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5.1 Develop an expression for the effective number of bits in terms of the measured signal-to-noise 

ratio if the input sinewave has a peak amplitude of 50% of (VREF+ - VREF-). 

 

Let’s begin with writing out what our sinewave is: 

 

𝑣𝑖𝑛  𝑡 = 𝑉𝑝 sin  
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Now let’s go through the process of finding its’ root mean square (RMS) value: 
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Knowing this, let us plot the power spectrum density of a sinewave centered on a common mode voltage 

of 0.5V, a peak voltage of 0.4V at 50MHz (values chosen arbitrarily): 

 

20 log 0.4 ≅ −8𝑑𝐵 

 

20 log 0.5 ≅ −6𝑑𝐵 

 

 

 

 

 

 

 

 

 

 

 

Now, let’s find our RMS value of the quantization noise.  Figure 5.10 (in the book) shows a simulation 

that allows us to plot the quantization noise. 
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To find the RMS value of the quantization noise we can use the equation of a line to describe the saw-

tooth wave seen above. 

 

𝑦 = 𝑚𝑥 + 𝑏 
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Now we can determine our signal to noise ratio (in dB): 
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Where: 
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This result relates the signal to noise ratio (SNR) to the number of bits in a data converter.  If our input 

signal is a sinewave with a peak voltage equal to 50% of the ADC’s reference range and we measure the 

SNR we can determine our effective number of bits: 

 

𝑆𝑁𝑅𝑚𝑒𝑎𝑠 = 6.02𝑁𝑒𝑓𝑓 + 1.76 → 𝑁𝑒𝑓𝑓 =
𝑆𝑁𝑅𝑚𝑒𝑎𝑠 − 1.76

6.02
 

 

This result is summarized on page 173 equations 5.10 – 5.14, this solution provides an additional 

verification of the equations. 



Solution by Geng Zheng

5.2       When using Eq. (5.14) what is the assumed ADC input signal? Put your answer in terms of the

ADC reference voltages.

Solution:

Let's get started with copying Eq. (5.14) from [1] to here, Eq. 1.

N eff=
SNRmeas−1.76

6.02
 (1)

N eff  is the effective number of bits, aka ENOB, of an analog-to-digital converter (ADC). It

specifies the actual resolution of an ADC. In this equation, SNRmeas  is the signal-to-noise ratio

(SNR) from the measurement result. As we can see from this equation, N eff  goes up (higher

resolution of the ADC) as SNRmeas  increasing. The assumed input signal for Eq. 1, or Eq. (5.14)

in [1], to be valid is a sinewave that ranges from V REF+  to V REF- , Fig. 1. 

The reason why the input is assumed to be a sinewave is when deriving Eq. 1, we use the SNR

calculated for a sinewave, or

SNR=20⋅log  Input RMS Voltage
 Noise RMS Voltage

=20⋅log
V p/2

RMS voltage of a sinewave

V LSB /12
RMS voltage of quantization noise

 (2)

where

V LSB=
V REF+−V REF-

2N  (3)

and N  is the number of bits of the ADC. We assume that the quantization noise RMS voltage,

V LSB/12  is same regardless the input signal. The RMS voltage of the input signal, however,

may not be V p/12  if the input is not a sinewave. Let's assume the input is a sawtooth wave

that ranges from V REF+  to V REF- , Fig. 2, and calculate the SNR for this input signal.

Figure 1   A sinewave input to an ADC
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First, we need to calculate the RMS voltage of the sawtooth wave
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or

V saw,RMS=
V p

3
 (5)

Noticing that for the sawtooth wave we have defined

V p=V REF+−V REF-  (6)
and using Eq. 3 we can calculate SNR as

SNR=20⋅log
V p/3

V LSB /12

                       =20⋅log
V REF+−V REF-⋅

1
3
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or

SNR=20⋅log 2N⋅2=6.02 N6.02  (in dB)  (8)
If the SNR is from the measurement result we can manipulate Eq. 8 to get the effective number

of bits, or

N eff=
SNRmeas−6.02

6.02
 (9)

Which is different from Eq. 1 or Eq. (5.14) in [1].

