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9.1) What is a time-interleaved data converter? Why is a time-interleaved converter 

different from the K-Delta-1-Sigma converter seen in Fig. 9.4? Sketch the 

implementation of a time-interleaved data converter implemented with Delta-Sigma 

modulators. Also sketch the clock signals used in the topology. 
 

Solution)  

Time-interleaved, poly-phase or multi-rate signal processing data converters 

employ multiple data-converters connected in parallel clocked at different clock phases. 

Let’s look at a single path noise-shaping modulator and its noise transfer functions first 

and we will build up to a K-path time-interleaved data converter. 
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Figure 1: Single Path NS Modulator 

A Single path NS modulator is clocked at a sampling frequency of say 

fs=100MHz. The NS modulator when implemented using switched-capacitors has an 

input/output relationship given by, 
1 1( ) ( ) (1 ) ( )out in Qev z z v z z V f− −

= ⋅ + − ⋅  

 The STF is just a one clock cycle delay, while the NTF shows that the 

quantization noise is differentiated. The magnitude response of the noise is just a 

response of a first order digital differentiator, as seen in Fig.2. 

 
Figure 2: NTF of the NS Modulator from Fig.1 clocked at 100MHz 

The spectral content repeats itself at every fs, as it is a discrete-time system and its 

frequency response repeats with the sampling frequency. 

 Fig.3 shows the quantization noise power spectral density, where all the 

quantization noise is assumed to fall in the frequency spectrum of interest.  

|NTF(f)|
2

MHz10050

2

12

LSB

s

V

f

 
Figure 3: Quantization Noise Power Spectral Density (PSD) 
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Next, let’s move to a 8-path time-interleaved NS data converter. Eight of the 

single path NS modulators shown in Fig.1 are used in parallel, where each modulator is 

clocked at fs but with clocks that are shifted in time. The resulting topology is seen in 

Fig.4.The equivalent circuit of the topology shown below, is effectively clocked at a high 

clock frequency of Kpath.fs. 

 
Figure 4: 8-path Time Interleaved Topology, also shown are the clock signals used to clock the 

various paths 

 

The NTF of this equivalent circuit is given by, 

( ) ( ) (1 ) ( )path

NTF

path pathK K K

in Qe
H z z v z z V f

− −

= ⋅ + − ⋅
�������

 

 The power spectral density of the quantization noise is now spread out to higher 

frequencies as the effective sampling frequency is increased, which also leads to a 

lowering of quantization noise in the frequency of interest, as shown below. Hence we 

get an improvement in the SNR using the K-path time interleaved data converters.  
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Figure 5: Quantization noise, PSD for the 8-path time-interleaved data converter 

  

As we are using 8-paths, the NTF can be written as,  
8

8
8 8

1 1
1 1

z
z

z z
− −

= =− − , resulting 

in a pole-zero plotted in Fig. 6. 
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Figure 6: Pole-Zero plot of the NTF for the 8-path Time Interleaved Topology 

 The modulation noise still repeats itself at the original sampling frequency of 100 

MHz as the each path is still being clocked at fs. And as the power spectral density of the 

quantization noise is spread out over a larger frequency range, the peak amplitude of the 

NTF is reduced as shown in the figure below.   

 
Figure 7: Modulation Noise of the 8-path topology 

 Therefore, this topology reduces the modulation noise added to our signal in the 

bandwidth of interest, from DC to 50MHz as shown in Fig.7.We will clearly get an 

improvement in the SNR using the time-interleaved topology by comparing Fig.2 and 

Fig. 7. 

 

Now, let’s look at the K-delta 1-sigma topology. Here, a single integrator is used 

to perform the delta from the K paths. The high speed sampling is achieved from using 

the K-feedback paths or K-Deltas. Since a single integrator is used, the quantization noise 

is pushed to high frequencies. The implementation of the K-Delta 1-Sigma is shown in 

Fig. 8.  

In this topology, the modulator is effectively clocked at K.fs and therefore the 

noise is pushed out the high frequencies as shown in Fig.9, where the noise peaks at 

K.fs/2. As this system is still a discrete time topology, the spectrum repeats itself at every 

K.fs. 

