
Sakkarapani Balagopal 

(P.29.1)A 3-bit, resistor-string DAC similar to the one shown in the fig. 29.2a was designed with 

a desired resistor of 500Ω. After fabrication, mismatch caused the actual value of the resistor to 

be R1=500Ω, R2=480Ω, R3=470Ω, R4=520Ω, R5=510Ω, R6=490Ω, R7=530Ω, R8=500Ω. 

Determine the maximum INL and DNL for the DAC assuming Vref=5V. 

The equivalent value of R is given by equation-29.1-1. 
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The current flowing through the resistor string is given by equation-29.1-2. 
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Table 29.1-1 clearly shows the INL and DNL calculation for the given problem. 

Table 29.1-1 – INL and DNL calculation of 3-bit DAC 

Digital 

input 

Node 

Voltages 
VAct(V) VIdeal(V) 

Step height(V) 
DNL(V)= 

SAct-SIdeal 

INL(V)= 

VAct-VIdeal SAct(V)  SIdeal(V) 

0000_000 V0 0 0 0 0 0 0 

0000_001 V1 0.625 0.625 0.625 0.625 0 0 

0000_010 V2 1.225 1.25 0.6 0.625 -0.025 -0.025 

0000_100 V3 1.8125 1.875 0.5875 0.625 -0.0375 -0.0625 

0001_000 V4 2.4625 2.5 0.65 0.625 0.025 -0.0375 

0010_000 V5 3.1 3.125 0.6375 0.625 0.0125 -0.025 

0100_000 V6 3.7125 3.75 0.6125 0.625 -0.0125 -0.0375 

1000_000 V7 4.375 4.375 0.6625 0.625 0.0375 0 

 

From Table 29.1-1,    

  LSBVDNLMAX 06.00375.0   

  LSBVINLMAX 1.00625.0   
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29.2 An 8-bit resistor string DAC similar to the one shown in Fig. 29.2b was fabricated with a 

nominal resistance value of 1 kΩ. If the process was able to provide matching of resistors 

to within 1%, find the effective resolution of the converter. What is the maximum INL and 

DNL of the converter? Assume that VREF = 5V. 

 

 

1 LSB = 
N

REFV

2
 = 

82

5V
 ≈ 19.53 mV 

 

From Eq (29.10),  

 INL max = 
2

1
 LSB * N2 * 

max
R

Rk∆
 

 INL max = 
2

1
 LSB * 82 * 0.01 

 INL max = 1.28 LSB  ≈ 25 mV 

 

From Eq (29.13), 

 DNL max = 
N

REFV

2
* 

max
R

Rk∆
= 1 LSB * 0.01 

 DNL max = 0.01 LSB  ≈ 0.1953 mV 

 

The INL is the limiting factor for the resolution of a resistor-string DAC. To determine the 

effective resolution of the DAC in this problem, we again use Eq (29.10) and the fact that the 

INL must be < 0.5 LSB. 

 INL max = 
2

1
 LSB * N2 * 

max
R

Rk∆
 

 
2

1
 LSB  = 

2

1
 LSB * N2 * 

max
R

Rk∆
 

            1 = N2 * 0.01 

         N2 = 100 

          N = 
)2log(

)100log(
 ≈ 6.64 bits 

 

So, a resistor-string DAC with 1% matching will have a resolution of 6 bits. Another way to 

determine this for the 8-bit DAC in this problem is to say the effective resolution is equal to the 

number of bits minus the ceiling of INL max. 

 Effective resolution = 8 bits – 2 bits = 6 bits 
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29.3 Compare the digital input codes necessary to generate all eight output values for 

a 3-bit resistor string DAC similar to those shown in Fig. 29.2a and b.  Design a 

digital circuit that will allow a 3-bit binary digital input code to be used for the 

DAC in Fig. 29.2a.  Discuss the advantages and disadvantages of both 

architectures. 

 

A 3-bit resistor string DAC requires 2
N
 resistors, Figure 29.2 shows a simple resistor-

string DAC and a binary switch resistor-string DAC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The DAC in Figure 29.2 (a) is termed a simple resistor string DAC because it is a 

relatively simple structure consisting of 2
N
 resistors and 2

N
 switches. If we want V0 as the 

output we simply make S0 high and ground all of the other voltages. If we want V1 as the 

output we make S1 high and ground all of the other voltages. The corresponding voltage 

on V1 can be determined by realizing that it is simply a resistor divider: 
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And similarly: 
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4 4
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Using this information we can create table 1 with the digital input codes necessary to 

generate all eight output values for the resistor string DACs seen in Figure 29.2. 
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Table 1: Digital input code and corresponding output voltage for the DACs in Figure 29.2. 

 

S7 S6 S5 S4 S3 S2 S1 S0 D2 D1 D0 VOUT 

0 0 0 0 0 0 0 1 0 0 0 0.000 

0 0 0 0 0 0 1 0 0 0 1 0.625 

0 0 0 0 0 1 0 0 0 1 0 1.250 

0 0 0 0 1 0 0 0 0 1 1 1.875 

0 0 0 1 0 0 0 0 1 0 0 2.500 

0 0 1 0 0 0 0 0 1 0 1 3.125 

0 1 0 0 0 0 0 0 1 1 0 3.750 

1 0 0 0 0 0 0 0 

 

1 1 1 4.375 

 

In order to create a circuit that generates the digital codes of table 1 using the digital input 

codes of table 2 we can use three input AND gates. Figure 1 shows the circuit used to 

create the input code for the DAC in Figure 29.2 (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The advantages and disadvantages of the two resistor string DAC structures in figure 

29.2, relative to each other, are based on the output capacitance and the switch resistance. 

While the simple resistor string DAC provides significantly large output capacitance due 

to the 2
N
 depletion capacitances it only has one switch resistance connected to the output. 

The binary switch array has much less capacitance attached to the output but also has the 

disadvantage of having more switch resistance connected to the output. In case of a 3-bit 

DAC, with both structures using the same switches we can estimate the load as: 
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29.4 Plot the transfer curve of a 3-bit R-2R DAC if all Rs = 1.1 kΩ and 2Rs = 2 kΩ.  
What is the maximum INL and DNL for the converter?  Assume all of the switches 
to be ideal and VREF = 5V. 

 

 

 
 
DIN Ideal Vout (V) Vout (V) DNL (LSB) INL (LSB) 
000 0 0  0 
001 -0.625 -0.555 -0.112 0.112 
010 -1.25 -1.165 -0.024 0.134 
011 -1.875 -1.72 -0.112 0.245 
100 -2.5 -2.416 0.114 0.131 
101 -3.125 -2.971 -0.112 0.242 
110 -3.75 -3.581 -0.024 0.266 
111 -4.375 -4.136 -0.112 0.376 
 
DNLmax = DNL100 = 0.114 LSB 
INLmax = INL111 = 0.376 LSB 

Transfer Curve 

INL 

 

1.1KΩ 1.1KΩ 1.1KΩ 
0.555V 1.166V 2.418V 
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29.5 Suppose that a 3-bit R-2R DAC contained resistors that were perfectly 
matched and that R=1kΩ and VREF=5V.  Determine the maximum switch resistance 
that can be tolerated for which the converter will still have 3-bit resolution.  What 
are the values of INL and DNL? 

 
For the converter to have 3-bit resolution, the INL and DNL must be within +/- 0.5 LSB.  
With a 3-bit DAC and VREF=5, INL and DNL must be +/- 0.3125 V.   
 
First, we need to derive the equations for the R-2R DAC.   The general R-2R schematic 
is: 
 
 
 

 
From the schematic above: 
 

 

 
 
 

VOUT  ITOT  RF

ITOT  ID0  ID1  ID2

ID0 
V0

2R  Rs
, ID1 

V1

2R  Rs
, ID2 

V2

2R  Rs

I1 
VREF V2

R
, I2 

V2 V1

R
, I3 

V1 V0

R
, I4 

V0

2R

ITOT ID2 ID1 ID0 

V0 V1 V2 

I1 I2 I3 I4 

- 



 

 

Using KCL at each node (V2, V1, V0) and substituting: 
 

 

 
DNL and INL in terms of our output current are as follows: 
 

𝐷𝑁𝐿 𝑘 =   −𝐼𝑇𝑂𝑇,𝐴𝑐𝑡𝑢𝑎𝑙 (𝑘) + 𝐼𝑇𝑂𝑇,𝐴𝑐𝑡𝑢𝑎𝑙 (𝑘−1) −  −𝐼𝑇𝑂𝑇,𝐼𝑑𝑒𝑎𝑙 (𝑘) + 𝐼𝑇𝑂𝑇,𝐼𝑑𝑒𝑎𝑙 (𝑘−1)  ⋅ 𝑅𝑓   𝑉   

 

𝐼𝑁𝐿 𝑘 =  −𝐼𝑇𝑂𝑇,𝐴𝑐𝑡𝑢𝑎𝑙 (𝑘) + 𝐼𝑇𝑂𝑇,𝐼𝑑𝑒𝑎𝑙 (𝑘) ⋅ 𝑅𝑓   𝑉   

 
Using the equations that we defined above, we can increase RS and recalculate DNL or 
INL is greater than 0.3125V.  Rs was found to be 307Ω using excel. 
 
