
Lincoln Bollschweiler 
 
1.1 Suggest an alternate physical example to the swinging pendulum of Fig. 1.1 to 
describe sinusoidal motion. 
 
One example could be a weight attached to the end of a spring. When it is released it is at 
the top of a sinusoidal curve and the force of gravity is much larger than the force of the 
spring. Thus, it begins to accelerate downwards. It reaches its maximum velocity as the 
sinusoid crosses zero. This is where the force of gravity and the force of the spring are 
equal. Now it begins to decelerate. At the bottom of the curve the spring has stopped 
expanding, the force of the spring is much larger than the force of gravity, and the weight 
stops falling. It then begins to accelerate upwards, crossing zero at its maximum velocity 
upwards, and finally comes to rest at the top of the sinusoidal curve, completing one full 
period. The velocity of the spring, when plotted against time, will take on the shape of a 
sinusoid. 
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Q 1.2 Add the z-axis (time) to the representations of the sine wave seen in Figs. 1.3b-f as discussed. 
 
 
Sol. Figures below shows the addition of z axis (time) to the figures 1.3b-f as discussed in the chapter. The 

amplitude of “sine” function is plotted based on the five data points at different time interval for time period 
of signal equal to T.  

 

  

  

  
 
 
 
 
The complete signal will look something as 
show in adjacent figure, a “cork screw” 
waveform. 
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Problem 1.3 
Suppose an IQ signal is generated using an in-phase component having an amplitude of 
0.5V and a quadrature component having an amplitude of 1V. Sketch the resulting 
waveform, the IQ signal, in the time domain. 
 
I will arbitrarily assign a cosine as my In-phase carrier, and a sine as my Quadrature 
carrier. Just as easily I could have assigned sine as my In-phase and cosine as my 
Quadrature… the only requirement is that the 2 signals maintain a phase-shift of 90 
degrees. 
 
As shown in Figure 1a) I can represent my In-phase signal in the complex plane with a 
vector along the Real axis with a length of 0.5, and my quadrature signal as a vector 
along the Imaginary axis with length 1.0. Figure 1b) shows how the In-phase and 
Quadrature signals combine to form the IQ signal which will be transmitted. This is 
represented as a sinusoid with magnitude according to Equation 1.3.1, and phase 
according to Equation 1.3.2. 
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Figure 1.3.1: Complex Plane representation of the phase relationship of IQ signals, and the method 
for combining them into a single IQ signal in preparation for transmission. 
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Now it is a simple matter to plot the 3 signals in the time domain and look at their 
relationships. The In-phase signal is a cosine with an amplitude of 0.5. The Quadrature 
signal is a sin with an amplitude of 1. And the IQ signal is the addition of the 2 signals at 
every value t. This is done in Figure 1.3.2 below. Note that the frequency is represented 
arbitrarily. The frequency doesn’t matter in our plot, but it is important to note that all 3 
signals have the same frequency. 
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Figure 1.3.2: Time domain plot of the IQ signal and its In-phase and Quadrature component signals. 
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1.4 Figure 1.7 shows how the magnitude and phase are calculated for an imaginary number that 

resides in the first quadrant of the plane (both real and imaginary components are positive).  

Show how we calculate the magnitude and phase of an imaginary number in the other quadrants. 

 

 

 

 

 

  

 

 

 

 

 

 

Let’s begin by not thinking too hard on the solution and just figure out the magnitude and phase of an 

imaginary number that resides in Quadrant II. 

 

 

 

        
 

                     

 

  

 

 

 

 

Using the inverse tangent without thinking about what you are doing will give you the WRONG angle if 

the point resides in any Quadrants II, III, or IV.  Let’s revisit the definition of the inverse tangent: 

 

 
 

 
 

 

 

 

 

 

 

 

You can see where the problem lies when you are trying to find the angle of a point in Quadrant II.  The 

trigonometry functions are defined for a triangle with a right angle.  You are no longer using the inverse 

tangent for θ, instead you are finding the inverse tangent of α as seen in F-2.  Fortunately, α and θ are 

supplementary and we can use the definition for supplementary angles to determine θ. 

 

Figure 1.7  The complex plane, plotting the imaginary number 
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F-1  Plot and attempted angle determination for a point in the z-plane that lies in Quadrant II 
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F-2  Inverse tangent function for two angles 
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Now that we have determined how to find the angle of a point that lies in Quadrant II.  Let’s plot points in 

Quadrants III and IV to find how to find determine their angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using F-2 and F-3 we can intuitively determine the correct angle by using the modified inverse tangent 

function below: 

 

 

F-3  Inverse tangent function for two angles 
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1.5 If the output of a system occurs after the corresponding input to the system, is the phase shift positive or 

negative? Why? What does linear phase indicate? 
Solution: 
The phase shift is negative when the output of a system occurs after the corresponding input. 

To illustrate “why”, let us investigate the relation between two sinusoidal siganls ( )sin tω  & ( )sin tω θ− . So 

when these two sinusoidal functions have the same value, t tω ω θ′= −  which leads to t t θ
ω

′ = +  meaning 

that the sinusoidal signal with negative phase shift occurs after the corresponding sinusoidal signal.  
Why linear phase? 

When a sinusoidal signal ( ) ( )0sinx t tω= is passed into a system with transfer function of 

( ) ( ) ( )jH A e θ ωω ω= , and the output signal has the form of  

( ) ( ) ( )( ) ( ) ( )0
0 0 0

0

sin siny t A t A t
θ ω

ω ω θ ω ω ω
ω

⎛ ⎞⎛ ⎞
= + = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. 

Now, if the system has linear phase, which indicates ( )0 0kθ ω ω= , the output can be rewritten as  

( ) ( ) ( )( )0siny t A t kω ω= +  

This means the system only shifts the input signal in time and does not distort it. 
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1.6) Using the SPICE files found at CMOSedu.com, verify, in the time-domain, the 

frequency response information seen in Fig. 1.10 for input frequencies of f=0 (DC), 

1/4td, and 1/2td. 
 

