Chris Gagliano

30.1  Assuming the DAC shown in Fig. 30.1 is 8 bits and V., = 1 Vand V. = 0V, what are
the voltages on each of the R-2R taps?
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8-bit current-mode R-2R DAC

X
From Eq. (30.1): V,py = i_N - (Vagrs = Vigr.) + Vigr. Where X is the X tap.

Since V., =1 Vand V. =0V, we can rewrite the equation as:
2X
Viarx =75 V

2N



The tap voltages are shown on the schematic below.
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Sakkarapani Balagopal

(P.30.2)Give an example of how the traditional current-mode DAC will have limited output swing.

Consider traditional current mode R-2R DAC shown in the figure 30.2-1. The amount of current flowing
through each 2R resistor depends on the node voltage TAPX and Vger.. The current through 2R resistor is
either diverted to inverting or non-inverting input of the operational amplifier depends on the digital
inputs (by to by4). The main problem with this topology is limited output swing. In order to explain
limited output swing of the DAC, assume the operational amplifier have an infinite gain and no offset.
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Figure 30.2-1 Traditional R-2R DAC.

Case (i) Vrer+> OV or Vpp; Ve =0V

For the given case, inverting and non-inverting nodes of the operational amplifier are always at OV. For
any digital input bits, the current flows from Vgee. to inverting node (0V) and flow through feedback
resistor. From equation 30.2-1, it is clear that the output voltage is always being negative. But this can’t
happen when power supply voltage is Vpp or positive. Figure 30.2-2 shows the simulation results of the 3-
bit DAC. It clearly shows that the output voltage swings from -5V to 0.

Vo, I

R (30.2.1)

ut = ~ otal*
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Figure 30.2-2 Output of 3-bit DAC when Vger+ =5V and Vger. = 0V.
Case (i) Vrer. > Vrer+ (0r) Vrer. = Vop; Vrer+ = 0V

For the given case, inverting and non-inverting nodes of the operational amplifier are always at Vpp. For
any digital inputs, the current flows from output node to inverting node (Vpp) of the operational amplifier
through feedback resistor R and reaches Vger. through 2R resistor depends on input digital bits. From
equation 30.2-3, output voltage is always being positive and more than Vpp, But this can’t happen when
power supply voltage is Vpp. Figure 30.2-3 shows the simulation results of the 3-bit DAC. It clearly
shows that the output voltage swings from 5V to 10V.

Vo =Vip + I -R (30.2.3)
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Figure 30.2-3 Output of 3-bit DAC when Vger+ = 0V and Vger. = 5V.
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Case (|||) VREF+ = VDD; VREF—:VDDIZ

For the given case, inverting and non-inverting nodes of the operational amplifier are always at Vpp/2.
For any digital inputs, the current flows from Vger. to output node through 2R and feedback resistor R.
From equation 30.2-4, output voltage swings between Vger. and Vger. - (Vrer+-Vrer). Figure 30.2-4
shows the simulation results of the 3-bit DAC. It clearly shows that the output voltage swings from 0V to
2.5V.

V
Vo, = ;D — R (30.2.4)
2.6V Vivouy
2.4v
2.2V
2.0¥+
1.8V
1.6V
1.4¥+
1.2V~
1.0V
0.8V~
When input is '"111"
0.6V-| 1
0.4V /
Figure 30.2-4 Output of 3-bit DAC when Vger: =5V and Vger. = 2.5V.

In all the three cases, either output swings above or below the power supply voltage or only half of the
power supply voltage. This also reduces the dynamic range of the DAC, which is usually not desirable.
This concludes that the traditional R-2R DAC have limited output swing.



Justin Wood
30.3 Repeat Problem 30.1 for the DAC shown in Fig. 30.2.

Problem 30.1: Assuming the DAC shown in Fig. 30.1 is 8 bits and Vrer+ = 1V and VRer-
= 0, what are the voltages on each of the R-2R taps?
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Figure 30.2 Traditional voltage-mode R-2R DAC.

Applying KCL at each node (T7 -> T0), we can derive the following equations for the
node voltages:
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Knowing the digital input, we can solve for the tap voltages.
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For Vrer:+ = 1V and Vger- = 0V and digital input of 0000 0001, we solve the matrix above
and get the following node voltages:

V17=0.0039
V16=0.0059
V15=0.1074
V14=0.0210
V13=0.0417
V12=0.0834
V11=0.1667
V710=0.3333

V17is V:which for 0000 0001 should be 1 LSB (Vrer+/28) or 0.0039V. The tap voltages
can similarly be calculated for all 28 input combinations.

An alternative method for calculating the node voltage would be to use superposition
and determine the contribution from each bit at a given node. For example, the

b7 'VREF+ + 57 'VREF+

contribution from b7 to V17 or V. would be . Equation 30.5 was

derived in this manner.



30.4  For the wide-swing current mode DAC shown in Fig. 30.3, what are the voltages
at the taps along the R-2R string assuming 8 bits, Vrgr+ = 1V, Vggr. = 0, and a
digital input code of 0000 0000?
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Figure 30.3 Wide-swing current-mode R-2R DAC.

Using LTSpice with the schematic below, we can find the voltages of each node.