Below is a sample calculation of INL1 and DNL1 @ Rs=307Ω 
 

𝐼𝑁𝐿1 =  −𝐼𝑇𝑂𝑇,𝐴𝑐𝑡𝑢𝑎𝑙 001 + 𝐼𝑇𝑂𝑇,𝐼𝑑𝑒𝑎𝑙 001  ⋅ 𝑅𝑓   𝑉   

 

𝐼𝑁𝐿1 =  − 𝐼𝐷0,𝐴𝐶𝑇𝑈𝐴𝐿 + 𝐼𝐷1,𝐴𝐶𝑇𝑈𝐴𝐿 + 𝐼𝐷2,𝐴𝐶𝑇𝑈𝐴𝐿  +  𝐼𝐷0,𝐼𝑑𝑒𝑎𝑙 + 𝐼𝐷1,𝐼𝑑𝑒𝑎𝑙 + 𝐼𝐷2,𝐼𝑑𝑒𝑎𝑙   ⋅ 𝑅𝑓  (𝑉)  

 

𝐼𝑁𝐿1 =  −  
𝑉𝑜,𝑎𝑐𝑡𝑢𝑎𝑙

2𝑅+𝑅𝑠
+ 0 + 0 +  

𝑉𝑜,𝑖𝑑𝑒𝑎𝑙

2𝑅
+ 0 + 0  ⋅ 2𝑅 = 0.01298 (𝑉)  

 

𝐼𝑁𝐿1 = 0.01298  𝑉 ⋅
23 𝐿𝑆𝐵𝑠 

5 𝑉 
= 0.02077(𝐿𝑆𝐵𝑠)  

 

𝐷𝑁𝐿1 =   −𝐼𝑇𝑂𝑇,𝐴𝑐𝑡𝑢𝑎𝑙 1 + 𝐼𝑇𝑂𝑇,𝐼𝑑𝑒𝑎𝑙 1 −  −𝐼𝑇𝑂𝑇,𝐴𝑐𝑡𝑢𝑎𝑙 0 + 𝐼𝑇𝑂𝑇,𝐼𝑑𝑒𝑎𝑙 0  ⋅ 𝑅𝑓   𝑉   

 

𝐷𝑁𝐿1 =   − 
𝑉𝑜,𝑎𝑐𝑡𝑢𝑎𝑙

2𝑅+𝑅𝑠
+ 0 + 0 +  

𝑉𝑜,𝑖𝑑𝑒𝑎𝑙

2𝑅
+ 0 + 0  — 0 + 0 ⋅ 2𝑅 = 0.01298 (𝑉)  

 

𝐷𝑁𝐿1 = 0.01298  𝑉 ⋅
23 𝐿𝑆𝐵𝑠 

5 𝑉 
= 0.02077(𝐿𝑆𝐵𝑠)  
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The rest of the calculations are shown below: 
 

VREF 5 

R 1000 

Rs 307 

V0,actual 0.705961 

V1,actual 1.364949 

V2,actual 2.615593 

V0,ideal 0.625 

V1,ideal 1.25 

V2,ideal 2.5 
 

D2 D1 D0 I(TOT,ideal) I(TOT,actual) 

0 0 0 0 0 

0 0 1 0.0003125 0.000306008 

0 1 0 0.000625 0.000591655 

0 1 1 0.0009375 0.000897663 

1 0 0 0.00125 0.001133764 

1 0 1 0.0015625 0.001439772 

1 1 0 0.001875 0.001725419 

1 1 1 0.0021875 0.002031427 
 

  (V) (LSBs) 

INL0 0 0 

INL1 0.012984 0.020774 

INL2 0.066689 0.106703 

INL3 0.079673 0.127477 

INL4 0.232473 0.371956 

INL5 0.245457 0.392731 

INL6 0.299162 0.478659 

INL7 0.312146 0.499433 

DNL1 0.012984 0.020774 

DNL2 0.053705 0.085929 

DNL3 0.012984 0.020774 

DNL4 0.1528 0.244479 

DNL5 0.012984 0.020774 

DNL6 0.053705 0.085929 

DNL7 0.012984 0.020774 
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29.6 The circuit illustrated in Fig. 29.5 is known as a current-mode R-2R DAC, since the 
output voltage is defined by the current through RF. Shown in Fig. 29.52 is an N-bit 
voltage-mode R-2R DAC. Design a 3-bit voltage mode DAC and determine the output 
voltage for each of the eight input codes. Label each node voltage for each input. Assume 
that R = 1kΩ and that R2 = R1 = 10kΩ and VREF = 5V. 
 
The following LTSpice circuit schematic shows the 3-bit DAC. The output voltages see a 
gain of 2 and therefore show a range which exceeds the rails of a 5V process amplifier. 
As an ideal amplifier is used, the output range, shown on the following page, ranges 0V 
to 8.8V. Output voltages are labeled on the simulation output for VOUT. 
 
 
 

 
 



 

Digital Codes 

000 001 010 011 100 101 110 111 

8.75 
7.5 

6.25 
5.0 

3.75 
2.5 

1.25 0.0 
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(P29.7) Design a 3-bit, current-steering DAC using the generic current-steering DAC shown in 

figure 29.9. Assume that each current source, I, is 5µA, and find the total output current for each 

input code. 

 

iout

D0D1
D2D3D4D5

D6

I I I I I I I

 

Figure 29.9-1 - A generic current-steering DAC. 

 

The simple 3-bit current steering DAC is shown in the figure 29.9-1. For a 3-bit DAC, seven 

equal value current sources of value I=5µA will be needed. Depend on the binary control signals 

from D0 to D6, the current sources are either connected to iout or ground. The resulting currents 

are shown in the table 29.7-1. 

 

Table 29.7-1 - Output current generated from 3-bit DAC 

Digital 

Input 

Code 

D0 D1 D2 D3 D4 D5 D6 iout 

000 0 0 0 0 0 0 0 0 

001 1 0 0 0 0 0 0 5µA 

010 1 1 0 0 0 0 0 10µA 

011 1 1 1 0 0 0 0 15µA 

100 1 1 1 1 0 0 0 20µA 

101 1 1 1 1 1 0 0 25µA 

110 1 1 1 1 1 1 0 30µA 

111 1 1 1 1 1 1 1 35µA 
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29.8 A certain process is able to fabricate matched current sources to within 0.05%. 

Determine the maximum resolution that a current-steering (non-binary-weighted) DAC 

can attain using this process. 

 

 

From Eq (29.21), 

 
INL

I
max,

∆  = 
N

I

2
 

 

From Eq (29.26), 

 
DNL

I
max,

∆  = 
2

I
 

 

The terms 
INL

I
max,

∆  and 
DNL

I
max,

∆  represent the maximum current source mismatch error that 

will keep the INL and DNL, respectively, less than 0.5 LSB. Clearly the INL is the limiting 

factor in a non-binary-weighted current-steering DAC. 

 

If the current sources are matched within 0.05%, then 
max

I∆ = 0.05% * I. 

 
INL

I
max,

∆  = 
N

I

2
 

 0.05% * I = 
N

I

2
 

 N2  = 
0005.0

1
 

 N = 
)2log(

)
0005.0

1
log(

 ≈ 10.97 

 

The maximum resolution is then 10 bits. 
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29.9 Design an 8-bit current-steering DAC using binary-weighted current sources.  

Assume that the smallest current source will have a value of 1 µA.  What is the range 

of values that the current source corresponding to the MSB can have while 

maintaining an INL of ½ LSB?  Repeat for a DNL less than or equal to ½ LSB. 

 

Figure 29.10 gives a generic view of a binary-weighted current-steering DAC. 

 

 

 

 

 

 

 

 

 

 

 

An 8-bit current-steering DAC using binary-weighted current sources will have N current 

sources. Figure 1 shows the binary-weighted current sources used in an 8-bit DAC. 

 

 
Figure 1 Block diagram of an 8-bit binary-weighted current-steering DAC. 

 

Analyzing the integral nonlinearity of the binary weighted current steering DAC is 

accomplished by realizing that the sum of current error sums to zero and that one half of the 

current sources contain the maximum INL error. In this case, the MSB current will contain 

the maximum error. 

 

 ( )1

, 2N

MSB actualI I I
−

= + ∆  

 

Subtracting the ideal current from the actual current gives the value of the maximum INL: 

 

( ) ( )1 1 1

, , 2 2 2N N N

MAX MSB actual MSB idealINL I I I I I I
− − −

= − = + ∆ − = ∆  

 

Realize that the LSB of the current steering DAC is simply I, and we can equate the 

maximum INL to ½ LSB: 

 

 
1

2MAX
INL LSB=  

I 2I 4I 8I 16I 32I 64I 

IOUT 

D0 D1 D2 D3 D4 D5 D6 

128I 

D7 



  QAWI HARVARD 

 
1 1

22N I I−
∆ =  

 

8

1
4

2 2N

I A
I nA

µ
∆ = = ≈  

 

In order to design a binary weighted current source with an INL less than ½ LSB, the range 

of the MSB must be: 

 

, , ,MSB ideal MSB actual MSB ideal
I I I I I− ∆ ≤ ≤ − ∆  

 

,127.996 128.004
MSB actual

A I Aµ µ≤ ≤  

 

For the determination of the DNL we have to realize that the worst case occurs at the 

transition from 01111111 to 10000000. We also assume that the errors all sum to zero. As an 

example, consider a 3-bit binary weighted DAC with the lower two current sources 

containing negative error and the MSB containing positive error. To determine the maximum 

DNL we simply subtract the currents to determine the “step height”: 

 

 ( ) ( ) ( )2 1 02 2 2MAXDNL I I I I I I I= + ∆ − − ∆ − − ∆ −  

 

4 4 3 3 7
MAX

DNL I I I I I I= + ∆ − + ∆ − = ∆  

 

Restating equation 29.28, shows that this approach is correct: 

 

 ( ) ( )
1

1 1

1

2 2
N

N k

MAX

k

DNL I I I I I
−

− −

=

 
= ⋅ + ∆ − ⋅ − ∆ − 
 

∑  

 

Which results in ( )2 1N

MAX
DNL I= − ⋅∆ , if we wish to keep the DNL equal to less than ½ 

LSB we simply equate the two and solve for the maximum error, remembering that an LSB is 

equal to I: 

 

( ) 1
22 1N I I− ⋅ ∆ =  

 

( )
1

2
2 2552 2 1N

I A
I nA

µ
∆ = = ≈

⋅−
 

 

For the DNL to be less than or equal to ½ LSB the MSB current source must have the range 

of: 

 

,127.998 128.002
MSB actual

A I Aµ µ≤ ≤  

 

 Comparing the two results we can see that the DNL requirement is more stringent. 
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29.10 Prove that the 3-bit charge-scaling DAC used in Ex. 29.6 has the same output 
voltage increments as the R-2R DAC in Ex. 3 for VREF = 5 V and C = 0.5 pF. 

 
 
 
 
 
 
 
 
From Eq. (29.33), VOUT = (D0*2-3 + D1*2-2 + D2*2-1)*VREF 
 
 
For DIN = 000, VOUT = (0*2-3 + 0*2-2 + 0*2-1)*5V = 0V 
 
For DIN = 001, VOUT = (1*2-3 + 0*2-2 + 0*2-1)*5V = 0.625V 
 
For DIN = 010, VOUT = (0*2-3 + 1*2-2 + 0*2-1)*5V = 1.25V 
 
For DIN = 011, VOUT = (1*2-3 + 1*2-2 + 0*2-1)*5V = 1.875V 
 
For DIN = 100, VOUT = (0*2-3 + 0*2-2 + 1*2-1)*5V = 2.5V 
 
For DIN = 101, VOUT = (1*2-3 + 0*2-2 + 1*2-1)*5V = 3.125V 
 
For DIN = 110, VOUT = (0*2-3 + 1*2-2 + 1*2-1)*5V = 3.75V 
 
For DIN = 111, VOUT = (1*2-3 + 1*2-2 + 1*2-1)*5V = 4.375V 
 
 
DIN Ex. (29.3) Ex. (29.6) 
000 0 0 
001 -0.625 0.625 
010 -1.25 1.25 
011 -1.875 1.875 
100 -2.5 2.5 
101 -3.125 3.125 
110 -3.75 3.75 
111 -4.375 4.375 
 
The voltage increments (VLSB) of both DACs are the same in magnitude at 0.625V, but 
opposite in sign. 
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29.11! Determine the output of the 6-bit, charge-scaling DAC used in Ex. 29.7 for 
each of the following inputs:  D = 000010, 000100, 001000, and 010000.

