Jason Durand

Problem 2.1 — Qualitatively, using figures, show how impulse sampling a sinewave can result in an
alias of the sampled sinewave at a different frequency.

The fourier transform of a sinusoid with frequency f, looks like

magnitude
T T frequency
-fO fO

in the frequency domain. An impulse sampling scheme, with impulses in the time domain separated by
T (1/fy) is, in the frequency domain, also an impulse train, with the impulses separated by the sampling
frequency f,. Multiplying these two signals in the time domain (sampling the sinusoid) results in the
figure below, in the frequency domain.
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If the frequency of the sampled signal is close to the sampling frequency, the resulting frequency
domain representation is closer to the figure below.
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Notice slightly below the sampling frequency the signal that is wanted (fy). Since it is higher than the
nyquist frequency (fy/2 = f,), the higher frequency image from sampling folds over and appears at a
lower frequency than the input to the sampler (on the graph, appears as f;-fy). In the time domain, it can
be easier to see how the high frequency folds over to a lower frequency signal, as shows below.



Time domain graph of sine wave and the impulse samples.
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The sampled points, though they are sampled from the high frequency sine wave, also form a lower
frequency sine wave alias, which is the dotted red line.
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Aliasing can be seen in many places unexpectedly as well. Driving down a highway at night, and
watching the rims of an adjacent car slow to a stop, then spin the other direction (though the car is still
driving down the highway!) is a readily observable form of aliasing. It has to be at night, because the
60Hz flicker from fluorescent street lamps will optically 'sample’ the rim's spoke position, and highway
speeds are high enough that the frequency (rate of wheel spin) of the wheel is higher than or near the



60Hz sampling frequency of the fluorescent light.

Additional:
The matlab code used to generate graphs

%$the t vector is time, and represents analog time
%$the n vector represents the sampling impulse train
% and 1is the same dimension as t

$input = cos(2pi*fs/10), fs=sampling frequency

t = 0:99;

n_ 1l = [1,zeros(1,9)];

n=[nl1l, nl1l, nl1l, n.1, n.1, n_.1, n.1, n_1, n_1, n_1];
input = cos(t.*2*pi*1/11)+2;

input2 = cos(t.*2*pi*1./(10*(1/(1-1/1.1))))+2;
sampled_input = input.*n;

figure (1)

plot(t, input)

hold on

stem(t, sampled_input)
axis([0,99,0.5,3.5])
xlabel ('Time') :ylabel ('V")
hold off

figure (2)

stem(t, sampled_input)
axis([0,99,0.5,3.5])
xlabel ('Time') :ylabel ('V")
hold on

plot(t, input)

plot(t, input2, 'r:'")



Harikrishna Rapole

2.2. Re sketch Figs 2.12 and 2.13 when decimating by 5. Hint: use a counter and some
logic to implement the divide by 5 clock divider.

Sol: First let us consider the operation of a decimation block with decimation factor k as
shown in figure 1. Input signal is filtered by the Anti Aliasing Filter (AAF) which is band
limited to fs/2k, and has a sample rate fs. This means that the desired signal spectra using
decimation can not extend beyond fs/2k. A clock divider is used to obtain the decimation
frequency fs/k from input clock fs. This decimation frequency is used as sampling
frequency to process the signal obtained after Anti Aliasing Filter stage. As k=5 in this
case the decimation frequency is fs/5 and the bandwidth of the desired signal spectra lies
below fs/10. A divide by 5 ripple counter is realized using 3 divide by 2 counters and
additional logic to reset the counter to zero, once the count reaches the value of 5. An
and gate (i.e. Q2.Q1i.Q0) with it’s output connected to the active high asynchronous
clear of the counter as shown in the clock divider in figure 1. As the count value reaches
S5ie. 02=1,01=0,00=1 (MSB to LSB), the counter is reset (see Table 1).

021 Q1| Q0 |Count
010 0 0
010 | 1 1
0| 1 0 2
0| 1 1 3 The counter value is
o0 7] e
oo | 0 0 1 “101”
Table 1. Divide by 5 Counter

Digital low pass

Sampling gate

In x[nTs] Out y[Ki.Ts] —
i AAF > D o >
Input word rate,
mput word rate, fs Divide by 2 Counter >CK
jmm——————— / Clock divider, f3/5
| |
kel I )
! . Output Clock, f5/5
: D 0 qI)o D oL Q1 D 0 Q2 p S
Input clock, f& I SCK Qi ' CK Qi >CK Qi ’—\—,—‘
ﬂ | cr | C‘”lr Cfr

Figure 1. Components of Decimation block with k=5



Harikrishna Rapole

The spectrum when decimation with k=5 is employed is shown in figure 2. In (a) the
original input signal spectrum before processing by AAF is shown. After processing by
the Anti Aliasing Filter which is band limited by fs/10, the desired input signal spectrum
repeats at every fs. Since the output at AAF is sampled with the output clock from the
divider i.e. f5/5, the output spectrum of the sampling gate repeats at fs/5, and the original
signal spectrum lies below fs/10.

Input Signal
Spectrum
| Sampling rate is f§
I
l
(@) |
I
l
110 fi/2 s
Desired Input Signal Desired Input Signal
spectrum Spectrum after AAF / spectrlelvmerr;p;fted at
Sampling rate is fs
(b)
510 A2 #
Decimator Output at K=5 Desired Input Signal
Desired Input Signal spectrum repeated at
spectrum every /5
Sampling rate is f5/5
©
£710 2 #

Figure 2. Spectrum when decimation with k=5 is employed



Solution by Jake Baker

2.3 Explain why returning the output of the S/H to zero reduces the distortion
introduced into a signal. What is the cost for the reduced distortion in a practical
circuit?

Solution: Figure 2.15 from the book, and seen below, shows how the output of the S/H
can be returned to zero. The big problem with returning the output to zero is the
reduction in the output signal's power. As T — 0 the power in the output signal goes to
zero. The effect is to reduce the signal-to-noise ratio, SNR. Generally, killing SNR to
improve distortion is not a good idea.
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Figure 2.15 Sample-and-hold output with return-to-zero format.

Next, let's answer why returning the output of the S/H to zero reduces the
distortion introduced into a signal. Reviewing the derivation for Eq. (2.16) we see that
the ideal impulse sampler is weighted with a response by the S/H given by

Weighting from S/H, [H(f)l
lY(f)l= T-ISinc(n-T-)l

The constant value of T multiplying the Sinc function accounts for the reduction in signal
power as T < Ts. This term doesn't effect distortion just power. The Sinc term, however,
effectively filters the input signal and thus causes distortion when T >0. As T moves
away from (becomes less than) T, the Sinc term moves closer to 1 resulting in a reduction
in distortion.

Simulation examples are seen on the next two pages.



Run simulation
Make waveforms active window

Go to View -> FFT (note signals are displayed in RMS) ndf
Press OK then -10d6
go to Plot Settings -> Reload Plot Settings 2048
A tran 0 2000n 0 .1n uic . §
) .model switmod SW 4048
Vin i _options plotwinsize=0  snapd-
£ '7 i -60uUB-]
clock Vout 70dB

Velock ) REF=0.5 RINIEES

PULSE(0 100 04.9n 10n) -110d0H
-12

SINE(0.5 0.5 SMEG)

T T T T
0OMHz 20MHz 40MHz 60MHz B0MHz 100MHz

Figure showing S/H operation when T =T,

Run simulaticn

Make wawveforms active window

Go to View -» FFT [note signals are displayed in RMS} tran 0 2000n 0 1n uic
Press OK then .model switmod U
go to Plot Settings -» Reload Plot Settings .options plotwinsize=0

DD

SINE(0.5 0.5 3MEG)

P

PULSE{0 100 0 4.9n 10n)

@ Simulation schematic for simulating a S/H with RZ output.
Output traces are shown below.

PULSE(0 10 0 0 2.4910n)

1.1v
1.0V
0.9V
0.8V
0.7V
0.6V
0.5V
0.4v
0.3V
0.2V
0.1V -
n.nv-l-
-0.1v4

L) L) T L) T
610ns 630ns 650ns 670ns 690ns 710ns

Showing return to zero with T = Ts/4

¥[vout]

Showing the output spectrum when
T = Ts/4. Note the reduction in the
output power.

T T T T
OMHz 20MHz A0MHz 60MHz 80MHz T00MHz



Final simulation comparing input sinewave at 43 MHz, S/H output with T = T, and S/H
output with RZ where T = T /4.

0dBE:
-1 R=
-20dB-
-30uB-
-40dB=¢
-50dB-
-60dB-]
-70dB-
-00d0-
-YudH-
00dB-

'
—_

nde.

Input signal at 43 MHz
Clock frequency is 100 MHz

'
-
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-120dB

nde.