Reference:

[1]    R. J. Baker, CMOS Mixed-signal Circuit Design, Second Edition, Wiley-IEEE, 2009.

Figure 2   A sawtooth wave input to an ADC
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5.3) Describe, in your own words, the difference between specifying SNR and SNDR. 

 

Sol) The signal-to-noise ratio (SNR) of a data converter can be described as taking the 

ratio of the RMS signal voltage to the RMS quantization noise.  

 

Signal-to-noise plus distortion ratio (SNDR) is measured similar to the SNR but, 

here the output includes the quantization error along with the distortion tones arising 

from the nonlinearities and mismatches in practical ADCs. SNDR is the ratio of the RMS 

signal voltage to the RMS quantization noise + distortion.  

 

Measurement of Signal-to-noise plus distortion (SNDR) using SPICE: 

 

 

Figure 1: Block diagram for determining the quantization noise 

  The practical ADC quantizes the input signal and introduces quantization error 

along with distortion. A non-ideal ADC can be created in SPICE by changing the gains of 

the amplifiers in the ADC.  In order to see the quantization noise introduced by the non-

ideal ADC, we need to remove the tones of the input signal and its aliases. In order to 

remove those, we subtract the output of the DAC from a S/H version of the input signal.  

ADC is basically a S/H system with a sinc-response and a quantizer to generate 

the output bits. When the input signal is passed through it, in frequency domain the input 

signal tones are generated at fin , fs-fin, fs+fin … these are cancelled out by the tones 

generated by the ideal S/H input signal and all that is left in VQn is just the quantized 

noise and distortions.  

 

Figure 2: SPICE implementation to measure the quantization noise (with non-ideal ADC to get 

SNDR) 
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  Here, our input signal is a 0.5V sinusoid centered on 0.5V with a frequency of 

7MHz. In order to cancel out the input signal tones and its aliases at 7MHz, 93MHz and 

107MHz from the output of the DAC we subtract the input S/H signal to see the 

quantization noise with distortions from the non-ideal system. The FFT of the output 

signal is shown below in figures 3 and 4. We see that there are no tones or aliases of the 

input signal. Similar to measuring the SNDR, the SNR of the system is measured using 

the above technique but we should also cancel out any spikes or spurious responses. This 

zeroing of the spurious noise is done by using ideal components in SPICE, where the 

gains of the amplifiers in the ADC are ideal. The FFT of the ideal output signal is shown 

in figures 5 and 6.  

 

 

Figure 3:Noise floor of the output signal with Non-Ideal ADC 

 

 

Figure 4: Linear Plot of the output signal with Non-Ideal ADC 

 

Figure 5: Noise floor of the output signal with Ideal ADC 

 

 

Figure 6: Linear Plot of the output signal with Non-Ideal ADC 
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 From figures 3 and 5 we see that the noise floor moves down when we are using 

ideal components or while measuring SNR. Since SNDR includes distortions arising 

from the imperfections in the data converter and from other noise sources its considerably 

less when compared to a SNR. From SPICE simulations, the RMS voltage of the 

quantized noise plus distortions for the non-ideal ADC is 22.585mV and the RMS 

voltage of the quanitzed noise while using an ideal DAC is 1.1513mV. The SNDR and 

SNR are calculated below:  
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5.4. Using SPICE simulations with an ideal ADC and DAC, show that how coherent 

sampling can result in an RMS value of quantization noise larger than what is specified 

by Eq. (5.3). Comment on the shape of the quantization noise’s spectrum. 

 

Solution: To simplify the description of what happens to quantization noise when 

coherent sampling is done; let us take the mixed-signal system used in the book (Figure 

5.13) to determine the quantization noise. Among the components in the system only 

ADC introduces quantization noise in the system. Hence by removing the input signal 

and its aliases from the output we can find the quantization noise in the system. A sample 

and hold circuit is used in the input signal path to mirror the sample and hold used in 

ADC. The output from this sample and hold circuit is subtracted from the DAC output to 

get quantization noise. In practical systems we need to adjust the delay in the input signal 

path to match the delay through the mixed signal system. In this example we assume that 

this delay is zero, as ideal ADC and DAC are used. To understand the effect of coherent 

sampling on quantization noise, we need to understand behavior of quantization noise 

when non coherent sampling is done on the system. In Section 1 let us discuss intuitively 

what happens to RMS value of quantization noise and its spectrum when non coherent, 

coherent sampling   is done. In the same section let us verify the intuitive analysis using 

simulation examples from cmsoedu.com.    