With D=000010, the equivalent circuit would be:

We first calculate VA as follows:

VA =
2C

6C + 8
7
C series 7C⎛

⎝⎜
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⎜
⎜
⎜
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⎟
⎟
⎟
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2
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VOUT is then calculated as follows:
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8
7

8
7
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⎝

⎜
⎜
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⎟
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⎝

⎜
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⎜
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⎟
⎟
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⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
VREF =

1
32
VREF



With D=000100, the equivalent circuit would be:

We first calculate VA just like the previous code:

VA =
4C

4C + 8
7
C series 7C⎛

⎝⎜
⎞
⎠⎟ + 4C

VREF =
4

8
7
⋅ 7

8
7
+ 7

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ 8

VREF =
4

8 + 56
57

VREF

VOUT is then calculated as follows:

VOUT =

8
7

8
7
+ 7

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
VA

VOUT =

8
7

8
7
+ 7

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

4

8 + 56
57

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
VREF =

1
16
VREF



With D=001000, the equivalent circuit would be:

VOUT is calculated as follows:

VOUT =
1C

6C + 8
7
C series 8C⎛

⎝⎜
⎞
⎠⎟ +1C

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
VREF

VOUT =
1

8
7
⋅8

8
7
+ 8

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ 7

VREF =
1
8
VREF



With D=010000, the equivalent circuit would be:

VOUT is calculated as follows:

VOUT =
2C

5C + 8
7
C series 8C⎛

⎝⎜
⎞
⎠⎟ + 2C

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
VREF

VOUT =
2

8
7
⋅8

8
7
+ 8

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ 7

VREF =
1
4
VREF



Lincoln Bollschweiler 
29.12  Design a 4-bit, charge-scaling DAC using a split array. Assume that VREF = 5V 
and that C = 0.5pF. Draw the equivalent circuit for each of the following input words 
and determine the value of the output voltage: D = 0001, 0010, 0100, 1000. Assume the 
capacitor associated with the MSB had a mismatch of 4 percent, calculate the INL and 
DNL. 
 
We find the value of the attenuation capacitor, using (29.35) to be (4/3)C = 1.333pF. 
 
The complete circuit is shown as follows: 

 
 
In all simplifications shown, the capacitor values will be normalized to C=1 
a. The equivalent circuit for input code 0001 is as follows: 

 
 
C3 in series with C4 reduces to 12/13. That in parallel with C2 is 3+12/13. That circuit is 
as follows: 

 
We can easily solve for V1 now by capacitive divider. V1 = 0.203Vref. We can use V1 in 
a capacitive divider with C3 and C4 to get Vin+. Vin+ = 0.0625Vref = Vref/16. Vout = 
Vin+ due to voltage follower. 



b. The equivalent circuit for input code 0010 is as follows: 

 
By similar analysis technique we can find that V1 = 0.406Vref. Vout = 0.125Vref = 
Vref/8. 
 
c. The equivalent circuit for input code 0100 is as follows: 

 
 
which further reduces to: 

 
 
It can be readily seen by capacitive voltage divider that Vout = Vin+ = Vref/4. 
 
d. The equivalent circuit for input code 1000 is as follows: 

 
 
It can be readily seen that Vout = Vin+ = Vref/2. 
 



To find INL we can start by realizing that 4% matching on the MSB capacitor is the same 
as having the MSB cap being off by +2% while all the others are off by -2%. Overall we 
have 2% mismatch. We can use the R2-R DAC equations from chapter 30 to find INL 
and DNL. 
 

Using (30.13) and % mismatch = 2 we find: 4

15 0.02 0.213 0.68 .
2

DNL V LSB     

 

Using (30.16) we find:. 5 2 0.049 0.157 .
2 100 2

INL V LSB   


 



Sakkarapani Balagopal 

(P.29.13)For the cyclic converter shown in the figure 29.17, determine the gain error for a 3-bit 

conversion if the feedback amplifier had a gain of 0.45V/V. Assume that Vref=5V. 

The output voltage at the end of nth cycle of the conversion with feedback amplifier gain of 

0.5V/V is given in equation 29.13-1.  

2

1
)1(

2

1
.)( 1 








  nVVDnV ArefnOut     (29.13-1)  

Table 29.13-1 summarizes the resultant output voltage for different inputs. Results are plotted in 

the figure 29.13-1. 

Table-29.13-1 - Output voltage of 3-bit DAC with different feedback amplifier gain 

Input D0 D1 D2 

Vout,actual(V) for 

a gain of 

0.5V/V 

Vout,actual(V) for 

a gain of 

0.45V/V 

0 0 0 0 0 0 

1 0 0 1 0.625 0.4556525 

2 0 1 0 1.25 1.0125 

3 0 1 1 1.875 1.468125 

4 1 0 0 2.5 2.25 

5 1 0 1 3.125 2.705625 

6 1 1 0 3.75 3.2625 

7 1 1 1 4.375 3.718125 

 

 

Figure 29.13-1  Transfer curve for 3-bit DAC for different feedback amplifier gain 

0

1

2

3

4

5

0 1 2 3 4 5 6 7

O
u

tp
u

t 
V

o
lt

ag
e

(V
)

Input Code

Transfer Curve

Gain of 0.5V/V

Gain of 0.45V/V



From page no.945 of the textbook, the gain error can be written as   
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The x and y axis in figure 29.15-1 are in different units. So, convert the denominator on above 

equation into same unit or volts. 
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Chris Gagliano 

 

29.14 Repeat Problem 29.13 assuming that the output of the summer was always 0.2V greater 

than the ideal and that the amplifier in the feedback path had a perfect gain of 0.5 V/V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The output voltage at the end of the n
th
 cycle can be expressed as: 

 Vout(n) = ( ) AVnVAVD summeroffsetAREFn ⋅+−⋅+⋅− ,1 )1(  

 

And )(nVA  can be expressed as: 

 summeroffsetAREFnA VnVAVDnV ,1 )1()( +−⋅+⋅= −  

 

We can then write Vout(n) as: 

 Vout(n) = ( )( ) AVVnVAVDAVD summeroffsetsummeroffsetAREFnREFn ⋅++−⋅+⋅⋅+⋅ −− ,,21 )2(  

 Vout(n) = summeroffsetsummeroffsetAREFnREFn VAVAnVAVDAVDA ,,

23

2

2

1 )2( ⋅+⋅+−⋅+⋅⋅+⋅⋅ −−  

 Vout(n) = ∑∑
−

=

−
−

=

− ⋅+⋅⋅
1

0

,

)(,

1

0

n

k

kn

summeroffset

nidealVout

n

k

k

kn

REF AVDAV

444 3444 21

 

 

For an N-bit DAC, we sample the output voltage on the N
th 
cycle. We are using a 3-bit DAC in 

this problem, so the output voltage is: 

 Vout = Vout(n=3) = ( ) ( )AAAVDADADAV summeroffsetREF ++⋅+⋅+⋅+⋅⋅ 23

,21

2

0

3  

 Vout = ( ) ( )5.05.05.02.05.05.05.05 23

21

2

0

3 ++⋅+⋅+⋅+⋅⋅ VDDDV  

 Vout = ( ) VDDDV

idealVout

175.05.05.05.05

,

21

2

0

3 +⋅+⋅+⋅⋅
444444 3444444 21

 

 

The output values and transfer curve are shown below. 

 

 

Voffset,summer = 0.2 V 

A = 0.5 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gain error = slope of Vout,ideal – slope of Vout,actual 

 

It is clear from the plot that the slopes of both lines are equal. There is only an offset error equal 

of 175 mV. After removing the offset error, we would report: 

 

 Offset error = 175 mV 

 Gain error = 0 

 
max

INL = 0 

 
max

DNL = 0 

 

 



  QAWI HARVARD 

29.15 Repeat Problem 29.13 assuming that the output of the summer was always 0.2 V 

greater than the ideal and that the amplifier in the feedback path had a gain of 0.45 

V/V. 

 

29.13 For the cyclic converter shown in Fig. 29.17, determine the gain error for a 3-bit 

conversion if the feedback amplifier had a gain of 0.45 V/V. Assume that VREF = 5 V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The gain error of a DAC is difference in the slope of the best fit line to the ideal transfer 

curve of the DAC. Consider figure 28.17: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A plot of the transfer curve of our 3-bit DAC versus the ideal 3-bit DAC will give us our gain 

error. Realizing that the summation block has an offset of 0.2 V and the amplifier has a gain 

of 0.45 V/V we can build an output table for our 3-bit DAC. An example of the output table 

is shown below for a digital input of 110. 

 

 



  QAWI HARVARD 

Table 1   Output from the 3-bit cyclic DAC used in Problem 29.15 

Cycle Number, n Dn-1 vA(n-1)[n-1] vout[n] 

1 0 0 ( )0.45 0 0 0.2 0.090V⋅ + + =  

2 0 0.090 ( )0.45 0 0.09 0.2 0.131V⋅ + + =  

3 0 0.131 ( )0.45 0 0.131 0.2 0.149V⋅ + + =  

1 1 0 ( )0.45 5 0 0.2 2.34V⋅ + + =  

2 1 0.090 ( )0.45 5 2.34 0.2 3.393V⋅ + + =  

3 1 2.381 ( )0.45 5 3.393 0.2 3.867V⋅ + + =  

 

Using the approach seen in Table 1 we are able to plot a transfer curve for each of the eight 

digital input codes and compare them to the ideal. 
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Figure 1   Transfer curve of the 3-bit cyclic DAC of problem 29.15. 

 
The gain error can be determined by finding the slopes of both lines. Here we simply subtract 

the initial and final values. 

 

 Gain Error 
3.718

0.6251 0.15
7

LSB
LSB= − =  

 



Adam Johnson 

29.16 Design a 3-bit pipeline DAC using VREF = 5 V. (a) Determine the maximum and 
minimum gain values for the first-stage amplifier for the DAC to have less than 
±½ LSBs of DNL assuming that the rest of the circuit is ideal. (b) Repeat for the 
second-stage amplifier.  (c) Repeat for the last stage amplifier. 

 
 
 
 
 
 
 
From Eq. (29.40) we can see that  

 
VOUT = (D0*A0*A1*A2 + D1*A1*A2 + D2*A2)*VREF 

 
Where An is the gain of the amplifier of stage n, and A0 = A1 = A2 = ½ for the ideal case. 
 

