sinc filter 

can be calculated from the below equation. 
22 2fs 22

Qe, RMS
Qe0

V 2 NTF(f ) V (f ) H(f )= ⋅ ⋅= ⋅ ⋅= ⋅ ⋅= ⋅ ⋅∫∫∫∫                                          (2) 

We know that for first order noise shaping modulator 

LSB

Qe

s

V
V (f )

12f
====                                                    (3) 

Substituting equation (2) in (1) we get  
1NTF(z) 1 z−−−−

= −= −= −= −  
j2 f

fsNTF(f ) 1 e
π

−−−−

= −= −= −= −  
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Further the magnitude of NTF(f) is given by 

s

f
NTF(f ) 2sin

f

π    
====     

    
                  (4) 

  
4

2
LSB sfs 22 2

Qe, RMS
0

s s

s

K f
sin

V f 1 f
V 2 4sin df

f12f f K
sin

f

π

π

π

    
    

         
= ⋅ ⋅= ⋅ ⋅= ⋅ ⋅= ⋅ ⋅∫∫∫∫     

        
    
    

          (5) 

4

2
LSB sfs 22

Qe, RMS
0 4

s 2

s

K f
sin

V 1 f
V 8 df

f12f K
sin

f

π

π

    
    
    

= ⋅= ⋅= ⋅= ⋅∫∫∫∫
    
    
    

               (6) 

If we let 
s

f

f

π
θ =  

 
2 42

LSB s2
Qe, RMS

4 2
0

s

V 8 f sin K
V d

12f K sin

π θ
θ

π θ
   = ⋅ ⋅= ⋅ ⋅= ⋅ ⋅= ⋅ ⋅ ∫∫∫∫                               (7) 

2 42
LSB2

Qe, RMS
4 2

0

V 8 1 sin K
V d

12 K sin

π θ
θ

π θ
   = ⋅ ⋅= ⋅ ⋅= ⋅ ⋅= ⋅ ⋅ ∫∫∫∫                               (8) 

In order to determine the quantization noise we have to solve the integration term below. 
42

2
0

sin K
d

sin

π θ
θ

θ
  ∫∫∫∫   

Let us prove the value of this integral is going to be
K

4

π
. Let us take different values of 

K=1, 2 

 

Case 1:   K=1 

 (((( ))))
242 2 2

2

2
0 0 0

0

sin 1 cos 2 sin 2
d sin d d 1 4

sin 2 2 4

π
π π πθ θ θ θ

θ θ θ θ π
θ

−−−−     
= = = − = ⋅= = = − = ⋅= = = − = ⋅= = = − = ⋅∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫         

  (9) 

 

Case 2:   K=2 
4 2 22 2

2 2
0 0

sin 2 sin 2 sin 2
d d

sin sin

π πθ θ θ
θ θ

θ θ

⋅⋅⋅⋅
====∫ ∫∫ ∫∫ ∫∫ ∫  

                     
2 2 22

2
0

4sin cos sin 2
d

sin

π θ θ θ
θ

θ

⋅ ⋅⋅ ⋅⋅ ⋅⋅ ⋅
==== ∫∫∫∫  

                     
2

2 2 2

0

4cos 4sin cos d
π

θ θ θ θ= ⋅ ⋅= ⋅ ⋅= ⋅ ⋅= ⋅ ⋅∫∫∫∫  

     
2

4 2

0

4cos 4(1 cos ) d
π

θ θ θ= ⋅ −= ⋅ −= ⋅ −= ⋅ −∫∫∫∫  



  Harikrishna Rapole 

                 
2

4 2

0

4cos 4sin d
π

θ θ θ= ⋅= ⋅= ⋅= ⋅∫∫∫∫  

                 
2

4 6

0

16 cos cos d
π

θ θ θ= −= −= −= −∫∫∫∫                                                    (10) 

                                

We can solve the above integrals using the following method. 
4 2 2cos d cos (1 sin )dθ θ = θ − θ θ∫ ∫  

                          2 2 2= (cos cos sin )dθ − θ θ θ∫  

                           =
21 cos 2 sin 2

( )d
2 4

+ θ θ
− θ∫  

                         
1 1

 = sin 2 sin 4
2 4 8 32

θ θ
+ θ − + θ  

                          
3 1 1

sin 2 sin 4
8 4 32

θ
= + θ + θ  

                          
12 8 1

= sin 2 sin 4
32 32 32

θ
+ θ + θ   

                        ( )4 1
cos d 12 8sin 2 sin 4

32
θ θ = θ + θ + θ∫                                    (11) 

Similarly the integral 6cos dθ θ∫  can be reduced to as shown below.          

6 5 15 3 1
cos d sin 2 sin 4 sin 6

16 64 64 192

θ
θ θ = + θ + θ + θ∫                 (12) 

Substituting eq (11) and eq (12) in eq (10) we get           
42

2
0

sin 2 12 5
d 16 2

sin 32 2 16 2 4

π θ π π π
θ

θ

    
= ⋅ − ⋅ = ⋅= ⋅ − ⋅ = ⋅= ⋅ − ⋅ = ⋅= ⋅ − ⋅ = ⋅∫∫∫∫     

    
                          (13) 

From eq (9) and eq (13) we can conclude  
42

2
0

sin K
d K

sin 4

π θ π
θ

θ
= ⋅= ⋅= ⋅= ⋅∫∫∫∫                                                             (14) 

Substituting eq (14) in eq (8) we get  
2

LSB2
Qe, RMS

4

V 8 1
V K

12 K 4

π

π
   = ⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅ ⋅                                        (15) 

             
2

LSB2
Qe, RMS

3

V 2
V

12 K
   = ⋅= ⋅= ⋅= ⋅                                                         (16) 

 
LSB

Qe, RMS
3 2

V 2
V

K12
   = ⋅= ⋅= ⋅= ⋅                                                          (17) 

We can see that for values of K are greater than or equal to 2 the RMS quantization noise 

is reduced from the original value of
LSBV

12
. 

 

 



Solution by Geng Zheng
7.16    What is the difference between a NS ADC and a Nyquist ADC?

Solution:

Fig. 1 shows the typical block diagrams for Nyquist ADCs and NS ADCs.

The major differences between a NS ADC and a Nyquist ADC are:

1) Anti-aliasing filter

In a Nyquist ADC, an anti-aliasing filter is required to filter the analog input in order to

minimize the aliasing effect. For a NS ADC, however, aliasing is usually not an issue since the

analog input is oversampled (the sampling frequency is much higher than the Nyquist

frequency). Thus anti-aliasing filter is usually not needed in NS ADCs.

2) Sample-and-hold (S/H) circuit

For Nyquist ADCs, S/H circuits are needed. Dedicated S/H is not required in a NS ADC.

Discrete-time NS ADCs typically employ switched-capacitor circuits which perform the S/H

function. Continuous-time NS ADCs do not require S/H.

3) Digital Encoding

The output of the quantizer in a Nyquist ADC needs to be converted to desired digital format.