  

 
               Figure  1. Example system used to estimate the quantization error 

  (Figure 5.13 from book) 

 

Section 1: Intuitive discussion on effect of coherent sampling on RMS 

value of quantization noise and the spectrum of quantization noise  
The quantization noise voltage can be treated as random variable assuming Bennett’s 

criteria hold (refer page 165 in book). The random variable falls between ±±±± 0.5LSB as 

seen in Figure 2. This means that any value of quantization error between 0.5LSB and 

-0.5LSB is equally probable.  

(((( ))))

(((( ))))1/ 2 LSB

1/ 2 LSB

ρ. 1
−−−−

====∫∫∫∫ dQe

 
Figure 2. Probability density function for the quantization error in ADC assuming 

Bennett’s criteria hold (Figure 5.11 from book). 
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Now let us consider the cases of non coherent sampling and coherent sampling. 

 

Non Coherent Sampling: 
Analysis: 
When the sampling frequency is an non integer multiple of the input signal frequency e.g. 

fs=100MHz and fin=7MHz then in every cycle of input signal, we sample different 

points of the input signal and hence the noise is randomized and its probability density 

function is similar to figure 2. The RMS value of the noise as given from equation 5.3 in 

the book is  

   

 
12

LSB
Qe,RMS=

V
V  (1) 

For a 8-bit ADC    VLSB=1/2
8
=3.9065mV, Qe,RMSV = 1.1276mV  

Simulation: fin=7MHz, fs=100MHz 

Now let us simulate the Figure 1 using examples from cmosedu.com with fs=100MHz 

and fin=7MHz (frequency of input signal).  

     
Figure 3.  Simulation example of Figure 1 from cmosedu.com 

 

 
                Figure  4. VQe(t) with fin=100MHz and fs=7MHz 

Rms value of the 

Vqe(t) is 1.1359mV, 

approximately close 

to the value 

predicated from eq 

1. 
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                    Figure 5. VQe(f) with fin=100MHz and fs=7MHz (fft plot) 

 

Notice that VQe(t) is not periodic and VQe(f) contains tones through out the frequency 

range.  

 

Coherent Sampling: 
Analysis: 
When the sampling frequency is an integer multiple of input signal frequency e.g. 

fs=100MHz and fin=10MHz then in every cycle of input signal, we sample the same 

group of points of the input signal. Hence the resulting quantization noise values are 

limited to a group of values. Now the quantization noise is no longer a random variable 

following the probability density function shown in figure 2. Depending on the input 

signal points hit in every cycle of the input signal the quantization noise value can be 

larger or smaller than predicted by equation 1. Since we are concerned only about the 

cases where the quantization noise gets worse, let us discuss the cases where quantization 

noise becomes bigger.  Since the quantization noise values are measured for the same 

group of points every cycle VQe(t) becomes periodic in the time domain, and that implies 

tones at integer multiples of input frequencies in the frequency domain (fft plot) .  

 

Simulation: fin=10MHz, fs=100MHz 

 

 
Figure 6. VQe(t) with fin=10MHz and fs=100MHz 

Rms value of the 

Vqe(t) is 1.2495mV 

larger than predicted 

from equation 1 

Tones 

throughout 

frequency range 
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Figure 7. VQe(f) with fin=10MHz and fs=100MHz (fft plot) 

 

Since at the group of points where the samples are hit in every cycle, the overall 

quantization noise is bigger than predicted by equation 5.3, the RMS quantization noise is 

bigger. Notice that VQe(t) is periodic and VQe(f) contains tones at 10MHz,20MHz,40MHz 

etc. Also we can notice that the dominant tones are at 10MHz, 20MHz and till 200MHz. 