-10dB

-20dB-
-J0d0—
-40dB-
-50dB-

-60dB=—¢

-70dB—
-G0UB~-
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e o) e and T = Ts/4
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Geng Zheng

2.4 Sketch the input and output spectrum for the following block diagram. Assume the DC
component of the input is 0.5 V while the AC component is a sinewave at 4 MHz with a peak

amplitude of 100 mV. Assume the clock frequency is 100 MHz.

Out
Sample and Sample and . Sample and .

hold (S/H) hold (S/H) hold (S/H)

Clock ? ? *

Iulsis

Solution:
For a sinewave input, the output spectrum, Y (), of a Sample-and-hold is described by

Y(f)=2\;i.ki [6(f—f,—kf)—o(f+f, —k fs)].T.SinCwf'T)'ef,-.zﬂ.fz 1)
or
h((f)|=T-|Sinc(n.f .T)}ZVTP . i [5(f —f —kf)—8(f+f, —k fs)] )

which were derived in Section 2.1.3 of [1]. As we can see in Eq. 2, the output spectrum is the
ideal impulse sampler response weighted by a Sinc function. That is, there is a droop in the
S/H's response. This attenuation in the S/H's output is given by

Attenuation=Sinc(m-T- f) (3)
For most circuit designs T=T . And for this problem, f,=1/T ;=100 MHz . Using Eq. 3 we

can calculate the attenuation of the S/H for a 4 MHz sinewave input signal as

f.
Attenuation g 4, =Sinc (rr-T . f )= Sinc (nf—'”)

° 4
—sinc (mr—2M_} 0,997 — —0.02dB ?
100M
which is a very small value. However, for the image at 96 MHz the attenuation is
AttenUAtion g gy, = SIC (-~ }-0.042 — —27.6B (5)
@ 96 MHz lOOM



Fig. 1 shows the output spectrum of a S/H.

S/H droop

RN

Signal at 4 MHZ |mage at 96 MHz

Geng Zheng

The resulting output spectrum

i (f)l . V(f)
Ideal impulse sampler response
A p p p A
L, / 0dB

27.6dB

%

.
f

S

f

Figure 1 Output spectrum of a S/H

Repetitively sampling and holding a signal does not result in additional attenuation. If we

sample the output of the a S/H circuit using another identical S/H and same clock signal, the

output from the second S/H will be the same as the one from the previous S/H. So the second

S/H can be seen as just a delay element. Passing the input through three identical S/H circuits

in series results in the same output spectrum as passing it through one S/H. Thus the output

spectrum of the 3-stage S/H is the same as shown in Fig. 1.

Now let us using SPICE simulation to verify our result. In Fig. 2 the spectrum for a 1-stage S/H

is shown. Shown in Fig. 3 is the spectrum of a 3-stage S/H. The attenuation for both cases is
-27.7 dB. The S/H circuit in the simulation is from the Electric jelib file for Fig. 2.18 in [1].

Vin in+

—in- S/H out - Vout- :

Virip - trip ok

|clock >

.global gnd

VSS gnd 0 OV

Vtrip Vtrip 0 DC 0.5

Vclock clock 0 PULSE(0 1 0 0 0 4.9n 10n)
Vin Vin 0 SINE(0.5 0.1 4MEG)

.tran 0 2000n 0 0.1n UIC

.model switmod SW

.options plotwinsize=0

V(vout)

-110dB

TMHz

n
41MHz

L]
81MHz

Figure 2 The spectrum of a S/H circuit.

n I
121MHz 161MHz

96 MH=



Geng Zheng

Vin > in+ ’7 in+ ’7 in+
A—in S/H out l| i S/H out ] in S/H outf——- Vout-
Virip > frip ¢k Vip——trip ¢l Virp——trip |k
clock> ‘
global gnd o V(vout) Vvin)
VSS gnd 0 0V 0dB = -
Vtrip Virip 0DC 0.5 -10dB- :
Velock clock 0 PULSE(0 10 004.9n 10n) ' : i ; '
Vin Vin 0 SINE(0.5 0.5 3MEG) -20dB : : o Feoee
tran 0 2000n 0 0.1n UIC 30dB : : : :
model switmod SW :
options plotwinsize=0 -40d
-50dB=
-60d
-70d
-80d
-90d
-100dB4 I T T T T T
IMHz  31MHz 61MHz ngZ 121MHz 151MHz 181MHz
96 MH=z
Figure 3 The spectrum of the 3-stage S/H circuit.
Reference:

[1] R.J. Baker, CMOS Mixed-signal Circuit Design, Second Edition, Wiley-IEEE, 2009.



Lincoln Bollschweiler
2.5) Repeat Ex. 2.2 with an input sine wave of 30MHz.

Example 2.2
Using an ideal SPICE model for the S/H show, and discuss, the spectrum resulting from
sampling a 3MHz sine wave at 100 Msamples/s.

The example used a 0.5V, magnitude sine wave (used here as well). This can be

(05/\/§)Vrms
interpreted on the dB scale as 20I09T =-9dB . This implies that all spectral

contents are 9dB below any value that is calculated using the formulae provided in
chapter 2. Increasing the input signal tenfold from 3MHz to 30MHz reduces the number
of samples per input signal period, and approaches the Nyquist rate but does not quite
reach it. The Nyquist frequency is f, = fJ2 = 100MHz/2 = 50MHz. This indicates that
one should be able to reconstruct the signal, post processing and post digital to analog
conversion, alias free. It does not, however, mean that the signal will be a good
representation of the input signal. Figure 2.5.1 shows sampled and held values (the blue
curve, Vout) and one can see that to get a good representation of the sine wave, faster
sampling should be used.

The spectral response is shown in Fig. 2.5.2. We see the primary output frequency
(30MHz) is, as discussed, 9dB below the attenuated value of, using Eq. 2.16,

Sinc(ib%o]:0.858:—1.32dB, or -9dB - 1.32dB = -10.3dB. We see the output

spectral bands for the S/H repeat at n-f; + 30MHz (70MHz, 130MHz, 170MHz, ...).

Vfwin] V[wout]

Figure 2.5. 1. Transient response of sample and hold. Input signal = 30MHz. Output sampled at
100MSamples/s.



V[win] Y[vout]
30MHz, 70MHz, 170MHz

~N 10.3dB  -17.7dB = 130MHz

Figure 2.5. 2 Spectral response of output of S/H after sampling a 30MHz sine wave at 100MSamples/s.

The attenuation through the S/H at 70MHz is Sinc(%zojzo.%& This is -8.7dB.

When reduced by the input attenuation of -9dB we see an overall attenuation of -17.7dB.



Jason Durand

Problem 2.6 - Re-sketch figure 2.22 if the input signal is a sinewave at 10Mhz, with no other spectral
content.

Frequency domain representation of a 10MHz sinusoid
magnitude

frequency

10MHz
After applying an anti-aliasing filter with cutoff of 25MHz, the spectra of the input signal is cropped to:

magnitude

frequency

-f f

(o] (o]

10MHz
Since the 10MHz sinusoid has no spectral content above the f/2 Nyquist limit, the anti-aliasing filter

has no actual effect on this theoretical, perfect signal. A real world signal might likely have frequencies
higher than half the sampling frequency.

With a sampling frequency of SOMHz, the attenuation due to an ideal sample and hold at I0OMHz is

equal to  Attenuation =sinc n]'cj:" )= sinc(%) =.935=-0.6dB .
. magnitude
Sample and hold without
sampling effects
935 .935 or -0.6dB
frequency
-f f



Output of ideal sample and hold, including sampling effects:
f =50MHz magnitude

935 .935 or -0.6dB

frequency

TR £ 4

(o]

10MHz 40MHz

The reconstruction filter is designed to have gain equal to the attenuation of the sample and hold stage,
reconstructing the exact signal that was initially sampled.

Output after ideal reconstruction:

magnitude

1 1

frequency




Q2.7

Solution:

Shantanu Gupta

Suppose we are interpolating, with K=8, digital data with f;= 100MHz. Prior to
interpolation what is the frequency range of the desired spectrum? After interpolation
what is the frequency range of desired spectrum? What is the interpolator’s output clock
rate?

The block diagram of interpolation scheme is as shown below:

Interpolate (increase sample rate) T
HE
x[nT, ] y {l- K }
In Out
> T K >
Input word rate, f; Output word rate, Kf;

Figure 1

Interpolation is a technique which is applied to overcome the difficulties involved in
designing the brickwall shaped RCFs (reconstruction filters) with a cutoff frequency of fi/2
(the Nyquist frequency). In this scheme the incoming signal with sampling frequency of fs
is upsampled by a factor of K (value of K is in power of 2 usually, but not necessarily)
while keeping the desired spectrum limited in bandwidth. Thus by oversampling the signal
by K. fs the effective Nyquist frequency becomes larger than the maximum wanted
frequency of interest. Then the signal is applied to RCF for the desired data.