Ans) The frequency response shown in Fig. 1.10 is that of a comb filter.  
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Figure 1: Block diagram of a  comb filter 

 

For the comb filter shown above, 
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The magnitude of the transfer function is found to be,  

d
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and the phase response is given by,  
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V

V
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out )..(−=∠ π  for f<1/(2td).             (2) 

Shown below are the plots of magnitude and phase response of the comb filter. 
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Figure 2: Magnitude response of the comb filter 
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Figure 3: Phase response of a comb filter 

 The phase response of the comb filter is a linear response, indicating a constant 

delay through it. This is very useful for a distortion less filtering of the signals.  

 

The above comb filter can be simulated using the circuit shown below, which 

simulates an analog comb filter. Notice here the value of the time delay through the 

transmission line is td = 5nsec. 

 

 
Figure 4: Implementation of an analog comb filter 

  

Since the output voltage signal Vout is an average of the signal on the top and 

bottom transistors R2 and R3, the magnitude response is scaled down by 2 when 

compared to eq(1).  Hence the magnitude response of the comb filter in fig.4 is, 

 

d

in

out tf
V

V
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Simulation results: 

Input frequency f = 0 (DC signal) 

 
Figure 5: Time domain input and output (at DC) for the comb filter in fig. 4 

 

The input signal is a DC voltage of amplitude 2 volts. Since a DC voltage cannot 

have any delay, it passes through the transmission line unaffected. The voltages on either 

nodes of R2 and R3 are at the same potential, so no current flows through both the 

resistors. Hence, the complete voltage Vin of 2volts gets transmitted to the output.  

 

Input frequency f = 1/4td 

 

 Since the time delay for the given transmission line in the comb filter is 5nsec. 

The frequency of the input signal is equal to 50MHz, for a f=1/4td. From fig.2, we see at 

an input frequency of 1/4td the magnitude of the output signal is 2/ 2 . The expected 

output of the analog comb filter implementation should be scaled down by 2 (Vout = 

1/ 2 ) due to the presence of the two identical resistors at the output of the circuit. (See 

Eq.3) 

 
Figure 6: Time domain input and output (50 MHz) for the comb filter 
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As expected the magnitude of the output signal is 1/ 2 = 0.707V. From fig.3, we 

see that for input signals of frequency equal to 1/4td the phase is -45°, which corresponds 

to a time lag of 2.5ns between the input and output signals, as expected the delay of Vout 

in the above plot matches the phase shift in fig.3.  

 

Input frequency f = 1/2td  (100MHz) 

 

 From fig.2, we see that the comb filter attenuates the input signals at frequencies 

that are multiples of 1/2td.   

 
Figure 7: Time domain input and output (100 MHz) for the comb filter 

 

Initially, due to start-up time of the circuit, the input gets passed on to the output, 

but once the start-up time is passed, the filter attenuates the input signal as seen in fig. 7.  

 For an input signal of frequency f=1/2td=100MHz, which corresponds to a time 

period of 10nsec for the input sinusoid. Due to the delay of 5nsec through the 

transmission line, if the sinusoidal voltage on the R2 resistor is at its peak, then the 

sinusoidal voltage on the R3 resistor will be at its valley. These two signals cancel out, 

giving rise to the attenuation of the input signal at the output.  At this frequency, the 

phase shift is 180°, which means the input and output cancel each other out as expected 

from fig2 and fig.3. 

This attenuating property of the comb filter is used in communication systems to 

isolate and prevent crosstalk between transmission channels. 

 

Net list example for Fig.2 
T1 Vin 0 N001 0 Td=5n Z0=50 

R1 N001 0 50 

R2 N001 Vout 5k 

R3 Vout Vin 5k 

Vin Vin 0 SINE(0 1 50Meg) AC 0 

.tran 0 40ns 0 

.end 

 

Reference 

J. Baker, CMOS Mixed Signal Circuit Design, Second Edition, John Wiley and Sons, 2009. ISBN 978-0-470-29026-2 
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Problem 1.7 – Using the spice files found at CMOSedu.com, verify, I the time domain, the 

frequency response information seen in Fig 1.17 for input frequencies of DC, fs/4, and fs/2. 

 

Fig 1.17 shows the magnitude and phase response of a comb filter/averager with a transfer 

function ���� �  1 � �	
. The magnitude response of the transfer function should be two at DC, 

2/√2 at fs/4, and zero at fs/2. The circuit made with ideal elements seen below scales the output 

magnitude by ½ to prevent the adder element from overflowing and wrapping around with a DC 

input.  

 

Circuit used to generate Fig 1.17 and following graphs. Implements ���� �  1 � �	
.

 
fs  = 100MHz, fn = 50 MHz. 

 

 

Time-domain response of circuit with (near) DC input (1MHz is sufficiently below the 100MHz 

sampling frequency) 

 
Notice that the magnitude response is unity as expected, and the signal is not delayed (zero phase 

response) 



Time domain response of circuit with input frequency of fs/4, or 25MHz. 

 
 

The input amplitude, peak to peak, is 800mV, and the output amplitude peak to peak is much 

smaller than that, about 700mV – 300mV = 400mV. From Fig 1.17, the magnitude response 

should be √2, and remembering that it is scaled by ½ in the simulation, √2/2 = 0.707. 

800mV scaled by 0.707 is 565mV, which is approximately the 400mV peak to peak displayed in 

the graph. Phase response is -45 degrees. 

 

 

Time domain response of circuit with input frequency of fs/2, or 50MHz. 

