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30.1 Assuming the DAC shown in Fig. 30.1 is 8 bits and 
+REFV = 1 V and 

−REFV = 0 V, what are 

the voltages on each of the R-2R taps? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Eq. (30.1): 
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 where X is the X

th
 tap. 

Since 
+REFV = 1 V and 

−REFV = 0 V, we can rewrite the equation as: 
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8-bit current-mode R-2R DAC 



The tap voltages are shown on the schematic below. 
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Sakkarapani Balagopal 

(P.30.2)Give an example of how the traditional current-mode DAC will have limited output swing. 

Consider traditional current mode R-2R DAC shown in the figure 30.2-1. The amount of current flowing 

through each 2R resistor depends on the node voltage TAPX and VREF-. The current through 2R resistor is 

either diverted to inverting or non-inverting input of the operational amplifier depends on the digital 

inputs (b0 to bn-1). The main problem with this topology is limited output swing. In order to explain 

limited output swing of the DAC, assume the operational amplifier have an infinite gain and no offset.  

 

Figure 30.2-1 Traditional R-2R DAC. 

Case (i) VREF+ > 0V or VDD; VREF-=0V 

For the given case, inverting and non-inverting nodes of the operational amplifier are always at 0V. For 

any digital input bits, the current flows from VREF+ to inverting node (0V) and flow through feedback 

resistor. From equation 30.2-1, it is clear that the output voltage is always being negative. But this can’t 

happen when power supply voltage is VDD or positive. Figure 30.2-2 shows the simulation results of the 3-

bit DAC. It clearly shows that the output voltage swings from -5V to 0. 

RIV TotalOut .      (30.2.1) 
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Figure 30.2-2 Output of 3-bit DAC when VREF+ = 5V and VREF- = 0V.  

Case (ii) VREF- > VREF+ (or) VREF- = VDD; VREF+ = 0V 

For the given case, inverting and non-inverting nodes of the operational amplifier are always at VDD. For 

any digital inputs, the current flows from output node to inverting node (VDD) of the operational amplifier 

through feedback resistor R and reaches VREF+ through 2R resistor depends on input digital bits. From 

equation 30.2-3, output voltage is always being positive and more than VDD. But this can’t happen when 

power supply voltage is VDD. Figure 30.2-3 shows the simulation results of the 3-bit DAC. It clearly 

shows that the output voltage swings from 5V to 10V. 

RIVV TotalDDOut .      (30.2.3) 

 

Figure 30.2-3 Output of 3-bit DAC when VREF+ = 0V and VREF- = 5V.  
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Case (iii) VREF+ = VDD; VREF-=VDD/2 

For the given case, inverting and non-inverting nodes of the operational amplifier are always at VDD/2. 

For any digital inputs, the current flows from VREF+ to output node through 2R and feedback resistor R. 

From equation 30.2-4, output voltage swings between VREF- and VREF- - (VREF+-VREF-). Figure 30.2-4 

shows the simulation results of the 3-bit DAC. It clearly shows that the output voltage swings from 0V to 

2.5V. 

RI
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V Total
DD

Out .
2

      (30.2.4) 

 

Figure 30.2-4 Output of 3-bit DAC when VREF+ = 5V and VREF- = 2.5V.  

In all the three cases, either output swings above or below the power supply voltage or only half of the 

power supply voltage. This also reduces the dynamic range of the DAC, which is usually not desirable. 

This concludes that the traditional R-2R DAC have limited output swing.  
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30.3! Repeat Problem 30.1 for the DAC shown in Fig. 30.2.

Problem 30.1:  Assuming the DAC shown in Fig. 30.1 is 8 bits and VREF+ = 1V and VREF- 
= 0, what are the voltages on each of the R-2R taps?

Applying KCL at each node (T7 -> T0), we can derive the following equations for the 
node voltages:
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Knowing the digital input, we can solve for the tap voltages.  
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For VREF+ = 1V and VREF- = 0V and digital input of 0000 0001, we solve the matrix above 
and get the following node voltages:

VT7=0.0039
VT6=0.0059
VT5=0.1074
VT4=0.0210
VT3=0.0417
VT2=0.0834
VT1=0.1667
VT0=0.3333

VT7 is V+ which for 0000 0001 should be 1 LSB (VREF+/28) or 0.0039V.  The tap voltages 
can similarly be calculated for all 28 input combinations.  

An alternative method for calculating the node voltage would be to use superposition 
and determine the contribution from each bit at a given node.  For example, the 

contribution from b7 to VT7 or V+ would be  b7 ⋅VREF+ + b7 ⋅VREF+
2

.  Equation 30.5 was 

derived in this manner.



30.4 For the wide-swing current mode DAC shown in Fig. 30.3, what are the voltages 
at the taps along the R-2R string assuming 8 bits, VREF+ = 1 V, VREF- = 0, and a 
digital input code of 0000 0000? 

 

 
 
Using LTSpice with the schematic below, we can find the voltages of each node. 
 