Spice Output:

V(v7) : 0.5 voltage
V(ve6) : 0.746094 voltage
V(v5) : 0.865234 voltage
V(vd) : 0.916992 wvoltage
V(v3): 0.927246 voltage
V(v2): 0.901123 wvoltage
Vi(vl): 0.825562 wvoltage
V(vO0) : 0.662781 wvoltage
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30.5 Can the op-amp shown in Fig. 30.37 be used in fully-differential implementations of the
DACs shown in Figs. 30.1 — 30.3? Why or why not?
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Showing just the op-amp schematic from Fig. 30.37

The op-amp in Fig. 30.37 is an OTA without an output buffer. It is fine to use in a S/H circuit
when driving a purely capacitive load. However, the DACs in Figs. 30.1 —30.3 have a feedback
resistor connected to the output. This resistive load will kill the gain of the OTA and will be
detrimental to the correct operation of the DAC. Additionally, the stability of an OTA without an

output buffer is directly related to the load capacitance. From Eq. 24.44, f = 5 ng . As the
7Z' .

un
L

load capacitance is decreased, the unity gain frequency of the OTA will push out, resulting in
less phase margin. This is demonstrated below in the simulation of Fig. 24.36 with a 1 pF load
capacitance versus a 50 fF load capacitance. The DACs in Figs. 30.1 — 30.3 may drive a small
load capacitance and so the stability of the op-amp would be a concern.
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(P.30.6) Show the detailed derivation of Egs. (30.12)-(30.14).

The step error of the current flowing through the feedback resistor R, due to the resistor
mismatch at the midscale transition, is given in equation 30.6.1.

Al = VREF+ _VREF— ( _ 1 }_VREF-f- _VREF— (30.6.1)
2(R-AR) 2" ) 2(R+AR)
The final output step error (DNL) is given, under the assumption of Rg=R, in equation 30.6.2.

DNL = Al.R (30.6.2)

Veer, =V 1) Ve, -V
Al.R = REF + REF — 1— _ "REF+ REF — R
( 2(R-AR) ( 2N-1) 2(R+AR) J

R R R ] (30.6.3)

ALR =y . -V - )
Veer . REF—{Z(R_AR) 2"12(R-AR) 2(R+AR)

Multiply both sides of equation 30.6.3 by (R—AR)(R +AR),

ALR(R=AR)(R+AR) = (Veer. —VREF)@.(R + AR)—ZﬁN.(R +AR)—§.(R —AR))

R> ARR R? ARR R? ARR
2 2 2N N 2 2

ALR(R=AR)(R+AR)= (Ve —VREF)(—+——_____+_

2
ALR(R=AR)(R+AR) = (Vs , —VREF_)(AR.R R AR'RJ

AlR = (VREF+_VREF—) AR.R R* _ARR
(R-AR)(R+AR)

Ve, Ve R ARR
Al.R:%ﬁr{AR.R—Z—N— o J (30.6.4)

Take AR.R out of equation 30.6.4 results,

At R = Veee ‘VFF;EF-)'AA;'R [1— ZNRAR —Zij (30.6.5)
ARR| ——— '
AR R
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Since % <<% ; % Is neglected in equation 30.6.5 and simplified as follow,

Al.R = (VREF+ _\R/REF—)'AR [1_ R 1 J

AR 1 AR
Al.R = (VREF+ ~Veer )(_ __(1+ _jJ

Since % << 1 % is neglected in equation 30.6.6 and simplified as follow,

AR 1
DNL=AI.R = (VREF+ _VREF)'[F_Z_NJ

For the DNL to be within 1LSB, the required matching of the resistor is given as

(VREF+ _VREF - ) 2 (VREF+ _VREF - )(A_R - ij

2" R 2N
1 AR 1
> _ =
2" R 2V

(30.6.6)

(30.6.7)
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30.7 Why would we want to use both current segments and binary-weighted
currents to implement a current-mode DAC? (Why use segmentation?)

Using binary-weighted currents for the LSBs and current segments for the MSBs, or
segmenting, is typically used to help improve DNL. It also allows for the use of less
accurate components while still achieving good DNL. It is important to note that
segmentation does not improve INL.

The advantage of segmentation can easily be seen by looking at the worst-case DNL
(when the input code transistions from 0111... to 1000...). Using the DAC in figure 30.5,
transitioning from 0111... to 1000... would increase the current Ir from 2047uA to
2048uA. If we can only allow 1/2 LSB error, the MSB current accuracy would have to
be less than +/-0.024% (0.5/2048). This would be very challenging.

Now let’s consider the case where we use 8 segments for 3 MSBs (See Figure 30.6).
Each time the 4 MSBs increment, 256 A is added to Ir. Now, when we transition from
0111... to 1000... we are adding in a segment of 256 1A rather than 2048uA. For 1/2
LSB error in this case, the current accuracy would only have to be +/-0.195% to
maintain 1/2 LSB error.

Figure 30.6 Segmentation i a wide-swing R-2R DAC.
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30.8  Why do we subtract AA in Eq. (30.36)? Why not add the gain variation?

We want to derive the AOLDC that is necessary to have %2 LSB accuracy in our data
converter. The assumption is that the feedback components are ideal, and so the gain
variation is caused by AoLpc < oo. The maximum value that Acp can be is 1/f in the ideal
case when AoLpc is ®, so the gain variation must be less than the ideal case, caused by
Aorpc <. Therefore, we must subtract the gain variation from the ideal Acy.
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30.9  Does the matching of the capacitors matter in the S/H of Fig. 30.31? Why or why
not?

d3
¢2 Cr \4)1 b3
o ~1 > ..
Vin- — H t //;”—jq) Vour—
fto ity 13 $2 Cr 1 ’
b1

Figure 30.31 S/H differential topology from Ch. 25.

No. Since the two sides of the diff amp never interact, and there is no charge sharing
between the capacitors, the matching between the two is not of consequence. The
important thing is that the timing of the switching is sufficient to full charge both
capacitors, and that the capacitors are big enough that any leakage component during the
hold phase won’t significantly change the voltage across the capacitor.
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30.10 Derive the transfer function of the S/H in Fig. 30.30 if Vcm on the left side of the
schematic is replaced with ground so that the bottom plates of the C1 capacitors are
grounded when ®3 goes high.

dl>z b3
_/i __ e II Cr b1
(1)3 : | q)a c
i : . - i L
Vin+ I /E/ I| (‘I T~ } /]/ T Vo
Gnd—+— /:/_14 c T~
2 4 : 'Y | I = : L 2 ,‘0”_
Vin- : \T\ =| t// \‘\ L Vout
I C Cr
I | ©F
j}\_"_—h q) i
oty 2 by | 1
¢1 1 : : ¢3
—— g
o2 i 7
| oo Indicates plate closest to the substrate
s 1|

To calculate the transfer function of the S/H we start by writing equations for the charge
stored on C, and Cr during the sample (®+, ®2 high) and also during the hold (®3 high).
For the positive input, the charge stored on C; and Cr during the sample is:

00=C, (v, =V, £ Vys)
Qﬁj = CF : (Vin+ - ‘/cm i VOS)

When @3 goes high (®2 and ®1 are low), the change on C; is:
Q?Bz G, '(O -V Vos)

Note that when ®3 closes the input to the opamp can’t stay at Vcewmif charge is to be
conserved, it is labeled as Vx. in the previous equation.

