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8.1 Show, using SPICE, how to adjust the phase and amplitude of the I and Q signals 
discussed in the beginning of the chapter to modulate the amplitude and phase of the 
resulting I/Q to construct a constellation diagram for 8-level rectangular QAM. 
 
Solution: 
Quadrature amplitude modulation (QAM) is basically trying to send two channels at the 
same bandwidth using single carrier frequency, so effectively the bandwidth that can be 
carried is being doubled. The constellation diagram for 8-level rectangular QAM is drawn 
in Figure 1, which means that there are two amplitude levels for I channel and no 
amplitude variation for Q channel. 

 
To show this in SPICE, we can first demonstrate how to the four dots on the upper plane 
where the Q channel has no phase shift. This is illustrated in Figure 2. 

 
In Figure 2, the amplitude and phase of Q channel signal are held constant, and the four 
points in Figure 2 are mapped to the amplitude and phase variations of I channel signals 
as follows:  

Table 1. The amplitude and phase variations of I channel 
 Point 1 Point 2  Point 3 Point 4 

Amplitude 3 1 1 3 
Phase 180˚ 180˚ 0˚ 0˚ 
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Figure 2. The modulation scheme for the first four points in the constellation diagram 
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Figure 1. 8-level rectangular QAM 



The SPICE simulation can be done and the schematic is shown in Figure 3. 

 
Figure 3. The schematic in SPICE for realization of the points in the upper half plane of the constellation 

diagram 
The simulation results are shown Figure 4. The amplitude of point 1 in Figure 2 is 
supposed to be sqrt(32+1) or 3.16, and its phase is tan-1(1/(-3)) or 161.6˚. This is what we 
get in Figure 4. 
 

 
Figure 4. The four points in the upper plane of the constellation diagram realized in SPICE 

 
Similarly, the other four points in the lower half plane of the constellation diagram can be 
realized. The schematic and the simulation results are seen in Figure 5 and Figure 6. 



 
Figure 5. The schematic in SPICE for realization of the points in the lower half plane of the constellation 

diagram 
 
 

 
Figure 6. The four points in the lower half plane of the constellation diagram realized in SPICE 
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8.2) Suggest a topology for the bandpass passive-integrator NS modulator where the 

input and fed back signals are currents. Derive a transfer function for your design. 

Does your topology have the extra noise/distortion term seen in Eq. (8.12)? Why or 

why not? Simulate the operation of your design.  
 

Solution) We can use the bandpass modulator shown in Fig. 8.9, where a Low Noise 

Amplifier (LNA) is connected to a passive bandpass first order NS modulator. The figure 

is shown below in Fig. 1. The output of the LNA is a current iin= gmvin, which is input to 

the NS modulator. The output of the modulator is a digital signal from the ADC, but it 

can be thought of as a current fedback iout, to the resonator. Therefore the input and the 

fedback signals here are currents.  

 

 
Figure 1: First order Bandpass NS Modulator 

 

min ini g v=  [1] 

The output current that is fedback to the resonator is equal to N.IFB, where N is the 

number of times the output of the modulator goes low to keep the voltage on its positive 

input on an average equal to Vbias.  

FBOuti N I= ⋅   [2] 

Therefore on average the voltage on the positive input of the modulator is equal to  

( ) ( )( )// 1/ min in FBOut sL sCi i g v N I− ⋅ −= ⋅    [3] 

( ) ( )( ) ( ) 2
// 1/

1
in inOut Out

sL
sL sC

s LC
i i i i

 
− ⋅ − ⋅ 

+ 
=    [4] 

iOut  can be related to vOut  as  iOut  = vOut .gm,Out, where gm,Out is the effective 

transconductance relating the digital output voltage to the fedback current.  
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Therefore Eq. 4 can be written as, 

( ) ( )2 2,
1 1

min inOut m Out Out

sL sL

s LC s LC
i i g v g v

   
− ⋅ = − ⋅   

+ +   
   [5] 

 

Since the ADC adds quantization noise VQe(f), we can write the final output voltage Vout 

to be equal to, 

( ) 2, ( )
1

m inOut m Out Out Qe

sL
V f

s LC
v g v g v
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    [9] 

Using this topology, as the comparator can on average hold its positive input node to a 

constant potential, we do not get the extra noise/distortion term seen in Eq. 8.12.  