 
 
 

Spice Output: 
V(v7):  0.5  voltage 
V(v6):  0.746094  voltage 
V(v5):  0.865234  voltage 
V(v4):  0.916992  voltage 
V(v3):  0.927246  voltage 
V(v2):  0.901123  voltage 
V(v1):  0.825562  voltage 
V(v0):  0.662781  voltage 
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30.5 Can the op-amp shown in Fig. 30.37 be used in fully-differential implementations of the 

DACs shown in Figs. 30.1 – 30.3? Why or why not? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The op-amp in Fig. 30.37 is an OTA without an output buffer. It is fine to use in a S/H circuit 

when driving a purely capacitive load. However, the DACs in Figs. 30.1 – 30.3 have a feedback 

resistor connected to the output. This resistive load will kill the gain of the OTA and will be 

detrimental to the correct operation of the DAC. Additionally, the stability of an OTA without an 

output buffer is directly related to the load capacitance. From Eq. 24.44, 
L

m

un
C

g
f

⋅
=

π2
. As the 

load capacitance is decreased, the unity gain frequency of the OTA will push out, resulting in 

less phase margin. This is demonstrated below in the simulation of Fig. 24.36 with a 1 pF load 

capacitance versus a 50 fF load capacitance. The DACs in Figs. 30.1 – 30.3 may drive a small 

load capacitance and so the stability of the op-amp would be a concern. 

 

Showing just the op-amp schematic from Fig. 30.37 

CL = 1 pF 

CL = 50 fF 

Fig. 24.36 Simulation with CL = 1 pF and CL = 50 fF 
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(P.30.6) Show the detailed derivation of Eqs. (30.12)-(30.14). 

The step error of the current flowing through the feedback resistor RF, due to the resistor 

mismatch at the midscale transition, is given in equation 30.6.1. 
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The final output step error (DNL) is given, under the assumption of RF=R, in equation 30.6.2. 
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Multiply both sides of equation 30.6.3 by   RRRR  . , 
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Take RR.  out of equation 30.6.4 results,  
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Since 
R

R
<<

R

R


; 

R

R
 is neglected in equation 30.6.5 and simplified as follow, 
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Since 
R

R
<< 1; 

R

R
 is neglected in equation 30.6.6 and simplified as follow, 

      










 

.2

1
..

NREFREF
R

R
VVRIDNL  

For the DNL to be within 1LSB, the required matching of the resistor is given as 
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30.7! Why would we want to use both current segments and binary-weighted 
currents to implement a current-mode DAC?  (Why use segmentation?)

Using binary-weighted currents for the LSBs and current segments for the MSBs, or 
segmenting, is typically used to help improve DNL.  It also allows for the use of less 
accurate components while still achieving good DNL.  It is important to note that 
segmentation does not improve INL.

The advantage of segmentation can easily be seen by looking at the worst-case DNL 
(when the input code transistions from 0111... to 1000...).  Using the DAC in figure 30.5, 
transitioning from 0111... to 1000... would increase the current IF from 2047μA to 
2048μA.  If we can only allow 1/2 LSB error, the MSB current accuracy would have to 
be less than +/-0.024% (0.5/2048).  This would be very challenging.

Now letʼs consider the case where we use 8 segments for 3 MSBs (See Figure 30.6).  
Each time the 4 MSBs increment, 256μA is added to IF.  Now, when we transition from 
0111... to 1000... we are adding in a segment of 256μA rather than 2048μA.  For 1/2 
LSB error in this case, the current accuracy would only have to be +/-0.195% to 
maintain 1/2 LSB error.
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30.8 Why do we subtract ΔA in Eq. (30.36)?  Why not add the gain variation? 

 
We want to derive the AOLDC that is necessary to have ½ LSB accuracy in our data 
converter.  The assumption is that the feedback components are ideal, and so the gain 
variation is caused by AOLDC < ∞.  The maximum value that ACL can be is 1/β in the ideal 
case when AOLDC is ∞, so the gain variation must be less than the ideal case, caused by 
AOLDC < ∞.  Therefore, we must subtract the gain variation from the ideal ACL.  
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30.9 Does the matching of the capacitors matter in the S/H of Fig. 30.31? Why or why 
not? 

 

 
 
 
No.  Since the two sides of the diff amp never interact, and there is no charge sharing 
between the capacitors, the matching between the two is not of consequence.  The 
important thing is that the timing of the switching is sufficient to full charge both 
capacitors, and that the capacitors are big enough that any leakage component during the 
hold phase won’t significantly change the voltage across the capacitor. 
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30.10! Derive the transfer function of the S/H in Fig. 30.30 if VCM on the left side of the 
schematic is replaced with ground so that the bottom plates of the C1 capacitors are 
grounded when Φ3 goes high.