 
 

As expected, the magnitude response of the signal at fs/2 is zero. The phase response is 

meaningless with zero magnitude response, though it would be -90 degrees. 
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1.8. Plot the magnitude and phase frequency response of a discrete time system having the transfer 

function 
1

2

1 z

z

−

−

+

� �
 . Next, show the location of this system’s poles and zeros in the complex plane 

and verify, using the intuitive method discussed in Sec. 1.2.3, the gain and phase of the response 

match the frequency response plots when the input signal frequency is 0.    

 

Sol: 

The frequency response H(f) of a discrete time system can be determined by evaluating H(z) 

along the unit circle. The sampling frequency is denoted by fs. 
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 Since division of unit magnitude complex numbers  
2jx

e , 2j xe results in subtraction of 

phase of the individual complex numbers the system response is as follows.  
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 The magnitude response of the system is given by   

 

2 2

2 23 3
2 cos cos 2 cos sin

2 2 2 2
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v x x x x
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      = +        
 (9) 
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 2 cos
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v f

v fs

π
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Phase response is given by from pole-zero plot of H(z) in figure 1 

  

 ( ) of zero - of poleH f∠ = ∠ ∠  (13) 

 

Noting that there are two poles at 0, and a zero at -1 
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The magnitude and phase response plotted over frequency 0 2f fs≤ ≤  using 

matlab is shown below. Note that the magnitude response has zeroes at periodic multiples 

of fs/2, and peaks at integral multiples of  fs. The phase response is a linear function. 

Hence the delay through the filter is constant. 
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                        figure 1. Magnitude and Phase response of H(f) 

f = fs/2 
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The zeroes in the transfer function   H(z) are the roots of the numerator given by 
11 0z −+ =  . The root of this equation is -1. The poles are the roots of denominator 

given by 2 0z− =� . The roots of this equation are 0, 0. Hence there is a zero at -1, and a 

doublet pole at zero. 
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                                                    figure 2. Pole-zero plot of H(z) 

 

The distance from point A to zero in the pole-zero plot is 2. The distance from 

point A in the pole-zero plot is 1. 

    

 
0
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=
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2
( )

1f
H f

=
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The value of 
0

( )
f

H f
=

obtained with intuitive method matches with actual value. 

 ( ) of zero of poleH f∠ = ∠ −∠  (18) 

Since the angle made by pole and zero with x-axis is zero, the phase at DC is 

zero, which verifies the intuitive method.  

 

 

 

 

 



Chandramouli Subramanian 
 
1.9) For the 3 delay element comb filter seen in Fig. 1.25, repeat question 1.6 for input 
frequencies of 0, fs/6 and fs/3. 
 
 
The circuit below represents a digital comb filter with a 3-element delay. 
 

 
           Fig.1 Digital Comb filter with 3-element delay 
 
The frequency response of this filter has the zeroes at 1, -1/2 + j√3/2 and -1/2 - j√3/2. i.e, 
the transfer function is zero. The magnitude response for input frequencies that are 
multiples of fs/3 is zero, and for odd multiples of fs/6 [i.e., (2n+1).fs/6], it’s the maximum. 
 
The following waveforms vary the input frequency, and represent the time-domain 
response: 
 
i) input frequency f = DC = 0Hz 
 

 
Notice that the output is identical to the input DC signal, after the initial setup period. 
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ii) input frequency f = fs/3 = 33.3333MHz 
 

 
As expected from the frequency response, for an input frequency that is a multiple of fs/3, 
the output is zero. 
 
 
iii) input frequency f = fs/6 = 16.6667MHz 
 

 
 
For an input frequency that is multiple of fs/6 [and not of fs/3], the output tracks the input. 
The filter passes the input signal with a slight delay.  
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1.10 Show how to plot 1/4 j 3  in the complex plane. What is the magnitude and phase shift of 

this complex number?

Solution:

Any complex number z  can be written in the form

z=a j b  (1)

where a  and b  are the real and imaginary components of the complex number respectively. In 

the complex plane, the real component a  is usually plotted along the x-axis as shown in Fig. 1. 

The imaginary component b  is usually plotted along the y-axis.  The magnitude of the complex

number is

∣z∣=a2b2  , (2)

and the phase of the complex number is

=tan−1 b
a  . (3)

Fig. 1 shows the complex number z=a j b  plotted in the complex plane.

Figure 1   Complex number z=a j b  and its magnitude and phase.
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To plot a complex number in the form of

z= 1
c j d  (4)

we can manipulate it into the form as show in Eq. (1) by first multiplying both its numerator 

and denominator by the complex conjugate of  c j d , or c− j d . That is,

1
c j d

= 1
c j d

⋅1

            = 1
c j d

⋅c− j d
c− j d

            = c− j d
c2d 2

            = c
c2d 2 j −d

c2d 2

 (5)

Comparing with Eq. (1) we see that 1/c j d =a j b  when

a= c
c2d 2

b= −d
c2d 2

 (6)

The magnitude of 1/c j d   is
∣z∣=a2b2

                          = c
c2d 22 −d

c2d 22
                          = c2d 2

c2d 22

                          = 1
c2d 2

 (7)

and the phase is

=tan−1 b
a

                   =tan−1−d /c2d 2
c /c2d 2

                   =tan−1−d
c


                   =−tan−1 dc 

 (8)
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The complex number 1/4 j 3   is in the form of Eq. (4) with c=4 , and d=3 . Substituting 
these values into Eq. (6) we have

a= 4
4232=0.16

  b= −3
4232=−0.12

 (9)

Thus

1
4 j 3

=0.16 j −0.12  (10)

Fig. 2 shows this complex number plotted in the complex plane.