 Therefore, it should be clear that using the K-delta 1-sigma the noise is removed 

from the frequency of interest and will result in a SNR improvement greater than the 

time-interleaved topologies. The noise spectrum comparison of the K-delta 1-sigma and 

the K-path time-interleaved data converter are shown in Fig. 10. 
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Figure 8: Topology for K-Delta 1-Sigma Data Converter with clock signals 
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Figure 9: Modulation noise spread for the 8-Delta 1-Sigma Topology 

 

 
Figure 10: Modulation noise shaping comparisions 

  

The K-Delta 1-Sigma topology leads to better removal of noise from the 

frequency of interest. The K-path time-interleaved topology reduces the noise amplitude 

from the frequency of interest, but does not eliminate the noise as effectively as the K-

Delta 1-Sigma topology.  

 

 

 

 

 

 

 

 



Lincoln Bollschweiler 
9.2) Using the modulator from example 9.2 show that capacitor matching isn’t important 
in the K-Delta-1-Sigma topology. 
 
In order to modify the circuit that was found on CMOSedu.com (Fig9.4 no path filter v1 
MSD) for the circuit discussed in example 9.2 four steps were taken: 1 – drop down into 
the switched capacitor cell and remove the capacitor; 2- add pins to the schematic and to 
the symbol where the capacitor connected to; 3- go to the top level schematic and replace 
the old symbols with the new one; 4 – place capacitors of various sizes (within 1%) on 
the switches. 1% was chosen because “capacitor matching should easily be better than 
1% so the worst-case mismatch is a capacitor with a value of 99 fF or 101 fF”[1]. The 
actual values chosen were 100.0f, 100.6f, 100.2f,  99.8f,  99.8f, 99.7f, 100.0f, and 99.9f, 
which average to 100.0fF. 
 
The updated symbol and schematic are shown in Figs. 1 and 2. The new version of the 
top level schematic is seen in Fig. 3. 
 
The spice simulations show no appreciable difference. These can be seen in Figs. 4 and 5. 
Running through the MATLAB analysis (also found on CMOSedu.com) we find, for the 
original version: BW = 6.25 MHz; SNR = 58.8dB; and Neff =  9.47 bits. For the 
modified version with capacitor mismatches: BW = 6.25 MHz; SNR = 56.6 dB; and 
Neff  =  9.1 bits. This is very close to the ideal situation. The reason these mismatched 
capacitances have little affect on the performance is due to the averaging effect of the K-
paths. “The variance of the capacitor mismatch is divided by Kpath” [1]. 
 
Trying to push the envelope, another simulation was run with a slightly wider swing on 
the capacitor mismatch vales. This time the following values were used: 100.0f, 101.0f, 
100.2f, 99.8f, 99.5f, 99.0f, 100.0f, and 100.5f, with the following results:  BW = 6.25 
MHz; SNR = 56.1; and Neff = 9.0 bits. Again, just a few dB less for the SNR than the 
ideal case. The more paths that are used, the more chance for capacitor mismatch, but at 
the same time, the more averaging of these mismatches. 
 
 
 

Figure 1. Updated version of SC input 1(sch.) Figure 2.  Updated version of SC input 1(sym.) 
 
 
 
[1] Jake Baker, personal email to author, 2009. 



 
Figure 3. Copy of Fig9.4 no path filter v1 MSD circuit from CMOSedu.com, updated with capacitors 
ranging in value from 99.7fF to 100.6fF for test 1 and 99fF to 101fF for test 2. 
 

 
Figure 4.  SPICE sim for ideal, unaltered version. 

 
 

 
Figure 5.  SPICE sim for mismatched capacitors version. 
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Problem 9.3 – Using the modulator from example 9.1, show that the open loop gain of the amplifier

used in the integrator isn't critical. 

Fig 9.4 in CMOS, Mixed Signal Circuit Design is made of near-ideal components, with the amplifier

having an open-loop gain of one million. With the near ideal components and an input frequency of

3MHz, (nearly the signal bandwidth), the output signal and spectrum are pictured below.

Using the decimation filter that simply adds all the outputs together every 1/fs and ideal components,

the SNR is 44.8dB, or 7.15 effective bits. Now, lets try it with a integrator that has significantly less

gain. 