To calculate the transfer function of the S/H we start by writing equations for the charge 
stored on CI and CF during the sample (Φ1, Φ2 high) and also during the hold (Φ3 high).  
For the positive input, the charge stored on CI and CF during the sample is:

Qφ1
I = CI ⋅ vin+ −Vcm ±VOS( )

Qφ1
F = CF ⋅ vin+ −Vcm ±VOS( )

When Φ3 goes high (Φ2 and Φ1 are low), the change on CI is:

Qφ3
I = CI ⋅ 0 −VX+ ±VOS( )

Note that when Φ3 closes the input to the opamp canʼt stay at VCM if charge is to be 
conserved, it is labeled as VX+ in the previous equation. 
The charge on CF (QF

Φ3 ) can be written as:

QF
Φ3 = QF

Φ1 +QI
Φ1 −QI

Φ3   

Gnd



(the charge on CF from the sample + difference in charge on CI between the sample and 
hold).  QF

Φ3 can also be written with respect to the output as:

Qφ3
F = CF ⋅ vout+ −VX+ ±VOS( )

Combining the above equations yields:

CF ⋅ vout+ −Vx+ ±VOS( ) = QF
Φ1 +QI

Φ1 −QI
Φ3

CF ⋅ vout+ −Vx+ ±VOS( ) = CF ⋅ vin+ −Vcm ±VOS( ) + CI ⋅ vin+ −Vcm ±VOS( ) − CI ⋅ 0 −Vx+ ±VOS( )
CF ⋅ vout+ −Vx+ ±VOS( ) = CF ⋅ vin+ −Vcm ±VOS( ) + CI ⋅ vin+ −Vcm( ) + CI ⋅ Vx+( )
vout+ = vin+ −Vcm +Vx +

CI

CF

⋅ vin −Vcm +Vx+( )

vout+ = 1+ CI

CF

⎛
⎝⎜

⎞
⎠⎟
vin+ − 1+ CI

CF

⎛
⎝⎜

⎞
⎠⎟
Vcm −Vx+( )

Similarly for the negative side:

vout− = 1+ CI

CF

⎛
⎝⎜

⎞
⎠⎟
vin− − 1+ CI

CF

⎛
⎝⎜

⎞
⎠⎟
Vcm −Vx−( )

For fully differential signals the equation becomes:

vout+ − vout−( ) = 1+ CI

CF

⎛
⎝⎜

⎞
⎠⎟
⋅ vin+ − vin−( )

vout
vin

= 1+ CI

CF

⎛
⎝⎜

⎞
⎠⎟



A simulation of the circuit is shown below - notice that the opamp input terminal pulses 
down to 250mV when Φ3 goes high.
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(P.30.11)Determine the transfer function of S/H in Fig. 30.34 if the top left ϕ2-controlled switch 

is connected to the input instead of VCM. Include the offset and simulate the operation of the 

circuit to verify your calculation.  

 

Figure 30.11-1 Single ended to differential S/H. 

The relationship between the output and input of the S/H shown in the figure 30.11-1 if the top 

left ϕ2-controlled switch is connected to the input instead of VCM can be determined as follow. 

Calculation of vout+ 

The charge stored on CI and CF from vin+ input when ϕ1,2 switches are closed is given as  

     OSinIOSCMCMinIOSCMinII VvCVVVvCVVvCQ  

2,1  (30.11-1) 

      OSinFOSCMCMinFOSCMinFF VvCVVVvCVVvCQ  

2,1   (30.11-2) 

where VOS is the offset voltage of the operational amplifier, vin and VCM are input signal and the 

common mode voltage. When ϕ3 goes high, the charge on CI and CF is given as 

 
 OSCMxII VVVCQ 3      (30.11-3) 

 OSCMOutFF VVvCQ  

3      (30.11-4) 

where Vx is the voltage on the bottom plate of the capacitor CI when ϕ3 switch is closed.  

The difference between the summation of 2,1
IQ  , 2,1

FQ and 3
IQ is the charge transferred to CF 

when ϕ3 goes high. The voltage is then determined knowing charge must be conserved. 

32,12,13 
IFIF QQQQ       (30.11-5) 

       OSCMxIOSinFOSinIOSCMOutF VVVCVvCVvCVVvC    (30.11-6) 

By simplifying 30.14-6, vout+ can be determined as 
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  
















 11

F

I
CMx

F

I

F

I
inOut

C

C
VV

C

C

C

C
vv     (30.11-7) 

Calculation of vout- 

The charge stored on CI and CF from vin- input when ϕ1,2 switches are closed is given as 

   OSIOSCMinII VCVVvCQ  

2,1    (30.11-8) 

    OSFOSCMinFF VCVVvCQ  

2,1     (30.11-9) 

When ϕ3 goes high, the charge on CI and CF is given as 

 OSCMxII VVVCQ 3      (30.11-10)
 

 OSCMOutFF VVvCQ  

3      (30.11-11) 

The difference between the summation of 2,1
IQ , 2,1

FQ and 3
IQ is the charge transferred to CF 

when ϕ3 goes high. The voltage is then determined knowing charge must be conserved. 

