
Sakkarapani Balagopal

(P.29.1)A 3-bit, resistor-string DAC similar to the one shown in the fig. 29.2a was designed with

a desired resistor of 500Ω. After fabrication, mismatch caused the actual value of the resistor to

be R1=500Ω, R2=480Ω, R3=470Ω, R4=520Ω, R5=510Ω, R6=490Ω, R7=530Ω, R8=500Ω.

Determine the maximum INL and DNL for the DAC assuming Vref=5V.

The equivalent value of R is given by equation-29.1-1.





8

1i

iEquivalent RR (29.1-1)

 4000EquivalentR

The current flowing through the resistor string is given by equation-29.1-2.

Equivalent

ref

StringR
R

V
I _ (29.1-2)

mA
V

I StringR 25.1
4000

5
_ 




Table 29.1-1 clearly shows the INL and DNL calculation for the given problem.

Table 29.1-1 – INL and DNL calculation of 3-bit DAC

Digital

input

Node

Voltages
VAct(V) VIdeal(V)

Step height(V)
DNL(V)=

SAct-SIdeal

INL(V)=

VAct-VIdeal SAct(V) SIdeal(V)

0000_000 V0 0 0 0 0 0 0

0000_001 V1 0.625 0.625 0.625 0.625 0 0

0000_010 V2 1.225 1.25 0.6 0.625 -0.025 -0.025

0000_100 V3 1.8125 1.875 0.5875 0.625 -0.0375 -0.0625

0001_000 V4 2.4625 2.5 0.65 0.625 0.025 -0.0375

0010_000 V5 3.1 3.125 0.6375 0.625 0.0125 -0.025

0100_000 V6 3.7125 3.75 0.6125 0.625 -0.0125 -0.0375

1000_000 V7 4.375 4.375 0.6625 0.625 0.0375 0

From Table 29.1-1,

 LSBVDNLMAX 06.00375.0 

 LSBVINLMAX 1.00625.0 

Chris Gagliano

29.2 An 8-bit resistor string DAC similar to the one shown in Fig. 29.2b was fabricated with a

nominal resistance value of 1 kΩ. If the process was able to provide matching of resistors

to within 1%, find the effective resolution of the converter. What is the maximum INL and

DNL of the converter? Assume that VREF = 5V.

1 LSB =
N

REFV

2
 =

82

5V
 ≈ 19.53 mV

From Eq (29.10),

 INL max =
2

1
 LSB * N2 *

max
R

Rk∆

 INL max =
2

1
 LSB * 82 * 0.01

 INL max = 1.28 LSB ≈ 25 mV

From Eq (29.13),

 DNL max =
N

REFV

2
*

max
R

Rk∆
= 1 LSB * 0.01

 DNL max = 0.01 LSB ≈ 0.1953 mV

The INL is the limiting factor for the resolution of a resistor-string DAC. To determine the

effective resolution of the DAC in this problem, we again use Eq (29.10) and the fact that the

INL must be < 0.5 LSB.

 INL max =
2

1
 LSB * N2 *

max
R

Rk∆

2

1
 LSB =

2

1
 LSB * N2 *

max
R

Rk∆

 1 = N2 * 0.01

 N2 = 100

 N =
)2log(

)100log(
 ≈ 6.64 bits

So, a resistor-string DAC with 1% matching will have a resolution of 6 bits. Another way to

determine this for the 8-bit DAC in this problem is to say the effective resolution is equal to the

number of bits minus the ceiling of INL max.

 Effective resolution = 8 bits – 2 bits = 6 bits

 QAWI HARVARD

29.3 Compare the digital input codes necessary to generate all eight output values for

a 3-bit resistor string DAC similar to those shown in Fig. 29.2a and b. Design a

digital circuit that will allow a 3-bit binary digital input code to be used for the

DAC in Fig. 29.2a. Discuss the advantages and disadvantages of both

architectures.

A 3-bit resistor string DAC requires 2
N
 resistors, Figure 29.2 shows a simple resistor-

string DAC and a binary switch resistor-string DAC.

The DAC in Figure 29.2 (a) is termed a simple resistor string DAC because it is a

relatively simple structure consisting of 2
N
 resistors and 2

N
 switches. If we want V0 as the

output we simply make S0 high and ground all of the other voltages. If we want V1 as the

output we make S1 high and ground all of the other voltages. The corresponding voltage

on V1 can be determined by realizing that it is simply a resistor divider:

()

1

1 1

1 1 8
REF REF

R
V V V

N R R

⋅
= ⋅ = ⋅

− ⋅ + ⋅

And similarly:

()
4

4 4

4 4 8
REF REF

R
V V V

N R R

⋅
= ⋅ = ⋅

− ⋅ + ⋅

Using this information we can create table 1 with the digital input codes necessary to

generate all eight output values for the resistor string DACs seen in Figure 29.2.

 QAWI HARVARD

Table 1: Digital input code and corresponding output voltage for the DACs in Figure 29.2.

S7 S6 S5 S4 S3 S2 S1 S0 D2 D1 D0 VOUT

0 0 0 0 0 0 0 1 0 0 0 0.000

0 0 0 0 0 0 1 0 0 0 1 0.625

0 0 0 0 0 1 0 0 0 1 0 1.250

0 0 0 0 1 0 0 0 0 1 1 1.875

0 0 0 1 0 0 0 0 1 0 0 2.500

0 0 1 0 0 0 0 0 1 0 1 3.125

0 1 0 0 0 0 0 0 1 1 0 3.750

1 0 0 0 0 0 0 0

1 1 1 4.375

In order to create a circuit that generates the digital codes of table 1 using the digital input

codes of table 2 we can use three input AND gates. Figure 1 shows the circuit used to

create the input code for the DAC in Figure 29.2 (a).

The advantages and disadvantages of the two resistor string DAC structures in figure

29.2, relative to each other, are based on the output capacitance and the switch resistance.

While the simple resistor string DAC provides significantly large output capacitance due

to the 2
N
 depletion capacitances it only has one switch resistance connected to the output.

The binary switch array has much less capacitance attached to the output but also has the

disadvantage of having more switch resistance connected to the output. In case of a 3-bit

DAC, with both structures using the same switches we can estimate the load as:

D0

D1

D2

S0

S1

S2

S3

S4

S5

S6

S7

1Rs

8Cout

Vout

3Rs

2Cout

Vout

Simple Binary Array

29.4 Plot the transfer curve of a 3-bit R-2R DAC if all Rs = 1.1 kΩ and 2Rs = 2 kΩ.
What is the maximum INL and DNL for the converter? Assume all of the switches
to be ideal and VREF = 5V.

DIN Ideal Vout (V) Vout (V) DNL (LSB) INL (LSB)
000 0 0 0
001 -0.625 -0.555 -0.112 0.112
010 -1.25 -1.165 -0.024 0.134
011 -1.875 -1.72 -0.112 0.245
100 -2.5 -2.416 0.114 0.131
101 -3.125 -2.971 -0.112 0.242
110 -3.75 -3.581 -0.024 0.266
111 -4.375 -4.136 -0.112 0.376

DNLmax = DNL100 = 0.114 LSB
INLmax = INL111 = 0.376 LSB

Transfer Curve

INL

1.1KΩ 1.1KΩ 1.1KΩ
0.555V 1.166V 2.418V

Justin Wood

29.5 Suppose that a 3-bit R-2R DAC contained resistors that were perfectly
matched and that R=1kΩ and VREF=5V. Determine the maximum switch resistance
that can be tolerated for which the converter will still have 3-bit resolution. What
are the values of INL and DNL?

For the converter to have 3-bit resolution, the INL and DNL must be within +/- 0.5 LSB.
With a 3-bit DAC and VREF=5, INL and DNL must be +/- 0.3125 V.

First, we need to derive the equations for the R-2R DAC. The general R-2R schematic
is:

From the schematic above:

VOUT  ITOT  RF

ITOT  ID0  ID1  ID2

ID0 
V0

2R  Rs
, ID1 

V1

2R  Rs
, ID2 

V2

2R  Rs

I1 
VREF V2

R
, I2 

V2 V1

R
, I3 

V1 V0

R
, I4 

V0

2R

ITOT ID2 ID1 ID0

V0 V1 V2

I1 I2 I3 I4

-

Using KCL at each node (V2, V1, V0) and substituting:

DNL and INL in terms of our output current are as follows:

𝐷𝑁𝐿 𝑘 = −𝐼𝑇𝑂𝑇,𝐴𝑐𝑡𝑢𝑎𝑙 (𝑘) + 𝐼𝑇𝑂𝑇,𝐴𝑐𝑡𝑢𝑎𝑙 (𝑘−1) − −𝐼𝑇𝑂𝑇,𝐼𝑑𝑒𝑎𝑙 (𝑘) + 𝐼𝑇𝑂𝑇,𝐼𝑑𝑒𝑎𝑙 (𝑘−1) ⋅ 𝑅𝑓 𝑉

𝐼𝑁𝐿 𝑘 = −𝐼𝑇𝑂𝑇,𝐴𝑐𝑡𝑢𝑎𝑙 (𝑘) + 𝐼𝑇𝑂𝑇,𝐼𝑑𝑒𝑎𝑙 (𝑘) ⋅ 𝑅𝑓 𝑉

Using the equations that we defined above, we can increase RS and recalculate DNL or
INL is greater than 0.3125V. Rs was found to be 307Ω using excel.