 

Let’s use LTSpice to simulate the design; the input to the LNA is a 25MHz, 4V peak to 

peak sinusoidal signal with 2.5V DC offset. Since we need to be able to recover the input 

signal after eliminating the modulation nosie at the output, the center frequency for the 

bandpass should be at 25MHz. Therefore we can choose C=10pF and L=4.06uH, giving 

us a center frequency of f0=1/[2π √(LC)]=25MHz. 

 
Figure 2: LTSpice Simulation of the Bandpass NS Modulator 
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Figure 3: FFT of the output signal from the modulator 

 

 
Figure 4: Time Domain simulation of the NS modulator 

 

 From Fig.4 we can see that the filtered output signal has no amplitude variations 

unlike the bandpass modulator shown in Fig. 8.2 of the textbook. This is due to the fact 

that the comparator on an average keeps the voltage on its positive input terminal 

constant.  
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8.3 Show the detailed derivation of the transfer function for the modulator in Fig. 8.6. 

 

Assume VCM = 0 to simplify the derivation. Any DC bias or offset subtracts out. Also 

assume that vint is the output of the integrator, input of quantizer (not the node drawn in 

Fig. 8.6). 

 

Starting with the equations for the integrator: 

 

 int
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−
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Plugging (2) into (1) 
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Moving on to equations for the quantizer: 

 into Qev v v= − +  (4) 

Plugging (3) into (4) 
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Divide numerator and denominator by LRC to obtain 
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Problem 8.4 – Show the details of deriving the transfer function for the modulator in Fig 8.8.  

The modulator in Fig 8.8 is a 'second order noise shaping' bandpass modulator, so it can only be implemented 

as a fourth order system. This is described best by the block diagram as seen below.  

 

 

 

 

Note that the first integrator is non delaying, which just means that the half clock cycle delay is just seen as a 

delay on the input signal, and has no effect on the rest of the transfer function. If you follow the values at 

each node starting from the first summing node to the end, you get 
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Next, multiply both sides by (1+z
-2
) and expand the terms. 
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Collect all Vout terms and multiply by (1+z
-2
) again. 

 

( ) ( )( ) ( )
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Note that the block diagram represents the comparator as only adding noise to the system. While this is true, 

the comparator is the source of quantization error in the system, it also has a gain that complements the gain 

of each integration stage, making the overall gain of the system (ideally) one. This can be represented in the 

equations by setting the gains G1 and G2 equal to one, which greatly simplifies the transfer function. 

 

( ) ( )
QEinout VzVzVzzzzz ⋅++⋅=⋅−−−++

−−−−−−−− 22242242 121  

( )
QEinout VzVzV ⋅++⋅=

−−− 222 1  

 

The output of the system is simply the delayed input, and the quantization noise gets second order shaping, 

about the frequency fs/4. 
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8.5 Derive the transfer function for the modulator seen in Fig. 8.9.

The simplified representation of this schematic is seen below.

The voltage on the drain of the MOSFET can be written as

(iin − iout) ⋅ sL
1 + s2LC

and knowing  and  (where  is the effectiveiin = gmvin iout = gm,outvout gm.out
transconductance relating the digital output voltage to the current IF) we can write

vout = VQe( f ) + (gmvin − gm,outvout) ⋅ sL
1 + s2LC

and

vout
⎛
⎝1 +

gm,out ⋅ sL
1 + s2LC

⎞
⎠ = VQe( f ) + sLgmvin

1 + s2LC
= vout

⎛
⎝⎜
s2LC + gm,out ⋅ sL + 1

1 + s2LC
⎞
⎠⎟

so knowing that, on average,  and thus  we getiin = iout gm = gm,out

vout = VQe( f )⋅

NTF, Bandstop response, Fig. 8.3

s2LC + 1
s2LC + gm,out ⋅ sL + 1

+ vin⋅

STF, Bandpass response
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Figure 8.9 Design of a bandpass modulator for data conversion at RF.
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8.6. Sketch the implementation of a modulator, based on the topology seen in Fig. 8.9, 

but using multi-bit quantizer and feedback DAC. 