The charge on Cr (Q;*) can be written as:

D D P D
F3:QF1+Q11_ [3



(the charge on Cr from the sample + difference in charge on C, between the sample and
hold). Q7 can also be written with respect to the output as:

Q(f; = CF ’ (v()uH— - VX+ * OS)
Combining the above equations yields:

® ® @
F (0m+_‘/x+i OS)=QF]+Q11_ '

C. -
Cr (Vous = Viu £V ) =Cro - (v, = V., £V )+ C, - (v
C. -

x+ = in+ cm

F ( 0ut+_‘/x+iVOS):CF'(VirH—_VmiVOS)+CI'(v

C

out+ V iVOS)_CI(O_V

in+ cm x+

_‘/cm)+C1 (V\+)

Y
% T VOS)
y

in+

CI
vout+ :vin+ _‘/(‘m +‘/X+C_(vm_‘/cm+‘/x+)
F

v(mH— = (1 +&jvm+ _[1+&j(‘/cm - Vx+)
CF CF

Similarly for the negative side:

vout— = (1 + &)vin— - (1 + &}(‘/cm - Vx—)
Cr Cr

For fully differential signals the equation becomes:
C

v —=v )=[1+=L (v, -V

(=)= 14 S o)

F
M: 1+Q
Vin CF



A simulation of the circuit is shown below - notice that the opamp input terminal pulses
down to 250mV when ®3 goes high.
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(P.30.11)Determine the transfer function of S/H in Fig. 30.34 if the top left ¢,-controlled switch
is connected to the input instead of V. Include the offset and simulate the operation of the
circuit to verify your calculation.

Single-ended nput th b
\ Vew 1.8 ¢1
\ ¢3 1 1 ¢’3 i
ol w ! i Cr
Vine = Vi + Ve 1 1 C1 ~_ Voo |
: ~ ( l\ - \:V:\ i /‘/ T Vours
. >
Vin- = VCM 7 - ! | CI = - |  our—
I — SR N S
/e T
| F
Two switches N o1 I i
shorted together (only) '
b3
Figure 30.11-1 Single ended to differential S/H.

The relationship between the output and input of the S/H shown in the figure 30.11-1 if the top
left ¢,-controlled switch is connected to the input instead of V¢ can be determined as follow.

Calculation of vout+
The charge stored on C, and Cg from vjn+ input when ¢ » switches are closed is given as
qublvz = ( in+ VCM iVOS) CI (Vin +VCM _VCM iVOS):C (Vm iV ) (3011'1)
'(21,2 =Ce (Vin+ —Venm £Vos ) =Ce (Vin +Vem —Vem £Vos ) =Ce (Vin Vs ) (30.11-2)

where Vs is the offset voltage of the operational amplifier, vi, and Vcm are input signal and the
common mode voltage. When ¢3 goes high, the charge on C, and Ck is given as

Q7 =C,(V, Vo +Vos) (30.11-3)
gg =Ce (VOut+ —Vewu iVos) (30.11-4)
where Vy is the voltage on the bottom plate of the capacitor C, when ¢z switch is closed.

The difference between the summation of Q/** , QZ**and Q/®is the charge transferred to Cr
when ¢3 goes high. The voltage is then determined knowing charge must be conserved.

P =QM* + QI — (30.11-5)
CF (VOut+ _VCM iVos ) =C (V +Vos )"‘ CF (Vin iVos )_CI (Vx _VCM iVos ) (30-11'6)

in —

By simplifying 30.14-6, vou+ can be determined as
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C C C
VOutJr = Vln [é + 1] - C_I (Vx )+VCM {C_I + 1} (3011-7)

Calculation of vout-

The charge stored on C, and Cg from vj,. input when ¢; 2 switches are closed is given as
Q™ =C, (V;,. —Veu Vo5 )=C, (Vo) (30.11-8)
22 =C (v, —Vey Ve )=Cr (£Vy) (30.11-9)
When ¢3 goes high, the charge on C, and Ck is given as
QP =C,(V, Vg, V) (30.11-10)
#* = Cr (Vou. =Vem £Vos) (30.11-11)

The difference between the summation of Q/**, QZ“*and Qis the charge transferred to Cr
when ¢3 goes high. The voltage is then determined knowing charge must be conserved.