From the question the interpolation is carried on digital data with f;= 100MHz. Based on
the discussion above the desired frequency range of the spectrum should be < f /2 or

f, (Nyquist frequency) i.e. f <50MHz.

desired —

After interpolation the new Nyquist frequency f__of the system becomes

n,new

K - f, /2 =8x50MHz

f. oy =400MHz

n,new

As mentioned earlier this new f relaxes the criterion for the design of RCF, though the

n,new

original information still resides in frequency spectrum of < f /2 i.e. 50 MHz now the
RCF can start roll off at f,/2 and extendedupto K- f,—f./2.

Thus after interpolation, the frequency range of desired spectrum is still <f,/2 i.e. 50 MHz.
From figure 1 it is clear that the interpolator output clock rate isK - f, =800MHz .Figure 2

below shows an example spectrum, adapted from Figure 2.27 on page 45 of course book to
explain the concept better.
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Shantanu Gupta

K=8
A f, =100MHz
Interpolator Input

Desired Signal Spectrum

\ 4

P . f
Jo Js New Nyquist Frequency

A /
After zero padding

\ 4

. RCF response

\ After (ideal) image removal filter
K.-f —f/2 f
A
After (non-ideal) image removal filter
Figure 2

Figure 2 demonstrates one of the scheme for interpolation i.e. zero padding whenK =8.
Part (a) of figure shows the desired signal spectrum and interpolator input. After zero
padding part (b) shows the image frequencies along with desired signal. In part (c) after
interpolation an ideal image removal filter removes the image frequencies and signal is
applied to RCF. The frequency response of RCF is shown in part (c) as well, where it starts
to roll of at f, /2. Part (d) shows the non-ideal image removal with some minor spectral

content. After passing it to RCF the major signal power lies in the spectrum of f < f /2.



Tyler Hansen

2.8: Verify, with simulations, that the topologies seen in Fig. 2.34 are equivalent.

First, I will make my life easier by borrowing the LTSpice schematic and setup of an analog S/H (Sample
and Hold) circuit from the one used in the book to create Figure 2.18. This is seen below in Figure 1:

.tran 0 2000n 0 .1n uic

.model switmod SW
.options plotwinsize=0

Vout

Velock REF=0.5
PULSE(0 1000 4.9n 10n)

SINE(0.5 0.5 SMEG)

Figure 1: Analog S/H setup borrowed from the book LTSpice set used to create figure 2.18. For
clarity, in this solution this configuration will be referred to as configuration A.

I will use this setup to generate the single S/H interpolation path. From Figure 1, we can see that T is 10ns.
Since the single path S/H should have twice the frequency of the dual path S/H, the T, of our dual path
setup will be 20ns, or half of the sample frequency.

It is a simple matter to copy the previously existing schematic and apply an inverted clock pulse (at half
the frequency, or double the period of the single S/H config.) to the second S/H path. The Input signal is
plumbed to both S/H blocks, and the outputs are summed using two 5K resistors (as can be seen in the book
Figure 1.11). Note that it is a time saver to modify and use previously existing schematics and simulations
instead of starting from scratch. The K=2 (dual path) S/H schematic can be seen in Figure 2 below:

.tran 0 2000n 0 .1n uic

.model switmod SW
.options plotwinsize=0

< '— in-
clock out k!

Vin

Vin

SINE(0.5 0.5 3MEG)

REF=0.5

Ty Velock
_ /PULSE({0 1000 9n 20n)

Figure 2: K=2 Dual Path S/H at 1/2 the clock frequency of the single S/H schematic. For clarity, in
this solution this configuration will be referred to as configuration B, or the K=2 dual path
configuration.

Now let’s take a look at the simulation results for each configuration. For clarity, in this solution the
configuration in Figure 1 and in Figure 2 will be referred to as configuration A and B, respectively. Figure

3 shows the simulation results of config. A.
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0.0ps 0.211s 0.4ps 0.6is 0.8ps 1.0is 1.21s 1.451s 1.6is 1.81s 2.0ps]

V[vout]

078us  0.80ps  0.82ps  0.84ps 0.86ps  0.8Bps  0.90ps  0.92ps 0.94ps 0.96ps  0.98ps  1.00ps
¥[vout]

303MHz

500MHz

Figure 3: Input and output results of configuration A simulation, along with the fft from 0 to
800MHz of the output signal.

This is what we expect in simulation results of a simple sample and hold circuit. The S/H samples the input
every 10ns and holds that value until another period passes, at which point it samples again. The fft shows
our 3MHz signal at a solid ~-9dB (on account of fft’s using rms values instead of peak values), and the
repeating spectrum at f; +/- our signal frequency. Also, the magnitudes of the higher frequency spectra are
attenuated according to the expected sinc response of the S/H.

Now let’s take a look at the results for the configuration B simulation.



Vvout]

500MH=z

Figure 4: Input and output results of configuration B simulation, along with the fft from DC to
800MHz of the output signal.

The configuration B simulation results are also, more or less, what we expect. There are some minor
differences...

In comparing the simulation results for configuration A and B a few differences are apparent. While it
appears that the sample and hold occurs for both configuration at a 10ns period, there appears to be more of
a delay in the K=2 dual path configuration (config B). Also, there appears to be additional frequencies,
albeit they are quite attenuated, on the fft response for configuration B. Let’s look at these differences,
starting with the increased delay.



Increased Delay for Configuration B:

Vivout]

0.1ns delay

830.22ns 830.26ns 830.30ns 830.34ns 830.38ns
¥Y[wvin]

5.5ns delay

826.4ns  B27.2ns 828.0ns B28.8ns 829.6ns 830.4ns 831.2ns 832.0ns 832.8ns  833.6ng|

Figure 5: Comparison of the S/H delay characteristics between configuration A and B, respectively.

This difference is explained in the book on page 50. To summarize, when using a two-path topology to
interpolate, a delay of T¢/K is expected on the output. T for configuration B is 10ns, so a delay of ~5ns is
expected.

Additional fft frequencies in configuration B:

A significant benefit of a 2-path interpolation scheme such as the one we have in configuration B is to
lower the requirements of the RCF by effectively increasing fs. Using the two-path topology, we don’t need
to increase the clock frequency in order to increase the output signal frequency. We do this by sampling the
signal twice inside of a single clock period instead of once. Then we add the two together. Each S/H
operates at 20ns, a sampling frequency of 50MHz before the signals are added. However, the output sum
reflects a period of 10ns, or 100MHz. Therefore, when looking at the fft, we see the large frequency spectra
contributed by the output signal at repeating 100MHz intervals... but we also see some “ghosting”
frequency spectra at the actual sample frequency of the two constituent S/H circuits at repeating 50MHz
intervals. In other words, this fft effect is the result of the summing that occurs between two 50MHz signals
to produce the 100MHz output.
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2.9 Determine the transfer function, and verify with simulations, the behavior of 4
paths of the switched-capacitor topology seen in Fig. 2.36.

To understand how to solve this problem the reader must read sections 2.1.5 — 2.1.6. The
reconstruction filter (RCF) will not be able to fully attenuate (set to 0) the spectral
content above the Nyquist Frequency (fy = fs/2). F-1 shows the difference between an
ideal and a typical RCF

A A

Ideal RCF Typical RCF
>f(Hz) > f(Hz)
v fv

F-1 Representing an ideal and typical RCF

We can increase the sampling frequency (f;) so that the fy moves to a higher frequency
and we keep the same restrictions on the input spectrum. Linear interpolation can be
accomplished by a K path switched capacitor circuit. To determine the transfer function
of a K path switched capacitor circuit let us begin with the 1 path switched capacitor
circuit seen in F-2. We will go through the derivation shown on pages 51 and 52,
because they are essential to understanding a 4 path switched-capacitor circuit.

>

AN

(n—l)T\ n];

@, @,

F-2 Switched-capacitor sampling circuit

To determine the transfer function of the switched-capacitor circuit seen in F-2 we will
use the equations on page 51:

Oroit = Vou [nTs](Cl +CF):Vm [(n_%)];}cl T Vour I:(”_I)TS:I'CF

To understand this equation let’s take a closer look at how this circuit works. Att=(n-—
1)-Ts, both switches are open and we must find the charge on the capacitors:



QCF = Vour [(n_l)Ts]'CF

Qc, =V [(n_l)'];]'c1

When @ closes the charge on C; is updated with charge from the input and at t = (n —
1/2)-T; that charge is left on Cr:

0., =v|(n-Y5)1. | c,

Then @, opens at t = (n — 1/2) and because charge must be conserved we can now say
that the charge left on the output is equal to the charge that was previously on the
capacitors, or:

vaut [n];](cl +CF) :V[n [(n_%)]—;}cl +v0ut I:(n_l)];]CF
Writing this in the z — domain and solving for the gain:
v[(n=1)-T,]>V-z"

vout(z) _ C] 27" (1)
v, (z) B C,+C.-C, !

