
Lincoln Bollschweiler 

6.1) Suggest a topology for a passive-integrator NS modulator where the input and fed 

back signals are currents. Derive a transfer function for your design. Does your topology 

have the extra noise/distortion term seen in Eq. (6.12)? Why or why not? Simulate the 

operation of your design. 

 

We can feed a current into the passive integrator with an ideal current source and we can 

remove current with a combination of an ideal current source and some MOSFET gates. 

Referring to Fig. 6.1.1, I have elected to use three NMOS gates from a 1µm process.  M1 

is the switch which gates the removal of current from the sigma bucket (passive 

integrator). M3 is gate-drain connected to set the VGS  of  M2, which mirrors the current 

in M3. The topology is very similar to that of the delta-sigma modulator seen in CMOS: 

Circuit Design, Layout and Simulation, chapter 17. The major differences are that here 

we are gating the output current, not the input, and the input is a periodic signal. 

 
Figure 6.1. 1.  Passive-integrator noise-shaping (NS) modulator with input and fed-back signals as 

currents. 

 

 
Figure 6.1. 2.  Block diagram for Fig. 6.1.1.  
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Following the block diagram (and switching the polarity of the Iin and Vout * Iin,p signals), 

we can derive the transfer function: 
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Notice that the transfer function does not contain a component due to extra noise / 

distortion. This is due to the removal of the resistors, which couple to the circuit as noise 

sources. 

The simulation for the circuit in Fig. 6.1.1 is seen in Fig. 6.1.3. Displayed signals are the 

input (Iin) in red, the digital output (VoD) in blue, and the reconstructed analog output 

(VoA) in brown. The analog output was reconstructed through a crude RC filter; not 

pretty, but good enough to see the results. 

 

 

 
Figure 6.1. 3 Simulation output for the passive-integrator NS modulator of Fig. 6.1.1. 
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Problem 6.2 – Simulate the operation of the NS modulator seen in Fig 6.4a but using a 4-bit quantizer

(ADC). Use a 100MHz clock frequency and an input sinewave at 500kHz. 

Above is the modified figure 6.4a, a passive NS modulator with a 4-bit ADC on the integration node

instead of a one bit quantizer (clocked comparator). The clock signal is 100MHz.

The red signal is Vin, and the quantized signal is the output of the modulator, hopefully with better

averaging.



Shantanu Gupta 
Question 6.3    
 
Using Eqs (6.14) and (6.17) compare the noise performance of passive NS modulators using a 1-bit 
quantizer to those using a 4-bit quantizer. 
 
Solution     
 
Equations 6.14 and 6.17 (page 208 – 209) are given as  
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where B is the signal bandwidth of interest for first equation. In second equation N is the bit resolution 
of a quantizer, effects of which will be discussed in the solution and K is the oversampling 

ratio
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Equation 6.14 LSBV  can be expanded as  for 2
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in case of a  4-bit quantizer or N = 4. For a 1-bit quantizer value of  LSBV  is given as LSB REF REFV V V+ −= − . 
As already mentioned, N is the bit resolution of the quantizer used in passive NS modulators. Looking at 
equation 1 we can say that the 2

,noise RMSV  will be lower by 81 2 for N = 4 bit quantizer as compared to    

N = 1 bit or ,noise RMSV is lowered by 41 2 which is a significant lowering.  
 
In case of equation 6.17 it is straight forward after looking at the equation that increasing the value of N 
or the bit resolution of the quantizer the value of idealSNR  will increase. 
 
Note:  Although, increasing the value of N or quantizer bit resolution the noise performance of the 
passive NS modulator increases, there is a strict restriction on the linearity of the quantizer if it is more 
than 1-bit. In case of 1-bit, the quantizer will be linear always because of only two output level. 
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6.4 – Repeat Ex. 6.2 if C is changed to 1 pF and a 1GHz clock frequency is used. 
Estimate the frequency where the output of the digital filter is -3 dB (0.707) from the 
input signal. Verify your answer with simulations. 

 

 

Example 6.2 uses a NS modulator that is discussed in Ex. 6.l.  Ex. 6.1 simulates the 
operation a passive NS modulator as seen in book figure 6.4. The schematic is 
reproduced below in figure 6.4.1: 

 

 
Figure 6.4.1: Reproduction of book figure 6.4 -> a circuit implementation of a passive NS modulator. 
 