Q2 QP2 - (30.11-12)
Ce (VOut+ —Vem TVos ) =C, (ivos )+ Ce (ivos )_ C, (Vx —Vem TVos ) (30.11-13)

By simplifying 30.14-13, vt can be determined as

C C
Vour- = _C_I(Vx )+Vc|v| [C_I +1] (3011-14)

F F

From equation 30.14-7, 14, transfer function or relationship between output and input can be
written as

C C C C C
Vour = Vour+ ~Vour- :Vin(c_l"'l]_c_l(vx)"'vcm (C_I"'lj"'_l(vx)_vcm (é"‘l]

F F

(30.11-15)

Vour _ (& +1j (30.11-16)
v, Ce

n

Notice in equation 30.14-16, operational amplifier offset is auto zeroed out and the signal is
centered at O rather than Vcm.
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Figure 30.11-2 shows the simulation set-up with Vos of 50mV on inverting terminal of fully
differential operational amplifier with Ce=C,=1pF. As derived in equation 30.11-16, the output
results with a gain of 2 and centered at OV are shown in the figure 30.11-3.

phi3

Lo

=]
= =
= =
T
Vins Voo CII-I—I' \._{\VDD
Vinsp 1I|I)
5in0.50525MEG g VoD cIT -
= I ] cLT
e Voffset
VoD E VDD 10p
= - Vopp Vou
; - Ve
Mo cennection 50m Ideal op-amp VDD
but to each other \._i\\"DD ) Vopm \+\ Voutm
+
a CcLB
voD | cB = ;E”F'
Il =
11 i
vem r !
VoD CFB \I VDD
I
e fac
?
*VDD
Figure 30.11-2 Simulation Set-up.
1.0V V[vinsp) V[voutp)-¥[voutm]
0.8¥
0.6V
Input signal of 500mY amplitude
centered at VCM
- =
0.4v—
0.2V
Output with a gain of 2
0.0v- centered at 0V
-0.2¥+
-0.4v—+
-0.6¥+
-0.8¥+
1.0V T T T T T I T T T
Ons 50ns 100ns 150ns 200ns 250ns 300ns 350ns 400ns 450ns 500ns

Figure 30.11-3 Simulation Result.
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30.12 Repeat Ex. 30.10 if the cyclic ADC'’s input is 0.41 V.
The block diagram of a cyclic ADC is shown in Figure 30.38.

For this problem we

Move switc W !
have: ...JEL?:'_E\.- [IC IR EERTIT hen ngh

[Asstming N =8 <
N=8 ) e DO s
Veer =1V pa il
I T Viy { ™y { | - Vaur
Ve =05V N T SH ) Xr—
Viw =041V Clocked comparator._ T I
Select] MUX i
The operation of the - T1 o
8-bit cycle ADC 0 T F
with an input Ve 0
voltage of 0.41 V is Jee | In .
shown in the table m 1 TTF | N-bir shift register
below. Clock pulses sss
k4 ) ¢ W OW W W
+ N ﬂi"" »  Hold register

l—l_l-_/f Li'T';]E'!'lr o 'Lli;!'!il?-

{Assuming N = 8)

Figure 30.38 Block diagram of a evelic ADC.

Clock Cycle | Bit | Sample Voltage (V) | Comparator Qutput [ Subtract (V)| After Subtract (V) [ After Multiply x2 (V)
1 b7 0.4100 0 0 0.4100 0.8200
2 b& 0.5200 1 0.5 0.3200 0.6400
3 b5 0.6400 1 0.5 0.1400 0.2800
4 b4 0.2500 0 0 0.2500 0.5600
5 b3 0.5600 1 0.5 0.0600 0.1200
G b2 0.1200 0 0 0.1200 0.2400
7 0.2400 0 0 0.2400 0.4800
8 b0 0.4500 0 0 0.4500 0.9600

The final output of the ADC hold register is 01101000.

To verify, we can calculate the corresponding voltage:

4 :l+l+L:0.40625Vz0.41V
8 32

IN ,converted 4
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30.13 Is kick-back noise from the comparator a concern for the circuit of Fig. 30.39?

Q= Py

£
-~

¢'I ;
-
-

v anla—

:E
— Yok I_.-"' |
T d ; Vawra+

¢,; Comparator

[ - /

—*— Vounds
+ Digital
7‘/_4_ V-
e
L ‘
L

Figure 30.39 Implementation of the comparator with an S'H for use in a cyelic ADC.

Kick-back noise from the comparator is not a concern. ¢, and

¢, are nonoverlapping clocks. When the comparator is clocked b1 i i ;

with @,, the v, and v,_ inputs are already disconnected from ! L

the comparator circuit since the ¢, switches are open. Therefore, 2 i— i

the S/H input voltage is not corrupted by kick-back noise from ; !

the comparator. b3 | - -
1 I
I ' |
| e e

Clocks used in Fig. 30.39
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(P.30.14)Derive the transfer function for the circuit shown in the Fig.30.80.

d?s (bh
|
|
rs | C ¢s
L O I UL G
(,bh : 1 C'L
! ; Cr :
Vin 4:—/:/ | o ,
Ver. ! L ! I I\ ~ /:l/ T Vours
| = 1
Ver e | i I - = i . Vour
Vin_ | \:\ l‘ :t/ \:r\ L C ou
X ' L
Ver | I Cr i
—_— 1 — }7D— —_—
I ¢5
b
Figure 30.14-1 Circuit used in problem 30.14.

The relationship between the output and intput of the sample and hold circuit shown in the figure
30.14-1 can be determined as follow. The charge stored on C, and Cg when ¢s switches are
closed is given as

* =C, (Vip, —Vem £Vos) (30.14-1)
Qf =C; (VCF+ —Vem £Vos ) (30.14-2)

where Vs is the offset voltage of the operational amplifier, vin+ and Vv are the differential
input signal and common mode voltage. When ¢ goes high, the charge on C; is

Q" =C, (Ver, —Vew +Vos) (30.14-3)

The difference between Q*andQ/"is transferred to Cr when ¢ goes high. The voltage is then
determined knowing charge must be conserved.

Q" +Qf =Qf +QF (30.14-4)
CF (VOUT+ _VCM iVos ) = C| (Vin+ _VCM iVos )+ CF (VCF+ _VCM iVos )_CI (VCI+ _VCM iVos ))
By simplifying above equation, the output voltage is determined as
CeVours =CVip, +CeVee, —C\Vey, (30.14-5)

The positive output voltage can be written as

Vours = g_lvim +Ver, _CC::_IVCH (30.14-6)

F F




Sakkarapani Balagopal

From equation 30.14-6, the negative output voltage can be written as

C C
Vour- = C_IV' +Ver- _C_IVC|— (30.14-7)

In—
F F

From equation 30.14-6 and 30.14-7, the fully differential output signal or transfer function of the
circuit in figure 30.14-1 can be written as follow,

C
Vour =Vour+ —Vour- = C_I (Vin+ ~Vin- )"‘ (VCF+ —Vee- )_

S
F CF

VCI+ _VCI—) (30.14-8)

The block diagram of the equation 30.14-7 is shown in the figure 30.14-2.