Below is a sample calculation of INL1 and DNL1 @ Rs=307Ω

𝐼𝑁𝐿1 = −𝐼𝑇𝑂𝑇,𝐴𝑐𝑡𝑢𝑎𝑙 001 + 𝐼𝑇𝑂𝑇,𝐼𝑑𝑒𝑎𝑙 001 ⋅ 𝑅𝑓 𝑉

𝐼𝑁𝐿1 = − 𝐼𝐷0,𝐴𝐶𝑇𝑈𝐴𝐿 + 𝐼𝐷1,𝐴𝐶𝑇𝑈𝐴𝐿 + 𝐼𝐷2,𝐴𝐶𝑇𝑈𝐴𝐿 + 𝐼𝐷0,𝐼𝑑𝑒𝑎𝑙 + 𝐼𝐷1,𝐼𝑑𝑒𝑎𝑙 + 𝐼𝐷2,𝐼𝑑𝑒𝑎𝑙 ⋅ 𝑅𝑓 (𝑉)

𝐼𝑁𝐿1 = −
𝑉𝑜,𝑎𝑐𝑡𝑢𝑎𝑙

2𝑅+𝑅𝑠
+ 0 + 0 +

𝑉𝑜,𝑖𝑑𝑒𝑎𝑙

2𝑅
+ 0 + 0 ⋅ 2𝑅 = 0.01298 (𝑉)

𝐼𝑁𝐿1 = 0.01298 𝑉 ⋅
23 𝐿𝑆𝐵𝑠

5 𝑉
= 0.02077(𝐿𝑆𝐵𝑠)

𝐷𝑁𝐿1 = −𝐼𝑇𝑂𝑇,𝐴𝑐𝑡𝑢𝑎𝑙 1 + 𝐼𝑇𝑂𝑇,𝐼𝑑𝑒𝑎𝑙 1 − −𝐼𝑇𝑂𝑇,𝐴𝑐𝑡𝑢𝑎𝑙 0 + 𝐼𝑇𝑂𝑇,𝐼𝑑𝑒𝑎𝑙 0 ⋅ 𝑅𝑓 𝑉

𝐷𝑁𝐿1 = −
𝑉𝑜,𝑎𝑐𝑡𝑢𝑎𝑙

2𝑅+𝑅𝑠
+ 0 + 0 +

𝑉𝑜,𝑖𝑑𝑒𝑎𝑙

2𝑅
+ 0 + 0 — 0 + 0 ⋅ 2𝑅 = 0.01298 (𝑉)

𝐷𝑁𝐿1 = 0.01298 𝑉 ⋅
23 𝐿𝑆𝐵𝑠

5 𝑉
= 0.02077(𝐿𝑆𝐵𝑠)

V0 
VREF

2 
1

2 
Rs

R

















 2 
1

2 
Rs

R

















 1.5 
1

2 
Rs

R

















 1

















 1.5 
1

2 
Rs

R

V1  1.5 
1

2 
Rs

R

















V0

V2  2 
1

2 
Rs

R

















V1 V0

The rest of the calculations are shown below:

VREF 5

R 1000

Rs 307

V0,actual 0.705961

V1,actual 1.364949

V2,actual 2.615593

V0,ideal 0.625

V1,ideal 1.25

V2,ideal 2.5

D2 D1 D0 I(TOT,ideal) I(TOT,actual)

0 0 0 0 0

0 0 1 0.0003125 0.000306008

0 1 0 0.000625 0.000591655

0 1 1 0.0009375 0.000897663

1 0 0 0.00125 0.001133764

1 0 1 0.0015625 0.001439772

1 1 0 0.001875 0.001725419

1 1 1 0.0021875 0.002031427

 (V) (LSBs)

INL0 0 0

INL1 0.012984 0.020774

INL2 0.066689 0.106703

INL3 0.079673 0.127477

INL4 0.232473 0.371956

INL5 0.245457 0.392731

INL6 0.299162 0.478659

INL7 0.312146 0.499433

DNL1 0.012984 0.020774

DNL2 0.053705 0.085929

DNL3 0.012984 0.020774

DNL4 0.1528 0.244479

DNL5 0.012984 0.020774

DNL6 0.053705 0.085929

DNL7 0.012984 0.020774

Lincoln Bollschweiler
29.6 The circuit illustrated in Fig. 29.5 is known as a current-mode R-2R DAC, since the
output voltage is defined by the current through RF. Shown in Fig. 29.52 is an N-bit
voltage-mode R-2R DAC. Design a 3-bit voltage mode DAC and determine the output
voltage for each of the eight input codes. Label each node voltage for each input. Assume
that R = 1kΩ and that R2 = R1 = 10kΩ and VREF = 5V.

The following LTSpice circuit schematic shows the 3-bit DAC. The output voltages see a
gain of 2 and therefore show a range which exceeds the rails of a 5V process amplifier.
As an ideal amplifier is used, the output range, shown on the following page, ranges 0V
to 8.8V. Output voltages are labeled on the simulation output for VOUT.

Digital Codes

000 001 010 011 100 101 110 111

8.75
7.5

6.25
5.0

3.75
2.5

1.25 0.0

Sakkarapani Balagopal

(P29.7) Design a 3-bit, current-steering DAC using the generic current-steering DAC shown in

figure 29.9. Assume that each current source, I, is 5µA, and find the total output current for each

input code.

iout

D0D1
D2D3D4D5

D6

I I I I I I I

Figure 29.9-1 - A generic current-steering DAC.

The simple 3-bit current steering DAC is shown in the figure 29.9-1. For a 3-bit DAC, seven

equal value current sources of value I=5µA will be needed. Depend on the binary control signals

from D0 to D6, the current sources are either connected to iout or ground. The resulting currents

are shown in the table 29.7-1.

Table 29.7-1 - Output current generated from 3-bit DAC

Digital

Input

Code

D0 D1 D2 D3 D4 D5 D6 iout

000 0 0 0 0 0 0 0 0

001 1 0 0 0 0 0 0 5µA

010 1 1 0 0 0 0 0 10µA

011 1 1 1 0 0 0 0 15µA

100 1 1 1 1 0 0 0 20µA

101 1 1 1 1 1 0 0 25µA

110 1 1 1 1 1 1 0 30µA

111 1 1 1 1 1 1 1 35µA

Chris Gagliano

29.8 A certain process is able to fabricate matched current sources to within 0.05%.

Determine the maximum resolution that a current-steering (non-binary-weighted) DAC

can attain using this process.

From Eq (29.21),

INL

I
max,

∆ =
N

I

2

From Eq (29.26),

DNL

I
max,

∆ =
2

I

The terms
INL

I
max,

∆ and
DNL

I
max,

∆ represent the maximum current source mismatch error that

will keep the INL and DNL, respectively, less than 0.5 LSB. Clearly the INL is the limiting

factor in a non-binary-weighted current-steering DAC.

If the current sources are matched within 0.05%, then
max

I∆ = 0.05% * I.

INL

I
max,

∆ =
N

I

2

 0.05% * I =
N

I

2

 N2 =
0005.0

1

 N =
)2log(

)
0005.0

1
log(

 ≈ 10.97

The maximum resolution is then 10 bits.

 QAWI HARVARD

29.9 Design an 8-bit current-steering DAC using binary-weighted current sources.

Assume that the smallest current source will have a value of 1 µA. What is the range

of values that the current source corresponding to the MSB can have while

maintaining an INL of ½ LSB? Repeat for a DNL less than or equal to ½ LSB.

Figure 29.10 gives a generic view of a binary-weighted current-steering DAC.

An 8-bit current-steering DAC using binary-weighted current sources will have N current

sources. Figure 1 shows the binary-weighted current sources used in an 8-bit DAC.

Figure 1 Block diagram of an 8-bit binary-weighted current-steering DAC.

Analyzing the integral nonlinearity of the binary weighted current steering DAC is

accomplished by realizing that the sum of current error sums to zero and that one half of the

current sources contain the maximum INL error. In this case, the MSB current will contain

the maximum error.

 ()1

, 2N

MSB actualI I I
−

= + ∆

Subtracting the ideal current from the actual current gives the value of the maximum INL:

() ()1 1 1

, , 2 2 2N N N

MAX MSB actual MSB idealINL I I I I I I
− − −

= − = + ∆ − = ∆

Realize that the LSB of the current steering DAC is simply I, and we can equate the

maximum INL to ½ LSB:

1

2MAX
INL LSB=

I 2I 4I 8I 16I 32I 64I

IOUT

D0 D1 D2 D3 D4 D5 D6

128I

D7

 QAWI HARVARD

1 1

22N I I−
∆ =

8

1
4

2 2N

I A
I nA

µ
∆ = = ≈

In order to design a binary weighted current source with an INL less than ½ LSB, the range

of the MSB must be:

, , ,MSB ideal MSB actual MSB ideal
I I I I I− ∆ ≤ ≤ − ∆

,127.996 128.004
MSB actual

A I Aµ µ≤ ≤

For the determination of the DNL we have to realize that the worst case occurs at the

transition from 01111111 to 10000000. We also assume that the errors all sum to zero. As an

example, consider a 3-bit binary weighted DAC with the lower two current sources

containing negative error and the MSB containing positive error. To determine the maximum

DNL we simply subtract the currents to determine the “step height”:

 () () ()2 1 02 2 2MAXDNL I I I I I I I= + ∆ − − ∆ − − ∆ −

4 4 3 3 7
MAX

DNL I I I I I I= + ∆ − + ∆ − = ∆

Restating equation 29.28, shows that this approach is correct:

 () ()
1

1 1

1

2 2
N

N k

MAX

k

DNL I I I I I
−

− −

=

 
= ⋅ + ∆ − ⋅ − ∆ − 
 

∑

Which results in ()2 1N

MAX
DNL I= − ⋅∆ , if we wish to keep the DNL equal to less than ½

LSB we simply equate the two and solve for the maximum error, remembering that an LSB is

equal to I:

() 1
22 1N I I− ⋅ ∆ =

()
1

2
2 2552 2 1N

I A
I nA

µ
∆ = = ≈

⋅−

For the DNL to be less than or equal to ½ LSB the MSB current source must have the range

of:

,127.998 128.002
MSB actual

A I Aµ µ≤ ≤

 Comparing the two results we can see that the DNL requirement is more stringent.

Adam Johnson

29.10 Prove that the 3-bit charge-scaling DAC used in Ex. 29.6 has the same output
voltage increments as the R-2R DAC in Ex. 3 for VREF = 5 V and C = 0.5 pF.

From Eq. (29.33), VOUT = (D0*2-3 + D1*2-2 + D2*2-1)*VREF

For DIN = 000, VOUT = (0*2-3 + 0*2-2 + 0*2-1)*5V = 0V

For DIN = 001, VOUT = (1*2-3 + 0*2-2 + 0*2-1)*5V = 0.625V

For DIN = 010, VOUT = (0*2-3 + 1*2-2 + 0*2-1)*5V = 1.25V

For DIN = 011, VOUT = (1*2-3 + 1*2-2 + 0*2-1)*5V = 1.875V

For DIN = 100, VOUT = (0*2-3 + 0*2-2 + 1*2-1)*5V = 2.5V

For DIN = 101, VOUT = (1*2-3 + 0*2-2 + 1*2-1)*5V = 3.125V

For DIN = 110, VOUT = (0*2-3 + 1*2-2 + 1*2-1)*5V = 3.75V

For DIN = 111, VOUT = (1*2-3 + 1*2-2 + 1*2-1)*5V = 4.375V

DIN Ex. (29.3) Ex. (29.6)
000 0 0
001 -0.625 0.625
010 -1.25 1.25
011 -1.875 1.875
100 -2.5 2.5
101 -3.125 3.125
110 -3.75 3.75
111 -4.375 4.375

The voltage increments (VLSB) of both DACs are the same in magnitude at 0.625V, but
opposite in sign.