The spectrum and output above is the same modulator and filter as before, except the open loop gain of

the integration opamp is 100. This is quite low, and while it had an effect of the SNR, the difference in

complexity between an opamp with a gain of 100 and a gain of 1,000,000 is much bigger. The output

SNR is now 41.0dB, or 6.51 effective bits. To try once more, lets reduce the open loop gain of the

integrator down to 10. Simulations follow:
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Spectrum with AOL = 10

The SNR of this simulation is even higher than the original, but that might have to do with simulation

accuracy, or the use of ideal components in the other parts of the simulation (eg. the comparators are

also ideal). Whatever the cause, it shows that the open loop gain of the op-amp is not critical to the

operation of the circuit.

Spectrum with AOL = 5                                                  Spectrum with AOL = 1

Reducing the opamp gain too much will attenuate the signal, as seen in the final spectrum with AOL = 1,

but the modulator still continues to function.
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Q 9.4 Show the details of (derive from the time-domain outputs of the K-Delta-1-Sigma  modulator) how 
 the path filter seen in Fig. 9.4 has a z-domain transfer function of   
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 Explain how this filter performs a moving–average filtering of the modulator’s outputs. Does 
 this filter decimate the K-Delta-1-Sigma outputs? Why or why not? 
 
Sol. Figure 1 below shows Fig. 9.4 (page 304 MSD text book), solution is discussed looking at the 
 figures below 
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Adding the eight outputs together

1y
2y

3y
4y

5y
6y

7y
8y

Co

S

S

S

Co

Co

Co

S

Co

Co

Co

Co

Ci

Ci

Ci

Ci

1b

2b

3b

4b

Outputs

Summing circuit

 

Figure 1 K-Delta-1-Sigma ADC, non-overlapping clocks and the block diagram of summing circuit as path filter 
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 When discussing the path filter it is assumed that the summing block is a high speed digital circuit 
 which can perform logic functions practically at the rate greater than sK f  where K=8 in this 

 problem. The  summing of K-Delta-1-Sigma modulator outputs can be written as: 
 

1 2 3 4 5 6 7 8sumy y y y y y y y y         

  
 where sumy  is the output of summer. Looking at the figure of non-overlapping clocks, the total 

 value sumy  is the sum of modulator outputs arriving at different instants of time with 8sT  time 

 between any two output samples. If the first output arrives at the rising edge of the clock 1 1  

 through clocked comparator then writing the sum for the outputs of modulators arriving at 
 consecutive clock cycles 1 2 , 1 3 , 1 4 , 2 1 , 2 2 , 2 3 , 2 4  as : 
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 Since the magnitude of the samples are same and  , 8s new ST T  , sumy  can be written in terms of  

 unit delay 1z  where once again ,2 s newf fz e  and , 8s new path s sf K f f     

  
1 2 3 4 5 6 71sumy y y z y z y z y z y z y z y z                       
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 Where  H z  simplifies to  
8
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1

1

z
H z

z
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
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
, which is equivalent to the output of moving average 

 filter or Low pass Sinc filter which is realized as in Fig.2 and have spectrum shown in Fig. 3 
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 As stated earlier the summing block of the path filter is assumed to perform at faster rate and also 
 the modulator output is being averaged (summed) at effective frequency of sK f . It can be 

 assumed that the output of summing block is being strobed at the same frequency; sK f  hence 

 there is no decimation at the output of summer. The statement can be argued by comparing it with 
 moving average filter output discussed above. 



Solution by Geng Zheng

9.5       Sketch the decimate by K /4  topology similar to the topologies seen in Fig. 9.7. Ensure the 

proper clock signals are used in your sketch.

Solution:

In Ex. 9.2 the clock signal f s  is 100 MHz. The effective sampling frequency is K path⋅ f s  or

800 MHz. Decimating by K /4  (or 8/4 =2) results in a final clock frequency of 400 MHz.  The

decimate by K /4  topology and simulation are shown in Fig. 1.

Figure 1   Decimate by K/4 topology.
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9.6 Explain, in your own words, why oversampling (averaging the output) using a 3-bit Flash 

converter (eight comparators), won’t result in as significant improvement in SNR as the K-Delta-

1-Sigma topology. 

 

A 3-bit Flash ADC can be seen in F-1. 