For example, the quantizer outputs of a Flash ADC are thermometer codes. Hence a circuit for

converting the thermometer codes to binary format is usually needed. In a NS ADC, the

encoding process is done by a digital filter.

4) Limit cycle oscillation

In Nyquist ADC, the output code doesn't vary for a DC input. In a NS ADC, however, a DC

input results in a varying output codes due to the feedback topology in the NS modulator (limit

cycle oscillation). Limit cycle oscillations are commonly observed in nonlinear systems. It is a

self-exited periodic behavior which can cause undesired harmonic tones in the output spectrum

of NS ADCs.  Limit cycle oscillations also cause dead zone for a varying input (a small change

in the input doesn't result in a change in the output code).

Figure 1   Typical block diagram for (a) Nyquist ADCs and (b) NS ADCs
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7.17     In your own words, describe ripple in the output of a digital filter connected to a NS modulator.

Solution:

The ripple is caused by the nature of the NS modulator. The feedback topology of a NS

modulator makes its output always “busy” (alternating between one and zero) even when the

modulator input is a DC value. For a DC input, the output of the NS modulator is a single

repetitive  code. For example, if the DC input is the common-mode voltage, the modulator

output might be 0101010101, 001100110011, 000111000111, etc. This fact causes the digital

filter output to have ripple. The closer the DC input to the common-mode voltage, the larger the

magnitude of the ripple. 

We know that a periodic signal will rise the energy in some certain frequencies. The repetitive

modulator output results in harmonic tones in the frequency domain. Consider a DC common-

mode input, the modulator output is a square wave with 50 % duty cycle. Using Fourier series

we can write a square wave with frequency f o  as

X t = 4
sin 2 f ot 

1
3

sin2⋅3⋅ f o t 1
5

sin 2⋅5⋅ f ot ...  (1)

which shows the harmonic terms. Different DC inputs will result in output square wave with

different duty cycle and thus different ripple magnitudes and frequencies at the filter output.
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7.18     Does adding a dither signal to the input of a NS modulator help reduce the peak-to-peak ripple 

in the digital filter output? Does it help to break up tones in the filter's output?

Solution:

Adding a dither signal to the input of a NS modulator doesn't help reduce the peak-to-peak

ripple in the digital filter output. In fact, it may cause the filter output to have larger peak-to-

peak ripple if the filter doesn't average enough. However, adding a dither signal does help to

break up tones in the filter's output in the spectrum. The dither signal, random noise, help to

spread the energy of the NS modulator output to wider spectrum. That is, the total energy of the

modulator is still the same but break up into more frequency components.



Solution by Geng Zheng

7.19     Derive Eq. (7.26).

Solution:

Let's get started with drawing the block diagram of a NS modulator with forward gain GF , the

product of the integrator gain GI  and comparator gain GC , as shown in Fig. 1.

With Fig. 1, we can write

vout  z= vin z −vout  z ⋅
z−1

1− z−1⋅GFV Qe z  (1)

Multiplying both sides of Eq. 1 by 1−z−1  we have

vout  z⋅1−z−1=vin  z −vout  z ⋅z−1⋅GFV Qe z ⋅1−z−1  (2)

or

vout  z⋅1−z−1GF⋅z−1=vin z ⋅z−1⋅GFV Qe  z ⋅1−z−1  (3)

Knowing 1−z−1GF⋅z−1=1 z−1GF−1 , Eq. 3 becomes

vout  z=vin  z ⋅
z−1⋅GF

1 z−1G F−1
V Qe  z ⋅

1−z−1
1z−1GF−1

 (4)

or Eq. (7.26).

Figure 1   Block diagram of a NS modulator.

z−1

1−z−1+ GF +

V Qe  z 

GF=GI⋅GC
-

In v in  z  vout  z  Out
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7.20.   Repeat Ex 7.3. if the integrator’s gain is set to 0.5. 

Ex 7.3. Show, using SPICE simulations and the modulator of Fig 7.2, that an 

integrator gain of 0.4 will result in an op-amp output range well with in the power supply 

range. 

 

Sol)  

 

 
Figure 1. First order NS modulator with an integrator gain of 0.5 at fs=100 MHz  

 

The integrator gain is set by the capacitor CI in the first order NS modulator shown in 

Figure 1. The integrator gain GI is given by 

     
I

I 

F

C
G =

C
                                                          (1) 

Given GI=0.5, CF=1p then CI=0.5p. 

 

 
        Figure 2. The output of the op-amp shown in Figure 1. 

 

The output at the op amp (integrator output) is shown in Figure 2. The output swing is 

limited to 90% of the supply range. We can see (in Figure 3) that the integrator output 

saturates (goes beyond the range of power supply) when the value of CI is 0.6p or greater 

(i.e. GI is 0.6 or greater).  

Op amp 
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Figure 3. The output of the op-amp shown in Figure 1 with CI=0.6p. 
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7.21.   Estimate the range of Gc  for the quantizer seen in Fig. 7.16. How does this 

compare to the range of Gc for the 1-bit quantizer seen in Fig. 7.15? Name two benefits of 

the 1-bit quantizer over multi-bit quantizer. 

 

Sol. The transfer characteristic of a 3 bit quantizer is shown in Figure 1. 

 
               Figure 1. Transfer characteristic of a 3-bit ADC (quantizer) 

 

The maximum gain of the 3-bit quantizer is given by
( )

c
y 001 000

G 8
x 1 8 0

=
−

= =
−

�

�

. The 

minimum gain is 0 (i.e. for analog input voltages less than 1/8 the output digital code is 

zero).   

 

Hence the range of Gc for the 3-bit ADC (quantizer)  is given by 

     

c0 G 8≤ ≤       (1) 

 
Figure 2. Transfer characteristic of a 1-bit ADC (quantizer) 

 

In a 1-bit quantizer as seen in Figure 2 the output transition is abrupt hence gain is very 

high (in the order of thousand).  

    

Practical  

Ideal 
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Benefits of the 1-bit quantizer over multi-bit quantizer  

1. The input to the multi bit quantizer has limited swing to represent all values of analog 

voltages. As the multi bit quantizer has less gain, the quantizer can only have limited 

output codes. Unless the output codes are scaled, the inputs allowed to the modulator are 

limited. But with a 1-bit quantizer which has high gain it is easy to represent all the 

output codes.  

2. The limited gain of the multi-bit quantizer (Gc) might result in forward gain (GF) that is 

not exactly unity. The gain of the active integrator can be increased to avoid this problem.  

Hence the requirements on the gain of the op amp are increased. In a 1-bit quantizer this 

is not a problem as the comparator has very high gain. Op amp need not have high gain to 

have forward loop gain (GF) equal to unity. 
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7.22.   Verify that Eq 7.30 is correct. Use pictures if needed. 

Sol)  This problem is an analysis of the effect of finite op-amp gain; hence the 

comparator in the first order NS modulator is removed to simplify the analysis. The 

discrete analog integrator (DAI) in the NS modulator is shown in the Figure 1.  