Justin Wood

29.11! Determine the output of the 6-bit, charge-scaling DAC used in Ex. 29.7 for
each of the following inputs: D = 000010, 000100, 001000, and 010000.

With D=000010, the equivalent circuit would be:

We first calculate VA as follows:

VA =
2C

6C + 8
7
C series 7C⎛

⎝⎜
⎞
⎠⎟ + 2C

VREF =
2

6 +

8
7
⋅ 7

8
7
+ 7

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ 2

VREF =
2

8 + 56
57

VREF

VOUT is then calculated as follows:

VOUT =

8
7

8
7
+ 7

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
VA

VOUT =

8
7

8
7
+ 7

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

2

8 + 56
57

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
VREF =

1
32
VREF

With D=000100, the equivalent circuit would be:

We first calculate VA just like the previous code:

VA =
4C

4C + 8
7
C series 7C⎛

⎝⎜
⎞
⎠⎟ + 4C

VREF =
4

8
7
⋅ 7

8
7
+ 7

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ 8

VREF =
4

8 + 56
57

VREF

VOUT is then calculated as follows:

VOUT =

8
7

8
7
+ 7

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
VA

VOUT =

8
7

8
7
+ 7

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

4

8 + 56
57

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
VREF =

1
16
VREF

With D=001000, the equivalent circuit would be:

VOUT is calculated as follows:

VOUT =
1C

6C + 8
7
C series 8C⎛

⎝⎜
⎞
⎠⎟ +1C

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
VREF

VOUT =
1

8
7
⋅8

8
7
+ 8

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ 7

VREF =
1
8
VREF

With D=010000, the equivalent circuit would be:

VOUT is calculated as follows:

VOUT =
2C

5C + 8
7
C series 8C⎛

⎝⎜
⎞
⎠⎟ + 2C

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
VREF

VOUT =
2

8
7
⋅8

8
7
+ 8

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ 7

VREF =
1
4
VREF

Lincoln Bollschweiler
29.12 Design a 4-bit, charge-scaling DAC using a split array. Assume that VREF = 5V
and that C = 0.5pF. Draw the equivalent circuit for each of the following input words
and determine the value of the output voltage: D = 0001, 0010, 0100, 1000. Assume the
capacitor associated with the MSB had a mismatch of 4 percent, calculate the INL and
DNL.

We find the value of the attenuation capacitor, using (29.35) to be (4/3)C = 1.333pF.

The complete circuit is shown as follows:

In all simplifications shown, the capacitor values will be normalized to C=1
a. The equivalent circuit for input code 0001 is as follows:

C3 in series with C4 reduces to 12/13. That in parallel with C2 is 3+12/13. That circuit is
as follows:

We can easily solve for V1 now by capacitive divider. V1 = 0.203Vref. We can use V1 in
a capacitive divider with C3 and C4 to get Vin+. Vin+ = 0.0625Vref = Vref/16. Vout =
Vin+ due to voltage follower.

b. The equivalent circuit for input code 0010 is as follows:

By similar analysis technique we can find that V1 = 0.406Vref. Vout = 0.125Vref =
Vref/8.

c. The equivalent circuit for input code 0100 is as follows:

which further reduces to:

It can be readily seen by capacitive voltage divider that Vout = Vin+ = Vref/4.

d. The equivalent circuit for input code 1000 is as follows:

It can be readily seen that Vout = Vin+ = Vref/2.

To find INL we can start by realizing that 4% matching on the MSB capacitor is the same
as having the MSB cap being off by +2% while all the others are off by -2%. Overall we
have 2% mismatch. We can use the R2-R DAC equations from chapter 30 to find INL
and DNL.

Using (30.13) and % mismatch = 2 we find: 4

15 0.02 0.213 0.68 .
2

DNL V LSB   

Using (30.16) we find:. 5 2 0.049 0.157 .
2 100 2

INL V LSB   


Sakkarapani Balagopal

(P.29.13)For the cyclic converter shown in the figure 29.17, determine the gain error for a 3-bit

conversion if the feedback amplifier had a gain of 0.45V/V. Assume that Vref=5V.

The output voltage at the end of nth cycle of the conversion with feedback amplifier gain of

0.5V/V is given in equation 29.13-1.

2

1
)1(

2

1
.)(1 








  nVVDnV ArefnOut (29.13-1)

Table 29.13-1 summarizes the resultant output voltage for different inputs. Results are plotted in

the figure 29.13-1.

Table-29.13-1 - Output voltage of 3-bit DAC with different feedback amplifier gain

Input D0 D1 D2

Vout,actual(V) for

a gain of

0.5V/V

Vout,actual(V) for

a gain of

0.45V/V

0 0 0 0 0 0

1 0 0 1 0.625 0.4556525

2 0 1 0 1.25 1.0125

3 0 1 1 1.875 1.468125

4 1 0 0 2.5 2.25

5 1 0 1 3.125 2.705625

6 1 1 0 3.75 3.2625

7 1 1 1 4.375 3.718125

Figure 29.13-1 Transfer curve for 3-bit DAC for different feedback amplifier gain

0

1

2

3

4

5

0 1 2 3 4 5 6 7

O
u

tp
u

t
V

o
lt

ag
e

(V
)

Input Code

Transfer Curve

Gain of 0.5V/V

Gain of 0.45V/V

From page no.945 of the textbook, the gain error can be written as

dBlue SlopeActualSlopeIdealErrorGain Re___ 

dBlue
xx

yy

xx

yy
ErrorGain

Re12

12

12

12_ 


























 d

Blue

REFV

ErrorGain
Re000111

0718125.3

000111

0
8

7

_ 





































The x and y axis in figure 29.15-1 are in different units. So, convert the denominator on above

equation into same unit or volts.

d

REF

Blue

REF

REF

VV

V

ErrorGain

Re

0
8

7

0718125.3

0
8

7

0
8

7

_
















































85.01

5.
8

7

718125.3
1_

Re























d

ErrorGain

V

V
ErrorGain 15.0_ 

Chris Gagliano

29.14 Repeat Problem 29.13 assuming that the output of the summer was always 0.2V greater

than the ideal and that the amplifier in the feedback path had a perfect gain of 0.5 V/V.

The output voltage at the end of the n
th
 cycle can be expressed as:

 Vout(n) = () AVnVAVD summeroffsetAREFn ⋅+−⋅+⋅− ,1)1(

And)(nVA can be expressed as:

 summeroffsetAREFnA VnVAVDnV ,1)1()(+−⋅+⋅= −

We can then write Vout(n) as:

 Vout(n) = ()() AVVnVAVDAVD summeroffsetsummeroffsetAREFnREFn ⋅++−⋅+⋅⋅+⋅ −− ,,21)2(

 Vout(n) = summeroffsetsummeroffsetAREFnREFn VAVAnVAVDAVDA ,,

23

2

2

1)2(⋅+⋅+−⋅+⋅⋅+⋅⋅ −−

 Vout(n) = ∑∑
−

=

−
−

=

− ⋅+⋅⋅
1

0

,

)(,

1

0

n

k

kn

summeroffset

nidealVout

n

k

k

kn

REF AVDAV

444 3444 21

For an N-bit DAC, we sample the output voltage on the N
th
cycle. We are using a 3-bit DAC in

this problem, so the output voltage is:

 Vout = Vout(n=3) = () ()AAAVDADADAV summeroffsetREF ++⋅+⋅+⋅+⋅⋅ 23

,21

2

0

3

 Vout = () ()5.05.05.02.05.05.05.05 23

21

2

0

3 ++⋅+⋅+⋅+⋅⋅ VDDDV

 Vout = () VDDDV

idealVout

175.05.05.05.05

,

21

2

0

3 +⋅+⋅+⋅⋅
444444 3444444 21

The output values and transfer curve are shown below.

Voffset,summer = 0.2 V

A = 0.5

Gain error = slope of Vout,ideal – slope of Vout,actual

It is clear from the plot that the slopes of both lines are equal. There is only an offset error equal

of 175 mV. After removing the offset error, we would report:

 Offset error = 175 mV

 Gain error = 0

max

INL = 0

max

DNL = 0

 QAWI HARVARD

29.15 Repeat Problem 29.13 assuming that the output of the summer was always 0.2 V

greater than the ideal and that the amplifier in the feedback path had a gain of 0.45

V/V.

29.13 For the cyclic converter shown in Fig. 29.17, determine the gain error for a 3-bit

conversion if the feedback amplifier had a gain of 0.45 V/V. Assume that VREF = 5 V.

The gain error of a DAC is difference in the slope of the best fit line to the ideal transfer

curve of the DAC. Consider figure 28.17:

A plot of the transfer curve of our 3-bit DAC versus the ideal 3-bit DAC will give us our gain

error. Realizing that the summation block has an offset of 0.2 V and the amplifier has a gain

of 0.45 V/V we can build an output table for our 3-bit DAC. An example of the output table

is shown below for a digital input of 110.

 QAWI HARVARD

Table 1 Output from the 3-bit cyclic DAC used in Problem 29.15

Cycle Number, n Dn-1 vA(n-1)[n-1] vout[n]

1 0 0 ()0.45 0 0 0.2 0.090V⋅ + + =

2 0 0.090 ()0.45 0 0.09 0.2 0.131V⋅ + + =

3 0 0.131 ()0.45 0 0.131 0.2 0.149V⋅ + + =

1 1 0 ()0.45 5 0 0.2 2.34V⋅ + + =

2 1 0.090 ()0.45 5 2.34 0.2 3.393V⋅ + + =

3 1 2.381 ()0.45 5 3.393 0.2 3.867V⋅ + + =

Using the approach seen in Table 1 we are able to plot a transfer curve for each of the eight

digital input codes and compare them to the ideal.

3-Bit DAC Transfer Curve

0.000

0.625

1.250

1.875

2.500

3.125

3.750

4.375

5.000

000 001 010 011 100 101 110 111

Input Digital Code, D

O
u

tp
u

t
V

o
lt

a
g

e
,

V

IDEAL ACTUAL

Figure 1 Transfer curve of the 3-bit cyclic DAC of problem 29.15.

The gain error can be determined by finding the slopes of both lines. Here we simply subtract

the initial and final values.

 Gain Error
3.718

0.6251 0.15
7

LSB
LSB= − =

Adam Johnson

29.16 Design a 3-bit pipeline DAC using VREF = 5 V. (a) Determine the maximum and
minimum gain values for the first-stage amplifier for the DAC to have less than
±½ LSBs of DNL assuming that the rest of the circuit is ideal. (b) Repeat for the
second-stage amplifier. (c) Repeat for the last stage amplifier.