Vin —» S/H Vout

Figure 30.14-2 Block diagram of equation 30.14-7.



Justin Wood
30.15 Repeat Ex. 30.16 if the input voltage is 0.41V.
Repeat Ex. 30.10 if 1.5 bits/stage are used. Assume the converter is ideal and the
comparators switch precisely at Vew2 (=250mV here) and 3Vew/2 (= 750mV here).

Assume all latches initially contain zeros.

The transfer curve for the 1.5 bits/stage ADC is shown below.

1}0'”
1 (7b | |
00; 01 |11
2Vem —7 —————————— <-- VDD
Vem £--1---f---F-- -~ VDD/2

I
|

\ /: X X > Vin

e | Ver ' Vrer, = VDD =2Veu
VeRep-=0 E

Vewe  3Veu

2 2
Single-ended input and output

For the first stage, Vin=410mV. With Vv between Vcw/2 and 3Vewm/2, a1.57)b1.57) would
be 01. Therefore, we subtract Vew/2 (250mV) from the Vin, multiply by 2, and feed it to
the next stage (Vour would be 320mV). The digital output bits are then determined
based on the ai1.5n)b1.5n) and carry value cn. To determine the digital outputs, we use
equations 30.67, 30.68, 30.71, and 30.72 as shown below.

b, = a1.5(0)b1.5(0)
Co = 4 50

b, = a1.5(1)b1.5(1) D¢,

¢ = a1.5(1)b1.5(1)co

b, = al.S(n—l)bl.S(n—l) ® A 5(0-2) ®ec,,

n

Crn = al.S(H—I)bl.5(n—1)a1.5(n—2) tc,., (al.S(n—l)bLS(n—l) + al.S(n—Z))

b, = Qi 5n-1) ®c,,

VN, a1.snb1.5n,Vout, and Digital output for each stage are shown in the table below.



Stage Vin arsmbisn | Vour Digital Output
1 (n=7) 410mV 01 320mV | 5 = yserbrsen ® a5 ® g =1
€1 =y sybis@ise T 6 (a1.5<7>b15<7> + a1.5<6>) =0
2 (n=6) | 320mV 01 140MV 1 by = a5 o brsie) @5y @ 0 =1
Cs = A 56)D1506/%55) T Cs (“1.5<6>b1,5<6> * a1.5<5>) =0
3 (n=5) 140mV 00 780mV | 5 = s brsis) ® sy D, =1
Cs = 55 Prss) sy T ¢ (a1.5<5>b1 55T a1.5(4>) =0
4 (n=4) 780mV 11 60mV b, = ml’lm @D,y D, =0
€y =y sabisise 6 (a1.5<4>b15<4) + a1.5(3>) =0
5 (n=3) 60mV 00 620mV | 5, = ty by sy @ sy D, = 1
€3 =y 5ab1sise) T 6 (a1.5<3>b1,5(3> + 01.5(2)) =0
6 (n=2) 620mV 01 740mV |, = s by sy Dty sy ® ¢, =0
€3 = diso)bisotisa 6 (01.5(2>b1.5<2> + al.sm) =1
7 (n=1) 740mV 01 980mV by = a5 by s @y =0
¢, =a; 50D 5)¢ =1
8 (n=0) 980mV 11 460mV | p = A, 50,150, =0
Co =y 50, =1
- - by=a,5,,®c,=0

The bits bg -> bo are 0 1110 1000 (232). Subtracting 0 0111 1111 (127) from bg->o gives

us our final output, which is 0 0110 1001 (105).
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30.16 Repeat Ex. 30.17 if the input voltage is 0.41 V.

Equivalent problem: Determine the output of the ADC in Fig. 30.38 if the input voltage is
0.41 V, and 1.5 bits/stage are used, and comparators switch at 305 mV and 675 mV.
Assume all latches initially are zero.

Move switch to input when high

n (Assuming N =8.) n <

y
Tnput Vin y (- O Vour

Vin+ Ve

Clocked comparator. ]
’ - \+\ — (a) Single-ended input To bottom plate of Cr (V¢r)
Veu ~
an | 7 g 2 ab addr out
2 MUX
e 00 01 11
T~ ‘ :
Veu B 0 | 2Vey=vDD
ooy 7 Vi
I Ver

Clock pulses

TN LGN

Hold register ‘

(b) Double-ended input 3 L;(M

I—[—‘_/v LSil/BL o liil%[SB

(Assuming N = 8)

Figure 30.38 Block diagram of a cyclic ADC.

a b D o arsibist D Q G1s5:b1s52

inputs| clk clk
e

1D @

{ clk

=

./ L ™~
_

Co

Figure 30.51 Implementing comparators and MUX for 1.5 bits.

Hold register

LSB
001111...

MSB

Subtraction

ADC out

Figure 30.53 Combining the outputs of the cyclic ADC when 1.5 bits/stage is used.

Using Eq. (30.60), we can find voy, Where vin k-1 = Voutk, calculating vin, a1 5xb1 sx and voy
from k=N-1 to k=0. We calculate the digital output by and cx from k=0 to k=N-1.