The magnitude of 1/(4+j 3) can be calculated using the result of Eq. (7), or

∣ 1
4 j 3∣= 1

4232
=0.2  (11)

Its phase can be calculated using the result of Eq. (8), or

=−tan−1 3
4
=−36.87O  (12)

A complex number can be written in terms of its magnitude A  and phase   as

A∡  (13)

For example, the complex number 1/43 j   can be written as 

0.2∡−36.87O  (14)

Figure 2   Plotting 1/4 j3  in the complex plane.
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In many cases it is very convenient to see 1/4 j 3  as z1/ z2  where

z1=1 j 0      1∡0O  and

z2=4 j 3      5∡36.87O

are two complex numbers. The magnitude of z=z1/ z2  is

∣z∣=∣z1∣
∣z 2∣

 (15)

The phase of z=z1/ z2  is

=1−2  (16)

where 1  and 2  are the phases of z1  and z2  respectively.

Thus for z=1/4 j 3  we have

z= 1
4 j 3

   ∣z1∣
∣z2∣
∡1−2=

1
5
∡0O−36.87O=0.2∡−36.87O ,

which are the same results as we show in Eqs. (11) and (12) . 
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1.11 Determine the z-domain representation of the circuit seen in Fig. 1.30. Also, plot the 
frequency response, both magnitude and phase, and the location of poles and zeros for 
this system. 
 
 
 
 
 
 
 
 
 
 
 
Each flip flop represents one delay of 1/fs for 2Ts total delay. Since 2 ( )1 sj f Tz e π ⋅ −− =  (Eq. 
1.37), representing a delay of Ts, then a delay of 2Ts can be represented by 

2 ( 2 )2 sj f Tz e π ⋅ −− = . Now we can redraw the circuit for with the z-domain representation of 
the digital delay. 
 
 
 
 
 
 
 
We can write the transfer function as 
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The z-domain circuit can be simplified to: 
 
 
 
 
The poles and zeros can be plotted in the z-plane as follows: 

+

D Q D Q 

In Out 

fs 

Figure 1.30 

-

+vin( f ) 
-

vout( f ) 

z -2
 

vin vout 
2

1
1 z−+

Re,x 

Im, y 

2 



We can use the z-plane plot to determine the magnitude and phase response for the 
circuit. We know that 

distance to zero( )
distance to pole

H z =  and ( )  of the zero  of the pole.H z∠ = ∠ −∠  

Following the method used in Example 1.3 on page 17, from examination we can see that 
the zeros each always have a distance of 1 from any point on the unit circle. We can find 
the minimum magnitude by finding the largest distance for the poles. This occurs when 
they are equal distance from a point on the circle. This occurs at f = 0, fs/2 , fs, etc. and 
can be found to be 2  for each pole. Using the fact that magnitude is the product of all 

individual magnitudes, the minimum magnitude is then 1 1 1( ) 0.5
22 2

H z ⋅
= = =

⋅
. This 

can be verified by trigonometry. If x and y represent the distances from the poles to a 
point on the circle then ( )sin 2 and sin 90 2x yθ θ= − = . One could take the derivative 
of x y⋅  to find local minima and maxima. Doing this, and setting this to zero to find the 
maxima and minima reveals that these occur at 0°, 90°, 180°, and 270°, meaning that 90° 
and 270° are the points for the largest magnitude of the poles, yielding the smallest 
overall magnitude (0.5). The maximum magnitude occurs at points on the circle that 
coincide with one of the poles. These points occur at f = fs/4, 3fs/4, 5fs/4, etc. Here the 

magnitude is 1( ) .
0

H z = = ∞  The resulting magnitude frequency response can be seen 

here. 

 
 
A better plot was generated with a spreadsheet, which calculated the magnitudes, 
substituting 20 for infinity at fs/4 and 3fs/4. The plot assumes fs = 360. 
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Following the procedure for determining phase response, also from Example 1.3, one 
finds the following phase responses, where Phase = (Zero 1 + Zero 2) – (Pole 1 + Pole 2): 
 

Frequency Zero 1 Zero 2 Pole 1 Pole 2 Phase 
0 0° 0° 135° 45° 180° 

fs/4from below 90° 90° 0° 90° 90° 
fs/4from above 90° 90° 180° 90° -90° 

fs/2 180° 180° 225° 135° 0° 
3fs/4from below 270° 270° 270° 180° 90° 
3fs/4from above 270° 270° 270° 0° -90° 

 
The phase frequency response is plotted here. 
 
 
 
 
 
 
 
 
 
 
 
The circuit seen in this problem is known as an fs/4 resonator. A simulation to verify 
these frequency responses will not be performed on this circuit. The discontinuities in 
magnitude (and phase) at fs/4, 3fs/4, 5fs/4 …, require special care to be taken in 
simulation so that the simulator stops and starts calculating just prior to and just after 
these discontinuity locations. This technique and additional circuit components which aid 
the simulation of the fs/4 resonator are developed in chapter 4. If further study on this 
circuit is desired, refer to Fig. 4.23 and the discussion surrounding it. 

-180° 

f 
fs/4 fs/2 3fs/4 fs 5fs/4 

180° 

 -90° 

  90° 

  0° 
3fs/2 
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Q1.12 Repeat question 1.11, and sketch the resulting circuit, if a delay is added to the forward path of the circuit 

seen in Fig. 1.30. 
 