VLSB,Ideal = A0*A1*A2*VREF = ½*½*½*5V = 0.625V 
½ VLSB = 0.3125V 

 
(a) For the first-stage amplifier DNL error, we can look at the 000 to 001 transition 
 

A0,MIN*½*½*5V = 0.625V - 0.3125V  
A0,MIN = 0.25 
 
A0,MAX*½*½*5V = 0.625V + 0.3125V  
A0,MAX = 0.75 

 
(b) In similar fashion, the second-stage amplifier DNL error can be seen with a 011 to 
100 transition 

 
 VOUT,100 – VOUT,011 = ½*5V – (½*A1,MIN*½ + ½*A1,MIN)*5V = 0.625V + 0.3125V 
A1,MIN = 0.42 
 
VOUT,100 – VOUT,011 = ½*5V – (½*A1,MAX*½ + ½*A1,MAX)*5V = 0.625V - 0.3125V 
A1,MAX = 0.58 

 
(c) The last-stage amplifier DNL can be seen with the same 011 to 100 transition 
 

VOUT,100 – VOUT,011 = A2,MIN*5V – (½*½*½ + ½*½)*5V = 0.625V - 0.3125V 
A2,MIN = 0.44 
 
VOUT,100 – VOUT,011 = A2,MAX*5V – (½*½*½ + ½*½)*5V = 0.625V + 0.3125V 
A2,MAX = 0.56 



Justin Wood

29.17! Using the same DAC designed in Problem 29.16:

(a) determine the overall error (offset, DNL, and INL) for the DAC if the S/H 
amplifier in the first stage produces an offset at its output of 0.25V.  Assume 
that all the remaining components are ideal.  

The 3-bit pipeline DAC schematic is below.

With the offset applied to the first S/H, the output voltage from each stage would be 
calculated as follows:

VOUT1 = (D0 ⋅VREF +VOFFSET ) ⋅ A1
VOUT 2 = (D1 ⋅VREF +VOUT1)A2 = (D1 ⋅VREF + (D0 ⋅VREF +VOFFSET ) ⋅ A1)A2
VOUT 3 = (D2 ⋅VREF +VOUT 2 )A3 = (D2 ⋅VREF + (D1 ⋅VREF + (D0 ⋅VREF +VOFFSET ) ⋅ A1)A2 )A3
A1 = A2 = A3
∴VOUT 3 = VREF (D2A + D1A

2 + D0A
3) +VOFFSET A

3

 

For VOFFSET of 0.25V and A = 0.5, the offset would be: 0.25 ⋅ (0.5)3 = 0.03125V  

In terms of LSBs, the offset is:  0.03125V ⋅
23LSBs
5V

= 0.05LSBs

For the pipeline DAC, an offset doesnʼt contribute to DNL because it will offset all 
outputs by the same amount so the step change will remain unchanged.  Depending on 
how INL is specified, the offset could negatively impact INL.  Typically, offset is removed 
when determining INL (ie. using the best-fit method).  Therefore, INL and DNL = 0 
assuming all other elements are ideal.

(b) Repeat for the second-stage S/H.  
With the offset applied to the second S/H, the output voltage from each stage would be 
calculated as follows:

D2 D2
D1 D1

A2+ S/H+A1 A3S/HS/H

Do Do

VREF VREF VREF

VOUT



VOUT1 = (D0 ⋅VREF ) ⋅ A1
VOUT 2 = (D1 ⋅VREF +VOUT1 +VOFFSET )A2 = (D1 ⋅VREF + (D0 ⋅VREF ) ⋅ A1 +VOFFSET )A2
VOUT 3 = (D2 ⋅VREF +VOUT 2 )A3 = (D2 ⋅VREF + (D1 ⋅VREF + (D0 ⋅VREF ) ⋅ A1 +VOFFSET )A2 )A3
A1 = A2 = A3
∴VOUT 3 = VREF (D2A + D1A

2 + D0A
3) +VOFFSET A

2

 

For VOFFSET of 0.25V and A = 0.5, the offset would be:   0.25 ⋅ (0.5)2 = 0.0625V  

In terms of LSBs, the offset is:  0.0625V ⋅
23LSBs
5V

= 0.1LSBs

Again DNL/INL are 0.

(c) Repeat for the last-stage S/H.

With the offset applied to the first S/H, the output voltage from each stage would be 
calculated as follows:

VOUT1 = (D0 ⋅VREF ) ⋅ A1
VOUT 2 = (D1 ⋅VREF +VOUT1)A2 = (D1 ⋅VREF + (D0 ⋅VREF ) ⋅ A1)A2
VOUT 3 = (D2 ⋅VREF +VOUT 2 +VOFFSET )A3 = (D2 ⋅VREF + (D1 ⋅VREF + (D0 ⋅VREF ) ⋅ A1)A2 +VOFFSET )A3
A1 = A2 = A3
∴VOUT 3 = VREF (D2A + D1A

2 + D0A
3) +VOFFSET A

 

For VOFFSET of 0.25V and A = 0.5, the offset would be:   0.25 ⋅ (0.5) = 0.125V  

In terms of LSBs, the offset is:  0.125V ⋅
23LSBs
5V

= 0.2LSBs

Again DNL/INL are 0.



Lincoln Bollschweiler 
29.18 Design a 3-bit Flash ADC with its quantization error centered about zero LSBs. 
Determine the worst-case DNL and INL if resistor matching is known to be 5%. Assume 
that VREF = 5V. 
 

1.5 R

0.5 R

 

From (29.48), and assuming VOS = 0, 5 0.05 0.125
2

INL V    or 0.2LSBs. 

From (29.52), also assuming VOS = 0, 3

5 0.05 0.031
2

DNL V    or 0.05LSBs. 



Sakkarapani Balagopal 

(P.29.19)Using the ADC designed in problem 29.18, determine the maximum offset that can be 

tolerated if all of the comparator have the same magnitude of offset, but with different polarities, 

to attain a DNL of less than or equal to±0.5LSB. 

The Maximum DNL will occur, assuming ΔRi is at its maximum, Vosi is at its maximum positive 

value is given in equation 29.19-1. 

Maxos

Max

i

N

ref

Max
V

R

RV
DNL 2.

2



     (29.19-1) 

For the given maximum DNL of ±0.5LSB and 5% resistor mismatch from previous problem, the 

calculated offset voltage is  

     
MaxosNN

V205.0.
2

5

2

5
1




 

     
2

05.0.
2

5

2

5
1 NN

MaxosV






 

     mVV
Maxos 140  



Chris Gagliano 

 

29.20 A 4-bit Flash ADC converter has a resistor string with mismatch as shown in Table 29.1. 

Determine the DNL and INL of the converter. How many bits of resolution does this 

converter possess? VREF = 5 V. 

 

 

For a 4-bit ADC with VREF = 5 V,  

 1 LSB = 
42

5V
 = 0.3125 V 

 

The INL and DNL values are calculated in the table below. Note that the column labeled Vin,nulled-

offset-gain, is used for the INL and DNL calculations since it contains the values with the static 

offset and gain errors nullified. 

 

The offset error is calculated as follows: 

 Voffset = Vin,actual(D=1) – Vin,ideal(D=1) = 0.3172 V – 0.3125 V = 0.0047 V 

 

The gain error is calculated as follows (using the Vin,no-offset values): 

 Gain error = 1 - 
LSB

LSB
V

V

15

3125.0

6813.4

 ≈ 0.0013 
LSB

LSB  

 

The Vin,nulled-offset-gain values in the table are then calculated by the following equation: 

 Vin,nulled-offset-gain(n) = Vin,no-offset(n) + n * 1 LSB * Gain error 

 Vin,nulled-offset-gain(n) = Vin,no-offset(n) + n * 0.3125 V * 0.0013 

 

 

The resolution of the ADC is calculated using the maximum 

INL value from the table and knowing that it cannot be more 

than half an LSB. 

 

The resolution of the ADC is 7 bits. 

 

N

REFV
mVINL

22

1
03.15

max
⋅≤=

 

33.166
01503.02

5
2 ≈

⋅
=

V

VN  

38.7
)2log(

)33.166log(
≈=N  



  QAWI HARVARD 

29.21 Determine the open-loop gain required for the residue amplifier of a two-step ADC necessary to keep 

the converter to within ½ LSB of accuracy with resolutions of (a) 4 bits, (b) 8 bits, and (c) 10 bits. 

 

Consider the block diagram of a two-step Flash ADC as seen in Figure 29.26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An advantage of the two-step Flash ADC is that each Flash ADC is only 2
N/2

 bits accurate. If the residue 

amplifier wants to be accurate to within ½ LSB we can state: 

 

 

11
22 2

1

1

2

REF
N

V

N

REF REF

LSB
Accuracy

V V
+

⋅
= = =  

 

Figure 29.26 shows that the residue amplifier has gain equal to 2
N/2

, we can write the open loop gain in terms of 

the closed loop gain: 

 

 
1

OL
CL

OL

A
A

A β
=

−
 

 

As AOL increases the closed loop gain approaches 1/β. If we want the amplifier to have an accuracy of ½ 

LSB we can write the closed loop gain as: 

 

1

1

OL
CL

OL

A
A A

A β β
= = − ∆

−
 

 

Where ∆A is the accuracy.  Solving for the open loop gain gives us: 

 
1

1 /22
2 2

N
N N

OL
A

β

+

+
≈ = ⋅  

 

Using the equation above, we can state that the requirements of the open loop gain for each number of bits: 

 

4 bits
72 128→ =   

 

8 bits
132 8192→ =   

 

10 bits
162 65536→ =   

 



Adam Johnson 

29.22 Assume that a 4-bit, two-step Flash ADC uses two separate Flash converters for 
the MSB and LSB ADCs.  Assuming that all other components are ideal, show 
that the first Flash converter needs to be more accurate than the second 
converter.  Assume that VREF = 5 V. 

 

 
In the ideal case, the V2 must be between 0 and VREF.  If we include INL, the V2 value 
can be between –INLMIN,ADC1 and VREF + INLMAX,ADC1.   
 
Since V3 = V2*2N/2, and this is a 4-bit ADC, we can see that the range on V3 will be 
between –(INLMIN,ADC1)*4 and VREF + (INLMAX,ADC1)*4.  So essentially, any error from 
the first ADC conversion is multiplied along with the residual voltage by the residue 
amplifier. 
 
For this 4-bit ADC, if the INL/DNL needs to be < ½ LSB overall, then for the first ADC, 
the INL/DNL needs to be < 1/8 LSB, and the second ADC can be < ½ LSB. 
 