Vin arsxbisx  Vour Digital out
410 mV (N-1=7) 01 320mV b, =q b, ®a D, =1

C; = ;.57[71.57611 56t C6(K57b1.57 +a,5) =0
320 mV (N-2 = 6) 01 140mV b, =a, b Da,s e, =1

Ce = ;.56b1 s6thss Cs(;sﬁbl s6+ass)=0
140 mV (N-3 = 5) 00 780mV by =, b @ays, ®c, =1

Cs = 55by 55, 54 +€,(a 55Dy 55 + a1 5,) =0



780 mV (N-4 = 4)

60 mV (N-5 = 3)

620 mV (N-6 = 2)

740 mV (N-7 = 1)

20 mV (N-8 = 0)

00

01

00

60 mV

620 mV

740 mV

-20 mV

460 mV

b4 = a1.54b1.54 ®a1.53 @C3 =0
Cy =0 5,b, 5,0, 55+ c5(a 5,b, 54 + 0 53) =0

by=a,3bs;®a5®c, =1
C3 =0 3D 30,5, + (A 53D, 53 + a1 5,) =0

bz = a1.52b1.52 @aljl ®Cl =0

Cy =0 ;b 5,05, + ¢ (a, 5505, +a,5) =1
b =a5b 5 ®c, =0

€, =0a,5b 5,5 +¢,(a 5D, 5, +a,5)=0

by =a,5b, 5, =0
Co =05 =0

and by = a,5; ®c, =0. Therefore, subtracting 001111111... to remove the (Vcm - 0.5

LSB) component,

01110 1000 (232)

—00111 1111 (127)

00110 1001 (105)

We can evaluate the analog equivalent of the digital output as follows.

105

=——1V =412mV
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30.17 Resketch the clock waveforms for Fig. 30.54 if bottom plate sampling were used.

b2 ¢3
[
! |
s | C.+AC. 1
Jin+ ; ! || — ,
VCI+ v \“\ ! T 1l _K Vout+
| i >
VCI— / : l || /—‘—/— ) out—
Vin- | \‘l\ || —F/ Vour
! C_+AC_ ¢
et
! C_
L one cycle o 03

A

| Sample | |_
| Hold |

s i I Sample |
o | [ Hod |

Vour valid

Figure 30.54 S/H of Fig. 30.42 with mismatched capacitors.

Figure 30.54 waveform with bottom plate sampling.

P one cycle o
b1 B
b2 B
0F
A

Ve valid
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30.18 Show the derivation leading up to Eq. (30.83). Show, using practical values for
mismatch, how the squared mismatch terms are negligible.

b
Wt b |
- ! c.
E /E/ /;/ Ci+AC- .
Ver Vin= _):/ : : _T—"——II _\F> v
Ver- Vi \:'\ i \‘:\_l_‘ } +/;4‘_Va“r_
: : C_+AC_ L
' NI —.—l— . |
TN
ba
Voum valid q)i!

s I Sample I ‘ | Sample |
Oa | Amplify | |

q)h—l | Hold (average) |
1

Vousn and Ve valid

Figure 30.55 S/H using capacitor error averaging.

Starting with equation 30.82 the derivation is as follows:

A A
voutth = [1_ (jC'+ j'voutaJr +[%].VC1+ (3082)

Substituting 30.76 to replace Vouta+

AC AC AC
Vouth+ = [1 - C - j : (2 Vipe = Ver + — (Vin+ - Vcl+)) + (—Jrj Ve




multiplying terms thru yields:

2
AC, AC, AC. (AC, AC,
Youth+ =2'Vm+ _VCH +C_'(Vin+_VCI+)_ 2., __VC1+_+[ C ] ‘(Ver _VC1+)]+(_J'VCI+

in+ C C

+ + +

collecting like terms and reordering yields:

AC AC AC AC,
vout+=2.vin+_v ++_+.(Vin _V )_2lvin _++V +_+ ( m V )+(_] V
h CI C+ + Cl+ + C+ Cl C+ + Cl+ C+ Cl+
AC, AC,
Vouth+ = 2'Vin+ _VC1+ +C_'(vin+ _VCI+)_2'vin+C_+2 VC1+ J Vins CI+)
AC 2-AC
Vourns =2 Vipr = Ve + C_+ ’ (virH- - VCI+) - C—+ ’ (vin+ - Vc1+) { J '(Vm+ Vc1+)
+ + +

2
AC AC
Voutns =2 Voo = Vor, ———+ (Vm+ - VCI+) _( C - ] ‘(Vim - VCI+)

+

The assumption made for equation 30.83 was that the (AC,/C.)2 term was negligible,
which allows us to simplify to equation 30.83

AC,
- VCI+ - C_

+

vouth+ = 2 ’ vin+ ’ (vin+ - VCI+) (3083)

Let’s assume Vin = 0.5V (vin+=0.75V, vin.=0.25V). Ideally, vout+ would equal 1V. Our
process typically has a 1% capacitor mismatch (1.00pF vs. 1.01pF). Ignoring the (AC./
C.)2 term the output would be:

0.01
=2-0.75- OS—T (0.75-0.5)=0.9975mV

muh+

If we include the (AC./C.)?2 term the output would be:

2
=2.0.75- 05—@ (0.75—0.5)—(g) -(0.75-0.5) = 0.997475mV

outh +

The resulting error from the squared term is two order of magnitudes smaller and is
negligible.
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(P.30.19)What happens to the error adjustment term in Eq. (30.92) if the capacitors in the S/H
are perfectly matched?

The equation 30.92 is

(Vouta+ —Vouth: )_ (Vouta+ ~Voutn )
2

Vavg+ - Vavg— = (Vouta+ ~Vouta- ) - (3019'1)

If the capacitors are perfectly matched in the S/H, the error adjustment term

(Vouta+ ~Vouths )_ (Vouta+ ~Vouth- )
2
figure 30.19-1.

becomes zero. In order to prove that, consider the figure shown in

q.n b
1 —
E/ Cr ¢1 AN
! | —t s I
B 2
. Vine ! e T . s
Ver e 1 ]' 1 B Vour+

|
I
Ver B ! G =
[ . 4:_\}4._” + ﬁ\Tl ;
Cr

Figure 30.19-1  S/H circuit without mismatch.