32,12,13 
IFIF QQQQ       (30.11-12) 

       OSCMxIOSFOSIOSCMOutF VVVCVCVCVVvC    (30.11-13) 

By simplifying 30.14-13, vout- can be determined as 

  







 1

F

I
CMx

F

I
Out

C

C
VV

C

C
v      (30.11-14) 

From equation 30.14-7, 14, transfer function or relationship between output and input can be 

written as  

     

























  111

F

I
CMx

F

I

F

I
CMx

F

I

F

I
inOUTOUTOUT

C

C
VV

C

C

C

C
VV

C

C

C

C
vvvv  

  (30.11-15) 









 1

F

I

in

OUT

C

C

v

v
     (30.11-16) 

Notice in equation 30.14-16, operational amplifier offset is auto zeroed out and the signal is 

centered at 0 rather than VCM. 
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Figure 30.11-2 shows the simulation set-up with VOS of 50mV on inverting terminal of fully 

differential operational amplifier with CF=CI=1pF. As derived in equation 30.11-16, the output 

results with a gain of 2 and centered at 0V are shown in the figure 30.11-3.  

 

Figure 30.11-2 Simulation Set-up. 

 

 

Figure 30.11-3 Simulation Result. 
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30.12 Repeat Ex. 30.10 if the cyclic ADC’s input is 0.41 V. 

 

The block diagram of a cyclic ADC is shown in Figure 30.38. 

 

For this problem we 

have: 

N = 8 

REFV  = 1 V 

CMV  = 0.5 V 

INV  = 0.41 V 

 

The operation of the 

8-bit cycle ADC 

with an input 

voltage of 0.41 V is 

shown in the table 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final output of the ADC hold register is 01101000. 

 

To verify, we can calculate the corresponding voltage: 

 V 0.41 V 0.40625
32

1

8

1

4

1
, ≈=++=convertedINV  
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30.13 Is kick-back noise from the comparator a concern for the circuit of Fig. 30.39? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kick-back noise from the comparator is not a concern. 2φ  and 

3φ  are nonoverlapping clocks. When the comparator is clocked 

with 3φ , the +inv  and −inv  inputs are already disconnected from 

the comparator circuit since the 2φ  switches are open. Therefore, 

the S/H input voltage is not corrupted by kick-back noise from 

the comparator.  

 

Comparator 

Clocks used in Fig. 30.39 
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(P.30.14)Derive the transfer function for the circuit shown in the Fig.30.80. 

 

Figure 30.14-1 Circuit used in problem 30.14. 

The relationship between the output and intput of the sample and hold circuit shown in the figure 

30.14-1 can be determined as follow. The charge stored on CI and CF when ϕS switches are 

closed is given as  

 OSCMinI

s

I VVvCQ  

      (30.14-1) 

  OSCMCFF

s

F VVVCQ  

       (30.14-2) 

where VOS is the offset voltage of the operational amplifier, vin+ and VCM are the differential 

input signal and common mode voltage. When ϕH goes high, the charge on CI is  

 OSCMCII

h

I VVVCQ  

      (30.14-3) 

The difference between 
s

IQ
and

h

IQ
is transferred to CF when ϕh goes high. The voltage is then 

determined knowing charge must be conserved. 

s

F

s

I

h

F

h

I QQQQ         (30.14-4) 

             )OSCMCIIOSCMCFFOSCMinIOSCMOUTF VVVCVVVCVVvCVVvC    

By simplifying above equation, the output voltage is determined as   

  CIICFFinIOUTF VCVCvCvC
      

(30.14-5) 

The positive output voltage can be written as  

  CI

F

I
CFin

F

I
OUT V

C

C
Vv

C

C
v       (30.14-6) 
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From equation 30.14-6, the negative output voltage can be written as  

  CI

F

I
CFin

F

I
OUT V

C

C
Vv

C

C
v      (30.14-7) 

From equation 30.14-6 and 30.14-7, the fully differential output signal or transfer function of the 

circuit in figure 30.14-1 can be written as follow, 

       CICI

F

I
CFCFinin

F

I
OUTOUTOUT VV

C

C
VVvv

C

C
vvv  (30.14-8) 

The block diagram of the equation 30.14-7 is shown in the figure 30.14-2. 

S/Hvin

F

I

C

C    CFCF VV

   CICI

F

I VV
C

C

vOut

 

Figure 30.14-2 Block diagram of equation 30.14-7. 
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30.15! Repeat Ex. 30.16 if the input voltage is 0.41V.

Repeat Ex. 30.10 if 1.5 bits/stage are used.  Assume the converter is ideal and the 
comparators switch precisely at VCM/2 (=250mV here) and 3VCM/2 (= 750mV here).  
Assume all latches initially contain zeros.

The transfer curve for the 1.5 bits/stage ADC is shown below.