 

 

 

 

Ts

n-1 n-1/2 n

ø1

ø2

t

 
 

    Figure 1.  DAI in the First order NS modulator  

 

The op amp has a finite open loop gain AOL(f).      

 

                 
+

-

VCM
CI

v2

vout

CF

V-

  
    

             Figure 2. DAI when Ø2 turns on 

Figure2 shows the DAI when Ø2 turns on. The open loop gain of the op amp is given by 

[ ]out

OL

CM -

v nTs
A (f)=

(V -V )
                                                     (1) 

Op amp 
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[ ]out s

- CM

OL

v nT
V =V  - 

A (f)
                                                    (2) 

Let us consider the charge stored on the CI capacitor when Ø2 switch turns on. Since one 

end of the capacitor is at v2 and the other end is at V-, the charge stored on the capacitor 

CI at t=nTs becomes 

    [ ]2 I 2 sQ C (V v nT )−= −                                                (3) 

[ ]
[ ]

out s

2 I CM 2 s

OL

v nT
Q C (V v nT )

A (f)
= − −                             (4) 

Eq  (4 ) verifies Eq 7.30. 
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7.23) In your own words, and without equations, describe integrator leakage. How 

would you relate integrator leakage, found in integrators that use an active element as 

seen in the NS modulators found in this chapter, to the passive integrators used in the 

NS modulators discussed in the last chapter? 

Sol)  

In an active integrator, when the op-amp is not ideal i.e., it has finite gain then the 

op-amp does not hold its negative terminal at exactly virtual ground. Due to this, not all 

the charge stored on the input capacitor is transferred to feedback capacitor CF. This 

charge that did not make it to the feedback capacitor is known as integrator leakage. 

 As mentioned above, the integrators that use an active element, have integrator 

leakage due to the op-amp not being ideal and not being able to transfer all the charge 

from the input capacitor to the feedback capacitor.  

 For first order passive NS modulator, were we use a passive integrator using RC 

circuit, the integrator leakage can arrive due to presence of a comparator offset. Because 

if the comparator has an offset(Vos), and if the negative terminal is held at Vcm, the 

positive terminal will be held at Vcm – Vos due to this the comparator will switch its 

output states a bit too early and not all the charge from the input capacitor C will be 

leaked off, this can lead to integrator leakage in passive integrators.  
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7.24) Would large parasitic op-amp input capacitance affect the settling time of a DAI? 

Verify your answer using simulations with ideal op-amps (infinite open-loop gain) and 

non-ideal op-amps (open-loop gains around the oversampling ratio, K). 

Sol)  

If an op-amp has a large parasitic input capacitance, it will affect the settling time 

of a DAI. Let us consider figure 7.18, which shows the feedback factor in the DAI.  

 
Figure 1: Input parasitic Capacitor of the op-amp 

 Assuming the settling time of the op-amp is linear, we can write the change in the 

op-amp’s output assuming a dominate pole compensated op-amp as 

/(1 )t
out outfinal

v V e τ−= −    [1] 

 Since the op-amp is assumed to be a dominant pole compensated, the magnitude 

response of a RC circuit looks like  

 
Figure 2: Frequency response 

 Where the gain band-width product is given by,  

3 unOLDC dB
A f f⋅ =    [2] 

1

2
unOLDC
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A f

π
⋅ =    [3] 

1

2

Out

unin

V
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V fπ
⋅ =    [4] 

1

2

Out

unf

V
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V fπ
⋅ =    [5] 
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2 unf

Out

RC
V

V

fπ 
  
 

⋅ =    [6] 
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1 1

2 un

RC
f

τ
β π

=⋅ =    [7] 

For a DAI without any input parasitic capacitance, the feedback factor β is given by, 

F

F I

C

C C
β =

+
   [8] 

But for a DAI with input parasitic capacitance of CIP, as shown in the Fig. 1, we 

have the input parasitic capacitance parallel to the input capacitance of the DAI, so the 

total capacitance on the input of the op-amp is now, CI + CIP. 

Therefore the feedback factor now becomes, 

F

F I IP

C

C C C
β =

+ +
   [9] 

And Eq. 1 becomes, 

1 1
2

/

(1 )unf
t

out outfinal
v V e

β π

 
 
 
 

⋅−

= −    [10] 

2(1 )unf t
out outfinal

v V e πβ ⋅− ⋅= −    [11] 

2

1
F

un
F I IP

C
f t

C C C

out outfinal
v V e

π ⋅
 

− ⋅ + +
 
  
 

= −    [12] 

Therefore, we see that the op-amp will take longer to settle to its final value due  

to the presence of the input parasitic capacitor.  

  

 Settling time of an op-amp is defined as the time it takes for the output to settle to 

less than 1% of its final value. In the figures below, the point at which the output has 

reached 99% of its final value is highlighted to measure the settling time. 

 

An ideal op-amp can hold both the positive and negative inputs at a constant 

voltage due to its high-gain. This will basically hold the charge on the input parasitic 

capacitor at a constant and the presence of the input parasitic capacitor would not affect 

the settling time of the output of the integrator.  
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Figure 3: Ideal op-amp setting time without any input parasitic capacitor 

 
Figure 4: Ideal op-amp setting time with input parasitic capacitor 

 We see from Figs. 3 and 4 that the settling time of the ideal op-amp is not affected 

by the parasitic capacitor added at its input.  

 Shown below are simulations for non-ideal op-amp with and without parasitic 

capacitor.  

 
Figure 5: Non-ideal op-amp without input parasitic capacitor 
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Figure 6: Non-ideal op-amp with input parasitic capacitor 

 

 From Figs 5 and 6 we see that when the input parasitic capacitor is added to the 

non-ideal op-amp’s negative input, the output of the integrator takes longer to settle to its 

final value.  



Kaijun Li 
Problem 7.25 
In your own words, how does over-sampling affect input-referred offset/noise and the 
effects of a jittery clock on an NS data converter? 
 
Solution: 
As shown in equations (7.44) and (7.45) in the textbook, the modulator’s input-referred 
offset/noise passing through an ideal low-pass filter with a bandwidth of B(=fs/2K)  
results in 

 
s

n
cktn f

VfV ,   for f<fs/2    (7.44) 

K
Vdf

f
VV n

B

s

n
RMSckt  

0

2

, 2       (7.45) 

The RMS value for clock jitter is found by 
2

,, 2
2

1








 in

p
jitterAVGRMSjitter f

V
K

PV      (5.51) 

The noise contribution can be calculated as  
2

,
2

,
2

,, RMScktRMSjitterRMSQeRMSn VVVV       (7.46) 

 
It is noted that the averaging filter (low-pass filter) reduces both the input-referred 
offset/noise and the clock jitter noise by K.  
The signal-to-noise ratio (SNR) of the NS data converter is: 

RMSn

p

V
V

SNR
,

2
log20        

Therefore, the over-sampling or averaging helps the overall performance of the NS data 
converter in terms of SNR. 