For input frequencies << f; this circuit behaves like a low-pass RC filter. For f << f, we
can write:

o
J2r=—
e x4+ j27z—f

N

The z "% in the numerator only affects the delay of the output by half of 7, and is
negligible for f << f;. The transfer function this becomes:

_‘ ¢ ‘

| CI+CF—CF-(1—j27Z'f]
/

S

| vout
‘ vin




-

C’+1—(1—j27zfj
Cr /.

The transfer function now looks like a RC low-pass filter with:

1 ‘

in

1+ j27C, S
Cf,

R ———
G,

To determine the transfer function and behavior of a 4-path switched-capacitor consider
F-3.
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F-3 Schematic and clock pulse of a K=4 switched-capacitor interpolator
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For the single path, the output is updated at every T so, using Eq. (2.56), where z (1-path)
in Eq. (1) is at the sampling frequency fie/K = fs (or KTy = 1/fsnew), We can write:

_ LJ2H AT _ 4
Zl—path =e =z

v,.(2) B C, .z
v.(z) C,+C.-C.z"

+ @ a sampling rate of 4f;

It is important to note that the R;. of a single path is still:



Because the input is sampled (on a single path every 7 = 1/f;). If we let C;=1 pF, Cr=
10 pF, 75, =10 ns:

1

R =——  —10kQ
1pF -100MH:z

Which (for f << f;) leads to a low pass filter with:

1 1

- — 1.6 MH:z
27C,R, 2710 pF -10kQ

f3d3 =

So we would expect the output to be 3dB below the input, or if v;, = 1 V then v,,, = 0.708
V. Let’s prove this with a simulations using LTspice and modifying the Figure 2.36
simulation provided at the book’s website:
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4—0m2
5
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3
H

Voo
i sou .
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o : \nluli(: GMHz] = 0.5
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sl L1 L NN\  of
i) N /.
N K
% : 5 ; sy
"0 s 0.72p Il.ll';m: o.a&qu 0.90ps  0.96ps |.a!§1|s Lofps  1.1dus I.Ei]llu 1.26ps

This far we have assumed f'<< f; but what happens if that stipulation isn’t true for a K
path switched-capacitor interpolator? We can go back to the z-domain transfer function
and determine the frequency response of the transfer function:



4
Vout (Z) _ F

v(2) Gy

F

<
C

Let’s look at the magnitude of this transfer function:

(o3
You | _ Cr
v[n 4f

(C’ +1- cos(27rn +sin’ (27z4fj
Cr /s /s

CI
CF

2
Q+1—cosx +sin’ x
CF

Let’s set up a table for this transfer function and determine the magnitude for crucial
frequencies:

Let x = 27f(4Ty):

f x=22 CoS X %“*COSX sin® x VT Vv G, =C; G, <G
CI
0 0 1 - 0 1 1 1
CF
L z 0 &_’_1 1 Cr L Vour -
6| 2 c, wa| B
o 1
L T -1 %‘*2 0 CCF — You | 2
8 F FI+2] 3 Vin
(o3
31 kY4 c C, 1 v
s - 0 L 41 1 > - out <
16 2 Cr (QHJ +1 \/g Vin
C
A 27 1 —+ 0 1 1 1
4 Cr
5f 5 & |
T C C, v
s e 0 7I+1 1 —_— R out < —
16 2 Cr /[gﬂj . NG v,




We can use this to plot the frequency domain of the K = 4 switched-capacitor interpolator
and use SPICE to verify it:

mag

F-4 Frequency response of a K=4 path switched-capacitor interpolator

The simulation results below sets C; = Cr and simulates at ~0 and f;/4 (note f; = K*f;):

&gm_m,_,—lm

V[vm] V[vnut]

s Td5ns 755n% T65ns

Vivout]

12 GAIN=IVIV. N

" +
620ns 523ns EZEns EZﬂns 632ns 635ns

So for f;, << f; we can approximate the response as a low-pass RC filter. When the input
frequency increases to where f;, is no longer << f; we can use the frequency response in
F-4 to determine the approximate response seen the simulation results.
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Problem 2.10

In your own words, why the ¢, switches are shut off after the ¢, switches in the S/H seen in Fig.
2.39?

The topology seen in Fig. 2.39 is a fully differential sample and hold circuit.

03
7
2 Ch s b3
Vip _/ || _hx'““*-t——’ Vpup
+E'“-}
Vimm \\ » —||— . '_:l'__.--"'"-;! \\ Viurm
| b
I, hh I 13 B2 Cq 1 3
1 1 1 1
I 1 .,
b 4
1 1 1
: 1 1 1 \\
§2 I )
R
ol n
1 1 1 ﬁ
| — —

Indicates bottom plate of capacitor (polyl)

Fig. 2.39 Fully-differential S/H differential topology
The reason why ¢, switches are shut off after the ¢, switches is that when ¢, switches are shut
off, the charge injected from ¢, sees capacitor Cy as high impedance. In the other words, if the
¢, switches are shut off first, the inverting input node of the op-amp connects the top plate of Cy
to the positive output node of the op-amp, and this makes the impedance seen from the bottom
plate of Ca low impedance. So if the ¢, switches are shut off first, the charge injected from ¢,
switches not only goes into input node Vinp, Vinm, but into hold capacitor Cy, which means when
@, switches are shut off, the charge transferred into output node will be input dependent.
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2.11) Sketch the op-amp’s open loop response, both magnitude and phase, specified by
Eq. (2.59).

Solution:
Equation 2.59 gives the open-loop frequency response of an op-amp with a single
dominant pole.

A (1) =—oee Eq. (259)

1+ ).

f3dB
For more details about the derivation of this equation, refer to pg.680 of CMOS: Circuit
Design , Layout and Simulation book.

We are asked to sketch the op-amp’s magnitude and phase response plots versus input
frequency. To do this, lets find the magnitude of the transfer function.
Taking magnitude of the above equation we get,

|AOLDC |

f 2
1? +( J
deB
Magnitude Resposne
To plot the magnitude response, we calculate the magnitude at a few frequencies and plot
it against input frequency.

Magnitude =

- At DC or at f=0, magnitude of op-amp’s open loop response is just A, pc -

- For input frequencies less than f,,; , we can consider = 0. Therefore, magnitude

3dB
still remains at A, o -

- Therefore, we can see that as we get very close to f,,;, the magnitude response starts to
decrease. And once the input frequency exceeds f,,, the magnitude response starts to

rolloff at a rate of -20 dB/dec. The -20 dB/dec rolloff comes due to the fact that at higher
frequencies, the magnitude response can be written as,

‘AOLDC‘ _ ‘AofLDC‘ :‘AOLDC" f3dB

2
f *f f
deB 38
Now, to plot the magnitude in frequency domain on a log plot, we calculate magnitude as

equal to 20- Iog[|AOLDC| %) =20- |oquOLDC |)+ 20- |Og(%J _

As the frequency increases up in a decade ( f =10- f,,; ), magnitude of the op-amp’s
open loop response will be equal to

Magnitude@ Hi — frequencie =




Avinash Rajagiri
Spring 2009

f 1
20-1og(| Ao oc |)+ 20 |og[m+f] = 20-log(|Ag,oc|)+ 20- Iog(ﬁj = 20-log(|Ag,oc|) - 20

3dB
Therefore, for every decade increase in input frequency, the magnitude of the op-amp’s
open loop response will fall at the rate of -20dB/decade. Sketching the magnitude
response of the open-loop gain looks like:

Magnitude (dB)
A

Aoldc

Rolls of at -20 dB/dec

fp = f3dB Frequ:ncy (Hz)
Figure 1: Magnitude Response of an Op-Amp
Phase Response:

Calculating the phase of eq 2.59 we get,
f

0 j—tanl g :—tanl( f J
AOLDC 1 f3dB

- At DC, we see that the phase response of the op-amp’s open loop response is 0°.
- At f = f,, the phase response is 45°.

- For higher frequencies, the phase response reaches its peak value of -90°.

/= tanl(

Using these values, the phase response of the op-amp is sketched below:

Phase (deg)
A

00
-450 .

-90°

[
-

fp = f3dB Frequency (Hz)

Figure 2: Phase Response of an Op-Amp
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Since an ideal op-amp has a single dominant pole, like a RC response we can see that the
gain will rolloff at -20dB/decade once the first pole kicks in at f3¢4s. Also, due to this pole
we will have a phase shift of 90° in the phase response of the circuit.



Solution by Jake Baker

2.12 What is the voltage across C. in Fig. 2.41 in terms of the input-referred offset and
noise? Verify your answer with simulations commenting on the deviation of the
frequency behavior of the input-referred noise to the frequency response of the
voltage across the capacitor.