 

 

4x 

00 

01 

10 

11 

VREF 

00 

01 

10 

11 

VREF 

ADC1 

Multiplied 
by 2N/2 INLMAX*2N/2 

INLMAX 

ADC2 

INLMIN 

INLMIN*2N/2 

ADC1  ADC2 



29.23! Repeat Ex. 29.12 for VIN = 3, 5, 7.5, 14.75 V.

Example 29.12
Assume that the two-step ADC shown in Fig. 29.26 has four bits of resolution.  Make a 
table listing the MSBs, V1, V2, V3, and the LSBs for VIN = 3, 5, 7.5, 14.75 V assuming 
that VREF = 16V.

With 4-bit resolution, Figure 29.26 would be as follows:

The MSB and LSB ADCs in the picture are both 2-bit ADCs and their LSBs are equal to 

4V 16V
22

= 4V⎛
⎝⎜

⎞
⎠⎟

.  First, lets calculate the output for VIN=3V.  Starting with the MSB ADC, 

D3D2 would be 00 until VIN > 4V (LSB).  V1 would then be 0, V2 would be 3V.  N=4 and 
V3 = 3*(22) or 12V.  The output of the LSB ADC would then be 11.  Final output code is 
0011.    Output code for VIN are similarly calculated as shown in the table.

VIN D3D2(MSBs) V1 V2 V3 D1D0(LSBs)

3 00 0 3 12 11

5 01 4 1 4 01

7.5 01 4 3.5 14 11

14.75 11 12 2.75 11 10

S/HVIN

Latches

D2D3 D1 D0

MSBs

MSB
ADC

DAC

V1

+
- 2N/2

LSBs

LSB
ADC

V2 V3
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29.24 Repeat Ex. 29.13 for VIN = 1, 3, 6, 7 V and VREF = 8V. 

 

Example 29.13 – Assume that the pipeline converter shown in Fig. 29.30 is a 3-bit 

converter. Analyze the conversion process by making a table of the following 

variables: D2, D1, D0, V3, and  V2  for VIN = 2, 3, and 4.5 V. Assume that VREF = 

5V, V3 is the residue voltage out of the first stage, V2 is the residue from the 

second. 

 

 

With a VREF of 8V, all comparators will give an output of 1 for vinp of 4V or greater; 

output of 0 otherwise. 

 

 

vIN (V) V3 (V) V2 (V) Digital Out (D2D1D0) 

1.0 2 4 001 

3.0 6 4 011 

6.0 4 0 110 

7.0 6 4 111 

 

As is expected, since the reference voltage is 8 and the LSB = 8/2
2
 = 1V, the digital code 

is simply the input (decimal) converted to 3-bit binary. 
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(P.29.25)Assume that 8-bit pipeline ADC was fabricated and that all the amplifiers had a gain of 

2.1V/V instead of 2V/V. If VIN=3V and VREF=5V, what would be the resulting digital output if the 

remaining components were considered to be ideal? What are the DNL and INL for this 

converter? 

8-bit Pipelined ADC requires 8-steps to convert the given analog signal into 8-bit digital codes. 

The positive input of the comparator to the next stage is given by equation 29.25-1.Table 29.25-1 

shows the conversion of the analog signal into digital codes in 8 steps.   

Gain
nCV

nVnV OUTREF
ININ .

2

)(.
)()1( 








    (29.25.1) 

Table 29.25-1 8-bit Pipelined ADC conversion for VIN = 3V, VREF = 5V 

STEP(n) 

Comparator’s 

Positive Input 

VIN(n) 

Comparator’s 

Negative 

Input(VREF/2) 

Comparator 

Output(COUT(n)) 

1 3 2.5 1 

2 1.05 2.5 0 

3 2.205 2.5 0 

4 4.6305 2.5 1 

5 4.47405 2.5 1 

6 4.145505 2.5 1 

7 3.4555605 2.5 1 

8 2.00667705 2.5 0 

 

8-bit Pipelined ADC output = 1 0 0 1 1 1 1 0 

 

We can write the input analog voltage in terms of digital codes with a gain of the amplifier of 2.1 

V/V for N-bit Pipelined ADC as  

102121, .
2

1
.

2

1
.......

2

1
.

2

1
 

N

REF

N

REFREF
NREFNNIN

Gain

V
D

Gain

V
D

Gain

V
DVDV    (29.25-2) 

Using the above equation, DNL and INL of 8-bit pipelined ADC is plotted in figure 29.25-1 and 

2 respectively. Calculation of INL and DNL of the converter is shown in Table 29.25-2 for 

digital outputs ranging from 0 to 6.  
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Table 29.25-2 8-bit Pipelined ADC INL and DNL Calculation 

Possible 
Digital 

O/P (n) 

D0 D1 D2 D3 D4 D5 D6 D7 

Corresponding 

Analog 

Input(Xn) 
Calculation 

Using 

Equation 
29.25-2  

Xn in 

LSB (Yn) 

Yn 

Shifted  
by 

0.5LSB 

(Zn) 

Ideal 

Analog 

Input in 
LSB (In) 

DNL(n) = 
(Zn+1-Zn) -

1LSB  

INL(n) 

=Zn- In  

0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 - 0 

1 1 0 0 0 0 0 0 0 0.013880495 0.71069 1.21069 1.5 -0.28931 

-

0.28930 

2 0 1 0 0 0 0 0 0 0.029149039 1.49245 1.99245 2.5 -0.218241 
-

0.50755 

3 1 1 0 0 0 0 0 0 0.043029534 2.20314 2.70314 3.5 -0.28931 

-

0.79685 

4 0 0 1 0 0 0 0 0 0.061212982 3.134145 3.634145 4.5 -0.068996 

-

0.86585 

5 1 0 1 0 0 0 0 0 0.075093476 3.844835 4.344835 5.5 -0.28931 

-

1.15516 

6 0 1 1 0 0 0 0 0 0.090362021 4.626595 5.126595 6.5 -0.218241 
-

1.37340 

 

DNL of the 8-bit Pipelined ADC: 

 

Figure – 29.25-1 DNL of the 8-bit Pipelined ADC 
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INL of the 8-bit Pipelined ADC: 

 

Figure – 29.25-2 INL of the 8-bit Pipelined ADC 

From the figure 29.25-1, 2 the maximum and minimum INL and DNL are given as  

 

DNL INL 

Maximum 11.28259 0.001638 

Minimum -0.28931 -11.281 
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29.26 Show that the first-stage accuracy is the most critical for a 3-bit, 1-bit per stage pipeline 

ADC by generating a transfer curve and determining DNL and INL for the ADC for three 

cases: (1) The gain of the first-stage residue amplifier set equal to 2.2 V/V, (2) the 

second-stage residue amplifier set equal to 2.2 V/V. For each case, assume that the 

remaining components are ideal. Assume that VREF = 5V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D2 will transition high when REFp VV ⋅=
2

1
1  and since INp VV =1  we can write the input voltage at 

which D2 transitions high as: 

 REFIN VV ⋅=
2

1
1,  

 

D1 will transition high when REFp VV ⋅=
2

1
2  and we can write 2pV  as: 

 1212
2

1
ADVVV REFpp ⋅





⋅⋅−=  

 

We can then solve for the input voltage at which D1 transitions high, keeping in mind that 

INp VV =1 : 

 122,
2

1

2

1
ADVVV REFINREF ⋅





⋅⋅−=⋅  

 2

1

2,
2

1

2

1
DVV

A
V REFREFIN ⋅⋅+⋅

⋅
=  

 

 

 
3-bit Pipeline ADC (based on Fig. 29.30) 



D0 will transition high when REFp VV ⋅=
2

1
3  and we can write 3pV  as: 

 21

2

1212123
2

1

2

1

2

1
ADVADVVADVVV REF

Vp

REFpREFpp ⋅



















⋅⋅−⋅







⋅⋅−=⋅





⋅⋅−=

4444 34444 21

 

 

We can then solve for the input voltage at which D0 transitions high, again keeping in mind that 

INp VV =1 : 

 21123,
2

1

2

1

2

1
ADVADVVV REFREFINREF ⋅








⋅⋅−⋅








⋅⋅−=⋅  

 21

121

3,
2

1

2

1

2

1
DVDV

A
V

AA
V REFREFREFIN ⋅⋅+⋅⋅

⋅
+⋅

⋅⋅
=  

 

So, for a given output code, we can write a corresponding expression for INV  and use it to 

generate a table of values for the two cases presented in the problem statement. We can then 

calculate the INL and DNL values for both cases to see how they compare. 

 

The output code values and corresponding input voltages for both cases are shown below. The 

transfer curve shows that the second case (A1 = 2.0, A2 = 2.2) is more optimal (closer to ideal 

curve) than the first case (A1 = 2.2, A2 = 2.0). The INL and DNL values are also better for the 

second case when compared to the first case. We can then conclude that the first stage accuracy 

is the most critical. 
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29.27 An 8-bit single-slope ADC with a 5V reference is used to convert a slow-moving 
analog signal.  What is the maximum conversion time assuming that the clock 
frequency is 1 MHz?  What is the maximum frequency of the analog signal?  What 
is the maximum value of the analog signal which can be converted? 

 
Figure 29.32 depicts a block diagram of a single-slope integrating ADC. 
 
 
 
 
 
 
 
 
 
 
 
As discussed in section 29.2.4 the single-slope integrating ADC operates by placing a 
negative (with respect to the input) voltage on the inverting side of the comparator and 
the sampled input on the other input of the comparator.  The counter is used to count how 
many clock cycles it takes to integrate the reference current before the VC voltage exceeds 
the sampled input voltage. When the comparator switches states the count value is 
latched and the integrator is reset. Figure 29.33 shows one conversion cycle. 
 
 
 
 
 
 
 
 
 
 
 
 
The digital output code will count from 00000000 (0) to 11111111 (255). The minimum 
code refers to the minimum voltage and the maximum count refers to the maximum input 
voltage which is equal to VREF – 1 LSB. Using equation 29.79 we can say: 
 

€ 

tc =
vin
VREF

⋅ 2N ⋅ TCLK  

 

€ 

tc =
VREF 1− 1

2N( )
VREF

⋅ 2N ⋅ 1
fCK

=
2N −1
fCK

=
255
1MHz

= 255µs  
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The equation above shows that the full sampling time of the ADC is 255 µs. Using 
Nyquist’s Criteria we can say that the sampling frequency must be equal to twice the 
input frequency, therefore we can say: 
 

€ 

1
255µs

> 2 f in  

 

€ 

f in ≈ 2kHz  
 
The maximum value of the input signal is simply equal to VREF – 1 LSB or ~4.98 V, 
while the minimum voltage is 0 V. 