 
 

 

When oversampling a three bit Flash ADC the voltage spectral density of quantization noise can be 

estimated as: 

 

𝑉𝑄𝑒  𝑓 =
𝑉𝐿𝑆𝐵

 12 ∙ 𝐾𝑓𝑠
  𝑉

 𝐻𝑧
   

 

The frequency response of the Flash ADC’s quantization noise is spread out over the higher clock 

frequency without being shaped to higher frequencies.  F-2 depicts the Flash ADC quantization noise 

being spread out over higher frequencies. 

 

 

 

 

 

 

 

 

 

 

The K-Delta-1-Sigma (KD1S) topology allows for true noise shaping at the higher clock frequency.  The 

KD1S topology also benefits from the reduced quantization noise due to an increased sampling rate, but 

also modulates the noise within the conversion band to a higher frequency.  

 

The modulation noise spectral density can be viewed in F-3. 

 

 

 

 

 

 

F-1 Schematic of a 3-bit Flash ADC 
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 F-2 Showing the Flash ADC’s quantization noise being s pread out with oversampling 
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9.7. What is the frequency response (an equation) of the filter seen in Fig 9.10? 

 

Sol. Let us see the frequency response of the cascaded filter shown in Figure 1. 

We can see that the final transfer function Heff (z) in z-domain is a multiplication of the 

transfer functions of the individual filters in the cascaded filter. 
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eff 1 1H (f)=H (f ) H (f )i [1] 

 

In order to find the frequency response of Heff (f), let us see the magnitude and phase 

response of H1 (f).  
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From equation [1] magnitude response of the individual frequency responses is 

multiplied to get the effective system frequency response. The individual phase responses 

are added to get the final phase response.  
2
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   [2] 

The effective magnitude response of the system has zeroes at multiples of fs/8. 

 

The individual filters of the cascaded filter i.e. H1 (f) and H2 (f) as shown in Figure 1 have 

a frequency response as shown in Figure 2.  
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           Figure 1. Decimating and filtering the output of a the K-path (K=8) modulator 
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               Figure 2. The frequency response of H1 (f) or H2(f) in Figure 1 

 

From Figure 2 We can see that magnitude of H1 (f) or H2 (f) has zeroes at 

multiples of fs/8. 
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                    Figure 3. The frequency response of Heff (f) 

 

The cascaded filter in the Figure 3 results in a sharper cut off frequency and increased 

attenuation in the frequency bands adjacent to the signal bandwidth.  

Zeroes at multiples of fs/8 

Increased attenuation outside the signal 

bandwidth and sharper cut off 

Signal Bandwidth 

Signal Bandwidth 
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9.8. What is the frequency response (an equation) of the filter seen in Fig 9.12? 
Sol. Let us see the frequency response of the filter shown in Figure 1. The transfer 

function of the filter is derived assuming fsnew = 8fs. Since  

                    

                                                  j2 f fsnewz e π

=  

The output at Section 1 of filter in Figure 1 is given by 11 z−
+ . The output at Section 2 is 

given by 21 z−
+  as sampling frequency is decreased by 2. Similarly the output at Section 

1 is given by   41 z−
+ . The output at Section 4 is given by 81 z−

+ . 

 

 

    

                             

 
                                         Figure 1. Decimating through filter (Fig 9.12 in book) 

 

  

Hence the overall transfer function in the z-domain is given by  

                                     ( )( )( )( )
1 2 4 8H(z) 1 z 1 z 1 z 1 z− − − −

= + + + +   

 
16

1

1 z
H(z)

1 z

−

−

 −
=  

− 
 Since   

j2 f j2 f

fsnew 8fsz e e

π π

= =  

 

The frequency response is given by 
16 2 f f
j j4

8 fs fs

j 2 f j f

8 fs 4 fs

1 e 1 e
H(f )

1 e 1 e

⋅ π
− ⋅ − π⋅

⋅ π π
− ⋅ − ⋅

   
− −   

= =   
   

− −   

 

 

filter 
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Let  
f

2 fs

π
θ = ⋅  

j8

j
2

1 e
H(f )

1 e

− θ

θ
−

 
− 

=
  

− 

 

1 cos8 jsin8
H(f )

1 cos jsin
2 2

 
 − θ − θ

=  
θ θ

 − −

 

 

2

2

2sin 4 j2sin 4 cos 4
H(f )

2sin j2sin cos
4 4 4

θ − θ θ
=

θ θ θ
−

 