 

Simulation: fin=25MHz, fs=100MHz 

   
Figure 8. VQe(t) with fin=25MHz and fs=100MHz 

 

                                    
 

Figure 9. VQe(f) with fin=25MHz and fs=100MHz (fft plot) 

Tones at multiples 

of input frequency 

fin=10 MHz 

throughout 

frequency range 

Rms value of the 

Vqe(t) is 1.4019mV 

Larger than 

predicted from 

equation 1 
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Notice that with fin=25MHz and fs=100MHz VQe(t) is periodic with frequency=25MHz, 

and VQe(f) has tones at integer multiples of input frequencies i.e at 

25MHz,50MHz,75MHz etc. The dominant tones in the quantization spectrum are at 

25MHz, 50MHz. 

 

Summary: 

1. Discussed the model used to estimate the quantization error with an ideal ADC 

and DAC. 

2. Intuitively discussed what happens to RMS values of quantization noise, spectrum 

of quantization noise with non coherent and coherent sampling. Discussed the 

case where quantization noise becomes bigger than what is predicted from 

equation 1. Verified the conclusions arrived with the intuitive discussion with 

simulation results.  

 

 

  

  

 
 

 



Qawi Harvard – ECE615 CMOS Mixed Signal Circuit Design 
 
5.5 Suppose a perfectly stable clock is available (ΔTs is zero in Eq. [5.21]).  Would 

we still have a finite aperture window if the clock has a finite rise time?  Describe 
why or why not? 

 

 
 
If we want to determine the worst case error in the sampled input signal due to clock 
uncertainty, we sample the input signal when it is changing the fastest, or fin = fs/2 (t = 
1/fin). 

( )sinp s p
d V f t fV
dt

π π=  

 
s

p
s

V fV
T

πΔ
=

Δ
 

 
Reviewing F-1 shows that if we have a perfectly stable sampling clock (ΔTs = 0) then our 
sampling error (ΔVs) is also zero.  This is only the case when we have an infinite rise time 
on the sampling clock. 

 
Due to noise, a real switch will have two distinct switching points depending on the 
random noise present.  This noise could be from power supply noise or simply thermal 
noise.  F-2 shows how a finite rising edge will generate two distinct switching thresholds 
due to random noise effects. 
 
 

ΔTS 

ΔVS 

F-1 Clock uncertainty causing an error in the sampled input signal 

t1 

t2 

F-2 Depicting high and low thresholds for a finite rising edge. 



If we let: 
1 2 st t T− = Δ  

 
Then we can repeat the derivation: 
 

( )sinp s p
d V f t fV
dt

π π=  

 
s

p
s

V fV
T

πΔ
=

Δ
 

 
ΔTs is now a function of the finite rise time.  The slower our clock edge, the more affect 
noise will have on the switching. 



Kaijun Li 
Problem 5.6 
How do the number of bits lost because of aperture jitter change with the frequency of an 
ADC input sinewave? If the ADC input is a DC signal, is aperture jitter a concern? Why? 

 
Solution: 
First off, we want to determine the largest variation of the sampled voltage due to the 
aperture jitter, which happens when the sampling frequency is twice the input sinewave’s 
frequency or fs=2fin, 

( )insin 2 2S
p in p

S

V d V f t f V
T dt

π πΔ
= =

Δ
 

It is also known that  

( )1

10.5
2S REF REFNV LSB V V+ −+Δ ≤ = −  and ( ) 2p REF REFV V V+ −= −  

Then we have  
1 1

2 2S N
in

T
fπ

Δ ≥ ⋅  

We can model it as the number of bits lost because of aperture jitter Nloss, and the 
maximum clock jitter time instant is rewritten as 

1 1
2 2lossS N N

in

T
fπ−Δ = ⋅  

Or the number of bits lost can be found as 

( ) ( )

( )

( )

12
2

log 2 log 2
1 log 2
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3.32log 2

lossN N

in S

loss in S

loss in S

loss in S

f T
N N f T

N N f T

N N f T

π
π

π

π

− =
Δ

− = − Δ

− = − Δ

= + Δ

 