29.28 An 8-bit single-slope ADC with a 5V reference uses a clock frequency of 1MHz.  
Assuming that all of the other components are ideal, what is the limitation on the 
value of RC?  What is the tolerance of the clock frequency which will ensure less 
than 0.5 LSB of INL? 

 

 
 
We want the VC node to fully charge within a single clock cycle.  From Eq. (29.81), we 
can find the value of RC for a full-scale analog voltage of 5V, assuming that max input 
voltage is equal to the reference voltage. 
 

€ 

RC =
VREF ⋅ tc

VC
=

5V
5V ⋅ fc

=1us

RC ≤1us
 

 
To find the clock frequency of the clock jitter, we start with finding that 0.5 LSB is 0.5 * 
5V / 28, or 9.77mV. Using Eq. (29.81) again we can find the Δt that is equivalent to this 
error. 
 

€ 

Δt =
RC⋅ ΔVC
VREF

=
1us⋅ 9.77mV

5V
=1.95ns  

 
So the clock period must be 1us +/- 1.95ns, or 1.00195MHz ≤ fCLK ≤ .99805MHz. 
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29.29! An 8-bit dual slope ADC with a 5V reference is used to convert the same 
analog signal in Problem 29.27.  What is the maximum conversion time assuming 
that the clock frequency is 1 Mhz?  What is the minimum conversion time that can 
be attained?  If the analog signal is 2.5V, what will be the total conversion time?

The analog signal from 29.27 was defined as a slow-moving signal.  Therefore, the 
discussion on pages 998 -1002 is valid (ie.  fCLK >> fIN).  Since we are dealing with a 
dual-slope topology, the total conversion time is the sum of the charging time (T1) and 
the discharging time (T2).  

T1 is fixed and always takes 2N*tCLK before the counter overflows.    For our 8-bit ADC 
with 1Mhz clock frequency, T1 is equal to 256μs.  The discharge time can then be 
calculated from equation 29.86 shown below:

vin ⋅T1 = VREF ⋅T2

The maximum conversion time occurs when vin equals -VREF.  The discharge time, T2, is 
then equal to the charging time, T1.  The conversion time is then 2T1 or 512μs.

The minimum conversion time is achieved when vin is equal to 0.  The conversion time 
is then just T1 or 256μs (T2=0).

If the analog signal is 2.5V, the conversion time is (knowing T1=256μs):

vin ⋅T1 = VREF ⋅T2
2.5 ⋅256µs = 5 ⋅T2
T2 = 128µs
TTOTAL = T1 + T2 = 384µs
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29.30 Discuss the advantages and disadvantages of using a dual-slope versus a single-

slope ADC architecture. 

 

One of the more obvious disadvantages to the dual slope is the fact that the required 

charging period adds time to the conversion over the single-slope. For a full scale signal 

this can mean twice the time (2
N
 clocks up, 2

N
 clocks down) . Another disadvantage is the 

use of additional circuit components which mean a larger layout area required. 

 

An advantage of the dual-slope converter is the fact that the same integrator and clock are 

used to produce both slopes. This means that any non-idealities inherent to the converter 

will be added to each conversion (slope) equally and, ideally, cancel out. This makes for 

a much more accurate converter than the single-slope, making design specifications less 

stringent (lower-power, smaller devices, etc). 



Sakkarapani Balagopal 

(P.29.31)Repeat Ex. 29.15 for a 4-bit successive approximation ADC using VREF=5V for VIN=1, 

3 and full-scale. 

Let D
B

3, D
B

2, D
B

1 and D
B

0 are the initial outputs of SAR before the comparator makes its 

decision. B3, B2, B1 and B0 are the inputs of SAR. D3, D2, D1 and D0 are the final output of the 

SAR ADC after comparator decision. VOUT is the output of 4-bit DAC and COUT is the output of 

comparator.  

When VREF = 5V, VIN = 1V,  

STEP B3 B2 B1 B0 D
B

3 D
B

2 D
B

1 D
B

0 VOUT(V) COUT D3 D2 D1 D0 

1 1 0 0 0 1 0 0 0 2.5 1 0 0 0 0 

2 0 1 0 0 0 1 0 0 1.25 1 0 0 0 0 

3 0 0 1 0 0 0 1 0 0.625 0 0 0 1 0 

4 0 0 0 1 0 0 1 1 0.9375 0 0 0 1 1 

 

4-bit ADC output = 0 0 1 1 

 

When VREF = 5V, VIN = 3V,  

STEP B3 B2 B1 B0 D
B

3 D
B

2 D
B

1 D
B

0 VOUT(V) COUT D3 D2 D1 D0 

1 1 0 0 0 1 0 0 0 2.5 0 1 0 0 0 

2 0 1 0 0 1 1 0 0 3.75 1 1 0 0 0 

3 0 0 1 0 1 0 1 0 3.125 1 1 0 0 0 

4 0 0 0 1 1 0 0 1 2.8125 0 1 0 0 1 

 

4-bit ADC output = 1 0 0 1 

 

When VREF = 5V, VIN = 5V,  

STEP B3 B2 B1 B0 D
B

3 D
B

2 D
B

1 D
B

0 VOUT(V) COUT D3 D2 D1 D0 

1 1 0 0 0 1 0 0 0 2.5 0 1 0 0 0 

2 0 1 0 0 1 1 0 0 3.75 0 1 1 0 0 

3 0 0 1 0 1 1 1 0 4.375 0 1 1 1 0 

4 0 0 0 1 1 1 1 1 4.6875 0 1 1 1 1 

 

4-bit ADC output = 1 1 1 1 
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29.32 Assume that vin = 2.49 V for the ADC used in Problem 29.31 and that the comparator, 

because of its offset, makes the wrong decision for the MSB conversion. What will be the 

final digital output? Repeat for vin = 0.3025 V, assuming that the comparator makes the 

wrong decision on the LSB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As in Example 29.15, we designate D3’D2’D1’D0’ as the initial output of the SAR before the 

comparator makes its decision. The final value is designated as D3D2D1D0. 

 

For the case where INV  = 2.49 V, let’s first look at the ideal case where the comparator does not 

make any wrong decisions and then look at the case where the comparator makes the wrong 

decision on the MSB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final output is 1000.  

 

We can see that the final output is 1000 when the comparator makes the wrong decision on the 

MSB whereas the final output should be 0111. 

 

 

 

 



Next, let’s consider the case where INV  = 0.3025 V and look at the results when the comparator 

does not make any wrong decisions compared to when the comparator makes a wrong decision 

on the LSB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final output is 0001 when the comparator makes the wrong decision on the LSB whereas the 

final output should be 0000 because the input voltage is less than 1 LSB. 
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29.33 Design a 3-bit, charge-redistribution ADC similar to that shown in Fig. 29.39 and 
determine the voltage on the top plate of the capacitor array throughout the conversion 
process for vIN = 2, 3, and 4 V, assuming that VREF = 5 V. Assume that all components 
are ideal. Draw the equivalent circuit for each bit decision. 

 
Figure 29.39 is shown below: 
 

 
Using Figure 29.39 it is possible to design a 3-bit charge redistribution ADC, the completed 
design is seen in the figure below. 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
F1 – 3-bit charge redistribution ADC 

 
In order to draw an equivalent circuit for each bit we simply connect each capacitor to VREF while 
grounding all of the other capacitors. The final 1 pF capacitor remains connected to ground for 
each bit. 
 
 
 
 
 
 
 

C C 2C 4C 

vIN 

VREF 

SAR 

RESET 

C = 1 pF 

VTOP 
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You have to notice that when the conversion begins the MSB capacitor is connected to VREF and a 
voltage of VREF/2 (or 2.5 V) is added to VTOP. For a 2 V input this leaves a positive 0.5 V on VTOP, 
if the capacitance is not reset to vIN the comparator output will remain in a low state. Due to this, 
the control logic will need to save the state of each bit (connected to VREF if the comparator output 
stays high, or connect to GND if the comparator output goes low), reset the top voltage, and 
continue the conversion process with the next bit. In an attempt to understand this the tables 
below show the conversion process for an input voltage of 2 V, 3 V, and 4 V. 
 
For 2 V input: 
 

Step D2D1D0 VTOP (V) Comparator Out 
--- --- - 2 --- 
1 100 - 2 + 2.5 = 0.5 Low (reset) 
2 010 -2 + 1.25 = -0.75 High (save) 
3 011 -2 + 1.25 + 0.625 = -0.125 High (save) 

 
Output code = 011 
 
For 3 V input: 
 

Step D2D1D0 VTOP (V) Comparator Out 
--- --- - 3 --- 
1 100 - 3 + 2.5 = -0.5 High (save) 
2 110 -3 + 2.5 + 1.25 = 0.75 Low (reset) 
3 101 -3 + 2.5 + 0.625 = 0.125 Low (reset) 

 
Output code = 100 
 
For 4 V input: 
 

Step D2D1D0 VTOP (V) Comparator Out 
--- --- - 4 --- 
1 100 - 4 + 2.5 = -1.5 High (save) 
2 110 -4 + 2.5 + 1.25 = -0.25 High (save) 
3 111 -4 + 2.5 +1.25 + 0.625 = 0.375 Low (reset) 

 
Output code = 110 

4C 

4C 
VREF 

6C 

2C 
VREF 

7C 

C 
VREF € 

D2

 

€ 

D1  

€ 

D0
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29.34 Determine the maximum INL and maximum DNL of the ADC designed in Problem 
29.33 assuming that the capacitor array matching is 1%.  Assume that the 
remaining components are ideal and that the unit capacitance, C, is 1pF. 

 
Problem 29.33 is a 3-bit charge distribution ADC like Figure 29.39 
 

 
 

From Eq. (29.91) we get the INL for 

€ 

ΔC
C

 = 1%: 

 

€ 

| INL |max=
VREF

2
⋅
ΔC
C

= 25mV = 0.04LSB  

 
From Eq. (29.93) we get the DNL: 
 

€ 

DNLmax =
(2N −1)⋅ VREF

2N
⋅
|ΔC |
C

= 43.75mV = 0.07LSB  

 



Justin Wood

29.35! Show that the charge redistribution ADC used in Problems 29.32 and 29.33 
is immune to comparator offset by assuming an initial offset voltage of 0.3 and 
determining the conversion for VIN=2V.

With VOS = 0.3V and VIN = 2V,  the conversion process for the charge redistribution ADC 
would be as follows (using equations 29.88, 29.89, and 29.90):

Step D2D1D0 VTOP(V) Comparator Output
-- -- -2V --
1 000 -2 + Vref/2 +0.3 = 0.8 0
2 010 -2 + Vref/4 + 0.3 = -0.45V 1
3 011 -2 + Vref/4 + Vref/8 + 0.3 = 0.175V 1

The key takeaway here is that with a 0.3V comparator offset, the comparator output 
changes at Vtop > 0.3V  instead of GND.  Therefore, even though in step 3 VTOP is 
positive, the comparator output remains high because it is not > 0.3V.  You can see that 
the comparator output is the same as shown in 29.33 where no offset was present.