Solution: Figure 2.41 including the input referred noise, V2,.(f), power spectral
density (PSD with units of V ?/Hz) and op-amp offset voltage is reproduced below for
convenience. When the ¢, switches are closed the op-amp is in the voltage follower
configuration and so the voltage across C., assuming large op-amp gain so the + and —
op-amp inputs are driven to the same voltage, is

Ve = Vin—[Vem + Vos + Vinoise(t)] for t < t;

This isn't really important since the ¢, switch connected to the output of the op-amp is
open and thus v, is isolated from the op-amp.

out

03
to t1 t, t3
. e
£ o ]
’_—IL N y Vout | —

oD~ g
|n0|se(f) VOS
Vmonse(t)

Figure 2.41 S/H with input-referred offset and noise shown.

At t,, when the ¢, switches close, the voltage on the inputs of the op-amp is
Vem +Vos + Vinoise(t3)
The output voltage for tz <t <tz +Ts/2 (when the ¢, switches are closed) is
Vout(t) = Vin(t3) — Vinoise(t3) + Vinoise (1)
and the voltage on the inputs of the op-amp is
Vem + Vos + Vinoise(1)
The voltage across C.. during this time is
Ve = Vin(t3) = Vinoise(t3) + Vinoise () — [Vem + Vos + Vinoise(t)]

or



Vcr = Vin(t3) = Vinoise(t3) = Vem — Vos

In other words the voltage across C. doesn't vary for ts <t<ts+Ts/2 (when the ¢,
switches are closed). The DC component of the noise (offset) is removed from v, and
stored on C. as seen in this equation. The higher the frequency of the noise (relative to
1/T ) the less benefit we get from autozeroing.

If we could, somehow, get the voltage across C. to vary with the op-amp's
input-referred noise when the ¢, switches are closed then we could remove all of the
noise, not just the slow noise, from the S/H's output. This means that the voltage across
C: would vary when the ¢, switches are closed to cancel-out the op-amp's noise.

The simulation used to generate Fig. 2.44 was run and the voltage across C. is
plotted below. A zoomed in view to show the voltage across C. doesn't vary during
t3 <t<ts+ Ts/2 (again, when the ¢, switches are closed) is also provided.

270mY: , , . , , . ,
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2.13. Provide a quantitative description of how capacitor mismatch will affect the
operation of the S/H seen in Fig. 2.46. Verify your descriptions with simulations.

Sol: Consider the S/H topology seen in Fig 2.46. The implementation of this topology is
as shown below in Fig. 1.

[=] =
a o
= VDD T VeM

(VDD

T [ os

— —phi1 -__4' -phi3

o
z
..... a
18 cFT g
Splce simulation - 5 gl
tran 2n §00n 0 2n UIC Vinsp : it
() vinsp 2
‘- /SIN0B0225MEE 18 o
2 e =
g y ! z ot
s s = "o L] T -
- - - ~J] E £ [ . - g 20
s s o r E - veopp T3 e P
ud [ o Clvepp  Th utp
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g g g o i Ideal op-amp —2C :
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g s g s g s B cLe
5 { Yy vpl gl 2
Wphil i Wphi2 Wphid I3
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H = - H S 8In05 0.2 25MEG s ] T‘ =
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Figure 1. A “Sample/Hold circuit with gain” implementation of topology as in Fig 2.46

The differential gain of this topology when there is no mismatch in the capacitors is

(1 + Ci /CF) from equation 2.84 on page 62 of textbook. The capacitances on the

inverting terminal are Cgr, Ci1. The capacitances on the non inverting terminal are Cgp,
Cis. Crr and Cyrare given by

Crr=Cr

Cr=GC
Let us say there is a mismatch in the capacitances on the non inverting terminal with

capacitances on the inverting terminal.
CrB = Cr+ ACF
CB=Ci+AC1

Then vy due to vin+ (i.e. Vinsp in Fig .1) is using equation 2.83 on page 62 of textbook
vout+ = (1+ Ci/CF) (vin +) - (C1/CF) Vem

Then vy due to Vjn- (i.e. Vinsm in Fig .1) is
Vout- = (1+ C18/Cr8) (vin -) - (C18/CrB) Vem

Ci+ ACt Ci+ ACH
Vout—-=| |+ —— (Vin—)— — |Vam
Cr+ ACrF Cr+ ACrF

vm_{u c1(1+Ac1/CI)} (v ) Ci(1+ACy/Cr) (Vo)

Cr(1+ACH/Cr) |7 Cr(1+ACr/Cr)
Assuming the mismatch in capacitances ACr,ACB is very small compared to Cg, Cg we

can use Taylor series expansion to expand (1 + AC¥/ CF)_l and neglecting higher order

terms in the expansion we derive the below equation.
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(1+ACH/CF)™ = 1—(ACF/Cr)

Based on above formula and reducing v,y term we get

. [1+ Ci(1+ ACI/CI)(I—(ACF/CF))}(WH_)_[CI(1+ ACy/C1)(1-(ACF/CY)) (VCM)J

Cr Cr

Further simplifying we get

F Cr?

Vom_:(1+gj(vm_)_((gjvCM]+[ACCFI](W_)_[C‘SFQCF](W_)_(C‘XAC‘](VCM)Jr(C‘EFAZCF](VCM)

F Cr? CF

(WM)_(W_)=(1+%]((Vm)_(vm_))_(%‘](Vin_)+(ClxACF](W_)+(CIXAC‘](VCM)_(%j(VCM) (1

From equation (1) it is seen that if ACi=0 and ACFr=0 then

(vou =)~ (vou-) = (1+§)((Vm+)_(vm_)) @

F
For simplified analysis assume C=Cp

(o)) =2 o ) 5 Jm o (5 Yoo Joved (26 Jov) @

Now let us analyze the following cases.
Case 1: If ACi= ACF then

(Vout+)—(Vout—)=2((Vin+)—(Vin—)) 4)

Now let us verify the simulation and confirm the theoretical gain matches with the gain
from simulation. In this example Cpr=1p, Cir=lp, Cgs=1.1p, Cp=1.1p ie
AC1 = ACF =0.1p. If the differential input i.e. the difference between Vinsp and Vinsm in
Fig. 1. is 400mV as shown in Fig. 2., the differential output is 800mV i.e. twice the
differential input.

V[vinsp)-¥[vinsm]

Figure 2. Simulation output when ACi=ACF
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Case 2: If ACF=0 and AC1#0 then
ACI AC1
Voul —(vout=)=2((vin+)=(vin=))-] — |(vin=)+| — |( VcMm 5
(so)- (=)« 2{(vme) = (o)) -0 Joom )+ (G J V) 9
Now let us verify the simulation and theory. In this example Cpr=1p,Cir=1p,
Crp=I1p,Cizg=1.1p 1.e ACi=0.lp and ACr=0. vj,. has an amplitude of 200mV.
Substituting these values in (5) we get

Voutt- Vour-= 2X400mV - (0.1/1)( 200mV) + (0.1/1)500mV=830mV, the simulated output
is 835 mV.

V[vinsp]-¥[vinsm]

Figure 3. Simulation output when ACF=0 and ACi1=+10%

Case 3: If ACi=0 and ACr#0 then

(vou ) (vour ) = z((vm+)_(Vm_))+(ACCF](W,_)_(AC—CFJ(VCM) ©)

F F

The calculated value in this case for 10% mismatch in Cris 730mV. The simulation value
in this case is 725mV.

V[vinsp)-V[vinsm)

Figure 4. Simulation output when ACi=0 and ACr=+10%



Solution by Jake Baker
2.14

Is it possible to design a S/H with a gain of 0.5? How can this be done or why

can't it be done? Use simulations to verify your answer.

Solution: Yes, it's possible. Consider the modification of Fig. 2.46 seen below. In this
figure we have connected the C. capacitors to V,, instead of the inputs and we've made
C.= 2C,. Below this figure is the simulation output using Fig. 2.48 but with the modified

circuit seen below.

92 ¢3
Vv ! Cr=2C, (1)1
S PR S| — & Ta
¢3 ; |
BT T
; 1 P l _
v e | Vo,
VCMH : C + |
Vin- /—\‘\j—” ! + ~ '—\‘\ Vout—
Vem : —1»——'%—4 —
RN PN
| Cr=2C, 1
ds3
A S/H with gain of 0.5.
300mV ‘I-'[vutlltp]—‘l-'[v?utm]
240mYy=
180my=
120my-
60mV=f-/-
Omy=
-60mY=
-120mY=
-180mY=
-240mY=
-300mV T T T T T i T T T
Ons &0Ons 100ns 150ns 200ns 250ns 300ns 35%0ns 400ns 450ns 500ns

Simulating the circuit seen above using the parameters used to generate Fig. 2.48.