Kaijun Li 
Problem 7.26 
Determine the transfer function of the DAI shown in Fig. 7.20. 

 
Fig. 7.20 Fully-differential discrete-analog integrator (DAI) implementation 

Solution: 
The transfer function of the fully-differential DAI can be derived similarly as the single-
ended DAI. To determine the transfer function of the DAI, it is important to understand 
the timing which is drawn in following figure. 

 
When Φ1 switches open at (n-1/2)Ts or n-1/2, the charge stored on the capacitor CI are: 

   sCMItop TnvVCQ 211)(1      (1) 

   sCMIbottom TnvVCQ 211)(1     (2) 

When Φ2 switches close, the charge on the capacitor CI are: 
  sCMItop nTvVCQ  2)(2     (3) 

  sCMIbottom nTvVCQ  2)(2    (4) 

The difference 21 QQ   is   

     ssItoptop TnvnTvCQQ 2112)(2)(1      (5) 

     ssIbottombottom TnvnTvCQQ 2112)(2)(1     (6) 

21 QQ   is transferred to the capacitors FC  which can be written as   

     soutsoutFtoptop TnvnTvCQQ 1)(2)(1     (7) 



     soutsoutFbottombottom TnvnTvCQQ 1)(2)(1    

 (8) 
Therefore, by equalizing equations (5)-(8), and knowing that   outoutout vvV , 

  111 vvV , and   222 vvV , we have 

           soutsoutFssI TnVnTVCTnVnTVC 12112   (9) 

Taking the z-transform of equation (9), we get  

     
1

2
2/1

1

1 







z

zVzzV
C
CzV

F

I
out

    (10) 

So the transfer function of the fully-differential DAI is the same as that of the single-
ended DAI. 
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7.27 Derive Eq. (7.51). 

 

Equation 7.51 is the RMS quantization noise for a second order discrete noise shaping (NS) modulator. 

 

𝑉𝑄𝑒,𝑅𝑀𝑆 ≈
𝑉𝐿𝑆𝐵

 12
∙
𝜋2

 5
∙

1

𝐾5/2
 

 
To begin the derivation we must understand why the following assumptions are made: 

 

- Bennett’s criterion holds 

- All of the quantization noise falls within the Nyquist frequency 
 

When Bennett’s criterion is met the quantization noise of a 1-bit quantizer (with feedback that relaxes the 

second criteria) will have a flat response with RMS, voltage spectral density, and power spectral density 
of: 

 

𝑉𝑄𝑒,𝑅𝑀𝑆 =
𝑉𝐿𝑆𝐵

 12
  (𝑉) 

 

𝑉𝑄𝑒  𝑓 =
𝑉𝐿𝑆𝐵

 12𝑓𝑠
  (𝑉/ 𝐻𝑧) 

 

𝑉𝑄𝑒
2  𝑓 =

𝑉𝐿𝑆𝐵
2

12𝑓𝑠
  (𝑉2/𝐻𝑧) 

 

Using the second-order NS modulator with an over sampling ratio of K we can determine the filter 

bandwidth to be: 

 

𝐵 =
𝑓𝑠

2𝐾
 

 

To determine the quantization noise that remains after being passed through a filter with bandwidth of B 

we need to find the magnitude of the noise transfer function (NTF).  We know that the second order NS 

modulator modulates the quantization noise with a second-order differentiator, so: 
 

𝑁𝑇𝐹 =   1 − 𝑧−1 2 =  1 − 𝑒
−𝑗2𝜋

𝑓
𝑓𝑠 

2

 

 

The magnitude of this transfer function is (review section 1.2.2): 

 

 𝑁𝑇𝐹 = 4  sin2 𝜋
𝑓

𝑓𝑠
  

 

We can integrate the power spectral density of the modulated quantization noise over the bandwidth of 

interest to determine the remaining noise after filtering. 
 



𝑉𝑄𝑒 ,𝑅𝑀𝑆
2  𝑓 = 2   𝑁𝑇𝐹 2 𝑉𝑄𝑒  𝑓  

2
𝑑𝑓

𝐵

0

= 32   sin2 𝜋
𝑓

𝑓𝑠
 

2
 

𝑉𝐿𝑆𝐵

 12𝑓𝑠
 

2

𝑑𝑓

𝐵

0

= 32
𝑉𝐿𝑆𝐵

2

12𝑓𝑠
 sin4  𝜋

𝑓

𝑓𝑠
 𝑑𝑓

𝐵

0

 

 
When fs >> f we can use Taylor series expansion of the trigonometric function and approximate: 

 

sin 𝑥 =  
 −1 𝑛

 2𝑛 + 1 !
𝑥2𝑛+1

∞

𝑛=0

= 𝑥 −
𝑥3

3!
+

𝑥5

5!
⋯ 

 

sin 𝑥 = 𝑥 
 

For small x, which is the case as long as fs >> f. 
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𝑓𝑠
4

1

5

𝑓𝑠
5

32𝐾5
 

 

𝑉𝑄𝑒,𝑅𝑀𝑆
2  𝑓 =

𝑉𝐿𝑆𝐵
2
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𝜋4

5

1

𝐾5
 

 

Taking the square root: 

 

𝑉𝑄𝑒 ,𝑅𝑀𝑆  𝑓 ≈
𝑉𝐿𝑆𝐵

 12

𝜋2

 5

1
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  𝑉

 𝐻𝑧
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7.28 Sketch the implementation of the full-differential second-order NS modulator.  

 

The block diagram of the second-order modulator is seen below. 

 

 

 

 

 

 

 

 

 

The block diagram leads to the following transfer function:  

 
𝑣𝑜𝑢𝑡  𝑧 = 𝑧−1𝑣𝑖𝑛  𝑧 +  1 − 𝑧−1 2𝑉𝑄𝑒  𝑧  

 

This equation shows that the noise is modulated with a second order response while the input signal is 

delayed.  Filtering the output signal will remove the quantization noise in a particular bandwidth for fs >> 

f. 

 

Before implementing F-1 with fully differential discrete analog integrators (DAI) let’s review addition 

and subtraction using switched capacitors by viewing F-2. 

 

 

 

 

 

 

 

 

 

 

 

 

The block diagram of F-1 allows us to use known configurations to implement a second-order NS 

modulator.  Let’s look at the non-delaying integrator developed in chapter 2: 

 

  

 

 

 

 

 

 

 

 

 

 

 

F-1 Block diagram of a second-order NS modulator 

F-3 Fu lly-d ifferential discrete analog integrator (DAI) 

vout+ 
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v2- 
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𝐶𝐹
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1 − 𝑧−1
 

𝑧−1

1 − 𝑧−1
  𝑣𝑜𝑢𝑡  𝑧  

𝑉𝑄𝑒  𝑧  

𝑣𝑖𝑛  𝑧  
1

1 − 𝑧−1
 

F-2 Reviewing subtraction and addition using switched capacitors 

v1 

v2 

vout 

vout 
vout 

v1 v2 

VCM 
VCM 

v1 

v2 

vout v1 

v2 

SUBTRACTION ADDITION 

Φ1 Φ2 
Φ2 Φ1 



F-3 shows the fully-differential implementation of the non-delaying integrator.  Notice that the v2 signal is 

subtracted from the input signal.  This will allow us to feedback the output signal to the v2 node and 

perform the subtraction seen in F-1.  To create a delaying integrator we simply connect to the output 

through a Φ1 switch to introduce a clock cycle delay (z-1) from the input to the output. 