To illustrate the effect of input sinewave’s frequency over the number of bits lost, N is 
chosen as 8, and for different values of inf  and STΔ , lossN  is calculated. The MATLAB 
script is written to obtain the plot of lossN  vs. inf  for different STΔ . 
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Fig. 1 lossN  vs. inf  for different STΔ  

 
As seen in the above figure, the number of bits lost lossN  due to aperture clock jitter goes 
up as the input frequency increases. It also should be noted that for same input frequency, 

lossN  goes up as STΔ  goes up. For instance, with inf of 100MHz, lossN  changes from 
about 2.7bits to 4bits when STΔ  varies from 40ps to 100ps. 
 
So when input signal is a DC signal, there is no any transition time. So aperture jitter is 
not a concern any more.  
 
% MATLAB script to plot the relationship between N_loss and fin 
clear all; 
close all; 
dTs = 40e-12 : 20e-12 : 100e-12; % dTs between 40ps and 100ps 
for i = 1:length(dTs) 
    N_fin = 100;   % number of points for fin 
    fin_min(i) = 1/(2*pi*dTs(i)*256); % when N_loss = 0; 
    fin_max = 100e6;      % set maximum fin as 100MHz 
    fin(i,:) = linspace(fin_min(i), fin_max, N_fin);    
    for j = 1 : N_fin 
        Nloss(i,j)=8+3.32*log10(2*pi*dTs(i)*fin(i,j)); 
    end     
    figure; 
    plot(1e-6*fin(i,:), Nloss(i,:)) 
    xlabel('f_{in} / MHz') 
    ylabel('N_{loss}') 
    title (['N_{loss} with \deltaT_{s} of ' num2str(dTs(i)/1e-12) 'ps']); 
    grid on; 
end 
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Problem 5.7 
Why must Bennett’s criteria be valid for the averaging filter in Fig. 5.29 to reduce the 
quantization noise in the digital output signal? Give an example input signal where 
averaging will not reduce quantization noise. 
 
Solution: 
First off, Bennett’s criteria states that the signal must be busy, or in other words, the 
signal needs to “jump around”. Then let’s find out what happens after the digital codes 
out of the ADC are passed into the averaging filter, and this will help with understanding 
why the signal needs to be busy in order to reduce the quantization noise using the 
averaging filter. 

 
To illustrate the effect of averaging filter, Figure 1 is drawn. On the left side of Figure 1, 
there is a busy signal, and it is noted that the averaging points are inserted between 
adjacent digital output code coming out of the data converter. So effectively, a number of 
new switching levels are created which in turn reduce the quantization noise. 

Averaged 
Points

Averaged 
Points

Analog input
Digital output

Input 
signal

Input 
signal

 
The signal on the right hand side can be seen as a slow-changing signal (or non-busy 
signal). Due to the small variation between adjacent points for the analog input signal, the 
digital output codes do not change. Consequently, the averaged points inserted are the 
same with the digital codes out of the data converter, which means we don’t get any 
benefit from the averaging filter on quantization noise reduction. 
 
A good example for a “non-busy” signal is DC signal where averaging will not reduce 
quantization noise. 

 Ideal 
ADC 1+z-1

  vin 

  Digital   Analog 

Figure 5.29. Using a digital averaging filter to reduce quantization noise 
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5.8) Assuming Eq. (5.57) is valid, re-derive Eq. (5.13) including the effects of 

averaging K ADC output samples. Is Eq. (5.13) or the equation derived here valid for a 

slow or DC input signal? Comment on why or why not. 
 

Solution: 

 Equation 5.57 from the text book is the one shown below; it is the resulting RMS 

quantization noise after the input signal undergoes digitization by the ADC and is 

averaged by a moving averaging filter.   