For the first stage, VIN = 410mV.  With VIN between VCM/2 and 3VCM/2, a1.5(7)b1.5(7) would 
be 01.  Therefore, we subtract VCM/2 (250mV) from the VIN, multiply by 2, and feed it to 
the next stage (VOUT would be 320mV).    The digital output bits are then determined 
based on the a1.5(n)b1.5(n) and carry value cn. To determine the digital outputs, we use 
equations 30.67, 30.68, 30.71, and 30.72 as shown below.

b0 = a1.5(0)b1.5(0)
c0 = a1.5(0)
b1 = a1.5(1)b1.5(1) ⊕ c0
c1 = a1.5(1)b1.5(1)c0
bn−1 = a1.5(n−1)b1.5(n−1) ⊕ a1.5(n−2) ⊕ cn−2
cn−1 = a1.5(n−1)b1.5(n−1)a1.5(n−2) + cn−2 a1.5(n−1)b1.5(n−1) + a1.5(n−2)( )
bn = a1.5(n−1) ⊕ cn−1

VIN, a1.5nb1.5n,VOUT, and Digital output for each stage are shown in the table below.



Stage VIN a1.5(n)b1.5(n) VOUT Digital Output

1 (n=7) 410mV 01 320mV b7 = a1.5(7)b1.5(7) ⊕ a1.5(6) ⊕ c6 = 1

c7 = a1.5(7)b1.5(7)a1.5(6) + c6 a1.5(7)b1.5(7) + a1.5(6)( ) = 0
2 (n=6) 320mV 01 140mV b6 = a1.5(6)b1.5(6) ⊕ a1.5(5) ⊕ c5 = 1

c6 = a1.5(6)b1.5(6)a1.5(5) + c5 a1.5(6)b1.5(6) + a1.5(5)( ) = 0
3 (n=5) 140mV 00 780mV b5 = a1.5(5)b1.5(5) ⊕ a1.5(4 ) ⊕ c4 = 1

c5 = a1.5(5)b1.5(5)a1.5(4 ) + c4 a1.5(5)b1.5(5) + a1.5(4 )( ) = 0
4 (n=4) 780mV 11 60mV b4 = a1.5(4 )b1.5(4 ) ⊕ a1.5(3) ⊕ c3 = 0

c4 = a1.5(4 )b1.5(4 )a1.5(3) + c3 a1.5(4 )b1.5(4 ) + a1.5(3)( ) = 0
5 (n=3) 60mV 00 620mV b3 = a1.5(3)b1.5(3) ⊕ a1.5(2) ⊕ c2 = 1

c3 = a1.5(3)b1.5(3)a1.5(2) + c2 a1.5(3)b1.5(3) + a1.5(2)( ) = 0
6 (n=2) 620mV 01 740mV b2 = a1.5(2)b1.5(2) ⊕ a1.5(1) ⊕ c1 = 0

c2 = a1.5(2)b1.5(2)a1.5(1) + c1 a1.5(2)b1.5(2) + a1.5(1)( ) = 1
7 (n=1) 740mV 01 980mV b1 = a1.5(1)b1.5(1) ⊕ c0 = 0

c1 = a1.5(1)b1.5(1)c0 = 1

8 (n=0) 980mV 11 460mV b0 = a1.5(0)b1.5(0) = 0
c0 = a1.5(0) = 1

- - - - b8 = a1.5(7) ⊕ c7 = 0

The bits b8 -> b0 are 0 1110 1000 (232).  Subtracting 0 0111 1111 (127) from b8->0 gives 
us our final output, which is 0 0110 1001 (105).
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30.16 Repeat Ex. 30.17 if the input voltage is 0.41 V. 

 
Equivalent problem: Determine the output of the ADC in Fig. 30.38 if the input voltage is 
0.41 V, and 1.5 bits/stage are used, and comparators switch at 305 mV and 675 mV.  
Assume all latches initially are zero. 
 

 

 
 
Using Eq. (30.60), we can find vout, where vin,k-1 = vout,k, calculating vin, a1.5xb1.5x and vout 
from k=N-1 to k=0.  We calculate the digital output bk and ck from k=0 to k=N-1.  
 