 

To implement F-1 with fully differential DAIs let’s place two in parallel and add a comparator.  We will 

leave the clock signals off and just connect it up so that we can analyze how to clock the modulator.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We know we want the second integrator to be delaying so if we clock the input with Φ1 then we need to 

clock the comparator with Φ1.  Since the output of the first integrator will be connected with Φ1 then we 

need to clock its input with Φ2 to have it become a non-delaying integrator. 
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F-4 Fu lly-d ifferential second-order NS modulator without clock signals 
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CI 
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F-4 Fu lly-d ifferential second-order NS modulator with clock signals 
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Jake Baker

7.29 Derive Eq. (7.61).

The block diagram, Fig. 7.32, used in this derivation is seen below.

The signal at point A is
(vin − vout) ⋅G1

1 − z−1

while the signal at point B is
(vin − vout) ⋅G1

1 − z−1 −G3 ⋅ vout

We can then write

(vin − vout) ⋅ z−1G1G2Gc

(1 − z−1)
2 − G2G3Gc ⋅ z−1vout

(1 − z−1)
+ VQe = vout

and

z−1G1G2Gc

(1 − z−1)
2 ⋅ vin + VQe = vout

⎛

⎝
⎜1 +

z−1G1G2Gc

(1 − z−1)
2 + G2G3Gc ⋅ z−1

(1 − z−1)

⎞

⎠
⎟

Multiplying both sides by  gives(1 − z−1)
2

z−1G1G2Gc ⋅ vin + VQe(1 − z−1)
2 = vout ⎡⎣(1 − z−1)

2 + z−1G1G2Gc +G2G3Gc ⋅ z−1 ⋅ (1 − z−1)⎤⎦

and finally

vout(z) =
G1G2Gc ⋅ z−1vin(z) + (1 − z−1)2 ⋅ VQe(z)

1 + z−1 ⋅ (G1G2Gc +G2G3Gc − 2) + z−2 ⋅ (1 −G2G3Gc)

OutIn
A Bvin(z)

VQe(z)

G1

1 − z−1
vout(z)G2 ⋅ z−1

1 − z−1

G3

Gc

GF = G1G2Gc
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7.30 Sketch the fully-differential equivalent of Fig. 7.33. 

 

 

 
 

 

 
 

 

 
 

 

 

 
Let’s derive the transfer function of this schematic assuming Φ2 goes low at time nTs and that the charge 

flows to the output over an entire clock cycle.  At nTs the charge from v2 is transferred without a delay. 

 

𝑄2 =  𝑉𝐶𝑀 − 𝑣2 𝐶𝐼3 
 

𝑄1 =  𝑉𝐶𝑀 − 𝑣1𝑧
−1/2 𝐶𝐼2  

 

𝑣𝑜𝑢𝑡 𝐶𝐹 − 𝑣𝑜𝑢𝑡 𝑧
−1𝐶𝐹 =  𝑉𝐶𝑀 − 𝑣2 𝐶𝐼3 −  𝑉𝐶𝑀 − 𝑣1𝑧

−1/2 𝐶𝐼2 

 

𝑣𝑜𝑢𝑡 𝐶𝐹 − 𝑣𝑜𝑢𝑡 𝑧
−1𝐶𝐹 = 𝑣1𝑧

−1/2𝐶𝐼2 − 𝑣2𝐶𝐼3  
 

𝑣𝑜𝑢𝑡 = 𝑣1
𝑧−1/2

1 − 𝑧−1

𝐶𝐼2

𝐶𝐹
− 𝑣2

1

1 − 𝑧−1

𝐶𝐼3

𝐶𝐹
 

 
To implement this schematic with fully differential op-amps we just use the switched-capacitor network 

on both the inverting and non-inverting inputs. 
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F-1 Sketch of Figure 7.33 
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F-2 Sketch of fully-differential implementation of the circuit seen in F-1 

VCM 



To verify this fully-differential topology we can use _Fig7_36_MSD from the website with our fully-

differential implementation.  The schematic and simulation results are seen below. 
 

 
 

 

The simulation results in F-3 match that of Figure 7.36 proving that the topology was implemented 
correctly. 

F-3 Schematic and simulation results of the fully-differential implementation 



Jake Baker

7.31 Resimulate the modulator in Ex. 7.4 if the gains are set to one. Comment on the
stability of the resulting circuit.

The simulation schematic of the modulator with the gains set to one is seen below.

The simulated outputs of the integrators is seen below.

Knowing the power supply voltage is 1 V we see that the outputs of the integrators are
swinging beyond the power supply rails. This  simulation used ideal components and so
the feedback loop remains stable. In a transistor implementation the outputs of the
integrators are limited to the power supply rails so the integrators will saturate. In other
words, the forward g ain will drop towards z ero and the loop will move towards
instability. I t should be pointed out that ev en if the loop doesn' t become unstable the
outputs of the integrators saturating will drastically reduce the modulator's SNR and so it
should be avoided.



Jake Baker

7.32 Resimulate the modulator in Ex. 7.4 if the input is only 50 mV. Comment on the
stability of the resulting circuit.

The simula tion results showing  the  integrators' outputs a re se en below. Knowing  the
power supply rails are ground and 1 V we see that the integrator outputs are not staying in
this r ange (so the  integrators will sa turate in a  real c ircuit). This indicates stability is a
concern (see Question 7.31). The simplest solution to this problem is to limit the input
signal swing. Another solution is to further reduce the integrators' gains. The point is that
integrator saturation is bad and should be avoided. Satu rating integ rators push the
modulators towards instability and result in a reduction in SNR.



Jason Durand

Problem 7.33 – Regenerate Fig 7.40 by selecting integrator gains so that the maximum output swing of

any opamp is 800mV peak to peak.

Figure 7.40 is generated by the following spice simulation:

Nodes vop1 and vop2 are the opamp outputs, and in a real circuit, are limited in swing to the power

rails, usually gnd and vdd. The gain of the overall system is one (due to the non-linearity if the

comparator gain) but the gain of each integrator stage is important so that the output does not saturate,

which can impact the SNR of the data converter. The gain of each integrator is the ratio of the input

comparator to the feedback comparator, or CI/CF. To keep the outputs within the power supply rails, the

gain of the first integrator is set extremely low (0.05) and the second is higher, (0.4). 

Opamp outputs with 500kHz input, 900mV peak to peak.

 

The main possible problem with this is the size of the input capacitor of the first integrator, since a

smaller capacitor moves more with a given amount of noise on the interconnects, and noise from the

switches. 
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7.34 Comment, in your own words, on why the actual SNR of a NS-based data
converter can be worse than the ideal values calculated in the chapter.