 ,

1

12

LSB
Qe RMS

V
V

K
= ⋅  (1.1) 

 Equation 5.13 from the book is the SNR for the output of a ADC without any 

averager on its output, it is given as,  

 6.02 1.76
ideal

SNR N  (in dB)= +  (1.2) 

 In order to solve for the SNR, we need to take the ratio of the input RMS voltage 

to the quantization RMS voltage as shown in Eq 1.2,  

 
,

,

20log in RMS

Qe RMS

V
SNR

V

 
 
 
 

=  (1.3) 

 Considering the input to be a busy sine signal, we can write the RMS voltage of 

the input as  

 , ,
22

REF REF
P

P
in RMS

V V
              where  V

V
V + −

−
==  (1.4) 

 We know that for an ADC that has a output code with N number of bits, the LSB 

voltage is given by, 

 
2

REF REF
LSB N

V V
V + −

−
=  (1.5) 

 Substituting Eq. 1.5 in Eq. 1.1 we get,  

 ,

21 1

12 2 12

REF REF
N

REF REF
Qe RMS N

V V

 = 
V V

V
K K

+ −

+ −

 
 
 

−

⋅

−
= ⋅ ⋅  (1.6) 

 

 Now let’s substitute both the input RMS voltage Eq. 1.4 and RMS quantization 

error voltage Eq. 1.6 in the Signal-to-Noise ratio equation, we get 

 20log

REF REF
V V

SNR

+ −
−

=
2 2

1 REF REFV V

K

+ −
−

⋅

2 12 6

22 2
20log 20log 2

2 12

N
N

N

K
  K

 
     ⋅ ⋅ 

= =       
     

 

⋅ ⋅

⋅

(1.7) 

 ( )
6

20log 20log
2

20log 2N
SNR K

 
= + +   

 
 (1.8) 

 
 6.02 10 log( ) 1.76SNR N K= + ⋅ +  (1.9) 
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 This defines the SNR for a data converter employing a digital k-order averaging 

or low-pass filter.  

 

 This equation is not valid for DC or low-frequency signals as we do not get any 

benefit of increase in SNR for those signals. Because according to the Bennett’s criteria, 

the input signal must be busy or varying to reduce the quantization noise using an 

averaging filter. Using an averaging filter, two adjacent codes of an ADC are averaged 

and a point is inserted between them.  Adding this extra switching level gives us a 

reduction in the quantization noise being introduced into the system. It is important to 

note that the output codes being generated should be linear, as averaging does not make 

sense if they are not linear. If the input signal is DC, then digital code for the ADC is not 

changing, so between samples of the input data (which is not changing), we are not 

changing the output of the ADC by at least 1LSB. Therefore, we do not get any benefit 

from averaging, so this equation cannot be applied to DC or low frequency signals where 

the output of the ADC does not change by at least a LSB. 



  Harikrishna Rapole 

5.9. If Bennett’s criteria are valid, does averaging ADC outputs (or DAC inputs) put any 

restrictions on the bandwidth of the input signal? Why? Give an example. 

 

Sol): We determine the spectral content of the quantization noise assuming that the 

Bennett’s criteria are valid. It means that the following conditions hold. 

� The input signal to the ADC is busy i.e. “jumping around”, that means no two 

consecutive outputs of the ADC have the same digital code.  We see it is 

redundant to find the quantization noise at the same digital output. 

� The input (to the ADC) signal’s amplitude variation falls between VREF+ and VREF-. 

The ADC’s LSB is much smaller than input amplitude. If the above two 

conditions are not met then the output spectrum will have spurs, and hence the 

quantization noise spectrum is affected. 

 

 

 

Figure 1. Using digital averaging filter to reduce quantization noise (Fig 

5.29 from book) 

Using the averaging filter model shown in Figure 1 we get an improved SNR as shown in 

equation (1).  

 idealSNR 6.02N 1.76 10 log K= + += + += + += + +    (1) 

It is assumed in this model that for the ideal ADC the outputs are linear. If the outputs are 

not linear then the averaging the outputs can result in the same output. Hence the 

resolution is not improved. Note that the ideal ADC and the averaging filter are sampled 

at the same frequency i.e. fs. In general a k-bit averaging filter has transfer function H(z) 

given by equation (2).  