From Eq. (29.40) we can see that

VOUT = (D0*A0*A1*A2 + D1*A1*A2 + D2*A2)*VREF

Where An is the gain of the amplifier of stage n, and A0 = A1 = A2 = ½ for the ideal case.

VLSB,Ideal = A0*A1*A2*VREF = ½*½*½*5V = 0.625V
½ VLSB = 0.3125V

(a) For the first-stage amplifier DNL error, we can look at the 000 to 001 transition

A0,MIN*½*½*5V = 0.625V - 0.3125V
A0,MIN = 0.25

A0,MAX*½*½*5V = 0.625V + 0.3125V
A0,MAX = 0.75

(b) In similar fashion, the second-stage amplifier DNL error can be seen with a 011 to
100 transition

 VOUT,100 – VOUT,011 = ½*5V – (½*A1,MIN*½ + ½*A1,MIN)*5V = 0.625V + 0.3125V
A1,MIN = 0.42

VOUT,100 – VOUT,011 = ½*5V – (½*A1,MAX*½ + ½*A1,MAX)*5V = 0.625V - 0.3125V
A1,MAX = 0.58

(c) The last-stage amplifier DNL can be seen with the same 011 to 100 transition

VOUT,100 – VOUT,011 = A2,MIN*5V – (½*½*½ + ½*½)*5V = 0.625V - 0.3125V
A2,MIN = 0.44

VOUT,100 – VOUT,011 = A2,MAX*5V – (½*½*½ + ½*½)*5V = 0.625V + 0.3125V
A2,MAX = 0.56

Justin Wood

29.17! Using the same DAC designed in Problem 29.16:

(a) determine the overall error (offset, DNL, and INL) for the DAC if the S/H
amplifier in the first stage produces an offset at its output of 0.25V. Assume
that all the remaining components are ideal.

The 3-bit pipeline DAC schematic is below.

With the offset applied to the first S/H, the output voltage from each stage would be
calculated as follows:

VOUT1 = (D0 ⋅VREF +VOFFSET) ⋅ A1
VOUT 2 = (D1 ⋅VREF +VOUT1)A2 = (D1 ⋅VREF + (D0 ⋅VREF +VOFFSET) ⋅ A1)A2
VOUT 3 = (D2 ⋅VREF +VOUT 2)A3 = (D2 ⋅VREF + (D1 ⋅VREF + (D0 ⋅VREF +VOFFSET) ⋅ A1)A2)A3
A1 = A2 = A3
∴VOUT 3 = VREF (D2A + D1A

2 + D0A
3) +VOFFSET A

3

For VOFFSET of 0.25V and A = 0.5, the offset would be: 0.25 ⋅ (0.5)3 = 0.03125V

In terms of LSBs, the offset is: 0.03125V ⋅
23LSBs
5V

= 0.05LSBs

For the pipeline DAC, an offset doesnʼt contribute to DNL because it will offset all
outputs by the same amount so the step change will remain unchanged. Depending on
how INL is specified, the offset could negatively impact INL. Typically, offset is removed
when determining INL (ie. using the best-fit method). Therefore, INL and DNL = 0
assuming all other elements are ideal.

(b) Repeat for the second-stage S/H.
With the offset applied to the second S/H, the output voltage from each stage would be
calculated as follows:

D2 D2
D1 D1

A2+ S/H+A1 A3S/HS/H

Do Do

VREF VREF VREF

VOUT

VOUT1 = (D0 ⋅VREF) ⋅ A1
VOUT 2 = (D1 ⋅VREF +VOUT1 +VOFFSET)A2 = (D1 ⋅VREF + (D0 ⋅VREF) ⋅ A1 +VOFFSET)A2
VOUT 3 = (D2 ⋅VREF +VOUT 2)A3 = (D2 ⋅VREF + (D1 ⋅VREF + (D0 ⋅VREF) ⋅ A1 +VOFFSET)A2)A3
A1 = A2 = A3
∴VOUT 3 = VREF (D2A + D1A

2 + D0A
3) +VOFFSET A

2

For VOFFSET of 0.25V and A = 0.5, the offset would be: 0.25 ⋅ (0.5)2 = 0.0625V

In terms of LSBs, the offset is: 0.0625V ⋅
23LSBs
5V

= 0.1LSBs

Again DNL/INL are 0.

(c) Repeat for the last-stage S/H.

With the offset applied to the first S/H, the output voltage from each stage would be
calculated as follows:

VOUT1 = (D0 ⋅VREF) ⋅ A1
VOUT 2 = (D1 ⋅VREF +VOUT1)A2 = (D1 ⋅VREF + (D0 ⋅VREF) ⋅ A1)A2
VOUT 3 = (D2 ⋅VREF +VOUT 2 +VOFFSET)A3 = (D2 ⋅VREF + (D1 ⋅VREF + (D0 ⋅VREF) ⋅ A1)A2 +VOFFSET)A3
A1 = A2 = A3
∴VOUT 3 = VREF (D2A + D1A

2 + D0A
3) +VOFFSET A

For VOFFSET of 0.25V and A = 0.5, the offset would be: 0.25 ⋅ (0.5) = 0.125V

In terms of LSBs, the offset is: 0.125V ⋅
23LSBs
5V

= 0.2LSBs

Again DNL/INL are 0.

Lincoln Bollschweiler
29.18 Design a 3-bit Flash ADC with its quantization error centered about zero LSBs.
Determine the worst-case DNL and INL if resistor matching is known to be 5%. Assume
that VREF = 5V.

1.5 R

0.5 R

From (29.48), and assuming VOS = 0, 5 0.05 0.125
2

INL V   or 0.2LSBs.

From (29.52), also assuming VOS = 0, 3

5 0.05 0.031
2

DNL V   or 0.05LSBs.

Sakkarapani Balagopal

(P.29.19)Using the ADC designed in problem 29.18, determine the maximum offset that can be

tolerated if all of the comparator have the same magnitude of offset, but with different polarities,

to attain a DNL of less than or equal to±0.5LSB.

The Maximum DNL will occur, assuming ΔRi is at its maximum, Vosi is at its maximum positive

value is given in equation 29.19-1.

Maxos

Max

i

N

ref

Max
V

R

RV
DNL 2.

2



 (29.19-1)

For the given maximum DNL of ±0.5LSB and 5% resistor mismatch from previous problem, the

calculated offset voltage is

MaxosNN

V205.0.
2

5

2

5
1




2

05.0.
2

5

2

5
1 NN

MaxosV






 mVV
Maxos 140

Chris Gagliano

29.20 A 4-bit Flash ADC converter has a resistor string with mismatch as shown in Table 29.1.

Determine the DNL and INL of the converter. How many bits of resolution does this

converter possess? VREF = 5 V.

For a 4-bit ADC with VREF = 5 V,

 1 LSB =
42

5V
 = 0.3125 V

The INL and DNL values are calculated in the table below. Note that the column labeled Vin,nulled-

offset-gain, is used for the INL and DNL calculations since it contains the values with the static

offset and gain errors nullified.

The offset error is calculated as follows:

 Voffset = Vin,actual(D=1) – Vin,ideal(D=1) = 0.3172 V – 0.3125 V = 0.0047 V

The gain error is calculated as follows (using the Vin,no-offset values):

 Gain error = 1 -
LSB

LSB
V

V

15

3125.0

6813.4

 ≈ 0.0013
LSB

LSB

The Vin,nulled-offset-gain values in the table are then calculated by the following equation:

 Vin,nulled-offset-gain(n) = Vin,no-offset(n) + n * 1 LSB * Gain error

 Vin,nulled-offset-gain(n) = Vin,no-offset(n) + n * 0.3125 V * 0.0013

The resolution of the ADC is calculated using the maximum

INL value from the table and knowing that it cannot be more

than half an LSB.

The resolution of the ADC is 7 bits.

N

REFV
mVINL

22

1
03.15

max
⋅≤=

33.166
01503.02

5
2 ≈

⋅
=

V

VN

38.7
)2log(

)33.166log(
≈=N

 QAWI HARVARD

29.21 Determine the open-loop gain required for the residue amplifier of a two-step ADC necessary to keep

the converter to within ½ LSB of accuracy with resolutions of (a) 4 bits, (b) 8 bits, and (c) 10 bits.

Consider the block diagram of a two-step Flash ADC as seen in Figure 29.26.

An advantage of the two-step Flash ADC is that each Flash ADC is only 2
N/2

 bits accurate. If the residue

amplifier wants to be accurate to within ½ LSB we can state:

11
22 2

1

1

2

REF
N

V

N

REF REF

LSB
Accuracy

V V
+

⋅
= = =

Figure 29.26 shows that the residue amplifier has gain equal to 2
N/2

, we can write the open loop gain in terms of

the closed loop gain:

1

OL
CL

OL

A
A

A β
=

−

As AOL increases the closed loop gain approaches 1/β. If we want the amplifier to have an accuracy of ½

LSB we can write the closed loop gain as:

1

1

OL
CL

OL

A
A A

A β β
= = − ∆

−

Where ∆A is the accuracy. Solving for the open loop gain gives us:

1

1 /22
2 2

N
N N

OL
A

β

+

+
≈ = ⋅

Using the equation above, we can state that the requirements of the open loop gain for each number of bits:

4 bits
72 128→ =

8 bits
132 8192→ =

10 bits
162 65536→ =

Adam Johnson

29.22 Assume that a 4-bit, two-step Flash ADC uses two separate Flash converters for
the MSB and LSB ADCs. Assuming that all other components are ideal, show
that the first Flash converter needs to be more accurate than the second
converter. Assume that VREF = 5 V.

In the ideal case, the V2 must be between 0 and VREF. If we include INL, the V2 value
can be between –INLMIN,ADC1 and VREF + INLMAX,ADC1.

Since V3 = V2*2N/2, and this is a 4-bit ADC, we can see that the range on V3 will be
between –(INLMIN,ADC1)*4 and VREF + (INLMAX,ADC1)*4. So essentially, any error from
the first ADC conversion is multiplied along with the residual voltage by the residue
amplifier.

For this 4-bit ADC, if the INL/DNL needs to be < ½ LSB overall, then for the first ADC,
the INL/DNL needs to be < 1/8 LSB, and the second ADC can be < ½ LSB.

4x

00

01

10

11

VREF

00

01

10

11

VREF

ADC1

Multiplied
by 2N/2 INLMAX*2N/2

INLMAX

ADC2

INLMIN

INLMIN*2N/2

ADC1 ADC2

29.23! Repeat Ex. 29.12 for VIN = 3, 5, 7.5, 14.75 V.