vin a1.5xb1.5x vout Digital out 
410 mV (N-1 = 7) 01 320 mV 

€ 

b7 = a1.57b1.57 ⊕ a1.56 ⊕ c6 =1 

€ 

c7 = a1.57b1.57a1.56 + c6(a1.57b1.57 + a1.56) = 0 

320 mV (N-2 = 6) 01 140 mV 

€ 

b6 = a1.56b1.56 ⊕ a1.55 ⊕ c5 =1 

€ 

c6 = a1.56b1.56a1.55 + c5(a1.56b1.56 + a1.55) = 0 

140 mV (N-3 = 5) 00 780 mV 

€ 

b5 = a1.55b1.55 ⊕ a1.54 ⊕ c4 =1 

€ 

c5 = a1.55b1.55a1.54 + c4 (a1.55b1.55 + a1.54 ) = 0  



780 mV (N-4 = 4) 11 60 mV 

€ 

b4 = a1.54b1.54 ⊕ a1.53 ⊕ c3 = 0 

€ 

c4 = a1.54b1.54a1.53 + c3(a1.54b1.54 + a1.53) = 0  

60 mV (N-5 = 3) 00 620 mV 

€ 

b3 = a1.53b1.53 ⊕ a1.52 ⊕ c2 =1 

€ 

c3 = a1.53b1.53a1.52 + c2(a1.53b1.53 + a1.52) = 0 

620 mV (N-6 = 2) 01 740 mV 

€ 

b2 = a1.52b1.52 ⊕ a1.51⊕ c1 = 0  

€ 

c2 = a1.52b1.52a1.51 + c1(a1.52b1.52 + a1.51) =1 

740 mV (N-7 = 1) 11 -20 mV 

€ 

b1 = a1.51b1.51⊕ c0 = 0 

€ 

c1 = a1.51b1.51a1.50 + c0(a1.51b1.51 + a1.50) = 0  

-20 mV (N-8 = 0) 00 460 mV 

€ 

b0 = a1.50b1.50 = 0 

€ 

c0 = a1.50 = 0  

 
and 

€ 

b8 = a1.57 ⊕ c7 = 0 .  Therefore, subtracting 001111111… to remove the (VCM - 0.5 
LSB) component, 
 
 0 1110 1000 (232) 
 – 0 0111 1111 (127) 
 0 0110 1001 (105) 
 
We can evaluate the analog equivalent of the digital output as follows. 
 

€ 

VOUT =
105
255

⋅ 1V = 412mV  
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30.17 Resketch the clock waveforms for Fig. 30.54 if bottom plate sampling were used. 

 

 
 
 
 
Figure 30.54 waveform with bottom plate sampling. 
 
 

φ1 

φ1 

φ2 φ3 

φ3 

φ3 

φ2 

φ1 

φ3 

one cycle 

Vout valid 



Justin Wood

30.18! Show the derivation leading up to Eq. (30.83).  Show, using practical values for 
mismatch, how the squared mismatch terms are negligible.

Starting with equation 30.82 the derivation is as follows:

vouth+ = 1− ΔC+

C+

⎛
⎝⎜

⎞
⎠⎟
⋅ vouta+ +

ΔC+

C+

⎛
⎝⎜

⎞
⎠⎟
⋅VCI + (30.82)

 Substituting 30.76 to replace vouta+ 

vouth+ = 1− ΔC+

C+

⎛
⎝⎜

⎞
⎠⎟
⋅ 2 ⋅ vin+ −VCI + +

ΔC+

C+

⋅ vin+ −VCI +( )⎛
⎝⎜

⎞
⎠⎟
+

ΔC+

C+

⎛
⎝⎜

⎞
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⋅VCI +



multiplying terms thru yields:

vouth+ = 2 ⋅ vin+ −VCI + +
ΔC+

C+

⋅ vin+ −VCI +( ) − 2 ⋅ vin+
ΔC+

C+

−VCI +
ΔC+

C+

+
ΔC+

C+

⎛
⎝⎜

⎞
⎠⎟

2

⋅ vin+ −VCI +( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

ΔC+

C+

⎛
⎝⎜

⎞
⎠⎟
⋅VCI +

collecting like terms and reordering yields:

vouth+ = 2 ⋅ vin+ −VCI + +
ΔC+

C+

⋅ vin+ −VCI +( ) − 2 ⋅ vin+ ΔC+

C+

+VCI +
ΔC+

C+

−
ΔC+

C+

⎛
⎝⎜

⎞
⎠⎟

2

⋅ vin+ −VCI +( ) + ΔC+

C+

⎛
⎝⎜

⎞
⎠⎟
⋅VCI +

vouth+ = 2 ⋅ vin+ −VCI + +
ΔC+

C+

⋅ vin+ −VCI +( ) − 2 ⋅ vin+ ΔC+

C+

+ 2 ⋅VCI +
ΔC+

C+

−
ΔC+

C+

⎛
⎝⎜

⎞
⎠⎟

2

⋅ vin+ −VCI +( )

vouth+ = 2 ⋅ vin+ −VCI + +
ΔC+

C+

⋅ vin+ −VCI +( ) − 2 ⋅ ΔC+

C+

⋅ vin+ −VCI +( ) − ΔC+

C+

⎛
⎝⎜

⎞
⎠⎟

2

⋅ vin+ −VCI +( )

vouth+ = 2 ⋅ vin+ −VCI + −
ΔC+

C+

⋅ vin+ −VCI +( ) − ΔC+

C+

⎛
⎝⎜

⎞
⎠⎟

2

⋅ vin+ −VCI +( )

The assumption made for equation 30.83 was that the (ΔC+/C+)2 term was negligible, 
which allows us to simplify to equation 30.83 

vouth+ = 2 ⋅ vin+ −VCI + −
ΔC+

C+

⋅ vin+ −VCI +( ) (30.83)

Letʼs assume vin = 0.5V (vin+=0.75V, vin-=0.25V).  Ideally, vout+ would equal 1V.  Our 
process typically has a 1% capacitor mismatch (1.00pF vs. 1.01pF).  Ignoring the (ΔC+/
C+)2 term the output would be: 

vouth+ = 2 ⋅0.75 − 0.5 −
0.01
1

⋅ 0.75 − 0.5( ) = 0.9975mV

If we include the (ΔC+/C+)2 term the output would be:

vouth+ = 2 ⋅0.75 − 0.5 −
0.01
1

⋅ 0.75 − 0.5( ) − 0.01
1

⎛
⎝⎜

⎞
⎠⎟
2

⋅ 0.75 − 0.5( ) = 0.997475mV

The resulting error from the squared term is two order of magnitudes smaller and is 
negligible.
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(P.30.19)What happens to the error adjustment term in Eq. (30.92) if the capacitors in the S/H 

are perfectly matched? 