2sin 4 (sin 4 jcos 4 )
H(f )

2sin (sin jcos )
4 4 4

θ θ − θ
=

θ θ θ
−

 

  

                                  

2sin 4 cos 4 jsin 4
2 2

H(f )

2sin cos jsin
4 2 4 2 4

 π π   
θ + θ − + θ    

    
=

 θ π θ π θ   
+ − +    

    

 

 

         
2sin 4

H(f ) 4
4

2sin
4

θ θ 
= ∠ θ − ∠ θ  

 

         
sin 4

H(f ) 15
4

sin
4

θ θ 
= ∠ θ  

 

          Substituting 
f

2 fs

π
θ = ⋅  

We get magnitude response as 
s

s

2 f
sin

f
H(f )

f
sin

8f

π 
 
 

=

π 
 
 

     [1] 

Phase response as 
s

15 f
H(f )

8f

π
∠ =  [2] 
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9.9 What is the frequency (an equation) of the filter seen in Fig. 9.14? 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.14 uses the cascade of comb filters clocked at 2fs.  Before determining the transfer function of 

the cascade comb filter above let’s review the comb filter. 

 

 1 + 𝑧−1  =  1 + 𝑒
−𝑗2𝜋

𝑓
𝑓𝑠  =  1 + cos −2𝜋

𝑓

𝑓𝑠
 + 𝑗 sin  −2𝜋

𝑓

𝑓𝑠
   

 

=  1 + cos  −2𝜋
𝑓

𝑓𝑠
 + 𝑗 sin  −2𝜋

𝑓

𝑓𝑠
  =    1 + cos −2𝜋

𝑓

𝑓𝑠
  

2

+  sin  −2𝜋
𝑓

𝑓𝑠
  

2
  

 

=   2  1 + cos  2𝜋
𝑓

𝑓𝑠
   = 2  cos 𝜋

𝑓

𝑓𝑠
   

 

So for the cascade structure seen in F-1 we can state that the transfer function is: 

 

𝐻 𝑧 =
𝑣𝑜𝑢𝑡

𝑣𝑖𝑛

=  1 + 𝑧−1 5  

 

This is simply the transfer function of a cascaded comb filter with sampling frequency equal to 2fs.  The 

magnitude of this transfer function is: 

 

 𝐻 𝑓  =  
𝑣𝑜𝑢𝑡

𝑣𝑖𝑛

 = 32  𝑐𝑜𝑠  𝜋
𝑓

2𝑓𝑠
  
5

 

 

 

Figure 9.14 also provides the magnitude plot of this comb filter: 

 

 

 

 

 

 

 

 

 

 

F-1 Filter used in Figure 9.14 
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9.10 What is the frequency response (an equation) of the filter seen in Fig. 9.16? 
   
Solution: 
The filter seen in Fig. 9.10 is essentially cascading five stage of averager. The filter’s 
transfer function can be found as 

   511  zzH  
The frequency response can be roughly depicted as seen in Figure 1. 

 
 

In Figure 1, it is noted that the filter won’t do a good job in removing the quantization 
noise, and this can be verified in the SPICE simulation as discussed below. 
 
The SPICE simulation time for Fig. 9.16 (can be downloaded from CMOSedu.com) can 
be changed to 4us and input signal frequency is changed to be 4MHz to avoid the noise 
leakage when performing the FFT plot. The time-domain result is shown in Figure 2. 

 
Figure 2. The time-domain results for the filter seen in Fig. 9.16 

 
The FFT plots are shown in Figure 3 and Figure 4.  
 

fs,new/2 0 

H(z) 

f 

Figure 1. The frequency response of the filter seen in Fig. 9.16 

20dB 

fs new= Kfs



 
Figure 3. The FFT plot for the filtered output data (log frequency) 

 
 
 

 
Figure 4. The The FFT plot for the filtered output data (linear frequency) 

As seen in these figures, the quantization at the lower frequency (less than nyquist 
frequency 400MHz) is attenuated. However, the quantization noise is not greatly 
removed effectively to get good resolution or high signal-to-noise ratio. 
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9.11 Show how the switches on the inputs and outputs of the 8 modulators in parallel 
seen in Fig. 9.20 can be described using the unit matrix and delays or 
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Where STfjez  2 . Using these relationships show how to relate the inputs of the K paths 
in parallel, Fig. 9.20, to the transfer function and the resulting topology’s outputs. 
  