Justin Wood

29.36! Discuss the differences between Nyquist rate ADCʼs and oversampling 
ADCs.

Nyquist rate ADCs, as the name implies, sample the analog input signal at 2X the input 
bandwidth.  Oversampling ADCs sample the input at a rate much faster than the Nyquist 
rate.  The higher sampling frequency of the oversampling ADCs results in some distinct 
advantages over the Nyquist rate ADCs.

In general, the oversampling ADCs end up providing a simplified implementation.  
Figure 29.41 (page 1008) shown below shows the block diagram for the two ADCs.  

As can be seen in the figure, the oversampling ADC doesnʼt need a dedicated S/H or 
quantizer.  The modulator takes care of the quantizing and the implementation usually 
includes switched-capacitor circuits, which eliminates the need for a S/H.  

The oversampling ADC requires more sampling time and has a lower throughput than 
the Nyquist rate ADC.  Because the sampling rate is much greater than the input 
bandwidth, the frequency spectra are spaced much farther apart and there is little or no 
aliasing.  This results in a much simpler anti-aliasing filter if one is needed at all.

The one drawback of the oversampling ADC is the throughput.  The oversampling ADC 
requires more sampling time have a lower throughput than the Nyquist rate ADCs.

Additional discussion is available in section 29.2.6.
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29.37 Write a simple computer program or use a math program to perform the analysis 
shown in Ex. 29.16.  Run the program for k = 200 clock cycles and show that the 
average value of vq(kT) converges to the correct answer.  How many clock cycles 
will it take to obtain an average value if vq(kT) stays within 8-bit accuracy of the 
ideal value of 0.4V? 12-bit accuracy?  16-bit accuracy? 

 
Ex. 29.16:  Using a general first order ΣΔ modulator, assume that the input to the 
modulator vx(kT) is a positive DC voltage of 0.4 V.  Show the values of each variable 
around the ΣΔ modulator loop and prove that the overall average output of the DAC 
approaches 0.4V after 10 cycles.  Assume that the DAC output is at +/- 1 V, and that the 
integrator output has a unity gain with an initial output voltage of 0.1 V, and that the 
comparator output is either +/-1 V. 
 
 

 
 

va(kT) 



Perl code: 
#!/usr/bin/perl 
 
# User changable parameters 
$vref = 1.0; 
$loops = 200; 
$vx = 0.4; # DC input value 
 
# Variables of interest 
$k = 0; # iterator 
$va = 0; # integrator input 
$vu = 0; # integrator output 
$va_last = 0; # previous integrator input 
$vu_last = 0.1; # previous integrator output 
$vq = 0; # feedback/output 
$vq_sum = 0; # feedback/output sum 
 
printf("k\t va\t vu\t vq\t Qe\tvq(avg)\tQe(avg)\n"); 
for ($k=0; $k<=$loops; $k++) { 
 $vu = $vu_last + $va_last; 
 if ($vu <= 0) { 
  $vq = - $vref; 
 } else { 
  $vq = $vref; 
 } 
 $va = $vx - $vq; 
 $vq_sum = $vq_sum + $vq; 
 printf("%03d\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%7.3f\t%9.6f\n",  
  $k, $va, $vu, $vq, $vq - $vu, $vq_sum/($k+1), ($vq_sum/($k+1))-$vx); 
 $va_last = $va; 
 $vu_last = $vu; 
 
} 
 

200 Loops: 
k  va  vu  vq  Qe vq(avg)  Qe(avg) 
000  -0.60   0.10   1.00   0.90  1.000  0.600000 
001   1.40  -0.50  -1.00  -0.50  0.000 -0.400000 
002  -0.60   0.90   1.00   0.10  0.333 -0.066667 
003  -0.60   0.30   1.00   0.70  0.500  0.100000 
004   1.40  -0.30  -1.00  -0.70  0.200 -0.200000 
005  -0.60   1.10   1.00  -0.10  0.333 -0.066667 
006  -0.60   0.50   1.00   0.50  0.429  0.028571 
007   1.40  -0.10  -1.00  -0.90  0.250 -0.150000 
008  -0.60   1.30   1.00  -0.30  0.333 -0.066667 
009  -0.60   0.70   1.00   0.30  0.400  0.000000 
010  -0.60   0.10   1.00   0.90  0.455  0.054545 
011   1.40  -0.50  -1.00  -0.50  0.333 -0.066667 
012  -0.60   0.90   1.00   0.10  0.385 -0.015385 
013  -0.60   0.30   1.00   0.70  0.429  0.028571 
014   1.40  -0.30  -1.00  -0.70  0.333 -0.066667 
015  -0.60   1.10   1.00  -0.10  0.375 -0.025000 
. 
. 
185  -0.60   1.10   1.00  -0.10  0.398 -0.002151 
186  -0.60   0.50   1.00   0.50  0.401  0.001070 
187   1.40  -0.10  -1.00  -0.90  0.394 -0.006383 
188  -0.60   1.30   1.00  -0.30  0.397 -0.003175 
189  -0.60   0.70   1.00   0.30  0.400  0.000000 
190  -0.60   0.10   1.00   0.90  0.403  0.003141 
191   1.40  -0.50  -1.00  -0.50  0.396 -0.004167 
192  -0.60   0.90   1.00   0.10  0.399 -0.001036 
193  -0.60   0.30   1.00   0.70  0.402  0.002062 
194   1.40  -0.30  -1.00  -0.70  0.395 -0.005128 
195  -0.60   1.10   1.00  -0.10  0.398 -0.002041 
196  -0.60   0.50   1.00   0.50  0.401  0.001015 
197   1.40  -0.10  -1.00  -0.90  0.394 -0.006061 
198  -0.60   1.30   1.00  -0.30  0.397 -0.003015 
199  -0.60   0.70   1.00   0.30  0.400  0.000000 
200  -0.60   0.10   1.00   0.90  0.403  0.002985 



 

8-bit accuracy would require Qe(avg) < 1/2LSB or 0.5*VREF/28, or Qe(avg) < 1.95mV. 
by modifying the code above to only print out errors greater than this threshold, we can 
see that this requires >300 cycles. 
 
(Ran 1000 times) 
k  va  vu  vq  Qe vq(avg)  Qe(avg) 
200  -0.60   0.10   1.00   0.90  0.403  0.002985 
203  -0.60   0.30   1.00   0.70  0.402  0.001961 
210  -0.60   0.10   1.00   0.90  0.403  0.002844 
220  -0.60   0.10   1.00   0.90  0.403  0.002715 
230  -0.60   0.10   1.00   0.90  0.403  0.002597 
240  -0.60   0.10   1.00   0.90  0.402  0.002490 
250  -0.60   0.10   1.00   0.90  0.402  0.002390 
260  -0.60   0.10   1.00   0.90  0.402  0.002299 
270  -0.60   0.10   1.00   0.90  0.402  0.002214 
280  -0.60   0.10   1.00   0.90  0.402  0.002135 
290  -0.60   0.10   1.00   0.90  0.402  0.002062 
300  -0.60   0.10   1.00   0.90  0.402  0.001993 

 
12-bit accuracy would require Qe(avg) < 122uV, which requires >4910 cycles. 
 
(Ran 10000 times) 
k  va  vu  vq  Qe vq(avg)  Qe(avg) 
4770  -0.60   0.10   1.00   0.90  0.400  0.000126 
4780  -0.60   0.10   1.00   0.90  0.400  0.000125 
4790  -0.60   0.10   1.00   0.90  0.400  0.000125 
4800  -0.60   0.10   1.00   0.90  0.400  0.000125 
4810  -0.60   0.10   1.00   0.90  0.400  0.000125 
4820  -0.60   0.10   1.00   0.90  0.400  0.000124 
4830  -0.60   0.10   1.00   0.90  0.400  0.000124 
4840  -0.60   0.10   1.00   0.90  0.400  0.000124 
4850  -0.60   0.10   1.00   0.90  0.400  0.000124 
4860  -0.60   0.10   1.00   0.90  0.400  0.000123 
4870  -0.60   0.10   1.00   0.90  0.400  0.000123 
4880  -0.60   0.10   1.00   0.90  0.400  0.000123 
4890  -0.60   0.10   1.00   0.90  0.400  0.000123 
4900  -0.60   0.10   1.00   0.90  0.400  0.000122 
4910  -0.60   0.10   1.00   0.90  0.400  0.000122 
 
 

16-bit accuracy would require Qe(avg) < 7.63uV, which requires >78630 cycles. 
 
(Ran 100000 times) 
k  va  vu  vq  Qe vq(avg)  Qe(avg) 
78530  -0.60   0.10   1.00   0.90  0.400 0.000007640 
78540  -0.60   0.10   1.00   0.90  0.400 0.000007639 
78550  -0.60   0.10   1.00   0.90  0.400 0.000007638 
78560  -0.60   0.10   1.00   0.90  0.400 0.000007637 
78570  -0.60   0.10   1.00   0.90  0.400 0.000007636 
78580  -0.60   0.10   1.00   0.90  0.400 0.000007635 
78590  -0.60   0.10   1.00   0.90  0.400 0.000007634 
78600  -0.60   0.10   1.00   0.90  0.400 0.000007633 
78610  -0.60   0.10   1.00   0.90  0.400 0.000007633 
78620  -0.60   0.10   1.00   0.90  0.400 0.000007632 
78630  -0.60   0.10   1.00   0.90  0.400 0.000007631 
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29.38 Prove that the output of the second-order 

€ 

ΣΔ  modulator shown in Fig. 29.49 is, 
 

€ 

y kT( ) = x kT −T( ) +Qe kT( ) − 2Qe kT −T( ) +Qe kT − 2T( ) 
 

 
In order to prove that the above equation is that of the second-order sigma delta modulator we 
first start by determining the intermediate voltages shown above:  
 

€ 

u1 kT( ) = x kT( ) − y kT( ) + u1 kT −T( )  
 

€ 

u2 kT( ) = u1 kT −T( ) − y kT −T( ) + u2 kT −T( ) 
 
The equations above have taken 

€ 

q kT( ) = y kT( ) for an ideal 1-bit DAC. We can plug 

€ 

u1 kT( ) 
into 

€ 

u2 kT( )and get: 
 

€ 

u2 kT( ) = x kT −T( ) − y kT −T( ) + u1 kT − 2T( ) − y kT −T( ) + u2 kT −T( )  
 
The quantization noise of the ADC can be written as: 
 

€ 

Qe kT( ) = y kT( ) − u2 kT( )  
 
We can use the quantization noise equation above in two places. First we can rewrite 

€ 

u2 kT( )with 
the quantization noise, and then we can plug 

€ 

u2 kT( ) into the quantization noise equation to solve 
for 

€ 

y kT( ) . 
 