The equation 30.92 is  

 
   

2





 outhoutaouthouta

outaoutaavgavg

vvvv
vvvv   (30.19-1) 

If the capacitors are perfectly matched in the S/H, the error adjustment term 

   
2

  outhoutaouthouta vvvv
 becomes zero. In order to prove that, consider the figure shown in 

figure 30.19-1.  

 

Figure 30.19-1 S/H circuit without mismatch. 

From the figure 30.19-1, vout+ and vout- can be written as follow, 

  OutaCIinOut vVvv 2       (30.19-2) 

  OutaCIinOut vVvv 2       (30.19-3) 

In order to overcome the capacitor mismatch in S/H, S/H circuit is implemented with capacitor 

error averaging as shown in the figure 30.19-2. 

 

Figure 30.19-2 S/H circuit using capacitor error averaging. 
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From figure 30.19-2, the output is given as  

  


 CIinCIinOut Vv
C

C
Vvv 2       (30.19-4) 

  


 CIinCIinOut Vv
C

C
Vvv 2       (30.19-5) 

As the problem states, if ΔC=0, then 30.19-4, 5 becomes 

  CIinOutOuth Vvvv 2       (30.19-6) 

  CIinOutOuth Vvvv 2       (30.19-7) 

From equation 30.19-6, 7 and 30.19-2, 3, it is clear that   OuthOuta vv  and   OuthOuta vv . So, the 

error adjustment term in the 30.19-1 becomes zero. Basically if there is no capacitor mismatch, 

the S/H circuit with error averaging works same as figure 30.19-1 expect taking more time.  
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30.20 Repeat Ex. 30.18 if all capacitors are 1 pF (the ideal situation) and verify that the error out of 

the stage is zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The input voltage is: 

 mVmVmVvvv ininin 500250750 =−=−= −+  

 

The output voltage (with the help of Eq (30.76) and Eq (30.77) is: 

( ) ( )







−⋅

∆
+−⋅−








−⋅

∆
+−⋅=−= −−

−

−
−−++

+

+
++−+ CIinCIinCIinCIinoutoutout Vv

C

C
VvVv

C

C
Vvvvv 22  

Since all of the capacitors are 1 pF, we have the ideal situation where 0=
∆
C

C
. 

 

We can then re-write the output equation as: 

 [ ] [ ]−−++−+ −⋅−−⋅=−= CIinCIinoutoutout VvVvvvv 22  

 [ ] [ ] VVVmVmVmVmVvvv outoutout 10150025025007502 =−=−⋅−−⋅=−= −+  

 

The simulation results are shown below. We have the ideal output voltages of Vvout 1=+  and 

Vvout 0=− , and thus the error out of the stage is 0. 

 

 

 

 

 

 

 

Figure 30.57 with all capacitors = 1 pF 

  
Error vout+ and vout- 



Chris Gagliano 

 

30.21 Sketch a circuit to provide the inputs for the four-phase, nonoverlapping clock generator 

shown in Fig. 30.81. 

 

We can refer to Figures 30.64 and 30.65 for one possible solution. The figures show an 

implementation for a three-phase nonoverlapping clock. It is a fairly trivial task to extend it to 

work for a four-phase nonoverlapping clock. 

 

Looking at Fig. 30.65, we can see that two flip-flops are used but we are only generating three 

output signals. We should be able to slightly modify the circuit to give us our four-phase 

solution. First, looking at Fig. 30.65, we can determine the values of D1, D2, Q1, Q2, In1, In2, and 

In3 as shown below. 

  

 

 

 

 

 

 

 

Notice that there is one unused state (D1=1, D2=0). We can use this state to generate the low 

pulse for the fourth output (In4 input to Fig. 30.81). The added state is shown in red in the figure 

below. 

 

 

 

 

 

 

 

 

 

 

Utilizing some simple Karnaugh maps (or just eyeball it), we can simplify the combinations 

logic for the flip-flop inputs and the output signals (In1-4) as follows: 

 1,2,1 −
= nn QD  

 
1,1,2 −

= nn QD  

 211 QQIn ⋅=  

 212 QQIn ⋅=  

 213 QQIn ⋅=  

 214 QQIn ⋅=  

 

The schematics and simulation results are shown below. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 Circuit from Fig. 30.81 
Solution to Problem 30.21 

 
Simulation Results (Tclk=20ns) 



Sakkarapani Balagopal 

(P.30.22)What is the main advantage of using dynamic CMFB over other CMFB circuits? What 

is the main disadvantage? 