Originally example 6.1 uses values for R and C of 10kΩ and 10pF respectively. Problem 
6.4 asks us to use a capacitance of 1pF. What does this do to the STF (signal transfer 
function)? What does it do to the NTF (noise transfer function)? To answer these 
questions, let’s look at book equation 6.12 (reproduced here as equation 6.4.1): 
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Note that the coefficient for our input signal defines a lowpass frequency response. The 
3dB frequency occurs when the imaginary component of the pole (jωRC) is equal to the 
real component in the pole (1), or at f=1/2πRC.  With the new capacitor value provided in 
the problem definition, we can calculate the 3dB frequency as 1/2π*10kΩ*1pF = 
15.9MHz. In an attempt to prove this with a clean simulation, I will start with the 
simulation for the book figure 6.7, and modify it for my changes. I will make the 1GHz 
clock a bit more ideal by reducing the rise and fall time to 1ps, and I will modify the RC 
“reconstruction” filter to exhibit the same frequency response as that of the STF 
mentioned above. The modified schematic and associated simulation results at the 3dB 
frequency of 15.9MHz can be seen in figure 6.4.2a and 6.4.2b. 



 

 
Figure 6.4.2: Simulation of a passive NS modulator as in book figure 6.4, substituting 1pF for the 
previous 10pF value of capacitance, along with an increased sampling frequency from 100MHz to 

1GHz. 
 

As can be seen from reviewing figure 6.4.2b, our estimated 3dB frequency seems to be 
pretty accurate. Now, to complete the solution we need to swap a K=16 decimating filter 
for the basic RC reconstruction filter that we used in figure 6.4.2a. This is done in figure 
6.4.3 below. 

 



 
Figure 6.4.2: Simulation of a passive NS modulator connected to a K=16 decimating filter. 

 

As can be seen in the simulation results of varying input signal frequencies, at 62.5MHz, 
or fs/K, the input signal is attenuated to 0. At the Nyquist frequency of 31.25MHz, or 
fs/2K, the output signal peaks at ~650mV. By the same token, we see in figure 6.4.2e that 
an input signal with a frequency of 1MHz is only slightly attenuated.  

 
What about the SNR? If we look at the book figure 6.8, we can see that if we increase the 
clock frequency, the Nyquist frequency also goes up. That means that we are spreading a 
fixed amount of quantization noise over a larger bandwidth, and the SNR of our system 
should go up. Let’s use the equations derived in section 6.1.1 to estimate the change in 
SNR as a result of the clock frequency increase from 100MHz to 1GHz. Using the book 
equation 6.17 with our values of R, C, and fs, we can approximate the ideal SNR. 
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6.5 Suppose the comparator used in the NS modulator and filter used in Ex. 6.2 has a 50 mV input-

referred offset voltage.  How will this offset voltage affect the conversion from analog to digital?  

Verify your answer with SPICE simulations. 

 
 

 

 
 

 

 
 

The answer to this question is stated clearly in the first paragraph of section 6.1.3 (Offset, Matching, and 

Linearity), but let’s examine it here.  Consider the passive NS modulator seen in F-2. 

 
 

 

 
 

 

 
 

 

The output of the one bit passive NS modulator is a one bit representation of the input signal.  The output 

stays high for as many clock cycles as it takes for the vint node to move below VCM.  The simulation results 
below show how the output bit toggles every Ts (the output is the busiest) when the input signal is close to 

VCM. 

 

 
 

The passive NS modulator converts the input voltage into a current.  When there is no input referred 
offset voltage the input current representation of the input voltage is: 
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When this current is present the output will average to VCM (or vin).  However, when we refer the 
comparators offset voltage back to its input the current representation of the input changes to: 
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The output will now averages to vin – VOS.  The simulation results below were perfomed by using 

_Fig6_11_MSD.  They show that when an input referred offset voltage of +50mV is applied to the input 

the output (after DAC) will shift down by 50mV, as perdicted by the equations above. 
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Problem 6.6 
Figure 6.36 shows the implementation of an op-amp using mixed-signal design technique. 
Assuming the comparator is powered with a 1V supply, simulate the circuit in the 
inverting op-amp configuration with the non-inverting input held at 0.5 V, a 10k resistor 
connected from the inverting input to the input source, and a feedback resistor of 100k 
from the op-amp’s output back to the inverting input (for a closed loop gain of -10). Set 
the input source to have a DC offset of 500mV, and a peak-to-peak amplitude of 20mV at 
500kHz. Explain how the circuit operates. Note that using an active integrator, instead of 
the passive integrator results in more ideal behavior (less variation on the op-amp’s 
inputs). 