 
Sol. Figure 1.30 shows the circuit given in question 1.11 

           
 Fig. 1.30         Fig. 1.1 Adding delay in forward path 

 
Looking at the Figure 1.1 we see the system with added delay in the forward path. In terms of complex 
plane z, where 2 / sj f fz e π= and fs, clock frequency, the resulting circuit in frequency domain is shown 
below, 

   

1

31
z

z

−

−+

 
       Fig. 1.2 circuit representation in terms of (z)                        Fig.1.3 Transfer function of system  
   
Thus looking at Figure 1.1 and 1.2 the equation in discrete time and frequency domain can be written as 
equation 1.1 and 1.2  
 
 ( ) ( )1 3s s sVout nT Vin n T Vout n T⎡ ⎤ ⎡ ⎤= − − −⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (1.1) 

 ( ) ( )1 3( )Vout f Vin f z Vout f z− −= −   (1.2) 
 simplifying the equation further; 

 ( ) ( )3 11Vout z Vin z− −+ =  (1.3) 

 ( ) ( )
1 2

3 3
2 /    or         ;   

1 1
j f fsVout z zH z H f where z

Vin z z
e π

−

−
= = = =

+ +
 (1.4) 

 
Solving for magnitude of transfer function H (f);  
 

( )
2( 2 / )2

3 3( 2 / )1 1

s

s

j f f

j f f
z eH f

z e

π

π= =
+ +

 by complex number properties 1  for any je θ θ± =  and    11

2 2

zz
z z

=  

 ( )
4 /

6 /

1
1 cos(6 / ) sin(6 / )1

s

s

j f f

j f f
s s

e
H f

f f j f fe

π

π π π
= =

+ ++
 (1.5) 

Further    

 ( )
( ) ( )2 2

1 1
2 cos(3 / )1 cos(6 / ) sin(6 / ) s

s s

H f
f ff f f f ππ π

= =
+ +

 (1.6) 
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Thus ( ) 1
2 cos(3 / )s

H f
f fπ

=  is the magnitude response of the system, we can see that based on the 

equation function will never go to zero because of 0<|cosine (θ)| <1 for all theta.  Thus |H (f)| will be 
minimum when cos(3 / ) 1sf fπ =  or in general 3 / sf f nπ π=  which leads to the solution 

   where  n=0,1,2,3......
3 s
nf f= .At these frequencies the gain of system is half or 0.5.  

For example |H (f)|= 0.5;         for n= 0, f = 0 and cos (0) =1,  

       |H (f)|= 0.5;         for n=1, 1
3 sf f=  and cos (π) =1                                         so on and so forth. 

Another information received from |H (f)| is about the position of poles of the system or points where the 
gain or |H (f)| of system tends infinity. All the poles occur at the point where cos(3 / ) 0sf fπ =  or in 

general 3 / (2 1) / 2sf f nπ π= +  which leads to the solution ( )2 1
  w here  n=0,1,2,3 ...

6 s
n

f f
+

=  from this we 

can easily evaluate the position of the poles. As seen in pole-zero plot (fig. 1.4) value of first three poles 
will come from n= 0,1 and 2  i.e.  / 6, / 2  5 / 6s s sf f f f and f f= = =  respectively. The corresponding location of 

poles in z plane can be figured out by substituting these values of f in 2 / sj f fe π  which gives the location of 
the poles as: 

1 3 1 31        at  / 6;                2= 1       at  / 2 ;               3            at  5 / 6
2 2 2 2s s sp j f f p f f p j f f= + = − = = − =  

 
Solving for phase of H (f); 

 ( )
( )

( )
4 /

1
6 /

sin(6 / )
4 / tan

1 cos(6 / )1

s

s

j f f
s

sj f f
s

e f f
H f f f

f fe

π

π

π
π

π
−

∠ ⎛ ⎞
∠ = = − ⎜ ⎟

+∠ + ⎝ ⎠
 (1.7) 

leads to the solution 
 ( ) ( )14 / tan tan 3 / /   s s sH f f f f f f fπ π π− ⎡ ⎤∠ = − =⎣ ⎦  (1.8) 

 
Thus phase response is given by ( ) /   ; for 0 / 2s sH f f f f fπ∠ = < <  which is linear in nature. Figure 1.4 
shows the pole-zero plot for the given transfer function and Fig. 1.5 shows the magnitude and phase 
response for the same. 
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         Fig. 1.4 z-plane showing poles and zeroes          Fig. 1.5 Magnitude and Phase response of H (f) 
 
There are 3 poles and two zeroes in the system, where location of poles are as stated above, the two zeroes 
are situated at origin. From phase and frequency response system properties are that of resonator.  



Problem 1.13 
Determine the exponential Fourier series representation for the squarewave seen in Fig. 
1.29 if it is centered around ground. 

 

 
Figure 1.13.1: Waveform from book figure 1.29 centered around ground. This is the Signal that will 

be represented by the exponential Fourier series below. 
 
I will begin by copying the relevant equations from the book 1.68: 

∫
+

−=
Tt

t

nftj
n dtetg

T
c π2*)(1        1.13.1 

The function g(t) in equation 1.13.1 represents the signal that we will convert into the 
Fourier Series Representation. It is a piecewise function defined over a single period as 
follows: 

{  A/2, 0 < t < TP 

g(t) =  {         1.13.2 
{ -A/2, TP < t < TS 

 

 
In solving for the coefficients, the problem definition takes care of the 0th order value of 
cn by shifting the squarewave from the book figure 1.29 to be centered around ground. If 
the duty cycle of the squarewave is 50%, then the 0th order value of cn is 0. On the other 
hand, if the duty cycle is something other than 50%, than the dc component can be 
calculated simply as the average value of the signal over 1 period as follows: 

∫=
ST

S

dttg
T

c
0

0 )(1         1.13.3 

This value can be obtained geometrically as follows: 

)(*
2

*
20 PSP TTATAc −−=        1.13.4 

Continuing the analysis of the non-zero coefficients we write: 



⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∫∫ −−

S

P

s

P

s

T

T

tnfj
T

tnfj

S
n dteAdteA

T
c ππ 2

0

2

22
1      1.13.5 

 

⎥
⎦

⎤
⎢
⎣

⎡
−+−

−
=

−−− )(
4

)1(
4

1 222 PTsnfjSTsnfj
Ps ee

nfj
Ae

nfj
A

T
c

s

Tnfj

sS
n

ππ

ππ
π    1.13.6 

 

)(
4

)1(
4

222 PTsnfjSTsnfj
Ps ee

n
Aje

n
Ajc Tnfj

n

ππ

ππ
π −−

−−−
−

= −     1.13.7 

 