Example 29.12
Assume that the two-step ADC shown in Fig. 29.26 has four bits of resolution. Make a
table listing the MSBs, V1, V2, V3, and the LSBs for VIN = 3, 5, 7.5, 14.75 V assuming
that VREF = 16V.

With 4-bit resolution, Figure 29.26 would be as follows:

The MSB and LSB ADCs in the picture are both 2-bit ADCs and their LSBs are equal to

4V 16V
22

= 4V⎛
⎝⎜

⎞
⎠⎟

. First, lets calculate the output for VIN=3V. Starting with the MSB ADC,

D3D2 would be 00 until VIN > 4V (LSB). V1 would then be 0, V2 would be 3V. N=4 and
V3 = 3*(22) or 12V. The output of the LSB ADC would then be 11. Final output code is
0011. Output code for VIN are similarly calculated as shown in the table.

VIN D3D2(MSBs) V1 V2 V3 D1D0(LSBs)

3 00 0 3 12 11

5 01 4 1 4 01

7.5 01 4 3.5 14 11

14.75 11 12 2.75 11 10

S/HVIN

Latches

D2D3 D1 D0

MSBs

MSB
ADC

DAC

V1

+
- 2N/2

LSBs

LSB
ADC

V2 V3

Lincoln Bollschweiler

29.24 Repeat Ex. 29.13 for VIN = 1, 3, 6, 7 V and VREF = 8V.

Example 29.13 – Assume that the pipeline converter shown in Fig. 29.30 is a 3-bit

converter. Analyze the conversion process by making a table of the following

variables: D2, D1, D0, V3, and V2 for VIN = 2, 3, and 4.5 V. Assume that VREF =

5V, V3 is the residue voltage out of the first stage, V2 is the residue from the

second.

With a VREF of 8V, all comparators will give an output of 1 for vinp of 4V or greater;

output of 0 otherwise.

vIN (V) V3 (V) V2 (V) Digital Out (D2D1D0)

1.0 2 4 001

3.0 6 4 011

6.0 4 0 110

7.0 6 4 111

As is expected, since the reference voltage is 8 and the LSB = 8/2
2
 = 1V, the digital code

is simply the input (decimal) converted to 3-bit binary.

Sakkarapani Balagopal

(P.29.25)Assume that 8-bit pipeline ADC was fabricated and that all the amplifiers had a gain of

2.1V/V instead of 2V/V. If VIN=3V and VREF=5V, what would be the resulting digital output if the

remaining components were considered to be ideal? What are the DNL and INL for this

converter?

8-bit Pipelined ADC requires 8-steps to convert the given analog signal into 8-bit digital codes.

The positive input of the comparator to the next stage is given by equation 29.25-1.Table 29.25-1

shows the conversion of the analog signal into digital codes in 8 steps.

Gain
nCV

nVnV OUTREF
ININ .

2

)(.
)()1(








 (29.25.1)

Table 29.25-1 8-bit Pipelined ADC conversion for VIN = 3V, VREF = 5V

STEP(n)

Comparator’s

Positive Input

VIN(n)

Comparator’s

Negative

Input(VREF/2)

Comparator

Output(COUT(n))

1 3 2.5 1

2 1.05 2.5 0

3 2.205 2.5 0

4 4.6305 2.5 1

5 4.47405 2.5 1

6 4.145505 2.5 1

7 3.4555605 2.5 1

8 2.00667705 2.5 0

8-bit Pipelined ADC output = 1 0 0 1 1 1 1 0

We can write the input analog voltage in terms of digital codes with a gain of the amplifier of 2.1

V/V for N-bit Pipelined ADC as

102121, .
2

1
.

2

1
.......

2

1
.

2

1
 

N

REF

N

REFREF
NREFNNIN

Gain

V
D

Gain

V
D

Gain

V
DVDV (29.25-2)

Using the above equation, DNL and INL of 8-bit pipelined ADC is plotted in figure 29.25-1 and

2 respectively. Calculation of INL and DNL of the converter is shown in Table 29.25-2 for

digital outputs ranging from 0 to 6.

Sakkarapani Balagopal

Table 29.25-2 8-bit Pipelined ADC INL and DNL Calculation

Possible
Digital

O/P (n)

D0 D1 D2 D3 D4 D5 D6 D7

Corresponding

Analog

Input(Xn)
Calculation

Using

Equation
29.25-2

Xn in

LSB (Yn)

Yn

Shifted
by

0.5LSB

(Zn)

Ideal

Analog

Input in
LSB (In)

DNL(n) =
(Zn+1-Zn) -

1LSB

INL(n)

=Zn- In

0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 - 0

1 1 0 0 0 0 0 0 0 0.013880495 0.71069 1.21069 1.5 -0.28931

-

0.28930

2 0 1 0 0 0 0 0 0 0.029149039 1.49245 1.99245 2.5 -0.218241
-

0.50755

3 1 1 0 0 0 0 0 0 0.043029534 2.20314 2.70314 3.5 -0.28931

-

0.79685

4 0 0 1 0 0 0 0 0 0.061212982 3.134145 3.634145 4.5 -0.068996

-

0.86585

5 1 0 1 0 0 0 0 0 0.075093476 3.844835 4.344835 5.5 -0.28931

-

1.15516

6 0 1 1 0 0 0 0 0 0.090362021 4.626595 5.126595 6.5 -0.218241
-

1.37340

DNL of the 8-bit Pipelined ADC:

Figure – 29.25-1 DNL of the 8-bit Pipelined ADC

-2

0

2

4

6

8

10

12

1

1
6

3
1

4
6

6
1

7
6

9
1

1
0
6

1
2
1

1
3
6

1
5
1

1
6
6

1
8
1

1
9
6

2
1
1

2
2
6

2
4
1

LS
B

Analog Input

DNL

DNL

Sakkarapani Balagopal

INL of the 8-bit Pipelined ADC:

Figure – 29.25-2 INL of the 8-bit Pipelined ADC

From the figure 29.25-1, 2 the maximum and minimum INL and DNL are given as

DNL INL

Maximum 11.28259 0.001638

Minimum -0.28931 -11.281

-12

-10

-8

-6

-4

-2

0

2

1

1
4
2
7

4
0

5
3
6
6
7
9

9
2

1
0
5

1
1
8

1
3
1

1
4
4

1
5
7

1
7
0

1
8
3

1
9
6

2
0
9

2
2
2

2
3
5

2
4
8

LS
B

Analog Input

INL

INL

Chris Gagliano

29.26 Show that the first-stage accuracy is the most critical for a 3-bit, 1-bit per stage pipeline

ADC by generating a transfer curve and determining DNL and INL for the ADC for three

cases: (1) The gain of the first-stage residue amplifier set equal to 2.2 V/V, (2) the

second-stage residue amplifier set equal to 2.2 V/V. For each case, assume that the

remaining components are ideal. Assume that VREF = 5V.

D2 will transition high when REFp VV ⋅=
2

1
1 and since INp VV =1 we can write the input voltage at

which D2 transitions high as:

 REFIN VV ⋅=
2

1
1,

D1 will transition high when REFp VV ⋅=
2

1
2 and we can write 2pV as:

 1212
2

1
ADVVV REFpp ⋅





⋅⋅−=

We can then solve for the input voltage at which D1 transitions high, keeping in mind that

INp VV =1 :

 122,
2

1

2

1
ADVVV REFINREF ⋅





⋅⋅−=⋅

 2

1

2,
2

1

2

1
DVV

A
V REFREFIN ⋅⋅+⋅

⋅
=

3-bit Pipeline ADC (based on Fig. 29.30)

D0 will transition high when REFp VV ⋅=
2

1
3 and we can write 3pV as:

 21

2

1212123
2

1

2

1

2

1
ADVADVVADVVV REF

Vp

REFpREFpp ⋅



















⋅⋅−⋅







⋅⋅−=⋅





⋅⋅−=

4444 34444 21

We can then solve for the input voltage at which D0 transitions high, again keeping in mind that

INp VV =1 :

 21123,
2

1

2

1

2

1
ADVADVVV REFREFINREF ⋅








⋅⋅−⋅








⋅⋅−=⋅

 21

121

3,
2

1

2

1

2

1
DVDV

A
V

AA
V REFREFREFIN ⋅⋅+⋅⋅

⋅
+⋅

⋅⋅
=

So, for a given output code, we can write a corresponding expression for INV and use it to

generate a table of values for the two cases presented in the problem statement. We can then

calculate the INL and DNL values for both cases to see how they compare.

The output code values and corresponding input voltages for both cases are shown below. The

transfer curve shows that the second case (A1 = 2.0, A2 = 2.2) is more optimal (closer to ideal

curve) than the first case (A1 = 2.2, A2 = 2.0). The INL and DNL values are also better for the

second case when compared to the first case. We can then conclude that the first stage accuracy

is the most critical.

+⋅⋅+⋅⋅
⋅

+⋅⋅
⋅⋅

= 21

1

0

21 2

1

2

1

2

1
DVDV

A
DV

AA
V REFREFREFIN Residue

INL

-180.000

-160.000

-140.000

-120.000

-100.000

-80.000

-60.000

-40.000

-20.000

0.000

0 1 2 3 4 5 6 7

Output Code

INL,case1 (mV)

INL,case2 (mV)

DNL

-100.000

-50.000

0.000

50.000

100.000

150.000

200.000

1 2 3 4 5 6 7

Output Code

DNL,case1 (mV)

DNL,case2 (mV)

Transfer Curve

0

1

2

3

4

5

6

7

8

0.0000 1.0000 2.0000 3.0000 4.0000 5.0000

O
u
tp
u
t
C
o
d
e

Vin,case1 (V) Vin,case2 (V) Vin,ideal (V)

 QAWI HARVARD

29.27 An 8-bit single-slope ADC with a 5V reference is used to convert a slow-moving
analog signal. What is the maximum conversion time assuming that the clock
frequency is 1 MHz? What is the maximum frequency of the analog signal? What
is the maximum value of the analog signal which can be converted?

Figure 29.32 depicts a block diagram of a single-slope integrating ADC.

As discussed in section 29.2.4 the single-slope integrating ADC operates by placing a
negative (with respect to the input) voltage on the inverting side of the comparator and
the sampled input on the other input of the comparator. The counter is used to count how
many clock cycles it takes to integrate the reference current before the VC voltage exceeds
the sampled input voltage. When the comparator switches states the count value is
latched and the integrator is reset. Figure 29.33 shows one conversion cycle.