1. The op-amp used in the integrator may have finite gain leading to integrator
leakage, the charge stored on the switched-capacitors isn't fully transfered to the
feedback capacitor in the integrator. This slopping of charge will reduce the SNR.

2. The op-amp's noise will add to the input signal and reduce the SNR. This may not
be an issue in topologies using a large oversampling ratio since the bandwidth of
the op-amp's noise is then relatively small.

3. The comparator, while one of the least critical components in the modulator, can
also effect the SNR. The comparator's noise can have an effect too, though it's
considerably less important than the op-amp's noise. The bigger issue is the
comparator making a full output transition. If the output doesn't fully "decide" the
effects on the SNR can be dramatic. 

4. The thermal noise, kT/C, associated with the MOSFET switches will also reduce
the modulator's SNR.

5. Using imperfect clock signals can have an effect on the SNR as discussed in Ch. 5.
In continuous-time modulators these effects can be signifcant where the jittering
clock signal adds to the varying delay of the clocked comparator. The effects of
the comparator decision varying is considerably less of an issue in discrete-time
modulators as long as the comparator makes a decision in < TS/2. However, a
varying clock signal, as discussed in Sec. 5.2, can still have an effect on the SNR
in switched-capacitor circuits.



7.35 Derive Eq. (7.75). Make sure each step of the derivation includes comments. The 
equation in question is 
 

 ( )1 20 10 log 20log .
6.02 2 1

M

incN M K
M
π⎡ ⎤⎛ ⎞

= + ⋅ −⎢ ⎥⎜ ⎟
+⎝ ⎠⎣ ⎦

 (7.75) 

 

1. Definitions 
A first order noise shaping modulator (NSM) has a noise transfer function (NTF) of 
 
 ( ) 11 ,NTF z z−= −  (1) 
 
which is the representation of a digital differentiator. Higher order modulators 
differentiate the noise with the same transfer function, raised to the power of the 
modulator’s order. Therefore, an Mth order NSM has 
 

 ( ) ( )11 ,
M

NTF z z−= −  (2) 
 
which can be represented as 

 ( )
2

1 s

Mfj
fNTF f e

π−⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠

 (3) 

 
in the frequency domain. Using Euler’s identity, we can convert this to  
 

 ( ) 2 1 cos 2
M

s

fNTF f
f

π
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (4) 

 
which, if we use the trigonometric identity 

 21 cos 2sin ,
2
xx− =  (5) 

 
we arrive at the useful version 
 

 ( ) 2 sin .M M

s

fNTF z
f

π
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (6) 

 
The quantization noise of the NSM, VQe(z), is represented in the frequency domain by 
 

 ( ) .
12

LSB
Qe

s

VV f
f

=  (7) 
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2. Modulation Noise 
The magnitude of the modulation noise is the product of the magnitude of the 
quantization noise (7) with the magnitude of the NTF (6). This describes how the noise is 
shaped into the higher frequency range. 
 

 ( ) ( ) 2 sin
12

M M LSB
Qe

s s

VfNTF f V f
f f
π

⋅ = ⋅  (8) 

3. RMS Quantization Noise 
In moving towards the goal of finding an equation for the increased number of bits (Ninc), 
we first need to find the signal to noise ratio (SNR), and to do that we first need to 
determine the amount of noise present in the bandwidth of interest. This derivation 
assumes the quantization noise of interest occupies the bandwidth 0  B, where 
 

 .2
sfB K=  (9) 

 
K is the oversampling ratio and fs  is the clocking frequency. This derivation also assumes 
that the bandwidth is passed through an ideal low pass filter. With these assumptions 
stated, we can proceed to calculate the RMS quantization noise for the NSM from 0 to B. 
Using (8), and remembering to integrate on both sides of the frequency spectrum, 

 

222
,

0
22

0

2
2 2

0

2 ( ) ( )
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B
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s s
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M MLSB

s s

V NTF f V f df

Vf df
f f

V f df
f f

π

π

= ⋅

⎡ ⎤⎡ ⎤
= ⋅ ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦

= ⋅ ⋅ ⋅

∫

∫

∫

 (10) 

 
Here, if we assume that our input frequency is much, much less than our clocking 
frequency ( f << fs ), then we can use the small angle approximation 
 
 sin .x x≈  (11) 
 
Plugging (11) into (10) we find 
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Plugging (9) into (12) we find 
 

 
2 2 12

2 2
, 2 2 1 2 12 2 .

12 2

MM
MLSB s
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s s

V fV
f f K
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 (13) 

 
which reduces to 
 

 
2 2

2
, 2 1

1 .
12 2 1

M
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Qe RMS M
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M K

π
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+
 (14) 

 
Finally, the RMS quantization noise is 
 

 , 1 2

1 .
12 2 1

M
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VV
KM
π
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 (15) 

 

4. SNRideal  

 
,

220 log P
ideal

Qe RMS

VSNR
V

=  (16) 

 

 1 ,  for N  2.
2

REF REF
LSB N

V V
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= = ≥  (17) 

 

 
2

REF REF
P

V V
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Plugging (17) into (15) and then that result along with (18) into (16) we find 
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We also know that 



 
 ( )6.02 1.76.ideal incSNR N N= + +  (20) 

5. Ninc 
The last step we need to take to find Ninc is to equate (19) and (20) and solve. Doing this 
we find 

 

( ) ( )

( )
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2 1
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 (21) 

■ 
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7.36 Resimulate Fig. 7.44 using a two-bit ADC and DAC. 
 

 
Figure 1. First-order 2-bit NS modulator. 
 

 
Figure 2.  Ideal 2-bit ADC. 
 

 
Figure 3.  Ideal 2-bit DAC. 



 
Figure 4.  Simulation of the 2-bit first order NS modulator. 
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7.37 Sketch a possible implementation of a quantizer for the error feedback modulator 
shown in Fig. 7.48. 
 

 
 
The answer to this question is given in Fig. 7.49. For completeness it will be re-sketched 
here. The sketch in Fig. 7.49 implies the ability to send more than 1 bit to Vout. This 
implementation will assume that only the MSB gets sent out. Additionally, it will be 
assumed that the input to the quantizer is 4 bits and, to aid understanding, each bitline 
will be shown individually as opposed to being bussed. 
 
 
 
 
 
 

 

Signal input to Quantizer 

Feedback to Differentiators 

Out 
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7.38 What transfer function does the following block diagram implement?

The signal at point A is

X(z) ⋅ z−2

so the output is

Y(z) = X(z) ⋅ z−2 ⋅ (z−1 − 2)

or

Y(z) = X(z) ⋅ z−3 − 2 ⋅ X(z) ⋅ z−2

shift left

Figure 7.60 Circuit for question 7.38.

A

Y(z)X(z)

×2

z−1

z−2
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7.39 In Fig. 7.54 sketch the block diagram  implementation of the circuit in series with
the v2(z) output.