 

Sol. Before looking at the implementation of band pass modulator with an N-bit quantizer 

let us look at band pass modulator with a 1-bit quantizer (see Figure 8.9 in the book). The 

reference current (IFB) is steered on to the drain of the input NMOS transistor, when the 

output of the ADC goes low. Current (i.e. IFB) is steered on to the drain of the NMOS 

transistor at the input when the output of the ADC goes low. The same concept of feeding 

current based on the digital outputs of the ADC can be applied in the case of band pass 

modulator with N-bit quantizer. 

    

VDD

Rbig

vin
Vbiasngmvin

LNA

Vbiasn

Antenna

RFin

fs

Digital

IFB

Must be capable of 

supplying current

ADC

 Figure 1. Band pass modulator for data conversion at RF (see Figure 8.9 in book) 

 

 

If the 1-bit ADC in Fig 1 is replaced with an N-bit quantizer (or ADC), we need to steer 

weighted currents on to the drain of the NMOS based on the digital output values of the 

ADC. This can be realized by using a weighted current steering DAC as shown in Figure 

2. The weighted current steering DAC is shown in Figure 2. The DAC outputs weighted 

currents when the individual digital inputs are zeroes, or else outputs zero currents. These 

output currents from the DAC are steered on to the drain of the NMOS transistor at input. 

A reference current Iref is chosen such that it is much bigger than the input current 

iin=gmvin. Then the equations for the output currents of the DAC are given below.     

 

 

                        
0

0 in(0) ref 0 0 0
N

2
I I I  when D =0 and I 0 when D 1 

2
= = ⋅ = =                            (1) 
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1
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            .............................................................................  

  
N 1
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2
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Figure 2. Band pass modulator for N-bit quantizer 

 

Note: The total current supplied on to the drain of the input NMOS transistor when all 

the digital outputs of the N-bit quantizer are zero is given by   
N

ref
N

(2 1)
I  

2

−
⋅ . For example 

in case of a 2-bit quantizer the maximum current steered on to the drain 

is
2

ref ref
N

(2 1) 3
I  = I

42

−
⋅ ⋅ . 
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8.7 Show the details of how Eq. (8.18) is derived. 

 

 ( )
( ) ( )1/2
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11
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⋅ −
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Equation 8.18 is the transfer function for the fs/2 resonator seen in F-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Charge conservation states that the charge flowing into a network is equal to the charge 

leaving the network.  When viewing F-1 the charge is leaving through the feedback 

capacitor.  We can characterize this charge over one clock cycle and say: 

 

 ( )[ ]( ) ( ) ( )( )1
out s F CM out s F CM

v z nT C V v z n T C V− − − −    

 

It is clear that the common mode voltage cancels out.  We can also take this time domain 

equation into the z-domain by substituting
2 sj f T

z e
π ⋅

= : 

 

 ( )( )11
out F

v z z C−
−  

 

The above equation is the difference in charge (current) which flows to the output.  To 

determine the charge that is flowing into the inverting terminal of the op-amp we have to 

realize that we defined the time when Φ2 goes low as nTs.  From this definition we can 

see that the v1 signal experiences ½ a clock cycle delay, v2 experiences no delay, and the 

vout signal must experience a full clock cycle delay. 