The digital output code will count from 00000000 (0) to 11111111 (255). The minimum
code refers to the minimum voltage and the maximum count refers to the maximum input
voltage which is equal to VREF – 1 LSB. Using equation 29.79 we can say:

€

tc =
vin
VREF

⋅ 2N ⋅ TCLK

€

tc =
VREF 1− 1

2N()
VREF

⋅ 2N ⋅ 1
fCK

=
2N −1
fCK

=
255
1MHz

= 255µs

 QAWI HARVARD

The equation above shows that the full sampling time of the ADC is 255 µs. Using
Nyquist’s Criteria we can say that the sampling frequency must be equal to twice the
input frequency, therefore we can say:

€

1
255µs

> 2 f in

€

f in ≈ 2kHz

The maximum value of the input signal is simply equal to VREF – 1 LSB or ~4.98 V,
while the minimum voltage is 0 V.

29.28 An 8-bit single-slope ADC with a 5V reference uses a clock frequency of 1MHz.
Assuming that all of the other components are ideal, what is the limitation on the
value of RC? What is the tolerance of the clock frequency which will ensure less
than 0.5 LSB of INL?

We want the VC node to fully charge within a single clock cycle. From Eq. (29.81), we
can find the value of RC for a full-scale analog voltage of 5V, assuming that max input
voltage is equal to the reference voltage.

€

RC =
VREF ⋅ tc

VC
=

5V
5V ⋅ fc

=1us

RC ≤1us

To find the clock frequency of the clock jitter, we start with finding that 0.5 LSB is 0.5 *
5V / 28, or 9.77mV. Using Eq. (29.81) again we can find the Δt that is equivalent to this
error.

€

Δt =
RC⋅ ΔVC
VREF

=
1us⋅ 9.77mV

5V
=1.95ns

So the clock period must be 1us +/- 1.95ns, or 1.00195MHz ≤ fCLK ≤ .99805MHz.

Justin Wood

29.29! An 8-bit dual slope ADC with a 5V reference is used to convert the same
analog signal in Problem 29.27. What is the maximum conversion time assuming
that the clock frequency is 1 Mhz? What is the minimum conversion time that can
be attained? If the analog signal is 2.5V, what will be the total conversion time?

The analog signal from 29.27 was defined as a slow-moving signal. Therefore, the
discussion on pages 998 -1002 is valid (ie. fCLK >> fIN). Since we are dealing with a
dual-slope topology, the total conversion time is the sum of the charging time (T1) and
the discharging time (T2).

T1 is fixed and always takes 2N*tCLK before the counter overflows. For our 8-bit ADC
with 1Mhz clock frequency, T1 is equal to 256μs. The discharge time can then be
calculated from equation 29.86 shown below:

vin ⋅T1 = VREF ⋅T2

The maximum conversion time occurs when vin equals -VREF. The discharge time, T2, is
then equal to the charging time, T1. The conversion time is then 2T1 or 512μs.

The minimum conversion time is achieved when vin is equal to 0. The conversion time
is then just T1 or 256μs (T2=0).

If the analog signal is 2.5V, the conversion time is (knowing T1=256μs):

vin ⋅T1 = VREF ⋅T2
2.5 ⋅256µs = 5 ⋅T2
T2 = 128µs
TTOTAL = T1 + T2 = 384µs

Lincoln Bollschweiler

29.30 Discuss the advantages and disadvantages of using a dual-slope versus a single-

slope ADC architecture.

One of the more obvious disadvantages to the dual slope is the fact that the required

charging period adds time to the conversion over the single-slope. For a full scale signal

this can mean twice the time (2
N
 clocks up, 2

N
 clocks down) . Another disadvantage is the

use of additional circuit components which mean a larger layout area required.

An advantage of the dual-slope converter is the fact that the same integrator and clock are

used to produce both slopes. This means that any non-idealities inherent to the converter

will be added to each conversion (slope) equally and, ideally, cancel out. This makes for

a much more accurate converter than the single-slope, making design specifications less

stringent (lower-power, smaller devices, etc).

Sakkarapani Balagopal

(P.29.31)Repeat Ex. 29.15 for a 4-bit successive approximation ADC using VREF=5V for VIN=1,

3 and full-scale.

Let D
B

3, D
B

2, D
B

1 and D
B

0 are the initial outputs of SAR before the comparator makes its

decision. B3, B2, B1 and B0 are the inputs of SAR. D3, D2, D1 and D0 are the final output of the

SAR ADC after comparator decision. VOUT is the output of 4-bit DAC and COUT is the output of

comparator.

When VREF = 5V, VIN = 1V,

STEP B3 B2 B1 B0 D
B

3 D
B

2 D
B

1 D
B

0 VOUT(V) COUT D3 D2 D1 D0

1 1 0 0 0 1 0 0 0 2.5 1 0 0 0 0

2 0 1 0 0 0 1 0 0 1.25 1 0 0 0 0

3 0 0 1 0 0 0 1 0 0.625 0 0 0 1 0

4 0 0 0 1 0 0 1 1 0.9375 0 0 0 1 1

4-bit ADC output = 0 0 1 1

When VREF = 5V, VIN = 3V,

STEP B3 B2 B1 B0 D
B

3 D
B

2 D
B

1 D
B

0 VOUT(V) COUT D3 D2 D1 D0

1 1 0 0 0 1 0 0 0 2.5 0 1 0 0 0

2 0 1 0 0 1 1 0 0 3.75 1 1 0 0 0

3 0 0 1 0 1 0 1 0 3.125 1 1 0 0 0

4 0 0 0 1 1 0 0 1 2.8125 0 1 0 0 1

4-bit ADC output = 1 0 0 1

When VREF = 5V, VIN = 5V,

STEP B3 B2 B1 B0 D
B

3 D
B

2 D
B

1 D
B

0 VOUT(V) COUT D3 D2 D1 D0

1 1 0 0 0 1 0 0 0 2.5 0 1 0 0 0

2 0 1 0 0 1 1 0 0 3.75 0 1 1 0 0

3 0 0 1 0 1 1 1 0 4.375 0 1 1 1 0

4 0 0 0 1 1 1 1 1 4.6875 0 1 1 1 1

4-bit ADC output = 1 1 1 1

Chris Gagliano

29.32 Assume that vin = 2.49 V for the ADC used in Problem 29.31 and that the comparator,

because of its offset, makes the wrong decision for the MSB conversion. What will be the

final digital output? Repeat for vin = 0.3025 V, assuming that the comparator makes the

wrong decision on the LSB.

As in Example 29.15, we designate D3’D2’D1’D0’ as the initial output of the SAR before the

comparator makes its decision. The final value is designated as D3D2D1D0.

For the case where INV = 2.49 V, let’s first look at the ideal case where the comparator does not

make any wrong decisions and then look at the case where the comparator makes the wrong

decision on the MSB.

The final output is 1000.

We can see that the final output is 1000 when the comparator makes the wrong decision on the

MSB whereas the final output should be 0111.

Next, let’s consider the case where INV = 0.3025 V and look at the results when the comparator

does not make any wrong decisions compared to when the comparator makes a wrong decision

on the LSB.

The final output is 0001 when the comparator makes the wrong decision on the LSB whereas the

final output should be 0000 because the input voltage is less than 1 LSB.

 QAWI HARVARD

29.33 Design a 3-bit, charge-redistribution ADC similar to that shown in Fig. 29.39 and
determine the voltage on the top plate of the capacitor array throughout the conversion
process for vIN = 2, 3, and 4 V, assuming that VREF = 5 V. Assume that all components
are ideal. Draw the equivalent circuit for each bit decision.

Figure 29.39 is shown below:

Using Figure 29.39 it is possible to design a 3-bit charge redistribution ADC, the completed
design is seen in the figure below.

F1 – 3-bit charge redistribution ADC

In order to draw an equivalent circuit for each bit we simply connect each capacitor to VREF while
grounding all of the other capacitors. The final 1 pF capacitor remains connected to ground for
each bit.

C C 2C 4C

vIN

VREF

SAR

RESET

C = 1 pF

VTOP

 QAWI HARVARD

You have to notice that when the conversion begins the MSB capacitor is connected to VREF and a
voltage of VREF/2 (or 2.5 V) is added to VTOP. For a 2 V input this leaves a positive 0.5 V on VTOP,
if the capacitance is not reset to vIN the comparator output will remain in a low state. Due to this,
the control logic will need to save the state of each bit (connected to VREF if the comparator output
stays high, or connect to GND if the comparator output goes low), reset the top voltage, and
continue the conversion process with the next bit. In an attempt to understand this the tables
below show the conversion process for an input voltage of 2 V, 3 V, and 4 V.

For 2 V input:

Step D2D1D0 VTOP (V) Comparator Out
--- --- - 2 ---
1 100 - 2 + 2.5 = 0.5 Low (reset)
2 010 -2 + 1.25 = -0.75 High (save)
3 011 -2 + 1.25 + 0.625 = -0.125 High (save)

Output code = 011

For 3 V input:

Step D2D1D0 VTOP (V) Comparator Out
--- --- - 3 ---
1 100 - 3 + 2.5 = -0.5 High (save)
2 110 -3 + 2.5 + 1.25 = 0.75 Low (reset)
3 101 -3 + 2.5 + 0.625 = 0.125 Low (reset)

Output code = 100

For 4 V input:

Step D2D1D0 VTOP (V) Comparator Out
--- --- - 4 ---
1 100 - 4 + 2.5 = -1.5 High (save)
2 110 -4 + 2.5 + 1.25 = -0.25 High (save)
3 111 -4 + 2.5 +1.25 + 0.625 = 0.375 Low (reset)

Output code = 110

4C

4C
VREF

6C

2C
VREF

7C

C
VREF €

D2

€

D1

€

D0

Adam Johnson

29.34 Determine the maximum INL and maximum DNL of the ADC designed in Problem
29.33 assuming that the capacitor array matching is 1%. Assume that the
remaining components are ideal and that the unit capacitance, C, is 1pF.

Problem 29.33 is a 3-bit charge distribution ADC like Figure 29.39

From Eq. (29.91) we get the INL for

€

ΔC
C

 = 1%:

€

| INL |max=
VREF

2
⋅
ΔC
C

= 25mV = 0.04LSB

From Eq. (29.93) we get the DNL:

€

DNLmax =
(2N −1)⋅ VREF

2N
⋅
|ΔC |
C

= 43.75mV = 0.07LSB

Justin Wood

29.35! Show that the charge redistribution ADC used in Problems 29.32 and 29.33
is immune to comparator offset by assuming an initial offset voltage of 0.3 and
determining the conversion for VIN=2V.