 
Solution: 
First, let’s draw the closed-loop configuration of the op-amp which is seen in Fig. 6.6-1.  

 
It is noted that the 100pF capacitor across the comparator’s inputs can be seen as a 
“bucket” in the classic delta-sigma structure, and comparator is also know as a one-bit 
quantizer. The comparator’s output is passed through a RC low-pass filter and then fed 
back to the inverting input of the comparator. So the block diagram is drawn in Fig. 6.6-2. 
(R=10kOhm) 
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Figure 6.36 An op-amp implemented using mixed-signal design technique 
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It is also known that  
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After all these analysis, it is obvious that it is a passive-integrator noise-shaping (NS) 
modulator, and it is important to keep intv  from varying to eliminate extra distortion. 
Simulation is performed in LTSpice, and the results are shown as follows. 
 

 

Fig. 6.6-2 Block diagram for the passive-integrator NS modulator
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It is noted that the output of the comparator is a single bit stream, and the output of the 
op-amp is charging or discharging depending on this bit stream’s value which is ‘0’ or ‘1’. 
The overall closed-loop op-amp has a gain of -10.  
 
To further illustrate what is happening in the frequency domain, a FFT plot is shown in 
following figure. It is seen that the noise spectrum is pushed out to higher frequency, and 
if a low-pass filter is applied to the output of the op-amp a high signal-to-noise ratio 
(SNR) can be achieved. 
 

 
 Fig. 6.6-4 FFT plot for the output

Fig. 6.6-3 Time-domain results
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6.7. In your own words explain why dead zones in the second-order passive modulator 

seen in Fig 6.17 are less of a problem than the first-order modulator seen in Fig. 6.4a. 

 

Sol. In a first order passive modulator the noise sees only one path from output to the Vint 

node and hence noise is less randomized. This leads to the output code being less 

randomized. Hence we have more dead zones.  

 

In the second-order passive modulator in Figure 1, the noise sees two paths from output 

to node v1, v2 respectively.  Hence the noise is randomized. This results in the output code 

being randomized. This translates to a reduction of dead zones.  

 

 

 
            Figure 1. Second-order passive modulator 

 

      
                      Figure 2. Dead zones in a First-order passive modulator                             

 

          
         Figure 3. Dead zones in a Second-order passive modulator 

 

From figure 3 we see that the dead zones are reduced in Second-order passive modulator compared to dead 

zones in First-order passive modulator (see figure 2). 
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6.8 – Verify, using simulations, that the modulator seen in Fig. 6.20 suffers from 
capacitor mismatch while the one in Fig. 6.22 does not. 
 
 
I will begin by reproducing the competing topologies in figure 6.8.1: 
 

 
 

Figure 6.8.1: First-order passive modulator competing topologies. 
 
First let’s simulate topology A. We will introduce a mismatch of 10% in each direction 
for Ci and Cf and display the simulation results in figure 6.8.2. 
 

 
Figure 6.8.2: Back to back simulations of topology A in figure 6.8.1 with everything common except 

the toggle in capacitor mismatch. 
 
Observing the difference between figure 6.8.2a and 6.8.2b, it is obvious that topology A 
is not immune to gain error caused by capacitor mismatch. Now let’s turn to the 
simulations of topology B. 
 

 
Figure 6.8.3: Back to back simulations of topology B of figure 6.8.1 with everything equal except the 

toggle in Ci capacitance from 0.9pF to 1.1pF representing a 10% mismatch in either direction. 



 
Unlike the simulations displayed in figure 6.8.2, it is difficult to tell the difference 
between figure 6.8.3a and 6.8.3b, even though they represent separate simulations run 
with Ci values of 0.9pF and 1.1pF respectively. 
 