)21(
4

22 nj
Ps ee

n
Ajc Tnfj

n

ππ

π
−

+−
−

= −       1.13.8 

 
Now let us consider only the expression in parenthesis, and re-write the exponential terms 
as separate real and imaginary components: 

 
)2sin()2cos()2sin(2)2cos(21)21(

22 njnTnfjTnfee PsPs
Tnfj nj

Ps ππππ
ππ −++−=+−

−−  
1.13.9 

 
Note that the value of cos(2πn) will evaluate to 1 for every integer value n. Similarly 
sin(2πn) will evaluate to 0 for every integer value n. Therefore: 

 

[ ])2sin(2)2cos(22*
4 PsPsn TnfjTnf

n
Ajc ππ
π

+−
−

=     1.13.10 

 
 

[ ])2cos(1
2

)2sin(
2 PsPsn Tnf

n
AjTnf

n
Ac π

π
π

π
−

−
+=     1.13.11 

 
 
Looking at the solution, we can see the real and imaginary components. From these 
components we are able to calculate the magnitude and phase as described using the 
following equation for magnitude: 

 
22 {Im}{Re} +=Magnitude       1.13.12 

 

Also, with a positive Real component, and a negative Imaginary component, we expect 
the phase to exist in quadrant IV. Therefore we use the following equation to calculate 
the phase angle: 



Re
Im

tan2 1−−= πPhase        1.13.13 

 

Now we are ready to use equations 1.13.12 and 1.13.13 to evaluate cn into magnitude and 
phase values: 

 
22

2
)2cos(

2
)2sin(

2
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛=

n
ATnf

n
ATnf

n
AMagnitude PSPS π

π
π

π
π

  1.13.14 

 
 

)2cos(22*
2 PSTnf

n
AMagnitude π
π

−=      1.13.15 

 

)(sin4*
2

2
PSTnf

n
AMagnitude π
π

=       1.13.16 

 

)sin(* PSTnf
n
AMagnitude π
π

=        1.13.17 

 
Phase calculations are as follows: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −−

)cos()sin(2
)(sin2tan2

Re
Im

tan2
2

11

PSPS

PS

TnfTnf
Tnfphase
ππ

πππ   1.13.18 

 
[ ] PSPS TnfTnfphase ππππ −=−= − 2)tan(tan2 1     1.13.19 

 
 

Equations 1.13.17 and 1.13.19 indicates cn coefficients and phases for all values of ‘n’ 
not equal to 0. Note that for the case where the duty cycle is 50%, we can simplify things. 
Using: 

 

s
SP f

TT
2
1

2
1

==         1.13.20 

 
We can write the magnitude as: 

 



⎟
⎠
⎞

⎜
⎝
⎛=

2
sin* n

n
AMagnitude π
π        1.13.21 

And the phase at 50% duty cycle is: 

 

2
2 nphase ππ −=         1.13.22 
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1.14 Determine the exponential Fourier series representation for the square-wave seen in Fig 1.29 for 

the general case where Tp ≠ Ts/2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.29 shows what we are used to seeing for a clock signal on an oscilloscope.   Question 1.14 is 

being asked so that we understand what we are seeing when we plug a square-wave into a spectrum 

analyzer.  Exponential Fourier series representation of periodic signals is used to describe what we expect 

to see on the display of a frequency analyzer.  Let’s begin our solution on page 22: 

 

𝑔 𝑡 =  𝑐𝑛 ∙ 𝑒𝑗2𝜋𝑛𝑓𝑡

∞

𝑛=−∞

 

 

What we see on the display of a frequency analyzer (when viewing a periodic signal) is g(t) and is defined 

by the equation above.  Intuitively, we can guess that there will be an exponential decaying discrete signal 

in the frequency domain: 

 

 

 

 

 

 

 

 

 

Let’s see if we can prove F-1.  The problem is asking for the magnitude of the c terms in the figure above.  

To find the magnitude of the coefficients let’s use math to determine the magnitude: 

 

𝑐𝑛 =
1

𝑇
 𝑔 𝑡 ∙ 𝑒−𝑗2𝜋𝑛𝑓𝑡 𝑑𝑡

𝑡+𝑇

𝑡

 

 

Using this equation above noting that integration is the area under the curve.  For the square-wave in 

figure 1.29 the area under the curve is zero for g(t) when t is between Tp and Ts. 

 

𝑐𝑛 =
1

𝑇𝑠
 𝐴 ∙ 𝑒−𝑗2𝜋𝑛𝑓𝑠𝑡𝑑𝑡

𝑇𝑝

0

=
𝐴

−𝑗2𝜋𝑛
∙  𝑒−𝑗2𝜋𝑛𝑓𝑠𝑇𝑝 − 1  

 

 

Tp Ts 

A 

Figure 1.29  Representing a square-wave using exponential Fourier Series. 

Hz 

Magnitude 

C0 

C1 

C2 

Cn 

F-1  Intuitive plot of a periodic signal given the exponential Fourier Series representation 



Before we go further, please understand that we are going to use MATH to describe a periodic signal in 

the frequency domain so that we understand (among other things) what we are viewing when we use a 

spectrum analyzer. 

 

There is a problem finding c0 because both the numerator and denominator of the coefficient go to zero 

and we need to use l’Hospital’s rule (differentiate the numerator and denominator until you get a valid 

value) to find c0. 