With VOS = 0.3V and VIN = 2V, the conversion process for the charge redistribution ADC
would be as follows (using equations 29.88, 29.89, and 29.90):

Step D2D1D0 VTOP(V) Comparator Output
-- -- -2V --
1 000 -2 + Vref/2 +0.3 = 0.8 0
2 010 -2 + Vref/4 + 0.3 = -0.45V 1
3 011 -2 + Vref/4 + Vref/8 + 0.3 = 0.175V 1

The key takeaway here is that with a 0.3V comparator offset, the comparator output
changes at Vtop > 0.3V instead of GND. Therefore, even though in step 3 VTOP is
positive, the comparator output remains high because it is not > 0.3V. You can see that
the comparator output is the same as shown in 29.33 where no offset was present.

Justin Wood

29.36! Discuss the differences between Nyquist rate ADCʼs and oversampling
ADCs.

Nyquist rate ADCs, as the name implies, sample the analog input signal at 2X the input
bandwidth. Oversampling ADCs sample the input at a rate much faster than the Nyquist
rate. The higher sampling frequency of the oversampling ADCs results in some distinct
advantages over the Nyquist rate ADCs.

In general, the oversampling ADCs end up providing a simplified implementation.
Figure 29.41 (page 1008) shown below shows the block diagram for the two ADCs.

As can be seen in the figure, the oversampling ADC doesnʼt need a dedicated S/H or
quantizer. The modulator takes care of the quantizing and the implementation usually
includes switched-capacitor circuits, which eliminates the need for a S/H.

The oversampling ADC requires more sampling time and has a lower throughput than
the Nyquist rate ADC. Because the sampling rate is much greater than the input
bandwidth, the frequency spectra are spaced much farther apart and there is little or no
aliasing. This results in a much simpler anti-aliasing filter if one is needed at all.

The one drawback of the oversampling ADC is the throughput. The oversampling ADC
requires more sampling time have a lower throughput than the Nyquist rate ADCs.

Additional discussion is available in section 29.2.6.

Adam Johnson

29.37 Write a simple computer program or use a math program to perform the analysis
shown in Ex. 29.16. Run the program for k = 200 clock cycles and show that the
average value of vq(kT) converges to the correct answer. How many clock cycles
will it take to obtain an average value if vq(kT) stays within 8-bit accuracy of the
ideal value of 0.4V? 12-bit accuracy? 16-bit accuracy?

Ex. 29.16: Using a general first order ΣΔ modulator, assume that the input to the
modulator vx(kT) is a positive DC voltage of 0.4 V. Show the values of each variable
around the ΣΔ modulator loop and prove that the overall average output of the DAC
approaches 0.4V after 10 cycles. Assume that the DAC output is at +/- 1 V, and that the
integrator output has a unity gain with an initial output voltage of 0.1 V, and that the
comparator output is either +/-1 V.

va(kT)

Perl code:
#!/usr/bin/perl

User changable parameters
$vref = 1.0;
$loops = 200;
$vx = 0.4; # DC input value

Variables of interest
$k = 0; # iterator
$va = 0; # integrator input
$vu = 0; # integrator output
$va_last = 0; # previous integrator input
$vu_last = 0.1; # previous integrator output
$vq = 0; # feedback/output
$vq_sum = 0; # feedback/output sum

printf("k\t va\t vu\t vq\t Qe\tvq(avg)\tQe(avg)\n");
for ($k=0; $k<=$loops; $k++) {
 $vu = $vu_last + $va_last;
 if ($vu <= 0) {
 $vq = - $vref;
 } else {
 $vq = $vref;
 }
 $va = $vx - $vq;
 $vq_sum = $vq_sum + $vq;
 printf("%03d\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%7.3f\t%9.6f\n",
 $k, $va, $vu, $vq, $vq - $vu, $vq_sum/($k+1), ($vq_sum/($k+1))-$vx);
 $va_last = $va;
 $vu_last = $vu;

}

200 Loops:
k va vu vq Qe vq(avg) Qe(avg)
000 -0.60 0.10 1.00 0.90 1.000 0.600000
001 1.40 -0.50 -1.00 -0.50 0.000 -0.400000
002 -0.60 0.90 1.00 0.10 0.333 -0.066667
003 -0.60 0.30 1.00 0.70 0.500 0.100000
004 1.40 -0.30 -1.00 -0.70 0.200 -0.200000
005 -0.60 1.10 1.00 -0.10 0.333 -0.066667
006 -0.60 0.50 1.00 0.50 0.429 0.028571
007 1.40 -0.10 -1.00 -0.90 0.250 -0.150000
008 -0.60 1.30 1.00 -0.30 0.333 -0.066667
009 -0.60 0.70 1.00 0.30 0.400 0.000000
010 -0.60 0.10 1.00 0.90 0.455 0.054545
011 1.40 -0.50 -1.00 -0.50 0.333 -0.066667
012 -0.60 0.90 1.00 0.10 0.385 -0.015385
013 -0.60 0.30 1.00 0.70 0.429 0.028571
014 1.40 -0.30 -1.00 -0.70 0.333 -0.066667
015 -0.60 1.10 1.00 -0.10 0.375 -0.025000
.
.
185 -0.60 1.10 1.00 -0.10 0.398 -0.002151
186 -0.60 0.50 1.00 0.50 0.401 0.001070
187 1.40 -0.10 -1.00 -0.90 0.394 -0.006383
188 -0.60 1.30 1.00 -0.30 0.397 -0.003175
189 -0.60 0.70 1.00 0.30 0.400 0.000000
190 -0.60 0.10 1.00 0.90 0.403 0.003141
191 1.40 -0.50 -1.00 -0.50 0.396 -0.004167
192 -0.60 0.90 1.00 0.10 0.399 -0.001036
193 -0.60 0.30 1.00 0.70 0.402 0.002062
194 1.40 -0.30 -1.00 -0.70 0.395 -0.005128
195 -0.60 1.10 1.00 -0.10 0.398 -0.002041
196 -0.60 0.50 1.00 0.50 0.401 0.001015
197 1.40 -0.10 -1.00 -0.90 0.394 -0.006061
198 -0.60 1.30 1.00 -0.30 0.397 -0.003015
199 -0.60 0.70 1.00 0.30 0.400 0.000000
200 -0.60 0.10 1.00 0.90 0.403 0.002985

8-bit accuracy would require Qe(avg) < 1/2LSB or 0.5*VREF/28, or Qe(avg) < 1.95mV.
by modifying the code above to only print out errors greater than this threshold, we can
see that this requires >300 cycles.

(Ran 1000 times)
k va vu vq Qe vq(avg) Qe(avg)
200 -0.60 0.10 1.00 0.90 0.403 0.002985
203 -0.60 0.30 1.00 0.70 0.402 0.001961
210 -0.60 0.10 1.00 0.90 0.403 0.002844
220 -0.60 0.10 1.00 0.90 0.403 0.002715
230 -0.60 0.10 1.00 0.90 0.403 0.002597
240 -0.60 0.10 1.00 0.90 0.402 0.002490
250 -0.60 0.10 1.00 0.90 0.402 0.002390
260 -0.60 0.10 1.00 0.90 0.402 0.002299
270 -0.60 0.10 1.00 0.90 0.402 0.002214
280 -0.60 0.10 1.00 0.90 0.402 0.002135
290 -0.60 0.10 1.00 0.90 0.402 0.002062
300 -0.60 0.10 1.00 0.90 0.402 0.001993

12-bit accuracy would require Qe(avg) < 122uV, which requires >4910 cycles.

(Ran 10000 times)
k va vu vq Qe vq(avg) Qe(avg)
4770 -0.60 0.10 1.00 0.90 0.400 0.000126
4780 -0.60 0.10 1.00 0.90 0.400 0.000125
4790 -0.60 0.10 1.00 0.90 0.400 0.000125
4800 -0.60 0.10 1.00 0.90 0.400 0.000125
4810 -0.60 0.10 1.00 0.90 0.400 0.000125
4820 -0.60 0.10 1.00 0.90 0.400 0.000124
4830 -0.60 0.10 1.00 0.90 0.400 0.000124
4840 -0.60 0.10 1.00 0.90 0.400 0.000124
4850 -0.60 0.10 1.00 0.90 0.400 0.000124
4860 -0.60 0.10 1.00 0.90 0.400 0.000123
4870 -0.60 0.10 1.00 0.90 0.400 0.000123
4880 -0.60 0.10 1.00 0.90 0.400 0.000123
4890 -0.60 0.10 1.00 0.90 0.400 0.000123
4900 -0.60 0.10 1.00 0.90 0.400 0.000122
4910 -0.60 0.10 1.00 0.90 0.400 0.000122

16-bit accuracy would require Qe(avg) < 7.63uV, which requires >78630 cycles.

(Ran 100000 times)
k va vu vq Qe vq(avg) Qe(avg)
78530 -0.60 0.10 1.00 0.90 0.400 0.000007640
78540 -0.60 0.10 1.00 0.90 0.400 0.000007639
78550 -0.60 0.10 1.00 0.90 0.400 0.000007638
78560 -0.60 0.10 1.00 0.90 0.400 0.000007637
78570 -0.60 0.10 1.00 0.90 0.400 0.000007636
78580 -0.60 0.10 1.00 0.90 0.400 0.000007635
78590 -0.60 0.10 1.00 0.90 0.400 0.000007634
78600 -0.60 0.10 1.00 0.90 0.400 0.000007633
78610 -0.60 0.10 1.00 0.90 0.400 0.000007633
78620 -0.60 0.10 1.00 0.90 0.400 0.000007632
78630 -0.60 0.10 1.00 0.90 0.400 0.000007631

 QAWI HARVARD

29.38 Prove that the output of the second-order

€

ΣΔ modulator shown in Fig. 29.49 is,

€

y kT() = x kT −T() +Qe kT() − 2Qe kT −T() +Qe kT − 2T()

In order to prove that the above equation is that of the second-order sigma delta modulator we
first start by determining the intermediate voltages shown above:

€

u1 kT() = x kT() − y kT() + u1 kT −T()

€

u2 kT() = u1 kT −T() − y kT −T() + u2 kT −T()

The equations above have taken

€

q kT() = y kT() for an ideal 1-bit DAC. We can plug

€

u1 kT()
into

€

u2 kT()and get:

€

u2 kT() = x kT −T() − y kT −T() + u1 kT − 2T() − y kT −T() + u2 kT −T()

The quantization noise of the ADC can be written as:

€

Qe kT() = y kT() − u2 kT()

We can use the quantization noise equation above in two places. First we can rewrite

€

u2 kT()with
the quantization noise, and then we can plug

€

u2 kT() into the quantization noise equation to solve
for

€

y kT() .