 

Let’s look at the contribution from v1 and v2: 

 

 ( ) ( )( )1 1 1/ 2
CM s I

Q V v z n T C= − −    

 

F-1 Implementing and fs/2 resonator for use in a band-pass modulator 

v1(z) 

Φ1 Φ2 

vout(z) 
VCM 

v2(z) 

VCM 

VCM 

-1 

-vout(z) 

CI 

2CF 

CF 

VCM 

Φ1 

Φ2 

n 

(n – ½) 

(n – 1) 



 ( )( )1/2

1 1CM I
Q V v z z C−

= −  

 

 ( )[ ]( )2 2CM s I
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2 1 1 2CM I CM I I
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The contribution from the vout is: 

 

 ( ) 11 2 2
out s F out F

v n T C v z C−
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Notice the VCM terms are removed from this equation.  We can use charge conservation to 

say: 
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Q 8.8 Derive the transfer function of the modulator seen in Fig. 8.12 
 
Sol. Figure 1 shows the schematic of fig. 8.12 on page 294. In order to derive the transfer function 
 charge transfer from input to output is analyzed. Output signal is clocked at 1  and op-amp is 
 considered ideal.  
 

1 2

CMV

 1v z

 2v z

 outv z
2 FC

IC

FC

CMV
 outv z

 
Figure 1 implementing a resonator for use in a bandpass modulator 

 
  

sT

1

2

1n  1 2n  n t
 

Figure 2 Timing diagram for the switched capacitor modulator clocks 
 
 At the instant ( 1) sn T  and ( 1 2) sn T  the circuit can be realized as seen in Fig. 3 and Fig. 4 
  

1

CMV

 1v z

 outv z
2 FC

FC

CMV
 outv z

IC

 
Figure 3 Circuit when 1 switch is closed 
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2

 2v z

2 FC

IC

FC

CMV
 outv z

 
Figure 4  Circuit when 2 switch is closed 

  
 Initial charge in the circuit across different capacitors at time ( 1) sn T , at the falling edge of 1  
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 Now looking at the output at instance ( ) sn T  since it is clocked at 1  and charge across the other 
 capacitors at  ( 1 2) sn T   
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 As assumed that op-amp is ideal the change in charge across IC  and 2 FC  is dumped across the 
 feedback capacitor of the op-amp, thus by charge conservation 
 

   2 2F F I I F FfinC iniC finC iniC fin C ini CQ Q Q Q Q Q      

 
         

  
1 21 1 1 2

                                                         2 1

F out S out S I S S

F CM out S

C v n T v n T C v n T v n T

C V v n T

                   

    
 

 
 

 Putting the equation in terms of 1z  and assuming the constant term as zero because it is a 
 reference DC voltage and rearranging the outv together 
  

   1 1 1 2
1 2F out out IC v v z C v z v z      
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 Thus transfer function of circuit with respect to 1v  is 
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Solution by Geng Zheng

8.9     Using the modulator topology in Ex. 8.4, show that if we apply a 25 MHz input sinusoid to the

modulator we can recover this input signal by passing the output digital data through a bandpass

filter with a very small bandwidth (show that the input and output signal amplitudes are equal).

Solution:

For simplicity we can use the second-order bandpass filter, Fig. 1, with a transfer function

vout

vin
=

s 1
RC

s2s 1
RC
 1

LC

 (1)

We need to pick the values for R, L, and C so

f o=
1

2LC
=25 MHz  (2)

We also want the filter to have a very small bandwidth. Here we arbitrarily set the bandwidth, B

to 410 kHz (the pass frequency range of the filter is 25 MHz±410 kHz ). Then the required Q

factor is

Q=
f o

2 B
=25 MHz

820 kHz
=30.5  (3)

This filter has a very high Q! In practical implementation, a biquad active-RC, gm-C, or

switched-capacitor implementation may be used. Setting C=10 pF  and using Eq. 2 we get

L=4.05 uH . 

Also knowing 

Q=RC
L

 (4)

we can have R=20 k . 

Figure 1   Second-order bandpass filter.



The frequency response of this bandpass filter is shown in Fig. 2.

Using this bandpass filter to filter the modulator output in Ex. 8.4 (with a 25 MHz input) results

in the time domain filtered output shown in Fig. 3. There is only small difference between the

amplitude of the input and the filtered output.