Just for fun, let’s push it a little farther. I will now run the same simulations that were run 
in figure 6.8.3, but with Ci values of 0.75pF and 1.25pF. The results are displayed in 
figure 6.8.4 below: 
 

 
Figure 6.8.4: Back to back simulations of topology B of figure 6.8.1 with everything equal except the 

toggle in Ci capacitance from 0.75pF to 1.25pF representing a 25% mismatch in either direction. 
 
Magic? No. These results aren’t surprising when you consider equation 6.8.1 representing 
the signal gain: 
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If we are in effect using the same capacitor for Ci and Cf, it will be difficult not to get a 
gain of 1. 
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Question 6.9 
 
What is time-interleaved data converter? Why is a time-interleaved converter different from the converter 
seen in Fig. 6.24? 
 
Solution 

As discussed and referenced many times in the text; the quantization noise 
2

12
LSBV  in a data converter is 

constant and independent of sampling frequency. The PSD of quantization noise on the other hand is given 

by
2

12
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s
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f

= , from which we can infer that by increasing the sampling rate sf , we can spread the 

quantization noise out over a wider frequency range (page 190, fig 5.26). Based on discussion (page 220) if 
we use multiple path or K-paths we can increase the effective sampling from sf  to ,s new path sf K f= ⋅ so the new 

PSD of the quantization noise is given as
2
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Qe
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. Thus just considering the averaging by K path 

the SNR of data converter is increased. Figure 1 shows the simple block diagram of data converter 
implemented with K-path.  
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Figure.1 K-path delta sigma modulator or time interleaved delta-sigma modulator 

 
In the topology above the K – path configuration can also be used with other Nyquist rate data converters (e.g. 
flash or pipeline) but all of them would have to meet the Bennett’s criteria. Each block of delta-sigma 

modulator acts as a individual ADC and data is first manipulated at clock 1Φ  and then after delay of s

path

T
K

, at 

clock 2Φ  and so on. Thus an effective sampling of path sK f⋅  is achieved. Institutively we can say that, there is 
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a time interval between each ADC’s responses since the input signal is clocked by each at different times. 
Thus this K-path topology is also referred to as time interleaved data converter. For more see page 221.  
 
The data converter topology in Figure 6.24 (page 222) is as shown below  
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Figure 6.24 Four path passive modulator. It doesn’t behave like time interleaved  
since the integrator is common to all feed back bath. 

 
The above topology is different from the time interleaved converter in ways that all the quantizer or 
comparators are connected to the common output node of op-amp; the outputs (delta) from all the feedback 
path is summed at single capacitor (sigma) node of the integrator. Thus the A-D conversion is dependent 
between the K paths even though the clocks are polyphase. Advantage of this topology over time interleaved 
is small layout area, lower power and avoiding the path mismatch as in Figure 1 topology. 
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6.10. Show the details of how to derive the transfer function of the path filter seen in Fig 

6.24. 

Sol. The K-path passive modulator followed by K-path filter is shown in Figure 1. The 

clock phases of Ø1 , Ø2 is shown in Figure 2. 

 

 

Figure 1. K-path passive modulator (K=4) followed by path filter 

 

 

 

 
                       Figure 2. Clocks  Ø1, Ø2.  Ø1b, Ø2b are inverted versions of Ø1, Ø2 
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The clock period of Ø1, Ø2 is given by Ts. The comparators in the passive modulator are 

clocked at clocking frequency fs with a time delay of Ts/4 between each clock. Hence the 

effective sampling frequency of the 4-path passive modulator becomes 4fs.The outputs at 

the comparators have a delay difference of Ts/4 or 1z−−−− . We can see that the path filter is 4-

bit adder with transfer function given by 
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The width of bits at output of the path filter is log2K+1. In this case K=2 and hence 

output is 3-bit wide. 

  

Multiply numerator and denominator of H (z) by 11 z−−−−−−−−  we get 
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In general the transfer function for the path filter for a K-path passive modulator is given 

by 
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6.11) Repeat question 6.7 if an active integrator, Fig. 6.28, is used in place of the 

passive integrator.  
6.7) In your own words explain why dead zones in the second-order passive modulator 
seen in Fig. 6.17 are less of a problem than the first-order modulator seen in Fig. 6.4a. 

 

Sol) Shown below are figures of passive integrator and active integrator connected to a 

comparator.  