The circuit in series with this output has a transfer function of  and a blockz−1(1 − z−1)
diagram given by

The m odulator output, , is 1-bit. The block  is im plemented with a singlev2(z) z−1

D-Flip-Flop so node A is also 1-bit in size.  Nodes B and C are 1-bit as well. However,
consider what happens if node B is a 1 and node C is a 0. The final output is −1. How do
we represent this number? What we need to do, prior to applying the data to the adder, is
change the 1-bit code into a two's complement number. This means

1 → 001 (+1)

and

0 → 111 (−1)

or, in other words, we increase the word si ze to 3-bits by tying the lower bit high and
extending the sign bit. 

If node C is a 1 (+1) and node B is a 0 ( −1) the final output is 001 − 111 = 010 (+2). If
nodes B and C are both 1s then the output is  0 (000). This can only happen if the word
size is > 1.

In other words, a modulator output of 1 is change to +1 = VREFP (= VDD in the book) and
a modulator output of 0 is changed to −1 = VREFM (= 0 V in the book). If nodes B and C
are always high, or always low, then the output of the circuit is 000, or VCM (= VDD/2 in
the book).

A B

C

v2(z)

z−1

z−1 z−1(1 − z−1)v2(z)
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7.40) Derive the transfer function of the topology seen in Fig. 7.61 (show details of 

your derivation). What is the input common-mode voltage of the op-amp? Is this a 

concern when not using a negative supply voltage? If the input signals have a 

common-mode of VDD/2, does this affect the common-mode voltage of the circuit’s 

output (remember that the op-amp is part of an integrator). Would it be a good idea, 

now that the inputs of the op-amp and the top plates of the capacitors are tied to 

ground or the virtual ground of the op-amp, to swap the bottom and top plates of the 

capacitors? Why or why not? Use SPICE to support your answers.  

Sol)  

The Fig. 7.61 is shown below; it is a switched capacitor implementation of the 

dual summing block for a cascaded modulator.  

 
Figure 1:Dual Summing Block for a cascaded modulator 

The transfer function of this topology will be derived using super-position 

techniques. Firstly, we will derive the transfer function for the top input branch with the 

CI2 capacitor, then we will derive the transfer function for the bottom branch and add the 

two results. Here, the output of the DAI, Vout1(z) will be derived for inputs O1(z) and 

V2(z). 

 
Figure 2: Using superposition, V1 input is eliminated 
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The timing diagram for the non-overlapping clocks is shown below. 

 
Figure 3: Timing diagram for the non-overalpping clocks 

Note that the output of the DAI is clocked at Φ2 clock phase. Right before the Φ1 switch 

opens (Φ1 goes low) at n-1, the charge stored on CI2 is  

( )1 1 21
S I

Q O N T C= ⋅ − ⋅     [1] 

When the Φ2 switch opens (Φ2 goes low) at n-1/2, the charge stored on CI2 is  

2 2 2

1

2
S I

Q V N T C
  

= ⋅ −  
  

    [2] 

Since the op-amp holds its inverting terminal at virtual ground, the difference between 

the two charges is transferred to the op-amps feedback capacitor, which results in an 

output voltage change. This change is 

1 1 2 2 1

3 1

2 2
Out S Out S F

V N T V N T C Q Q
    

− − − = −    
    

    [3] 

( )1 1 2 2 2 1 2

3 1 1
1

2 2 2
Out S Out S F S I S I

V N T V N T C V N T C O N T C
        

 − − − = ⋅ − − ⋅ −          
        

[4]
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Now, let us find the transfer function for input V1(z) 

 
Figure 4: Using superposition, inputs O1 and V2 are eliminated 

When Φ1 opens the charge stored on the input capacitor CI22 is zero, as it is 

connected between two ground nodes. 

Q1 = 0     [9] 

Charge stored on the input capacitor when Φ2 switches open is 

2 1 22

1

2
S I

Q V N T C
 

= ⋅ − ⋅ 
 

    [10] 

The change in output again is calculated using the charge transferred to the 

feedback capacitor, we can write 

2 2 2 2 1

3 1

2 2
Out S Out S F

V N T V N T C Q Q
    

− − − = −    
    

    [11] 

2 2 2 1 22
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    [12] 
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1
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−− 
 

= ⋅− 22IC⋅     [14] 
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122
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F
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Adding the two output voltages using superposition, we get the final output Vout(z) as, 

( ) ( ) ( )
( ) ( ) ( )
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2
1 22

1 1

2 2

122
1 2

1 1
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F F

I
Out Out Out
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Therefore the transfer function of the topology seen in Fig. 7.61 is given by, 

( ) ( ) ( ) ( )1

1

2
2 2

1 21 1 1

2

22

2

1 1

1 1 1

I I

F F

I
Out

F

V z
C Cz

O z V z
C z C z z

C
V z

C

−

− − −

 
    

⋅ − −    − − −    
 

=    [17] 

 The input common mode voltage for this topology is zero volts or referenced to 

ground. This is a concern if we do not use negative supply voltage, because in a real 

circuit implementation, if the input mosfet gate is held at ground and its source is also 

held at ground, the gate-to-source voltage of that input mosfet is zero and the mosfet will 

be off and the op-amp would not work. Another comment about the negative supply 

voltage is that the output should be able to swing between positive and negative voltages, 

and for that we need negative rail voltage. 

 
Figure 5: Spice schematic of the summing block (Vcm=0) 

 
Figure 6: Input and output waveforms shown (Vcm=0) 

 We can see that the integral of sine wave is a cosine which is the output shown 

above. When the input voltages have a common mode voltage of zero same as that of the 

op-amp, the output is just an integrated version of the input voltages (o1-v1-v2) that 

swings around the common mode voltage of zero volts.  
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 If the input signals now have a common-mode voltage of VDD/2, and the positive 

terminal of the op-amp is still held at ground, it will cause the output of the op-amp to 

grow without bounds. This is because the op-amp will hold the negative terminal at 

ground, and when the input is swinging around a common mode voltage of VDD/2, the 

charge from the input capacitor is constantly being transferred to the feedback capacitor.  

 

 But if the negative terminal of the op-amp is changed from ground to common 

mode voltage VDD/2, this will move the common mode voltage of the op-amp to 

VDD/2. 

 

 

 For this topology swapping the bottom and top plates of the capacitors does not 

affect the operation, as the unwanted parasitic capacitor for capacitors CI2 and CI22 are 

held at ground during times when Φ1 or Φ2 are closed, even in this new modified 

configuration the topology should be parasitic insensitive as the amount of charge being 

transferred to the feedback capacitor is not affected by the charge on the parasitic 

capacitor. But in a real circuit implementation, it is not a good idea to switch the top and 

bottom plates as the negative terminal of the op-amp is not constantly being held at 

ground as the op-amp will have finite gain; this would affect the charge being transferred 

to the feedback capacitor and the topology becomes sensitive to the parasitic capacitor. 