€

u2 kT() = x kT −T() − y kT −T() + u1 kT − 2T() −Qe kT −T()

€

y kT() =Qe kT() + u2 kT()

€

y kT() =Qe kT() + x kT −T() − y kT −T() + u1 kT − 2T() −Qe kT −T()

The

€

u1 kT − 2T() term is the only term that will not be in our final equation. In order to
change this term we can use the

€

u2 kT() equation:

€

u1 kT()

€

Qe kT −T()

€

u2 kT()

 QAWI HARVARD

€

u2 kT() = u1 kT −T() − y kT −T() + u2 kT −T()

Solving for

€

u1 kT −T():

€

u1 kT −T() = u2 kT() + y kT −T() − u2 kT −T()

Advancing time by one clock cycle gives:

€

u1 kT − 2T() = u2 kT −T() + y kT − 2T() − u2 kT − 2T()

Plugging this into our

€

y kT()equation gives:

€

y kT() =Qe kT() + x kT −T() − y kT −T() + u2 kT −T() + y kT − 2T() − u2 kT − 2T() −Qe kT −T()

Rearranging:

€

y kT() = x kT −T() +Qe kT() − y kT −T() + u2 kT −T() −Qe kT −T() + y kT − 2T() − u2 kT − 2T()

Using the quantization equation gives:

€

y kT() = x kT −T() +Qe kT() − 2Qe kT −T() +Qe kT + 2T()

€

Qe kT − 2T()

€

Qe kT −T()

Chris Gagliano

29.39 Assume that a first order Σ∆ ADC used on a satellite in a low earth orbit experiences

radiation in which an energetic particle causes a noise spike resulting in the comparator

making the wrong decision on the 10
th

 clock period. Using the program written in

Problem 29.37, determine the number of clock cycles required before the average value

of vq(kT) is within 12-bit accuracy of the ideal value of 0.4 V. How many extra clock

cycles were required for this case versus the ideal conversion used in Prob. 37?

For this problem, I wrote a Perl script to perform the analysis shown in Ex. 29.16. The script was

used to solve problem 29.37 (referenced by this problem) as well so the comparison can be made

between the ideal case (problem 29.37) and the case in this problem where the comparator makes

the wrong decision on the 10
th
 clock period. To determine if the average value of Vq(kT) stays

within the chosen accuracy, I check that all of the values within a certain window size be within

the chosen accuracy. I somewhat arbitrarily selected a window size of 5 values.

The results are summarized below and the Perl code follows. In short, the wrong decision on

cycle 10 in this problem does not affect the point at which the average value of Vq(kT) stays

within the chosen accuracy for the chosen window size of 5. However, we can see that the clock

cycle at which the average value of Vq(kT) initially becomes exactly equal to the ideal value of

0.4 V changes from clock cycle 10 in the ideal case to clock cycle 20.

Running until Avg Vq(kT) is 12-bit accurate (between 0.3997558594 and 0.4002441406) for 5 cycles

 k Vq(kT) Vu(kT) Vq(kT) Qe(kT) Avg Vq(kT)

 0 -0.600 0.100 1.000 0.900 1.0000000000
 1 1.400 -0.500 -1.000 -0.500 0.0000000000
 2 -0.600 0.900 1.000 0.100 0.3333333333
 3 -0.600 0.300 1.000 0.700 0.5000000000
 4 1.400 -0.300 -1.000 -0.700 0.2000000000
 5 -0.600 1.100 1.000 -0.100 0.3333333333
 6 -0.600 0.500 1.000 0.500 0.4285714286
 7 1.400 -0.100 -1.000 -0.900 0.2500000000
 8 -0.600 1.300 1.000 -0.300 0.3333333333
 9 1.400 0.700 -1.000 -1.700 0.2000000000
 10 -0.600 2.100 1.000 -1.100 0.2727272727
 11 -0.600 1.500 1.000 -0.500 0.3333333333
 12 -0.600 0.900 1.000 0.100 0.3846153846
 13 -0.600 0.300 1.000 0.700 0.4285714286
 14 1.400 -0.300 -1.000 -0.700 0.3333333333
 15 -0.600 1.100 1.000 -0.100 0.3750000000
 16 -0.600 0.500 1.000 0.500 0.4117647059
 17 1.400 -0.100 -1.000 -0.900 0.3333333333
 18 -0.600 1.300 1.000 -0.300 0.3684210526
 19 -0.600 0.700 1.000 0.300 0.4000000000
 .
 .
 .

Running until Avg Vq(kT) is 12-bit accurate (between 0.3997558594 and 0.4002441406) for 5 cycles

 k Vq(kT) Vu(kT) Vq(kT) Qe(kT) Avg Vq(kT)

 0 -0.600 0.100 1.000 0.900 1.0000000000
 1 1.400 -0.500 -1.000 -0.500 0.0000000000
 2 -0.600 0.900 1.000 0.100 0.3333333333
 3 -0.600 0.300 1.000 0.700 0.5000000000
 4 1.400 -0.300 -1.000 -0.700 0.2000000000
 5 -0.600 1.100 1.000 -0.100 0.3333333333
 6 -0.600 0.500 1.000 0.500 0.4285714286
 7 1.400 -0.100 -1.000 -0.900 0.2500000000
 8 -0.600 1.300 1.000 -0.300 0.3333333333
 9 -0.600 0.700 1.000 0.300 0.4000000000
 .
 .
 .

P29.39: Comparator makes

wrong decision on cycle 10

Ideal Case (P29.37)

Initially converges to 0.4 V at cycle 20.

Initially converges to 0.4 V at cycle 10

Overall, the comparator making a wrong decision on cycle 10 does not affect when the average

value of Vq(kT) finally reaches and stays within the 8-, 12-, or 16-bit accuracy as shown in the

table below.

Perl Code:
P29.39 - N-bit accurate w/ error on 10th cycle

Get input argument
if(exists($ARGV[0])) {
 $N = $ARGV[0]; # Number of bits of accuracy
}
else {
 die "ERROR: Must supply input argument (N). For example: $0 8\n";
}

$output_file = sprintf("P29.39_%d_bit_sim_output.txt", $N);

$Vref = 1.0; # Vref
$Vx = 0.4; # Input voltage is DC 0.4V

$max_delta = $Vref / (2 ** $N); # Vref/(2^N) = 1 LSB
$window = 5; # Number of cycles for which the Average Vq stays within Vx +/-
max_delta

@Va = ();
@Vu = ();
@Vq = ();
@Qe = ();
@Avg_Vq = ();

$Vu[0] = 0.1; # Initial condition. Integrator output = 0.1V.

$sum = 0;
$k = 0;
$converged = 0;
while(!$converged)
{
 if($k > 0) {
 $Vu[$k] = $Vu[$k-1] + $Va[$k-1]; # Eq (29.102)
 }
 if($Vu[$k] > 0) {
 $Vq[$k] = $Vref;
 }
 else {
 $Vq[$k] = -$Vref;
 }

 # Problem 29.39: The comparator makes a wrong decision on the 10th cycle
 if($k == 9) {
 $Vq[$k] = -$Vq[$k]; # Invert the decision made on the 10th clock cycle
 }

 $Va[$k] = $Vx - $Vq[$k]; # Eq (29.103)

 $Qe[$k] = $Vq[$k] - $Vu[$k]; # Eq (29.104)

 # Calculate Average Vq
 $sum += $Vq[$k];
 $Avg_Vq[$k] = $sum / ($k+1);

 # Check to see if we have converged to Vx +/- max_delta for the given window size
 if(($k+1) >= $window) {
 $converged = 1; # Start off optimistic
 for($i=0; $i < $window; $i++) {
 if(($Avg_Vq[$k-$i] < ($Vx - $max_delta)) || ($Avg_Vq[$k-$i] > ($Vx + $max_delta))) {
 $converged = 0; # Avg Vq is outside of Vx +/- max_delta, so keep going
 }
 }
 }

 $k++;
}

$num_clocks = $k;

Print results (to screen and output file)
open(OUTPUT, ">$output_file");
printf("Running until Avg Vq(kT) is %d-bit accurate (between %.10f and %.10f) for %d
cycles\n", $N, ($Vx - $max_delta), ($Vx + $max_delta), $window);
printf(OUTPUT "Running until Avg Vq(kT) is %d-bit accurate (between %.10f and %.10f) for %d
cycles\n", $N, ($Vx - $max_delta), ($Vx + $max_delta), $window);
printf("%4s %10s %10s %10s %10s %15s\n", "k", "Vq(kT)", "Vu(kT)", "Vq(kT)", "Qe(kT)", "Avg
Vq(kT)");
printf(OUTPUT "%4s %10s %10s %10s %10s %15s\n", "k", "Vq(kT)", "Vu(kT)", "Vq(kT)", "Qe(kT)", "Avg
Vq(kT)");
for($k=0; $k < $num_clocks; $k++)
{
 printf("%4d %10.3f %10.3f %10.3f %10.3f %15.10f\n", $k, $Va[$k], $Vu[$k], $Vq[$k],
$Qe[$k], $Avg_Vq[$k]);
 printf(OUTPUT "%4d %10.3f %10.3f %10.3f %10.3f %15.10f\n", $k, $Va[$k], $Vu[$k], $Vq[$k],
$Qe[$k], $Avg_Vq[$k]);
}
close(OUTPUT);

exit;

	P29.1

	P29.2

	P29.3

	P29.4

	P29.5

	P29.6

	P29.7
	P29.8
	P29.9

	P29.10
	P29.11

	P29.12
	P29.13

	P29.14

	P29.15

	P29.16

	P29.17

	P29.18

	P29.19

	P29.20
	P29.21

	P29.22

	P29.23
	P29.24

	P29.25

	P29.26

	P29.27

	P29.28

	P29.29
	P29.30

	P29.31

	P29.32

	P29.33

	P29.34

	P29.35

	P29.36

	P29.37

	P29.38

	P29.39

	P29.1_old
	P29.2_old
	P29.3_old
	P29.4_old
	P29.5_old
	P29.6_old
	P29.7_old
	P29.9_old
	P29.10_old
	P29.11_old
	P29.12_old
	P29.13_old
	P29.14_old
	P29.15_old
	P29.16_old
	P29.17_old
	P29.18_old
	P29.19_old
	P29.20_old
	P29.21_old
	P29.22_old
	P29.23_old
	P29.24_old
	P29.25_old
	P29.26_old
	P29.27_old
	P29.28_old
	P29.29_old
	P29.30_old
	P29.31_old
	P29.32_old
	P29.33_old
	P29.34_old
	P29.35_old
	P29.36_old
	P29.38_old