Fig. 4 shows (a) the output spectral before filtering and (b) the filtered output spectral.

Figure 2   The frequency response of the high-Q bandpass filter.

Figure 3   The input and the filtered output of Ex. 8.4.

Figure 4   The output spectral of the modulator.
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Q.8.10 Derive the transfer function of the topology seen in Fig. 8.17. Verify that the topology is 
 unstable by determining the location of the topology’s poles.  
 
Sol. The block diagram of Fig. 8.17 is shown below 
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Figure 1   A fourth-order band pass modulator using two delaying resonators (unstable) 

  
 Looking at the block diagram, the output  outv z  is given as  
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 Simplifying it further provides 
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 Analyzing the denominator of above equation to determine the poles of the system 
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 The stability criteria condition on the forward gain of the second-order low pass modulator 
 is 0 1.333FG  . The forward gain of modulator shown in Fig. 1 is 1 2FG G G (quantizer gain 
 is not considered, one bit quantizer has undefined gain).As suggested in the text, assuming the 
 forward gain of the fourth-order band pass modulator should follow the same criteria for 
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 stability, the gain of modulator in Fig.1 is assumed as 1FG   (taking into the account that 1-bit 
 quantizer adjusts its gain).  
 
 With 1 2 1FG G G  , setting 1 2 1G G   putting the values in equation below:  
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 The poles of system are at 1 2 3 41.27   ,   1.27   ,   0.787   ,  0.787p p p pz z z j z j       looking 
 at the values we can say that the system is unstable because the two poles are outside the unit 
 circle. Also note that if we assume the value of either 1G  is less than 1 then 2G will be greater 
 than 1 and vice-versa, which will still result in poles outside the unit circle. Thus the modulator 
 is inherently unstable because of excess delay in the system.  
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Q8.11  Using a bandpass modulator and digital demodulation (sketch the schematic of your design) 
 show how to recover 10 KHz sine wave that is amplitude modulated with a carrier frequency of 1 
 MHz. Use SPICE to verify the operation of your design. 
 
 
Sol. Figure 1 below shows the block diagram of bandpass modulator and digital demodulation scheme, 

input signal should be centered at 4sf  for the resonator used in bandpass modulator. The given 
carrier frequency is 1 MHz thus effective sampling frequency will be 4 MHz for signal to be 
recovered from the bandpass modulator centered at 4sf .  
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Figure 1 Block diagram for bandpass modulator with digital I/Q demodulation  
 
 For this solution we will be using 4th order bandpass modulator and additional circuit created with 

ideal component as supplied in addition with text material at CMOSedu.com. As discussed in the 
text the 4sf modulator is implemented using two 2sf in parallel or as K-path sampling system. 
This provides an easier way to implement two analog delays in feedback path in discrete time 
circuit.  

 

 
Figure 2 Fourth order 2sf resonator with QAM input signal 
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Figure 3 Two fourth order 2sf modulator put in parallel and output clocked at different 

 Clock phases with effective sampling at sf and modulator behaving as 4sf  

 

in phase 10 KHz signal

quad phase 10 KHz signal

I/Q carrier frequency   1 MHz signalCf

modulation of input signal differential input to the m
odulator

 
Figure 4 generating 1 KHz QAM signal at carrier freq. 1 MHz  

through ideal components and centering around VCM 
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Figure 5 non overlapping clock frequencies of 2 2 sf MHz  

 Supply voltages and simulation time 
 

 
Figure 6 generating the and multiplying the modulator output  

with 1, 0,-1 for digital demodulation 
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Figure 7 Digital I/Q demodulation, scaling the outputs  

and removing the common-mode voltage 
 

 
 

Figure 8  Simulation result for the working bandpass 
modulator; check CMOSedu.com LTspice examples for more 

 
Note: In the solution a simple low pass filter is used it can be replaced with digital filter as seen in block 
diagram 
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