To determine the equation governing the operation of this circuit let's follow the methods
used in Sec. 2.2. First,

an =Cy-(Vin—Vem£Vos) +Cr - (Vem —Vem = Vos)

and when the ¢, switches turn on

1" =Cy - (Vem —Vem + Vos)
and

¥ = Cr - (Vou — Vem = Vos)
Knowing charge must be conserved

£ = Ck - (Vou— Vem + Vos) =
QP Qr QP
= Cr-(+Vos) +Ci-(Vin —QCM +Vos)— Ci- (Vem _AVCM +Vos)

or
o_Ci, G
out—CF in Cr

For a fully-differential topology the last two terms are common to both the inverting and
non-inverting inputs of the S/H, or

“Vem +Vewm

C C C C
Voutr — Vout- = [C_IF “Ving — C—'I: -Vem +VCM:| — [C—L “Vin- — C_|I: -Vem + VCM:|
SO we can write
C
Vout+ — Vout- = C_I : (Vin+ - Vin—)
F
A block diagram is seen below.
Vin —> S/H Vout
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2.15  For the first entry (V,=1input, v,=V, ) in Table 2.2 derive the frequency response, magnitude

and phase, of the DALI. Use simulations at a few frequencies to verify your derivations.

Solution:
For v,=input, v,=V,,, the z-domain transfer function of the DAI shown in Table 2.2 in [1], or

1) when output connected to ¢,

C, 7!
H —_—
l<Z) CF 1_2—1 (1)
2) when output connected to ¢,
C Z—1/2
H,(z)=—"
2( ) CF 1_271 (2)
To evaluate the frequency response of the DAI, we can use Eq. 1.37 in [1], or
PO
=" ©
Rewriting Egs. 1 and 2 using Eq. 3 gives
1) when output connected to ¢, ,
C e7j2rrf/f5
H,(f )ZC_IF'W (4)
2) when output connected to ¢,
C —jmfIf,
Ho(f)=2t—= (5)

G, e
T

Now let us derive the magnitude and phase responses of H,(f) and H,(f), respectively.
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I. Frequency Response of H,(f)

j2mflt,

We can get started by multiplying both the numerator and denominator of Eq. 4 by e , or
C e*jZWf/fs ej2rrf/fS C 1
H,( ):C_::'1_e—j2rrf/fs'ej2rrf/f5=C_'|:.ej2rrfT_l (6)
Using Euler's formula
el*=cosk+ j-sink (7)
we can rewrite EQ. 6 as
C 1
H,(f)=—="
i(f) Ce [cos(2m f/f)—1]+j[sin(2m f/f,)] ®)
which is in the form
1
atjb )

And we know that, after reviewing Egs. 1.59 and 1.60 in Section 1.2.5 of [1], the magnitude of
Eq. 8is

| 1 | 1
la+ ib| \AZ+b? (10)
Thus the magnitude of H,(f),
C 1
H,(f)lr=—
() Ce \/{COS(ZWf/fS)—l]Z-l-[Sin(ZTTf/fs)]z
C 1
:C_'. : (11)
¢ ~Jcos(2m £/ ,)f+1—2cos(2m f/1,)+[sin(2m £ /1)
_G 1
Ce \2:[1—cos(2m f/f,)]
or
_CI 1




Geng Zheng

We can evaluate the phase response directly from z-plane plot by picking an arbitrary frequency

f,and by using Eqg. 1.51 in [1], or

xH (f)=xof zero— xof pole (13)

After reviewing Eq. 1, we know that there is no zero for H,(f) . Thus xof zero isO0. Fig. 1

shows the z-plane representation for H,(f) which we use to find xof pole .

77! 1
H(z)= =—
(2) P

z-plane

Figure 1 The z-plane representation for H,(f)

From Fig. 1 we see that

xof pole =r—0

where
TT
9:__
2
and
Y=21—

Using Egs. 14 and 15, we can rewrite Eq. 13 as

xof pole=n—(5—£

2 2

f

=17 —+—
TF T

S

1 f

(14)

(15)

(16)

(17)
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Applying Eqg. 12, we have

4H1(f)=0—<n-fi+%> (18)

) (19)

I1. Frequency Response of H,(f)

or the phase response of H,(f) is

4H1<f>=—(rr

|3

A
fS

Again, let us get started by multiplying both the numerator and denominator of Eq. 5 by

j2mflt,

e , Or

—jmfit jormt/f jrr 1
C, imfite gizntite C o gimf/fs

=~ Tjomfif. _jemfif. (~  _jomflf,
Cp1—e " el Cre!h1

H,(f) (20)

Before going any further, comparing Eq. 20 with Eq. 6 in Part I, we see that the denominators in

both equations are the same. Let's define

Ho(f)=e!""" (21)
and
_CI 1

Hoolf )= Sz (22)

So that
H,(f)=H,(f)Hy(f) (23)
|H2(f)|:|H2a(f)|'|H2b(f)| (24)
AH,(F)=H, (f)+2H,(f) (25)

Since
e/t 14(n-fi> (26)

f
the magnitude of H,,(f) is simply 1 and its phase response is ™. H »(T), Eq. 22, is the

S

same as H,(f) inPart | so we can simply use the result from Part I, or
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C 1
Haul O Lt
Ce 2 sin(rrfi)‘ (27)
H ()= Hy (1) === T (28)

Plugging the magnitude and phase responses of H,,(f)and H,(f) into Egs. 24 and 25, we

get the magnitude response of H,( )

(29)

xH,(f)= nfisy(nfLer%)
(30)
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I11. Simulations
In the simulations, C,=C.=1pF VDD =1V, and the clock frequency, f,is 100 MHz.
Table 1 shows the hand calculation results for a few frequencies when the output is connected

¢, . Table 2 shows the hand calculation results for a few frequencies when the output is

connected ¢, .

Frequency 1 kHz 25 MHz 50 MHz
Vout , peak-to-peak o0 071V 05V
Delay 2.5ns 7.5ns 5ns

Table 1 Hand calculation result when output connected through ¢; .

Frequency 1 kHz 25 MHz 50 MHz
Vout , peak-to-peak 0 0.71V 05V
Delay 2.5ns 10 ns 5ns

Table 2 Hand calculation result when output connected through ¢, .

1) Simulations for output connected through ¢; .

Maon overlapping clocksS

hi2
-
Il

+ Vifip

:
\\JD/
B Ve
/g fpih :
VDD in .
?j

100meg

“ _global VDD GND
e VDD VDD 0 DC 1

VSS GND 0 DC 0
VCM VCM 0 DC 0.5
Vin Vin 0 SINE(0.5 0.5 25MEG)
Vphi1 phi1 0 PULSE(0 1 0 200p 200p 4n 10n)
Vphi2 phi2 0 PULSE(0 1 5n 200p 200p 4n 10n)
tran 0 4u 0 2n UIC

100meg

= .options plotwinsize=0

Figure 2 Schematic for output connected to ¢,
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G0y ¥ivin)
f =1kHz 1 i i i i |
R B e e B e R O s S
S . Vout goes to oo |
g T —

T T T T T T T T T
Ous Aus Bus 12us  16us 20us  24us 28us J2us 36us 40us

V[win)

f =25MHz

Vivout)

—9.2ns

,,,,,,,, ¢0.703v

T T T L] T T
3.18us 3.22us 3.26us 3.30us 3.34us 3.38us 3.42us

2 22R33R5EE

¥[vin)

_______________________________________________________

f =50 MHzt

Y[vout]

0 T A s .

| ;;# 0.487V

0.0v: T T T T T T i T T i
3.09us 3.10us 3.11us 3.12us 3.13us 3.14us 3.15us 3.16us 3.17us 3.18us 3.19us 3.20us

Figure 3 Simulations for output connected to ¢,



2) Simulations for output connected through ¢, .

¥Y(vin]

V[vout) \

f=1KkHz ™

275my-}

0 T T T T T T T T
.0us 0.4us 0.8us 1.2us 1.6us 2.0us 2.4us 2.8us 3.2us 3.6us A

Vbin)

f =25MHz &

V[w‘]ul]
=T 10.ITS

T T T T T T T
3.18us 3.20us 3.22us 3.24us d.26us  3.20us 3.30us 3.32us 3.34us
V[vin]

Yivoui

ST e T

I]'G“ J T T T T
2.28%9us 2.303us 2.317us 2.331us 2.345us 2.359us

Figure 4 Simulations for output connected to ¢, .

Reference:

[1] R.J. Baker, CMOS Mixed-signal Circuit Design, Second Edition, Wiley-IEEE, 2009.

Geng Zheng



Solution by Jake Baker

2.16  Repeat Question 2.15 for the second entry. Here is Question 2.15: For the first
entry (v, = input, v, = V) in Table 2.2 derive the frequency response, magnitude
and phase, of the DAI. Use simulations at a few frequencies to verify your
derivations.

Solution:
Both Table 2.2 and Fig. 2.54 are shown below.
Table 2.2 Discrete analog integrator (DAI) input/output relationships.