 
k

1

1 z
H(z)

1 z

−−−−

−−−−

−−−−
====

−−−−

  (2) 

If fs is the sampling frequency we know z can be represented by 

 j2 f fs
z e  

π
====  (3) 

      

From this we can derive 

k f
sin

fsH(z)
f

sin
fs

π

π
====  (4) 

 

Let us discuss the averager response when K=2, 4. 
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Case 1: Averager with K=2 

 When K=2 the transfer function H(z) reduces to 

 
2

1

1

1 z
H(z) 1 z

1 z

−−−−

−−−−

−−−−

−−−−
= += += += +

−−−−

 or  (5) 

 

2 f
sin

ffsH(z) 2 cos
f fs

sin
fs

π

π

π
= == == == =  (6) 

Equation (6) implies that we have null points in the magnitude response at integer 

multiples of fs/2. The magnitude decreases from peak of 2 at DC to zero at fs/2. The 

ADC has a sinc response because of the sample and hold circuit in it. The nyquist 

frequency in this case is fs/2 . The averager (or counter) decimates the frequency by K 

i.e. in this case K=2,  the new nyquist frequency is given by 

 (((( )))) (((( ))))nyquistf fs / 2 1 K fs / 4= • == • == • == • =  (7) 

The frequency response of the averager with k=2 is shown in Figure 2. Note that the 

averager response at a frequency fs/2 becomes zero.   
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freq response of filter

 
            Figure 2. frequency response of averager with K=2 

 

        
    Figure 3. Using Digital Averaging filter with K=2                       Figure 4. time domain plot at f=fs/2 

 

 

    
 

Null points at integer 

multiples of fs/2 

Output is zero for 

f=fs/2=50MHz 

Input signal spectrum from 0 to fs/2 
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For The averaging system with K=2 as shown in Figure 3 (reference: cmosedu 

examples), the output at f=fs/2=50MHz (Figure 4) is zero i.e. Vref/2. This means that the 

allowable input signal bandwidth has become lesser than fs/2. 

 

Case 2: Averager with K=4 

From equation (4) we have  

 

4 f
sin

fsH(z)
f

sin
fs

π

π
====  (8) 

Since the averager decimates the frequency by K=4, in this case the new nyquist 

frequency is given by  

 (((( )))) (((( ))))nyquistf fs / 2 1 K fs / 8= • == • == • == • =  (9) 

The frequency response of the averager with K=4 is shown in Figure 5. Note that the 

averager response at frequencies at integer multiples of fs/4 becomes zero.  
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 Figure 5. frequency response of averager with K=4 

 

 

We see that fnyquist is decreasing with increasing value of K of the averager in Figure 1. 

We conclude that for faithful reproduction of input signal, we need to limit the input 

signal bandwidth to fs/2K, if we use the model as in figure 1. 

    

   

   
  

 

 

  

 

Null points at integer 

multiples of fs/4 
 Input signal spectrum     

from 0 to fs/2 



Problem 5.10 – How accurate does an 8-bit ADC have to be in order to use a digital filter to 
average 16 output samples for a final resolution for 10-bits (see eq. 5.59)? Assume the ideal LSB 
of the 8-bit converter is 10mV. 
 
Since the ideal LSB of the ADC is 10mV, and the ADC is 8-bit, the full input range of the ADC 
is 256*LSB, or 2.56V. The averaging of 16 bits results in a theoretical increase in resolution of 
two bits, as shown by equation 5.59, reprinted below (K is the number of averages). 
 

݀݁ݏܽ݁ݎܿ݊݅ܰ ൌ
ሻܭሺ݃݋10݈

6.02
ൌ ܭ	݄݊݁ݓ	2 ൌ 16 

	

However, in order for the averaging to increase the resolution, the LSB steps must be accurately 
spacedby less than one LSB, exactly which is given by 
 

ݕܿܽݎݑܿܿܣ ൏ ܤܵܮ0.5
1

2ே೔೙೎ೝ೐ೌೞ೐೏
 

 
For a resolution increase of two bits, (8 bits to 10 bits) with 1LSB = 10mV, the resolution of the 
converter must be:	0.5ܤܵܮ ଵ

ଶమ
ൌ 0.125. This corresponds to an accuracy within 10mV*0.125, or 

1.25mV, which is 0.049% of the full scale input range. 
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5.11) Show the detailed derivation of Eq. (5.66). 