€ 

u2 kT( ) = x kT −T( ) − y kT −T( ) + u1 kT − 2T( ) −Qe kT −T( )  
 

€ 

y kT( ) =Qe kT( ) + u2 kT( )  
 

€ 

y kT( ) =Qe kT( ) + x kT −T( ) − y kT −T( ) + u1 kT − 2T( ) −Qe kT −T( )  
 
The 

€ 

u1 kT − 2T( ) term is the only term that will not be in our final equation. In order to 
change this term we can use the 

€ 

u2 kT( ) equation: 
 

€ 

u1 kT( )
 

€ 

Qe kT −T( )
 

€ 

u2 kT( ) 
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€ 

u2 kT( ) = u1 kT −T( ) − y kT −T( ) + u2 kT −T( ) 
 
Solving for 

€ 

u1 kT −T( ): 
 

€ 

u1 kT −T( ) = u2 kT( ) + y kT −T( ) − u2 kT −T( ) 
 
Advancing time by one clock cycle gives: 
 

€ 

u1 kT − 2T( ) = u2 kT −T( ) + y kT − 2T( ) − u2 kT − 2T( )  
 
Plugging this into our 

€ 

y kT( )equation gives: 
 

€ 

y kT( ) =Qe kT( ) + x kT −T( ) − y kT −T( ) + u2 kT −T( ) + y kT − 2T( ) − u2 kT − 2T( ) −Qe kT −T( )
 

 
Rearranging: 
 

€ 

y kT( ) = x kT −T( ) +Qe kT( ) − y kT −T( ) + u2 kT −T( ) −Qe kT −T( ) + y kT − 2T( ) − u2 kT − 2T( )
 
Using the quantization equation gives: 
 

€ 

y kT( ) = x kT −T( ) +Qe kT( ) − 2Qe kT −T( ) +Qe kT + 2T( )  

€ 

Qe kT − 2T( )
 

€ 

Qe kT −T( )
 



Chris Gagliano 

 

29.39 Assume that a first order Σ∆ ADC used on a satellite in a low earth orbit experiences 

radiation in which an energetic particle causes a noise spike resulting in the comparator 

making the wrong decision on the 10
th

 clock period. Using the program written in 

Problem 29.37, determine the number of clock cycles required before the average value 

of vq(kT) is within 12-bit accuracy of the ideal value of 0.4 V. How many extra clock 

cycles were required for this case versus the ideal conversion used in Prob. 37? 

 

For this problem, I wrote a Perl script to perform the analysis shown in Ex. 29.16. The script was 

used to solve problem 29.37 (referenced by this problem) as well so the comparison can be made 

between the ideal case (problem 29.37) and the case in this problem where the comparator makes 

the wrong decision on the 10
th
 clock period. To determine if the average value of Vq(kT) stays 

within the chosen accuracy, I check that all of the values within a certain window size be within 

the chosen accuracy. I somewhat arbitrarily selected a window size of 5 values. 

 

The results are summarized below and the Perl code follows. In short, the wrong decision on 

cycle 10 in this problem does not affect the point at which the average value of Vq(kT) stays 

within the chosen accuracy for the chosen window size of 5. However, we can see that the clock 

cycle at which the average value of Vq(kT) initially becomes exactly equal to the ideal value of 

0.4 V changes from clock cycle 10 in the ideal case to clock cycle 20. 

 
Running until Avg Vq(kT) is 12-bit accurate (between 0.3997558594 and 0.4002441406) for 5 cycles 

   k     Vq(kT)     Vu(kT)     Vq(kT)     Qe(kT)      Avg Vq(kT) 

   0     -0.600      0.100      1.000      0.900    1.0000000000 
   1      1.400     -0.500     -1.000     -0.500    0.0000000000 
   2     -0.600      0.900      1.000      0.100    0.3333333333 
   3     -0.600      0.300      1.000      0.700    0.5000000000 
   4      1.400     -0.300     -1.000     -0.700    0.2000000000 
   5     -0.600      1.100      1.000     -0.100    0.3333333333 
   6     -0.600      0.500      1.000      0.500    0.4285714286 
   7      1.400     -0.100     -1.000     -0.900    0.2500000000 
   8     -0.600      1.300      1.000     -0.300    0.3333333333 
   9      1.400      0.700     -1.000     -1.700    0.2000000000 
  10     -0.600      2.100      1.000     -1.100    0.2727272727 
  11     -0.600      1.500      1.000     -0.500    0.3333333333 
  12     -0.600      0.900      1.000      0.100    0.3846153846 
  13     -0.600      0.300      1.000      0.700    0.4285714286 
  14      1.400     -0.300     -1.000     -0.700    0.3333333333 
  15     -0.600      1.100      1.000     -0.100    0.3750000000 
  16     -0.600      0.500      1.000      0.500    0.4117647059 
  17      1.400     -0.100     -1.000     -0.900    0.3333333333 
  18     -0.600      1.300      1.000     -0.300    0.3684210526 
  19     -0.600      0.700      1.000      0.300    0.4000000000 
   . 
   . 
   . 
 
Running until Avg Vq(kT) is 12-bit accurate (between 0.3997558594 and 0.4002441406) for 5 cycles 

   k     Vq(kT)     Vu(kT)     Vq(kT)     Qe(kT)      Avg Vq(kT) 

   0     -0.600      0.100      1.000      0.900    1.0000000000 
   1      1.400     -0.500     -1.000     -0.500    0.0000000000 
   2     -0.600      0.900      1.000      0.100    0.3333333333 
   3     -0.600      0.300      1.000      0.700    0.5000000000 
   4      1.400     -0.300     -1.000     -0.700    0.2000000000 
   5     -0.600      1.100      1.000     -0.100    0.3333333333 
   6     -0.600      0.500      1.000      0.500    0.4285714286 
   7      1.400     -0.100     -1.000     -0.900    0.2500000000 
   8     -0.600      1.300      1.000     -0.300    0.3333333333 
   9     -0.600      0.700      1.000      0.300    0.4000000000 
   . 
   . 
   . 
 

P29.39: Comparator makes 

wrong decision on cycle 10 

Ideal Case (P29.37) 

Initially converges to 0.4 V at cycle 20. 

Initially converges to 0.4 V at cycle 10 



Overall, the comparator making a wrong decision on cycle 10 does not affect when the average 

value of Vq(kT) finally reaches and stays within the 8-, 12-, or 16-bit accuracy as shown in the 

table below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Perl Code: 
# P29.39 - N-bit accurate w/ error on 10th cycle 
 
# Get input argument 
if(exists($ARGV[0])) { 
   $N = $ARGV[0];    # Number of bits of accuracy 
} 
else { 
   die "ERROR: Must supply input argument (N). For example: $0 8\n"; 
} 
 
$output_file = sprintf("P29.39_%d_bit_sim_output.txt", $N); 
 
$Vref = 1.0; # Vref 
$Vx = 0.4;   # Input voltage is DC 0.4V 
 
$max_delta = $Vref / (2 ** $N);   # Vref/(2^N) = 1 LSB 
$window = 5;                      # Number of cycles for which the Average Vq stays within Vx +/- 
max_delta 
 
@Va = (); 
@Vu = (); 
@Vq = (); 
@Qe = (); 
@Avg_Vq = (); 
 
$Vu[0] = 0.1; # Initial condition. Integrator output = 0.1V. 
 
$sum = 0; 
$k = 0; 
$converged = 0; 
while(!$converged) 
{ 
   if($k > 0) { 
      $Vu[$k] = $Vu[$k-1] + $Va[$k-1]; # Eq (29.102) 
   } 
   if($Vu[$k] > 0) { 
      $Vq[$k] = $Vref; 
   } 
   else { 
      $Vq[$k] = -$Vref; 
   } 
 
   # Problem 29.39: The comparator makes a wrong decision on the 10th cycle 
   if($k == 9) { 
      $Vq[$k] = -$Vq[$k];  # Invert the decision made on the 10th clock cycle 
   } 
 
   $Va[$k] = $Vx - $Vq[$k];      # Eq (29.103) 

 



   $Qe[$k] = $Vq[$k] - $Vu[$k];  # Eq (29.104) 
 
   # Calculate Average Vq 
   $sum += $Vq[$k]; 
   $Avg_Vq[$k] = $sum / ($k+1); 
 
   # Check to see if we have converged to Vx +/- max_delta for the given window size 
   if(($k+1) >= $window) { 
      $converged = 1; # Start off optimistic 
      for($i=0; $i < $window; $i++) { 
         if(($Avg_Vq[$k-$i] < ($Vx - $max_delta)) || ($Avg_Vq[$k-$i] > ($Vx + $max_delta))) { 
            $converged = 0; # Avg Vq is outside of Vx +/- max_delta, so keep going 
         } 
      } 
   } 
 
   $k++; 
} 
 
$num_clocks = $k; 
 
# Print results (to screen and output file) 
open(OUTPUT, ">$output_file"); 
printf(       "Running until Avg Vq(kT) is %d-bit accurate (between %.10f and %.10f) for %d 
cycles\n", $N, ($Vx - $max_delta), ($Vx + $max_delta), $window); 
printf(OUTPUT "Running until Avg Vq(kT) is %d-bit accurate (between %.10f and %.10f) for %d 
cycles\n", $N, ($Vx - $max_delta), ($Vx + $max_delta), $window); 
printf(       "%4s %10s %10s %10s %10s %15s\n", "k", "Vq(kT)", "Vu(kT)", "Vq(kT)", "Qe(kT)", "Avg 
Vq(kT)"); 
printf(OUTPUT "%4s %10s %10s %10s %10s %15s\n", "k", "Vq(kT)", "Vu(kT)", "Vq(kT)", "Qe(kT)", "Avg 
Vq(kT)"); 
for($k=0; $k < $num_clocks; $k++) 
{ 
   printf(       "%4d %10.3f %10.3f %10.3f %10.3f %15.10f\n", $k, $Va[$k], $Vu[$k], $Vq[$k], 
$Qe[$k], $Avg_Vq[$k]); 
   printf(OUTPUT "%4d %10.3f %10.3f %10.3f %10.3f %15.10f\n", $k, $Va[$k], $Vu[$k], $Vq[$k], 
$Qe[$k], $Avg_Vq[$k]); 
} 
close(OUTPUT); 
 
exit; 
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