Also, by reversing the top and bottom plates, we are placing the parasitic capacitor on the 

input of the op-amp and this can directly inject the substrate noise into the op-amp which 

is unwanted.  

 

 



QAWI HARVARD – ECE615 CMOS Mixed Signal Design 

 
7.41 Repeat question 7.40 for the op-amp circuit seen in Fig. 7.62. 

 

7.40 Derive the transfer function of the topology seen in Fig. 7.61 (show details of your derivation).  

What is the input common-mode voltage of the op-amp?  Is this a concern when not using a 
negative supply voltage?  If the input signals have a common-mode of VDD/2, does this affect the 

common-mode voltage of the circuit’s output (remember that the op-amp is part of an integrator).  

Would it be a good idea, now that the inputs of the op-amp and the top plates of the capacitors 
are tied to ground or the virtual ground of the op-amp, to swap the bottom and top plates of the 

capacitors?  Why or why not?  Use SPICE to support your answers. 

 
 

 

 

 
 

 

 
 

 

 
Let’s derive the transfer function of the circuit in F-1 quickly using what we have learned.   

 

𝑣𝑜𝑢𝑡 𝐶𝐹 − 𝑣𝑜𝑢𝑡 𝑧
−1𝐶𝐹 =  0 − 𝑣2 𝐶𝐼 −  𝑣1𝑧

−1/2 − 𝑜1𝑧
−1/2 𝐶𝐼  

 

𝑣𝑜𝑢𝑡 = 𝑜1
𝑧−1/2

1 − 𝑧−1

𝐶𝐼

𝐶𝐹
− 𝑣1

𝑧−1/2

1 − 𝑧−1

𝐶𝐼

𝐶𝐹
− 𝑣2

1

1 − 𝑧−1

𝐶𝐼

𝐶𝐹
 

 

This was done by using a quick approach which skips the transformation from the time domain and 

performs the analysis in the z-domain only.  Below is a detailed explanation of how this transfer function 
was derived. 

 

We determined which clock signal “updates” the output.  In F-1 the clock signal that updates the output is 
Φ2.  We set the time when Φ2 goes low as nTs, and recalled that the displacement current through the 

feedback capacitor must be equal on the vout node and the inverting terminal to the op-amp.  Another way 

of looking at this is to realize that the delta charge on both sides of the capacitor must be equal. 

 
We characterize switched-capacitor networks over a time period which allows all of the input signals to 

be sampled, and the output signal to be updated with the sampled signals.  The majority of the time this 

sample and update process occurs over Ts (in the discrete domain – over (n – 1)Ts to nTs). 
 

F-1 shows that when Φ2 is high the v2 signal is updating the output.  Since we defined the time when Φ2 

goes low as nTs, we can say that the v2 signal does not experience a delay.  We know that Φ1 clock is 
delayed (w.r.t. Φ2) by ½ a clock cycle, which means that the charge supplied from o1 and v1 will be 

delayed by ½ a clock cycle. 

 

To keep the sign of the displacement current correct we take the charge when the output is updated minus 
the delayed charged.  This leads to the equations below. 

 

v1(z) 

Φ1 Φ2 

vout(z) 

o1(z) 

v2(z) 

F-1 Sketch of Figure 7.62 



𝑣𝑜𝑢𝑡 𝐶𝐹 − 𝑣𝑜𝑢𝑡 𝑧
−1𝐶𝐹 =  0 − 𝑣2 𝐶𝐼 −  𝑣1𝑧

−1/2 − 𝑜1𝑧
−1/2 𝐶𝐼  

 

𝑣𝑜𝑢𝑡 = 𝑜1
𝑧−1/2

1 − 𝑧−1

𝐶𝐼

𝐶𝐹
− 𝑣1

𝑧−1/2

1 − 𝑧−1

𝐶𝐼

𝐶𝐹
− 𝑣2

1

1 − 𝑧−1

𝐶𝐼

𝐶𝐹
 

 

The input common-mode voltage of the op-amp is 0V (ground).  This is a concern; because if a negative 

power supply is not used the op-amp will not go high.  If your input signal does not go negative you will 
never be able to pull off the integrated charge on the feedback capacitor, which will keep pushing the 

non-inverting terminal further above your inverting terminal. 

 

Using LTSPICE we can prove these statements, consider the schematic in F-2. 
 

 

 
 

 

 
 

 

 

 
  

 

 
 

To simulate F-2 we set v1 and v2 to the input common mode voltage (did not subtract anything from o1) so 

that we can view the integration.  F-2 also shows the simulation results for an input common mode 
voltage of 0V.  Note for an input common mode voltage you will need a negative supply so that the input 

signals can go below ground.  The simulation results show that the integration is being performed 

correctly and that inverting terminal and the output go below 0V (the input common-mode voltage is 0V). 

 
If we set the input common-mode voltage to VDD/2 the common-mode voltage of the output is not 

changed because the op-amp has its non-inverting terminal set to ground.  If we changed the non-

inverting terminal to VDD/2 along with all of the input signals then the output of the integrator would 
have the same common-mode voltage as the input. 

 

Another way to look at why the output common-mode range equals the input common-mode range is to 

look at the integration of a square wave.  Consider the diagram in F-3. 
 

 

 
 

 

 
 

 

If the non-inverting terminal of the op-amp remains at 0V and we increase the common-mode voltage of 

the input signals to VDD/2, the vm node would increase.  When the vm node increases the output of the op-
amp will remain at ground (grow negative without bound when using ideal components).  To prove this 

F-2 LTSPICE schematic and simulation results of F-1 (VCMIN = 0V) 

∫ 
VL 

VH 

𝑉𝐶𝑀 =
𝑉𝐻 + 𝑉𝐿

2
 𝑉𝐶𝑀 =

𝑉𝐻 + 𝑉𝐿

2
 

VCM 

F-3 Showing how the common-mode voltage is determined for an integration of a square wave 



we can run several simulations with different common-mode input voltages.  F-4 shows the simulation 

results when using DC voltages for our input signals. 
 

 

 

 
 

 

 
 

F-3 verifies our observations and shows the output growing negative without bound when VCM is 

increased while keeping the non-inverting terminal at ground. 
 

Now that the top plate of the capacitor is tied to ground (or virtual ground) it is not a good idea to swap 

the bottom plate of the capacitors.  The parasitic capacitance of the top plate is less than the parasitic 

capacitance of the bottom plate.  For a given delta voltage supplied to the parasitic capacitor, the charge 
associated with that voltage difference will be greater for a larger capacitance.  In the case of the bottom 

plate versus the top plate, more erroneous charge will be supplied to the output.  An additional 

consideration to this question is the substrate noise. 
 

If we were to reverse the top and bottom plates of the capacitor we would place substrate noise at the 

input of the op-amp.  This noise would be magnified by the op-amp and fed directly to the output.  Due to 
these concerns we should not reverse the top and bottom plates of the capacitor. 

F-4 Changing the input common-mode voltage and viewing the output common-mode voltage 

VCM = 0V VCM = 0.5V VCM = 0.5V, non-inv = 0V 
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