 

Solution: From the text book, equation 5.66 is given as, this is the equation for the output 

of a feedback modulator shown in Fig. 1, which can be employed to improve the SNR of 

a data converter system.  

  

 
( ) 1

( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

Signal transfer function, STF(f) Noise transfer function, NTF(f)

out in Qe

A f
v f v f V f

A f B f A f B f
= ⋅ + ⋅

+ ⋅ + ⋅

������� �������

 (1.1) 

  

 
Figure 1: Block diagram of a feedback modulator 

 

To drive the above equation, lets label the output of the first adder block as P(f) as shown 

in Fig.1.  

Note that the DAC does not introduce any type of quantization noise unlike the ADC 

which is modeled as an additive quantization noise.   

 

We can write the output Vout(f), as follows, 

 ( ) ( ) ( ) ( )
out Qe

v f P f A f V f= ⋅ +  (1.2) 

Now, lets write the equation for the feedback path of the system, we get 

 ( ) ( ) ( ) ( )
in out

P f v f v f B f= − ⋅  (1.3) 

We can clearly see now that by substituting Eq. 1.3 in Eq. 1.2, we can obtain a 

relationship between the input and output of the feedback modulator. 

 [ ]( ) ( ) ( ) ( ) ( ) ( )out in out Qev f v f v f B f A f V f= − ⋅ ⋅ +  (1.4) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )out in out Qev f v f A f v f B f A f V f= ⋅ − ⋅ ⋅ +  (1.5) 

 [ ]( ) 1 ( ) ( ) ( ) ( ) ( )out in Qev f B f A f v f A f V f+ ⋅ = ⋅ +  (1.6) 

 
( )( )

( ) ( )
1 ( ) ( ) 1 ( ) ( )

Qe

out in

V fA f
v f v f

B f A f B f A f
= ⋅ +

+ ⋅ + ⋅

 (1.7) 

 

 
( ) 1

( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

Signal transfer function, STF(f) Noise transfer function, NTF(f)

out in Qe

A f
v f v f V f

B f A f B f A f
= ⋅ + ⋅

+ ⋅ + ⋅

������� �������

 (1.8) 



Solution by Geng Zheng

5.12     Summarize, and compare, the advantages and disadvantages of predictive and noise-shaping

data converters.

Solution:

Predictive and noise-shaping data converters are all converters that using feedback modulator

which can be represented using the block diagram shown in Fig. 1.

The input and output of the modulator is related as

vout  f = A f 
1A f ⋅B f 

⋅vin f  1
1A f ⋅B f 

⋅V Qe f   (1)

For predictive data converters, A f =1  and the Eq. 1 can be rewritten as

vout  f = 1
1B  f 

⋅vin  f  1
1B  f 

⋅V Qe  f   (2)

For noise-shaping data converters, B  f =1 , and the Eq. 1 can be rewritten as

vout  f = A f 
1A f 

⋅vin  f  1
1A f 

⋅V Qe  f   (3)

From Eqs. 2 and 3 we see that the transfer functions of signal and noise in the predictive data

converters are the same. However, for noise-shaping data converters, the quantization noise in

the low frequencies is pushed to higher frequencies so the signal can be obtained easier.

Since output of a predictive data converter is averaged to zero, so it does not required wide

input range of the ADC in the feed forward path. The average value of a noise-shaping data

converter, on the other hand, is approached to the input. Since the output of the ADC is

averaged by the modulator, it does not have to be very precise. Also, filtering the output of a

noise-shaping data converter is easy since the noise has been push to higher frequencies. In

contrast, dealing with the output of a predictive data converter requires an analog filter with a

transfer function of precisely B  f  , which may be a challenging task.

Figure 1   Block diagram of a feedback modulator.

A f 

B  f 

+

DAC
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