 
Figure 9.20. Eight modulators in parallel (a time-interleaved topology)  

 
Solution: 
The way to better to understand the parallel structure properly is to introduce the concept 
of poly-phase decomposition.  
 



The basic concept for poly-phase decomposition is so called multi-rate signal processing 
or effectively changing the sampling rate among these parallel channels. The block 
diagram for a poly-phase decomposition system is shown in Figure 1. 
 

 
Figure 1. Block diagram for a poly-phase decomposition system  

 
In Figure 1, the input signal is experiencing down-sampling when it is passed through 
each single path. Also it is noticed that the input signal’s delay version is fed into each 
path, and the delay is at the fast clock frequency which are the clock signals Φ1K and Φ2K 
seen in Fig. 9.20.  
 
The equivalent block diagram for Figure 1 is shown in Figure 2 where the transfer 
function  zH  for single path is replaced with  KzH . That is because each individual 

path is running at a slower rate, and here newSTfjez ,2  
 or 

KTfj Se /2 
. 



 
Figure 2. The simplified block diagram for poly-phase system 

 
Finally, it comes down to the block diagram seen in the bottom part of Fig. 9.20 or 
redrawn in Figure 3. 

 
Figure 4. The equivalent diagram for the time-interleaved topology 

 
So the resulting system transfer function is  KzH  instead of  zH , and that is the key 
point discussed here. For the noise shaping data conversion, the output can be expressed 
as: 

       zVzzzVzV Qe
KK

in
K

out
  1  

 And the noise-shaping effect for the time-interleaved modulator is seen in Figure 5. 

 
Figure 5. Noise Shaping for the K-path time-interleaved topology 

 
As discussed above, the time-interleaved topology won’t be able to increase the SNR 
dramatically since it doesn’t shape the quantization noise to Kfs/2 but instead it lowers 
the quantization noise floor by spreading the noise over a wider spectrum. 
 



Solution by Geng Zheng

9.12     The effective frequency of the K-Delta-1-Sigma ADC discuss in Sec. 9.2 is roughly 1.6 GHz. 

Can any component of the ADC operate at, or be clocked at, 1.6 GHz. Verify your answers

using SPICE and the 500 nm, 5V, CMOS models used to generate these figures. What is the

most critical component then, from a timing perspective, (the DFF used to capture the eight bits

coming out of the modulators) and what is critical in that component (the DFF's setup and hold

times): What happens if an error is made in the most critical component? (The wrong count is

captured. For example, we would capture 6 logic 1s but actually capture 5 or 7 logic 1s. Since

we have a significant amount of averaging in the digital filter the effects should be small. If an

equal number of positive and negative error are made the errors average to zero and don't affect

the converter's performance.)

Solution:

If the ADC is operate at 1.6 GHz (the effective sampling frequency is then 8×1.6  GHz), only

the switched-capacitor input and the DFF can work properly. The time constant of the switched-

capacitor input is 50 ps so the capacitor can be fully charged (Fig. 1) even when the circuit is

operated at 1.6 GHz. Fig. 2 shows that the opamp cannot fully charge the output load if we

clock the circuit at 1.6 GHz. Fig. 3 shows that the clocked comparator doesn't function correctly

if it is clocked at 1.6 GHz. Fig. 4 shows the operation of the DFF clocked at 1.6 GHz. 

Figure 1   The switched-capacitor input

clocked 1.6 GHz.

Figure 2   The operation of the amplifier

when the circuit is clocked at 1.6 GHz.



From the timing perspective the DFF used to capture modulators is the most critical component.

If the DFF cannot operate fast enough, we will not be able to capture the correct modulator

output. Thus even we have a good modulator design we won't be able to take the advantage of it

if the DFF's setup and hold times are not satisfied. If an error, as the example in the problem

statement, is made in the DFF, digital filtering will significantly remove it. However, if the we

design the modulator for a very wide bandwidth (the input is changing in a much faster rate),

the DFF may not be able to clock in most of the modulator output correctly, which will result in

a large degradation of the ADC performance. 

Figure 1   The operation of the clocked

comparator clocked at 1.6 GHz.

Figure 2   The operation of the DFF operates

at 1.6 GHz.
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