Input Output connected to ¢ Output connected to ¢-
vi=inputand v, =Vewm zt G 72 G
1-z1t C¢ 1-z1t C¢
vz = input and v1 = Veum 772 Ci -1 G
1-z1t C¢ 1-zt C¢
viand vz are both inputs | V1(2) - 271 = V2(2) - 27" C; | Vi(@)- 27" -Vo(2) C
1-z71 Cr 1-z71 Cek
Cr
b1 d2 I
i : " b1
Vem : \:\ — ¥\\
Ci N b2 :E*'Vout
Vi | — | r + N
V2
VRer: + VRer-
T _ VRer: + VRer-
A : > Vo 2 _|I?\Bott0m
d1 |_| | |_| plate
; w ; (the plate closest
o2 | | | |_| N | to the substrate)
n-1 n t
n-1/2

Figure 2.54 Schematic diagram of a discrete analog integrator (DAI).

We'll derive the frequency response for
Vout(Z) _ & _ 7712 _ & - 7112
V2(z) Cg 1-z1! Cg z-1

noting that if we change the numerator from —z-*2 to —1 we simply get a phase shift in
the DAI.

H(z) =



The figure below shows the z-plane representation for the second entry in the
table along with its magnitude and phase responses. To determine equations for the
magnitude and phase responses we can write

Phase shift
12 f f &
H(Z):Q' _Zl - ejﬂ' ‘ejng g +:ej(ﬁ+ﬁg) . CfF f
Ce z-1 Cr s 1 (=1 +cos2mc) +jsin2nc-
S S

it flent) o, o -
noting |e =1and £e'\™" =+ g . We can now write
S S
IH(f)l = CFz = = Ce f
‘/ (—1 +C0S Zné) + (sin Zn%) \/ 2(1-cos2n7)
or
IH(f)l=<t. —1
CF 2|S|n n—|
Evaluating the phase response,
From zero From pole
From inversion H\F ’(—fA—‘
ZH(f) = T + ms U + 5)= + 90 (degrees) for 0< f < fs
S
Noting that the phase shift, as mentioned above, for the second case
-1 C
H(z) = e
@ 1-zt Ck
_Q_ _ g2 _&._21/2
H(Z)_ Ceg 1-721 - Ce z-1
IH( )l
z-plane ;
1C vv
2Ck |
; 3f /2 f
degrees
90 4
[ X X J
f Yl
00 e




3 f n = f
ZH(f)=n—= 272" chs
To show that these equations are correct lets use an f, of 100 MHz, C, = C. =1 pF and an
input frequency of 5 MHz. The simulation schematic is seen below. The magnitude of the
output is

IH(f)l=—21 =32

2|sinns
For a peak input amplitude of 10 mV the output amplitude will be 32 mV. The phase shift
for the first case is exactly + 90 degrees (output leading the input) while it's
approximately 90 degrees (to be exact it's 90— 90 - 5/100 = 85.5 degrees). Note how the
intial voltage on the output of the integrator shifts the output voltage.

£
[ =3
=] -
- =
§ z
|- ]
E § g = s 2
Zwo Zvew TR 2R
(N Y 5 ( Pyvpnin g "]Vphi2
L Nt a e\ —/
Th Tes = T = T
‘ - = l
. ~ 2 - i <
= - -
o o
.tran 0 700n 100n 1n uic Nenoverlapping clocks
= o CF
£ =
2 £ I
ip
L] -
J -] voD =
vem .. .. . -u.\__“‘ ?_vDD
cl P Ideal op-amp . [ Vout
— —|— -, VDD Vi - c1
vem T n vem + .
10p
“\.l Vin
Sin 0.5 10m SMEG
H@) = =22 H@) = = d through phi2 switch
7—1  Output through phil switches z-1 and through phiz switches
511mV: E11mV:
504mv- 504mV=y -
A97mv 497 mV-
490my--- - 490mv—-- -
A83mY- 483my=
47 Gmv- 476mV=
469mv- 463m¥+
AG2 mY=- 462mYy=
ALLhmy= 455mVy=
A4RmV- 448 mYy=-
441 my= 441 m¥—
434III‘1’ 43“""‘:

—— 17—
Ons  EOns 120ns 180ns 240ns 300ns 420ns 480ns 540ns Ons 60ns 120ns 180ns 240ns 300ns 420ns 480ns 540ns
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2.17) For the third entry (v, =input,v, = input) in Table 2.2 derive the frequency

response, magnitude and phase, of the DAI. Use simulations at a few frequencies to
verify your derivations.

Solution
v, =input,v, =input . Output connected to ®;. Connecting to output to @, or P, just
delays the output by T, /2, it will not have any affect on the magnitude response. We

shall see that in the derivations below:
Case |
The transfer function of the Discrete Analog Integrator (DAI) shown in figure 2.54 with

V,(2).27' -V, (2).27'"* C,
1-z" of
Splitting the transfer function into an addition of two terms, we get

C|_ 77! . ~ 77172 . B
VOut(Z)_a |:(1—Z_lj Vl(z) [1_2_1] Vz(z)} 2)

—1 -1/2
Setting, (12—] =P(z) and (lz - J = Q(2), we can rewrite the equation 2 as,

both v,andv, going to inputs is V,(Z) =

-

— _1 —

Vou (2) = g—'-[P(n V,(2)-Q@)V,(2)] -3

F
Lets synthesize P(z) and Q(z) separately, we get
r 1
z - 7 7 1 1 1
-1

P 1 z-1 72-1  jas'
= e 005[2%':J+j'sin(2-7r~:j—l

P(2) =

s b ! i et cos{;r-:}- i -sin(ﬂ-:J
7 Z1/2 Z1/2 Z e s s s
Q(2) = = = = = =
1-z7"

I I R
I-— — e b1 {cos(z-ﬂ-:j_1}+1'51ﬂ(2'”':j
-(5)

Substituting P(z)and Q(z) back in equation 3 for V,, we get the frequency response of
the system to be,
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cos ﬁ'i + j-sin ﬁ'i
C 1 f fs

V f =—l. V. (2)-
Out( ) C,: f - ' f 1() f - ' f
cos Z-ﬂ-f— -1+ J-sin Z-ﬂ-f— cos 2-7r-f— -1+ ] -sin 2-7r-f—

To find the magnitude and phase response and verify with schematic, lets assume
that both the input capacitor and feedback capacitor are equal. Also, to simplify the
algebra, lets assume that both V, and V, inputs are equal.

G IO O 4 o s 9
l—cos| w-— |—]-sin| 7-— cos| r-— |=1p+ J-sin| 7 -
VOut(Z) — 1 . fs fs — _1 . fs S
V,,(z

12(2) {cos(2-7z-:J—1}+j-sin(2-7r-ffj {cos(2-7r-:J—1}+j-sin(2-7r-:J

-(7)

'Vz (Z)

- (6)

‘

Magnitude response

cos(ﬁ-fJ—l +sin2(7r-fJ 2-2-cos 71 2.2.sin? z f
|VOut(Z)|: fS fS _ fs _ 2 fs
V,,(2) 2 27 f - ;
‘ ‘ \/{005(2-7z-:j1} +sjn2[2.7;.ffj \/2—2~cos[ ﬂf ] \/2-2~sm [ﬂ.fJ

-(8)

2-sin (ﬂfJ
|V0ut(z)|_ 2 fs

‘VI’Z(Z)‘ _ 2-sin (ﬂ-fj
fS

Integrator with both the inputs v,andv, .

—(9) is the magnitude response of the Discrete Analog

Phase response
Lets now derive the phase response of the transfer function of the given DAL, transfer

function given is,

A M S
cos| 7-— |=1p+ J-sin| 7-—
Vou (@ C, { f } fs

=—— — (9) this function can be
V,,(2) Cr f .. f
cos| 2-m-— |—=1¢+ ]-sin 2.7;.?
—2~sin2(72r~:J+j~2-sin£72r‘:)cos[72z-:j
Vou@ _ Gy : ; /| _@0)

V ,(2Z C_
12(2) F —2.sin2(7r~:J+j~2-sin£ﬂ~:J-cos(ﬂ~:]

—h

rewritten as,
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Now, we can find the phase response of the above transfer function easily,

2-sin[;r-ff)cos[72r-ffJ 2. Sll’l[?f j cos[ j
/ =180° +tan™ : f *Z |—tan™ f
—2-sin? r.L —2-sin? —
2 f, f

£ =180° —(E—E-LJ-I-(Z—;Z-LJ:ISO‘) +%-fi—ﬂ-fi ~(12)

S

—-(11)

Simulations

Let’s verify the above derivations by simulating the DAI with equal inputs V1
and V2. This circuit will be clocked at 100MHz, therefore f, =100MHz . Also notice

. . .. . C .
that both the capacitors are set to 1pF so the gain across is just —- = 1. The schematic for
F

the circuit is given below,

C
cC o
[ ] -—
- =
C =t
=t o

= Dll S ™

o "5 uOE

oo CLL - =

= wphi1 & wphiz
o c
o i
0 = -
(] (]
o o
n n
5 5
o o
tran 1n 2000 010 UIC Nenoverlapping olocks

phiz

=_1_J
e

—
E
I:‘L

) \“DD
Ideal op-amp oot

+

L=
L)
=
7L_1£._phi1
o
=
L= L=
a a
a a
L=
)
=

=

Sirm 0.5 500rm 45MEG Wz

Sim 0.5 300m 45MEG

Figure 1: Circuit implementation of a DAI
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@ Input frequency = 5MHz (~ DC)
Y[vout] V[wl1]

Simulated Vout = 500.462mV. Hand calculated Vout = 501.5mV

@ Input frequency = 45MHz | ~ %j

Vvout] V[w1)

VAR .