 

𝑐0 =
𝐴𝑇𝑝

𝑇𝑠
 

 

Returning to the frequency analyzer display, c0 would be the peak of the fundamental spike and have the 

largest magnitude.  To find the other coefficients let’s return to the Fourier Series, and factor out j
 

(remember j =  −1), and let fs = 1/Ts: 

 

𝑐𝑛 =
𝐴

−𝑗2𝜋𝑛
∙  𝑒−𝑗2𝜋𝑛𝑓𝑠𝑇𝑝 − 1 =

−𝐴𝑗

2𝜋𝑛
∙  1 − 𝑒

−𝑗2𝜋𝑛
𝑇𝑝

𝑇𝑠   

 

Using Euler’s formula: 

 

 1 − 𝑒
−𝑗2𝜋𝑛

𝑇𝑝

𝑇𝑠  = 1 − 𝑐𝑜𝑠  −2𝜋𝑛
𝑇𝑝

𝑇𝑠
 − 𝑗𝑠𝑖𝑛  −2𝜋𝑛

𝑇𝑝

𝑇𝑠
  

 

Cosine is an odd function and sine is an even function: 

 

 1 − 𝑒
−𝑗2𝜋𝑛

𝑇𝑝

𝑇𝑠  = 1 − 𝑐𝑜𝑠  2𝜋𝑛
𝑇𝑝

𝑇𝑠
 + 𝑗𝑠𝑖𝑛  2𝜋𝑛

𝑇𝑝

𝑇𝑠
  

 

The object is to find the magnitude of the coefficients: 

 

 𝑐𝑛  =  
−𝐴𝑗

2𝜋𝑛
 ∙  1 − 𝑐𝑜𝑠  2𝜋𝑛

𝑇𝑝

𝑇𝑠
 + 𝑗𝑠𝑖𝑛  2𝜋𝑛

𝑇𝑝

𝑇𝑠
   

 

 
−𝐴𝑗

2𝜋𝑛
 =

𝐴

2𝜋𝑛
 

 

To make our lives easier when dealing with this solution: 

 

𝐿𝑒𝑡 𝑥 = 2𝜋𝑛
𝑇𝑝

𝑇𝑠
 

 

 1 − 𝑐𝑜𝑠𝑥 + 𝑗𝑠𝑖𝑛𝑥 =   1 − 𝑐𝑜𝑠𝑥 2 +  𝑠𝑖𝑛𝑥 2 =  1 − 2𝑐𝑜𝑠𝑥 + 𝑐𝑜𝑠2𝑥 + 𝑠𝑖𝑛2𝑥 

 

Remembering trigonometry identities, and factoring out the 2: 

 

 1 − 𝑐𝑜𝑠 𝑥 + 𝑗𝑠𝑖𝑛 𝑥  =  2(1 − 𝑐𝑜𝑠𝑥) 

 

Using the Double Angle Formula: 



 

𝑐𝑜𝑠2𝑎 = 1 − 2𝑠𝑖𝑛2𝑎 
 

Let a = b/2, and move the 1 to the cosine side: 

 

1 − 𝑐𝑜𝑠𝑏 = 2𝑠𝑖𝑛2
𝑏

2
 

 

Plugging this back into our magnitude calculation and taking the square root gives: 

 

 2(1 − 𝑐𝑜𝑠𝑥) = 2𝑠𝑖𝑛
𝑥

2
= 2𝑠𝑖𝑛  

2𝜋𝑛
𝑇𝑝

𝑇𝑠

2
 = 2𝑠𝑖𝑛  𝜋𝑛

𝑇𝑝

𝑇𝑠
  

 

Returning to our original equation: 

 

𝑐𝑛 =
−𝐴𝑗

2𝜋𝑛
∙  1 − 𝑒

−𝑗2𝜋𝑛
𝑇𝑝

𝑇𝑠   

 

We have found the magnitude of cn to be: 

 

 𝑐𝑛  =
𝐴

2𝜋𝑛
∙  2𝑠𝑖𝑛  𝜋𝑛

𝑇𝑝

𝑇𝑠
  =

𝐴

𝜋𝑛
∙  𝑠𝑖𝑛  𝜋𝑛

𝑇𝑝

𝑇𝑠
   

 

There was a lot of math to get to this point, but there was no magic.  The reader should be able to get to 

this point, and we can now verify that if Tp = Ts/2 the non-zero even coefficients are zero.   

 

sin  𝜋𝑛
𝑇𝑠

2𝑇𝑠
 = 𝑠𝑖𝑛  𝑛

𝜋

2
  

 

Refer to the magnitude plot of a sine wave below: 

 

 

 

 

 

 

 

 

  

If we let Tp equal a quarter of a clock cycle we can determine the sine values of the coefficient by 

intuitively viewing F-2 or by using the formula: 

 

 

𝑐𝑛 =
𝐴

𝑛𝜋
∙  𝑠𝑖𝑛  

𝑛𝜋

4
   

 

For a duty cycle of 25% the coefficient terms are: 

 

F-2   Magnitude plot of a sine wave, showing where to evaluate the sine wave for a 25% duty cycle 

π/2 π 3π/2 2π 



𝑐𝑛 25% 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =

 
 
 
 
 
 

 
 
 
 
 

𝐴

4
= 𝑐0

𝐴

𝜋
∙  2 = 𝑐1 , 𝑐5 , 𝑐9, 𝑐13 , …

𝐴

2𝜋
∙ 1 = 𝑐2 , 𝑐6 , 𝑐10 , 𝑐14 , …

𝐴

3𝜋
∙  2 = 𝑐3 , 𝑐7 , 𝑐11 , 𝑐15 , …

𝐴

4𝜋
∙ 0 = 𝑐4 , 𝑐8 , 𝑐12 , 𝑐16 , …

  

 

It should be intuitively easy to find what duty cycle is required to lose the 3
rd

 harmonic by viewing the 

magnitude of the sine wave in F-2. 

 

From this problem we can now answer the following questions: 

 

- What is the spectrum display of a periodic function? 

o A train of pulses that are exponentially decaying 

- What happens when the duty cycle is 50%? 

o We only see the odd pulses. 