 

Figure 1: Passive Integrator connected to a 

comparator 

 

 

Figure 2: Active integrator connected to a comparator (Fig. 6.28 in 

Book) 

 

 

Figure 3: Noise - Shaping modulator with an active integrator 

  

The purpose of the feedback in the NS modulator circuit is to hold the positive terminal 

(Fig.1) of the comparator equal to Vcm voltage, while the negative terminal is at Vcm too. 

Suppose that the input voltage connected to the comparator through the integrator circuit 

(capacitor) changes, the voltage at the positive terminal of the comparator (vint) does not 

change instantaneously as there is a RC time associated with this voltage. During this 

time, it is possible for the average current being supplied from the input equals the fed 

back current and the output of the comparator does not change. The comparator does not 

make a decision during this time and the output remains constant, causing dead zones.  

 

These dead zones can be eliminated by replacing the passive integrator with an active 

integrator (See Fig. 2). By using an active integrator (Op-amp with a feedback capacitor), 

we basically introduced a gain stage before our comparator.  

 

 



Avinash Rajagiri 

Spring 2009 

Let’s see how using an active integrator eliminates dead zones. Using the LTSpice 

examples from cmosedu.com, let’s simulate Fig6_31.spi, which is a Noise-shaping 

modulator with an active integrator, as seen in Fig. 3.  

 

Figure 4: Circuit implementation of 1st order NS Active Modulator with a (1+z
-16

) digital filter 

 

Figure 5: NS modulator with Active integrator used in Fig. 4 

The op-amp is going to hold both its terminals at a constant potential of Vcm. Any minor 

change in the input voltage (connected to the negative terminal of the op-amp Fig. 3) is 

reflected at the Vint node instantaneously (or neg_input terminal in Fig. 5). Then, the 

output of the amplifier is an amplified version of the minor difference in its positive and 

negative input terminals. Shown below is the Vint node being held constant by the op-amp 

in Fig. 6.  

 

Figure 6: Vint node being held constant by the op-amp 

The amplified version of this minor wiggle in the input voltage is shown in Fig. 7.  

 

Figure 7: Plot showing the output of the op-amp change due to the wiggle on its input 
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As the output of the op-amp is connected as input into the negative terminal of the 

comparator while its positive terminal is held at Vcm, there is going to be a significant 

voltage difference between the input terminals of the comparator. Now, it will be easy for 

the comparator to resolve this huge difference at its input terminals. Therefore, using this 

topology we avoid the situation where the input terminals of the comparator are so close 

to each other that it is hard for the comparator to take a decision. Therefore, using the 

active integrator configuration, we can eliminate dead zones as seen in the figure below.  

 

 

Figure 8: Output of the DAC connected to the NS modulator with active integrator seen in Fig. 4. 

Shows the output is always valid and deadzones are eliminated 



Solution by Geng Zheng

6.12     Repeat Ex. 6.5 if K is changed from 16 to 8.

Simulate the operation of the second-order NS modulator in Fig. 6.34 clocked at 100 MHz, with

RC = 20 ns, and decimated with a filter having a transfer function

[1−z−8

1−z−1]
2

 (1)

Estimate the bandwidth, B, of the output signal, the increase in the number of bits N inc , and

SNRideal .

Solution:

The schematic of the second-order NS modulator is shown in Fig. 1.

A filter with a transfer function of

[1−z−K

1− z−1 ]
L

 (2)

can be implemented by cascading L Sinc-response filters. Specifically, K = 8 and L = 2 in this

problem. Fig. 2 shows the frequency responses of this filter.

Figure 1   The schematic of the second-order NS modulator.

Figure 2   Frequency response of cascaded Sinc-filters



As shown in Fig. 2, the final output clock frequency is 12.5 MHz and the desired signal

bandwidth, B, is 6.25 MHz. Using Eqs. (6.79) and (6.80) in [1] and knowing that a 1-bit

comparator is used in modulator (N=1), we can estimate the increase in the number of bits

N inc=
50 log 8−30.10

6.02
=2.5  bits  (3)

and

SNRideal=6.02 12.51.76=22.83 dB  (4)

Fig. 3 shows the simulation.

Reference:

[1]   R. J. Baker, CMOS Mixed-Signal Circuit Design, Second Edition, Wiley-IEEE, 2009.

Figure 3   Simulation for K=8 and L=2.
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