T '

Simulated Vout = 648.93mV. Hand calculated Vout = 657mV
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@ Input frequency = 100MHz (f.)
¥[vout] Vivl]

Simulated Vout keeps increasing. Hand calculated Vout = infinite!

From equation 2, we notice that the transfer function of the DAI is just a sum of two
integrating circuits discussed in chapterl. Similar to the integrator circuit, the output goes
to infinity of blows up at fs frequency as seen in the figure above.

Therefore, we see that our frequency response values match pretty close the simulation
results seen above.

Case Il

v, = input,v, = input, but now the output is connected to @, instead of ®;. As mentioned

earlier, this should just delay the output of the DAI while the magnitude response remain
unaffected. Lets verify,

V,(2).27"* -V,(z2) C . . :
Vo, (2) = (@) () C (14) is the transfer function. Following the steps
similar to the derivations in Case I, we get

1-z" Ce
Vou(2) = (C;:_I ' le__z_l J Vi (2) —(#j 'Vz(Z)} (15)

-1/2
Setting, (12 - j =P(z) and (1 ! —~ ) = Q(2), we can rewrite the above equation as,

Vou @) = 2 [P2) V,(2)-Q(2) V. ()]t
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Lets synthesize P(z) and Q(z) separately, we get
1 1 it .
-1/2 12 12 1/2 f fe
-z | 1 z-1 z-1  jazt f o f
5 7 e -1 <cos 2-7r-f— —1¢+)-sin|2-7-—
-(17)
1 1 1 jZﬂ'fi j27z‘-fi
z € s € s
Q(Z) = | = = = = . r =
1-z 1_1 z-1 z-1 jra f o f
7 7 e *—1 Jcos Z-ﬂ-f—s -1+ J-sin 2-7r-f—
- (18)

Substituting P(z)and Q(z) back in equation for V,, we get the frequency response of the

system to be,

f

ir—

C e &

'Vl(z)_

e

27—

S

VOut(f):C_l'

F {cos{2-z-:j—l}+j-sin(2-ﬂ-ffJ

-(19)

SRR

To find the magnitude and phase response and verify with schematic, lets assume that
both the input capacitor and feedback capacitor are equal. Also, to simplify the algebra,

lets assume that both V, and V, inputs are equal.

J”‘T

Vom(z):l_ e = e

'Vz(z)

2.7,.1‘]
fS

V,,(2) B

- (20)

O
Vou (2) _ eJ”TS . 1 e

{005(2-72-ff]—l}ij-sin(Zﬂ-ffj {cos[Z-;r-ffj—l}+j~sin[

V1,2(Z)

~ (21) )

]
The term e

jr—

ze “=r. i Also, the rest of the expression above is similar to the previous case and

T—

foo. . .
¢ 1is factored out in the expression above because, we know

S

e

J”‘TS

{COS(Z-/Z’-ffj—l}+j'sin(2-72"ffj {cos(Z-;r-:]—l}+j-sin( .

=1 and

therefore we can now see that by connecting the output Vout to @, just delays the output
by Ts/2 . It has no effect on the magnitude of the output, only phase will vary.
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Therefore, using the result derived in the previous case, magnitude of the above

expression is,

sin | ©
Vou (@) (2 ] . . |
B =1- —(22) is the magnitude response of the Discrete Analog
‘VI’Z(Z)‘ 2-sin [ﬂ-f]
fS

Integrator with both the inputs V1 and V2 and output is sampled using .

Lets now derive the phase response of the transfer function of the given DAI, transfer
function given is,

| f ()
1 {cos(;r . fj - 1} + - sm(ﬂ . fj
VOut(Z) — _ej f S S _ (23)

s

V,,(z .
12(2) {cos(Z-;r-ffj—l}+j-sin(2-7r~ffj

this function can be rewritten as,

i ) 2(72‘ fj . ) [7[ f) [72’ fJ
¢ | —=2-sin7| —-— |4+ ]-2-sin| —-— |-cO8| ———
Vou(@) _ 175, 2 f, 2 f, 2 f, _ (o4)

_e .
\Y
12(2) —2.sin2[7r.ff]+j-2-sin[7r-ff]-cos(7z-:j

Now, we can find the phase response of the above transfer function easily,

(x f x f ) f f
2-sin| —-— |-cos| — - — 2-sin| 7-— |-cos| w-—
X 2 f, 2 f, I f, f,

£=180°+E-L+tan* tan
—2-sin”| —-— —2-sin 7z~f—
- (25)
4:1800+7,.i_ z_ 7 T3, ﬁ_ﬁ.i :180°+7,.i+£.i_7z.i_(26)
f, 2 2 f 2 f, f, 2 f, f,

/=180"+ 2. i — (27), therefore we can see that compared to the phase response of

previous case, the output is just a delayed version; it is delayed by Ts/2 or by —180°.
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Simulations

Similar to the simulations performed in case I, here we can vary the input signal
frequency and check the output response. Notice that the output is now clocked on @,
instead of @,

c
c o
[ -
- C
[ =t
= o
o =]
o = - o
= [ = = "-;_ T
T WDD G ovoM o 2
=] vphi1 o viphiz
o C
[} o
1 05 = -
fau] [}
a a
n n
5 5
o o
tran 1n 1000m 0 1n UIC Nonouerlapping clacks
o CF
et 11
a 1l
1p

[x]
._?

’ \i\unn

Ideal op-amp ot

+

=
Ly
=
%_i._phi'i
o
ne
= =
a a
a a
=
L)
=

o

Sim 0.5 500 4SMEG e

Sim 0.5 300rn 43MEG

Figure 2: DAL but now the output is connected to ®2 instead of ®1

@ Input frequency = 5MHz (~ DC)
VY[vout]

UMMM

Simulated Vout = 500.416mV. Hand calculated Vout = 501.5mV
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@ Input frequency = 45MHz | ~ Lj

VY[vout] V[v1]

i '

| | | | | | | | | |
Ons J0ns G0ns 90ns 120ns 150ns 180ns 210ns Z40ns
Simulated Vout = 648.93mV. Hand calculated Vout = 657mV

@ Input frequency = 100MHz (f_)

A4V V[vout] V1]

ADV=
36V=
32V
28V
2 4=
20V
16V=
12V=

V=

A=

1]
0.0ps O.1ps 0.2ps 0.3ps 0.4ps 0.5ps 0.6ps 0.7ps 0.8ps 0.9ps 1.0ps

Simulated Vout keeps increasing. Hand calculated Vout = infinite!

The simulation results from spice match with the hand calculated magnitude
response.
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The DAI has a response similar to the magnitude response of an integrator
covered in chapter 1. The circuit just passes the input signal at lower frequencies and as
we keep going higher in frequency, the DAI starts to act like an accumulator and has a
peak value at fs frequency, where the magnitude blows up. The magnitude response of
the discrete analog integrator looks like a response of an integrator circuit from chapter 1,
but with a delay of Ts/2.

Vin

A

0.5

A 21, f(Hz)

Figure 3: Magnitude resposne of an DAI
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Problem 2.18
Does the DAI use CDS? Why or why not? Use simulations to support your answers.

To answer yes or no to this question, we should investigate on the charge transfer when the
switches are turned on and off.

To simplify the math, we set v, to be Vcm . When ¢, switches are closed, the charge on C;is

VO ut

VOV
D _
N\

Vem

\p)

Fig. 1 Discrete analog integrator (DAI).

Q1=Cl(vi-Vcm). When ¢, switches are closed, the charge on Cis Q21=Ci(Vcm +Vov -Vem)=
C\Vov , and the charge on Cris Q22=C ¢ (A Vout -Vem). Due to charge reservation, Q1= Q21 +Q2.2,
and this means that Cl(v1-Vem)= CiVoy +C £ (A Vou -Vewm), which is Vo (1-271)= CI/Ce(Vin -
Vo). Therefore, the offset is not cancelled out in DAI, and DAI doesn’t use CDS.

The simulation results are shown as follows.
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Fules 0 16n 200p 200p 4n 10n
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4_:(:};%“
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COSE*F*white(ime*0.B3e8+0.61H.26

param & T 188 .¥ran 0 800N 0 1n ulo Honaveriapping slooke

=
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phit
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