- What happens when the duty cycle is not 50%? 

o We will see the odd AND even pulses. 
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1.15 What is the Fourier transform of the signal seen in Fig. 1.29? 
Solution: 

 

The Fourier series for the periodic square wave is ( ) 02 nf t
n

n

g t c e π
∞

=−∞

= ∑ , and the coefficients, which are derived 

in the book, are 

n
Ac j
nπ

−
= ⋅  for 2 1,n k= +  , 2, 1,0,1, 2,k = − −L L  

In these derivation, we used the fact that 0 2 , 2s s pT T Tω π= = . 

The Fourier transform is given by  

( ) ( ) ( )( )022 2 2 2
0  nf tj ft nft j ft j ft

n n n
n n n

G f g t e dt c e e dt c e e dt c f nfππ π π π δ
∞ ∞ ∞∞ ∞ ∞

− − −

=−∞ =−∞ =−∞−∞ −∞ −∞

⎛ ⎞⎛ ⎞
= = = = −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑∫ ∫ ∫

where n
Ac
nπ

= , , 3, 1,1,3,n = − −L L , and 
90 , 0

90 , 0n

n
c

n
− ° >⎧

∠ = ⎨ ° <⎩
 

Using the single-side spectrum with positive frequency only, we can rewrite the result as 

( ) ( ) ( )0
1

,
n

AG f f nf j
n
δ

π

∞

=

⎛ ⎞= − ⋅ −⎜ ⎟
⎝ ⎠

∑  1,3,5, , 2 1,n k= +L L 

where n
Ac
nπ

= , and 90nc∠ = − ° . 
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Fig. 1.29 Representing a squarewave using Exponential Fourier Series 
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1.16) What is the area under the Dirac delta function bordered by the x-axis? Why? 
 
Ans) 

 
Figure: Dirac delta function 

 
A Dirac delta function, is defined as ∞=− )( 0ttδ . The function is nonzero at 

0tt = and zero for all other values of t. The area under the Dirac delta function bordered 
by the x-axis is equal to 1, the amplitude tends to go towards infinity as the width of the 
function goes towards zero.  

This can be shown by using one of the important properties of the Dirac delta 
function, the sifting property.  

∫
∞

∞−

−= dtttxx )()()( τδτ , for any value of τ               (1) 

So for the time-shifted version of the Dirac delta function above, )( τδ −t  is nonzero 
only at τ=t  and zero for all other values of t . Rewriting the above equation for a non-
time shifted delta function, )(tδ that exists at 0== τt  we get,  

∫
∞

∞−

= dtttxx )()()0( δ                                                     (2) 

 For a special case, when the function )(tx is a constant say, 1 for all values of t . 
We can write eq(1) and eq(2) as,  

 ∫∫
∞

∞−

∞

∞−

−== dttdtt )()(1 τδδ                               (3) 

 As we know the integral of a function defines the area underneath it, we can 
conclude that the area underneath the Dirac delta function must be equal to unity.   
 



Jason Durand

Problem 1.17 – Show how to take the Fourier transform of sin 2 f 0 t and cos 2 f 0 t .

Plot the magnitude and phase responses of the transforms.

The Fourier transform of a signal is given by G f =∫
−∞

∞

g te
− j2 f t

dt , and this equation is easier to

work with if we first convert sin2 f 0t into exponential form with Euler's identity.

From Euler's identity: e− j
=cos  j sin ,

sin 2 f 0 t =
e

j2 f 0 t
−e

− j2 f 0 t

2j
=

e
j

2j
e

j2 f 0 t
−

e
− j

2j
e
− j2 f 0 t

.

 Next, use the Fourier transform integral.

G f  =
e

j 

2j
∫
−∞

∞

e
j2 f 0 t

e
− j2 f t

dt −
e
− j

2j
∫
−∞

∞

e
− j2 f 0 t

e
− j2 f t

dt

G f  =
e

j 

2j
∫
−∞

∞

e
− j2 t  f − f 0 dt −

e
− j

2j
∫
−∞

∞

e
− j2 t  f  f 0dt (pay close attention to signs)

Recall that the Fourier transform of a constant is the delta function in the frequency domain, or that

Fourier C  = ∫
−∞

∞

C e
− j2 f t

dt = C  f  .

The exponentials in the denominators are simply the polar forms of the imaginary number, to make it

easier to divide (rectangular form for adding/subtracting, polar form for multiplying/dividing).

G f  =
e

j

2 e
j


2

 f − f 0−
e
− j

2e
j


2

  f  f 0

G f  =
1

2
e

j −


2


  f − f 0−
1

2
e
− j 



2


  f  f 0

Magnitude and phase

∣G  f ∣ =
1

2
 f − f 0 

1

2
  f  f 0

∢G  f  = −


2
 f − f 0 − 



2
  f  f 0



Magnitude and Phase plots:

Next, for the Fourier transform of cos 2 f 0 t , most of the same steps are used, and it is

redundant to repeat all of them. Using Euler's Identity, cos 2 f 0 t is rewritten as

cos 2 f 0 t =
e

j2 f 0 t
e

− j2 f 0 t 

2
=

e
j

2
e

j2 f 0 t


e
− j

2
e
− j2 f 0 t

Fourier transform integral:

G f =∫
−∞

∞

g te
− j2 f t

dt

G f  =
e

j 

2
∫
−∞

∞

e
j2 f 0 t

e
− j2 f t

dt 
e
− j

2
∫
−∞

∞

e
− j2 f 0 t

e
− j2 f t

dt

G f  =
e

j 

2
∫
−∞

∞

e
− j2 t  f − f 0 dt 

e
− j

2
∫
−∞

∞

e
− j2 t  f  f 0dt

G  f  =
1

2
e

j
 f − f 0

1

2
e
− j

  f  f 0

Magnitude and Phase

∣G  f ∣ =
1

2
 f − f 0 

1

2
 f  f 0

∢G  f  =   f − f 0 −  f  f 0

Magnitude and Phase plots
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