Main advantages of using dynamic CMFB over other CMFB circuits are  

(i) Dynamic CMFB loop set no restriction on maximum allowable differential input 

signal unlike other CMFB circuits. 

(ii) Dynamic CMFB have no additional parasitic poles in common mode loop. 

(iii) No slew rate limitation and unity gain of frequency in common mode loop like other 

CMFB circuits.  

(iv) Loading of common load loop is relaxed with dynamic CMFB. 

(v) Switched capacitor resistors used in dynamic CMFB performs both averaging and the 

differencing needed for CMFB amplifier. 

(vi) During sampling phase, the operational amplifier inputs are forced to VCM rather than 

forcing it to VCM+VOS like other topologies. 

(vii) Dynamic CMFB is very linear. 

Main disadvantages of using dynamic CMFB over other CMFB circuits are 

(i) Other CMFB circuits don’t have charge injection and leakage current errors for faster 

settling and lower clock feed through noise. 

(ii) Additional switches in dynamic CMFB circuitry to avoid operational amplifier output 

to sink/source a current into VCM causes the operational amplifier output to approach 

the power supply rails during sample phase. But this is not a big issue on OTA based 

design. 

 



Justin Wood

30.23! Can MOSFETs be used to implement the on-chip decoupling capacitors in Fig. 
30.77?

Yes.  Typically the decoupling capacitors are very large, but it is common to split it up 
into many smaller capacitors connected in parallel, which would allow an array of 
MOSFETs to serve as the decouping capacitor.  However, depending on the MOSFET 
characteristics problems would arise.  One potential problem with using MOSFETs 
would be an increased leakage over other types of capacitors.  Leakage thru the 
MOSFETs results in the DC current flowing in our reference voltages, which typically is 
not desired.  The DC current can cause a drop in supply voltage to the analog or digital 
circuit and consequently cause problems when the output signal approaches your 
supply voltage.

Using thick gateox MOSFETs may result in less leakage, but results in a tradeoff for 
layout area as the MOSFET capacitance would also drop.  They may also be 
advantages to using PMOS vs. NMOS depending on the process as they may be better 
isolated from substrate noise that could couple onto the supplies.

There would obviously be tradeoffs, but in general, MOSFETs could serve as viable 
option for on-chip decoupling capacitors.



Adam Johnson 

30.24 Sketch the cross-sectional view of the layout in Fig. 30.78. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

p- substrate 

p+ p+ 

n- n-well 

n+ n+ 

poly top plate 

gate oxide 

VDD VDD 
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30.25 Figure 30.82 shows the implementation of a pipeline DAC. How would we implement this 

DAC using a topology similar to Fig. 30.42? Sketch the DAC’s implementation and the 

timing signals (clock phases) used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For this implementation, we use Fig. 30.42 as a starting point but make some simple 

modifications. Consider the circuit shown on the next page. It is one stage of a pipeline DAC 

implementation based on the S/H circuit of Fig. 30.42. First of all, since we need a x
2

1
 

multiplication, we must get rid of the “+1” in the gain equation (see Eq. 30.53). We accomplish 

this by connecting the left side of the CF capacitors to VCM instead of vin. With this modification, 

the gain will be reduced to just 
F

I

C

C
.  The output equation is then: 

 ( ) ( )[ ]−+−+−+ −−−⋅=−= CICIinin

F

I
outoutout VVvv

C

C
vvv  

 

To get a gain of 0.5, we simply set CI = 1 pF and CF = 2 pF. Next, we will add the output voltage 

of the previous stage to the current stage’s input by simply connecting the outputs of the previous 

stage to the VCI inputs of the current stage. Since we do not want to subtract but rather want to 

add, we will connect the positive output of the previous stage to the current stage’s VCI- input, 

and we will connect the negative output of the previous stage to the current stage’s VCI+ input. 

 



 

With these simple modifications, we basically have all we need to implement the pipeline DAC. 

The clock signals will be the same nonoverlapping clock signals used in Fig. 30.42. A schematic 

of one stage is shown below along with the clock signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To demonstrate the correct operation of this design, a 4-bit pipeline DAC was implemented 

using this topology. The schematics of each stage and the final simulation results are shown 

below.  

One Stage of Pipeline DAC 

 

 

Clock Signals Used in Pipeline DAC 

Phi2 clock falling edge 

should be slightly delayed 

from Phi1. It is not delayed 

in the sim since we are using 

an ideal op-amp in the sim. 

The response of the ideal op-

amp is so fast it will cause 

issues if Phi1 and Phi2 are 

not the same. 



 

The input to the DAC is 0101 (MSB->LSB) and we expect the output to be 0.3125 V (see 

Example 29.9). Also note that VREF = 1 V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
st
 Stage (b0 = 0) 

2
nd
 Stage (b1 = 1) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3
rd
 Stage (b2 = 0) 

4
th
 Stage (b3 = 1) 

 

Simulation Results of the 4-bit pipeline DAC 

The output is 0.3125 V as expected 
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