From the figure 30.19-1, Vou+ and Voue- can be written as follow,
VOut+ = 2Vin+ _VCI+ = VOuta+ (3019'2)
VOut— = 2Vin— _VCI— = VOuta— (3019'3)

In order to overcome the capacitor mismatch in S/H, S/H circuit is implemented with capacitor
error averaging as shown in the figure 30.19-2.

L%
[P T Pa
b i C.
ol l ——1 2
; /i/ Ce+AC, N
Ver, V™ i B B } - \\E« Vour-
Ver B I = Vo
Vi L + +”/ out-
' o C_ IJL AC_ -
. N i |
I N ‘ I
c.
Oa

Figure 30.19-2 S/H circuit using capacitor error averaging.



From figure 30.19-2, the output is given as

AC

VOut+ - 2Ver— _VCI+ C (Vin+ _VCI+)
AC

Vour- = 2Vin— Ve _?(Vin— _VCI—)

As the problem states, if AC=0, then 30.19-4, 5 becomes

VOuth+ = VOut+ = 2V'

In+

_VCI+

VOuth— = VOut— = 2V'

n—

_VCI—

From equation 30.19-6, 7 and 30.19-2, 3, it is clear that v

Sakkarapani Balagopal

(30.19-4)

(30.19-5)

(30.19-6)

(30.19-7)

=Vouh. and Vo, =V - S0, the

error adjustment term in the 30.19-1 becomes zero. Basically if there is no capacitor mismatch,
the S/H circuit with error averaging works same as figure 30.19-1 expect taking more time.
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30.20 Repeat Ex. 30.18 if all capacitors are 1 pF (the ideal situation) and verify that the error out of

the stage is zero.

¢'-5 !ba.
1p )
/:’ [ #
(bh : 1p | (F)s
Vin+ 750 mV . i ‘ | _« .
S0( T "‘“~_J_T ! e Vour+
500mvV—_—— '™ , P
it -\ : —14” — ,T_‘ Vour-
Vip— 250 mV 4 in -
=1 5"5
N [ i
lbr'.'\.

Figure 30.57 with all capacitors =1 pF

The input voltage is:
Vv, =V, =V, =150mV =250mV =500mV

The output voltage (with the help of Eq (30.76) and Eq (30.77) is:

out Vout+ - vout—

+

. . o A
Since all of the capacitors are 1 pF, we have the ideal situation where ?C =0.

We can then re-write the output equation as:
out+ vout— = [2 ’ vin+ - VCI+]_ [2 ’ vin— - VCI—]
=V, = Vo =[2-750mV —500mV]|-[2-250mV —500mV]|=1V -0V =1V

\% =V

out

2%

out

=12v,, Vg, + AC—Q ) (Vin+ Ve )} - {2 Vi =V + % ) (vin— Ve )}

The simulation results are shown below. We have the ideal output voltages of v, ,, =1V and

v, =0V, and thus the error out of the stage is 0.
1.1¥ Yivoutp) Y{voutm] 1.0m¥% : 1 Vivoutp) :
. S —— wame]
s R SOt SO DRSO RO T S
v N S SO SO B Dmy
17 S S S S 0.2myf--------- R R
T S 0.0mV: : ; : '
i (Rt St P proeee D 2mYg -
0.3V ooo-o P P P P -0.4mY=f------- G Aok SETELLES R
v S SO S S D e
0.0Vv: ; E D BmY -
0.1 ' ' ' r 1.0mv: ' r ' r

Ons 30ns 60ns 90ns 120ns 150ns Ons 30ns G0ns 90ns 120ns 150ns
Vourt ANA V.. Error
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30.21 Sketch a circuit to provide the inputs for the four-phase, nonoverlapping clock generator
shown in Fig. 30.81.

We can refer to Figures 30.64 and 30.65 for one possible solution. The figures show an

implementation for a three-phase nonoverlapping clock. It is a fairly trivial task to extend it to
work for a four-phase nonoverlapping clock.

Looking at Fig. 30.65, we can see that two flip-flops are used but we are only generating three
output signals. We should be able to slightly modify the circuit to give us our four-phase

solution. First, looking at Fig. 30.65, we can determine the values of Dy, D;, Q;, Q», Inl, In2, and
In3 as shown below.

Clock Cycle| (D1|D2| (1|02 |Inl|In2|In3
0 010 1 1 0
1 01 0|1 1 0 1
2 111 111 0 1 1
3 0 0|0 1 1 0

Notice that there is one unused state (D=1, D,=0). We can use this state to generate the low

pulse for the fourth output (In4 input to Fig. 30.81). The added state is shown in red in the figure
below.

Clock Cyecle| (D1|D2| |Q1(Q2] |Inl|(In2|In3|Ind
0 - Dfao 1 1 0 1
1 01 0|1 1 0 1 1
2 101 111 0 1 1 1
3 110 110 1 1 1 0
4 nj]a Dfao 1 1 0 1

Utilizing some simple Karnaugh maps (or just eyeball it), we can simplify the combinations
logic for the flip-flop inputs and the output signals (In1-4) as follows:

D, =0,,,
D,, =0,
Inl=0, -0,
m2=0,-0,
In3 = QQ_z
In4=0,-0,

The schematics and simulation results are shown below.



I

A21 A22
PRE PRE
QF— — D Q
QP—

SCLK QP+ #CLK -
’7 CLR ’_‘ CLR
clk FiN ki
Velk AZ3 - A2 A13 A4 A5
? In1 Phase1
PULSE(0 1 200p 0 0 10ps 20ns)
A24 o A2 A3 A4 A5
In2
Phase?
}InE
A25 3 N AT A8 A9 A10
] 5 n Phase3
In3
A26 nd - A7 A18 A19 A20
_W;EL " ——Phased
Ind
Circuit from Fig. 30.81
Solution to Problem 30.21
Viclk]
11w ¥[phased] ¥[phasel] ¥[phase?] ¥[phase3]
0.9Y=
0.7y=
0.5Y=
0.3Y=
0.1Y= !
0.1V ] ] 1 ] ] ] 1 1 1 1
Ons LOns 100ns 150ns Z00ns 250ns J00ns 350ns 400ns 450ns L00ns

Simulation Results (T;=20ns)
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(P.30.22)What is the main advantage of using dynamic CMFB over other CMFB circuits? What
is the main disadvantage?

Main advantages of using dynamic CMFB over other CMFB circuits are

(i)

(i)
(iii)

(iv)
(V)

(vi)
(vii)

Dynamic CMFB loop set no restriction on maximum allowable differential input
signal unlike other CMFB circuits.

Dynamic CMFB have no additional parasitic poles in common mode loop.

No slew rate limitation and unity gain of frequency in common mode loop like other
CMEFB circuits.

Loading of common load loop is relaxed with dynamic CMFB.

Switched capacitor resistors used in dynamic CMFB performs both averaging and the
differencing needed for CMFB amplifier.

During sampling phase, the operational amplifier inputs are forced to Vcwm rather than

forcing it to Vem+Vos like other topologies.

Dynamic CMFB is very linear.

Main disadvantages of using dynamic CMFB over other CMFB circuits are

(i)
(i)

Other CMFB circuits don’t have charge injection and leakage current errors for faster
settling and lower clock feed through noise.

Additional switches in dynamic CMFB circuitry to avoid operational amplifier output
to sink/source a current into V¢ causes the operational amplifier output to approach
the power supply rails during sample phase. But this is not a big issue on OTA based
design.
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30.23 Can MOSFETs be used to implement the on-chip decoupling capacitors in Fig.
30.777?

Yes. Typically the decoupling capacitors are very large, but it is common to split it up
into many smaller capacitors connected in parallel, which would allow an array of
MOSFETs to serve as the decouping capacitor. However, depending on the MOSFET
characteristics problems would arise. One potential problem with using MOSFETs
would be an increased leakage over other types of capacitors. Leakage thru the
MOSFETSs results in the DC current flowing in our reference voltages, which typically is
not desired. The DC current can cause a drop in supply voltage to the analog or digital
circuit and consequently cause problems when the output signal approaches your
supply voltage.

Using thick gateox MOSFETs may result in less leakage, but results in a tradeoff for
layout area as the MOSFET capacitance would also drop. They may also be
advantages to using PMOS vs. NMOS depending on the process as they may be better
isolated from substrate noise that could couple onto the supplies.

There would obviously be tradeoffs, but in general, MOSFETSs could serve as viable
option for on-chip decoupling capacitors.



Adam Johnson

30.24 Sketch the cross-sectional view of the layout in Fig. 30.78.
p+ tied to ground

n-Well

n+ tied to VDD

Capacitor layout area

Figure 30.78 Using guard rings for protection in sensitive analog blocks.
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Chris Gagliano

30.25 Figure 30.82 shows the implementation of a pipeline DAC. How would we implement this
DAC using a topology similar to Fig. 30.42? Sketch the DAC’s implementation and the
timing signals (clock phases) used.
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For this implementation, we use Fig. 30.42 as a starting point but make some simple
modifications. Consider the circuit shown on the next page. It is one stage of a pipeline DAC

implementation based on the S/H circuit of Fig. 30.42. First of all, since we need a XE

multiplication, we must get rid of the “+1” in the gain equation (see Eq. 30.53). We accomplish
this by connecting the left side of the Cr capacitors to V¢y, instead of v;,. With this modification,

L .. C .
the gain will be reduced to just ——. The output equation is then:
F

vaut = VautJr - vout— == [(vin+ - vin— )_ (VCI+ - VCI— )]

To get a gain of 0.5, we simply set C;=1 pF and Cr= 2 pF. Next, we will add the output voltage
of the previous stage to the current stage’s input by simply connecting the outputs of the previous
stage to the V¢ inputs of the current stage. Since we do not want to subtract but rather want to
add, we will connect the positive output of the previous stage to the current stage’s V¢ input,
and we will connect the negative output of the previous stage to the current stage’s V¢4 input.



With these simple modifications, we basically have all we need to implement the pipeline DAC.

The clock signals will be the same nonoverlapping clock signals used in Fig. 30.42. A schematic
of one stage is shown below along with the clock signals.

@
=
T
“*\VDD
o
= =
=5 =
T
VDD CFT VDD
VCM 2 1 Tt
= 2p
‘ VDD T -
Vbit+ 1 2
=5
VDD
VCl+ VDD
¥ o Vout+
VDD
VDD
Vel Tk . T Vout
VDD ciB _
Vhit- I} =
1p ‘l'-
VDD CFB VDD
VM T I} T
2p ]
=
T
*\*\VDD
One Stage of Pipeline DAC
Phi2 clock falling edge

should be slightly delayed
from Phil. It is not delayed
in the sim since we are using
an ideal op-amp in the sim.
The response of the ideal op-
amp is so fast it will cause
issues if Phil and Phi2 are
not the same.

e ns BEne ins 10dns e

Clock Signals Used in Pipeline DAC

To demonstrate the correct operation of this design, a 4-bit pipeline DAC was implemented

using this topology. The schematics of each stage and the final simulation results are shown
below.



The input to the DAC is 0101 (MSB->LSB) and we expect the output to be 0.3125 V (see
Example 29.9). Also note that Vggr=1V.
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The output is 0.3125 V as expected
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Simulation Results of the 4-bit pipeline DAC



	P30.1 
	P30.2

	P30.3

	P30.4

	P30.5

	P30.6

	P30.7

	P30.8

	P30.9

	P30.10 
	P30.11

	P30.12

	P30.13

	P30.14

	P30.15

	P30.16

	P30.17

	P30.18

	P30.19

	P30.20

	P30.21

	P30.22

	P30.23

	P30.24

	P30.25




