
Jason Durand

Problem 2.1 – Qualitatively, using figures, show how impulse sampling a sinewave can result in an

alias of the sampled sinewave at a different frequency.

The fourier transform of a sinusoid with frequency f0 looks like

in the frequency domain. An impulse sampling scheme, with impulses in the time domain separated by

T (1/fs) is, in the frequency domain, also an impulse train, with the impulses separated by the sampling

frequency fs. Multiplying these two signals in the time domain (sampling the sinusoid) results in the

figure below, in the frequency domain.

...                                                                                                       ...

If the frequency of the sampled signal is close to the sampling frequency, the resulting frequency

domain representation is closer to the figure below.

...                                                                                                      ...

Notice slightly below the sampling frequency the signal that is wanted (f0). Since it is higher than the

nyquist frequency (fs/2 = fn), the higher frequency image from sampling folds over and appears at a

lower frequency than the input to the sampler (on the graph, appears as fs-f0). In the time domain, it can

be easier to see how the high frequency folds over to a lower frequency signal, as shows below.
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Time domain graph of sine wave and the impulse samples.

The sampled points, though they are sampled from the high frequency sine wave, also form a lower

frequency sine wave alias, which is the dotted red line.

Aliasing can be seen in many places unexpectedly as well. Driving down a highway at night, and

watching the rims of an adjacent car slow to a stop, then spin the other direction (though the car is still

driving down the highway!) is a readily observable form of aliasing. It has to be at night, because the

60Hz flicker from fluorescent street lamps will optically 'sample' the rim's spoke position, and highway

speeds are high enough that the frequency (rate of wheel spin) of the wheel is higher than or near the
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60Hz sampling frequency of the fluorescent light. 

Additional:

The matlab code used to generate graphs

%the t vector is time, and represents analog time

%the n vector represents the sampling impulse train

% and is the same dimension as t

%input = cos(2pi*fs/10), fs=sampling frequency

t = 0:99;

n_1 = [1,zeros(1,9)];

n = [n_1, n_1, n_1, n_1, n_1, n_1, n_1, n_1, n_1, n_1];

input = cos(t.*2*pi*1/11)+2;

input2 = cos(t.*2*pi*1./(10*(1/(1-1/1.1))))+2;

sampled_input = input.*n;

figure(1)

plot(t, input)

hold on

stem(t, sampled_input)

axis([0,99,0.5,3.5])

xlabel('Time'):ylabel('V')

hold off

figure(2)

stem(t, sampled_input)

axis([0,99,0.5,3.5])

xlabel('Time'):ylabel('V')

hold on

plot(t, input)

plot(t, input2, 'r:')
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2.2. Re sketch Figs 2.12 and 2.13 when decimating by 5. Hint: use a counter and some 

logic to implement the divide by 5 clock divider. 

 

Sol: First let us consider the operation of a decimation block with decimation factor k as 

shown in figure 1. Input signal is filtered by the Anti Aliasing Filter (AAF) which is band 

limited to fs/2k, and has a sample rate fs. This means that the desired signal spectra using 

decimation can not extend beyond fs/2k. A clock divider is used to obtain the decimation 

frequency fs/k from input clock fs. This decimation frequency is used as sampling 

frequency to process the signal obtained after Anti Aliasing Filter stage. As k=5 in this 

case the decimation frequency is fs/5 and the bandwidth of the desired signal spectra lies 

below fs/10. A divide by 5 ripple counter is realized using 3 divide by 2 counters and 

additional logic to reset the counter to zero, once the count reaches the value of 5. An  

and gate (i.e. Q2.Q1i.Q0)  with it’s output connected to the active high asynchronous 

clear of the counter as shown in the clock divider in figure 1.  As the count value reaches 

5 i.e. Q2=1,Q1=0,Q0=1 (MSB to LSB), the counter is reset (see Table 1). 

 

Q2 Q1 Q0 Count

0 0 0 0 

0 0 1 1 

 0 1 0 2 

  0 1 1 3 

 1 0 0 4 

 0 0 0 0 

Table 1. Divide by 5 Counter 

 

 
 

   Figure 1. Components of Decimation block with k=5 

 

 

The counter value is 

reset once the value of 

“Q2Q1Q0” becomes 

“101” 
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The spectrum when decimation with k=5 is employed is shown in figure 2. In (a) the 

original input signal spectrum before processing by AAF is shown. After processing by 

the Anti Aliasing Filter which is band limited by fs/10, the desired input signal spectrum 

repeats at every fs. Since the output at AAF is sampled with the output clock from the 

divider i.e. fs/5, the output spectrum of the sampling gate repeats at fs/5, and the original 

signal spectrum lies below fs/10. 

 

 
Figure 2. Spectrum when decimation with k=5 is employed 

 



Solution by Jake Baker

2.3 Explain why returning the output of the S/H to zero reduces the distortion
introduced into a signal. What is the cost for the reduced distortion in a practical
circuit?

Solution: Figure 2.15 from the book, and seen below, shows how the output of the S/H
can be returned to zero. The big problem with returning the output to zero is the
reduction in the output signal's power. As  the power in the output signal goes toT → 0
zero. The effect is to reduce the signal-to-noise ratio, SNR. Generally, killing SNR to
improve distortion is not a good idea.

Next, let's answer why returning the output of the S/H to zero reduces the
distortion introduced into a signal. Reviewing the derivation for Eq. (2.16) we see that
the ideal impulse sampler is weighted with a response by the S/H given by

Y( f ) =

Weighting from S/H, H(f)

T ⋅ Sinc(π ⋅ T ⋅ f )

The constant value of T multiplying the Sinc function accounts for the reduction in signal
power as . This term doesn't effect distortion just power. The Sinc term, however,T < Ts
effectively filters the input signal and thus causes distortion when . As T movesT > 0
away from (becomes less than) Ts the Sinc term moves closer to 1 resulting in a reduction
in distortion. 

Simulation examples are seen on the next two pages.

time

Figure 2.15 Sample-and-hold output with return-to-zero format.

Sinewave in

S/H out
Ts

T

y(t)



Input = Output

Figure showing S/H operation when T = Ts

Showing return to zero with T = Ts/4

Simulation schematic for simulating a S/H with RZ output.

Showing the output spectrum when 
T = Ts/4. Note the reduction in the
output power.

Output traces are shown below.



Final simulation comparing input sinewave at 43 MHz, S/H output with T = Ts, and S/H
output with RZ where T = Ts/4.

Input signal at 43 MHz

Output of the S/H with 

Clock frequency is 100 MHz

Output of the S/H with RZ 
and T = Ts/4

T = Ts



Geng Zheng

2.4 Sketch the input and output spectrum for the following block diagram. Assume the DC

component of the input is 0.5 V while the AC component is a sinewave at 4 MHz with a peak

amplitude of 100 mV. Assume the clock frequency is 100 MHz.

Solution:

For a sinewave input, the output spectrum, Y  f  , of a Sample-and-hold is described by

Y  f =
V p

2 j T s
⋅∑

k=−∞

∞

[ f− f in−k f s− f  f in−k f s]⋅T⋅Sinc⋅ f⋅T ⋅e
− j⋅2⋅f⋅T

2 (1)

or

∣Y  f ∣=T⋅∣Sinc⋅f⋅T ∣⋅ V p

2T s
⋅∑

k=−∞

∞

[  f − f in−k f s− f  f in−k f s]  (2)

which were derived in Section 2.1.3 of [1].  As we can see in Eq. 2, the output spectrum is the

ideal impulse sampler response weighted by a Sinc function. That is, there is a droop in the

S/H's response.  This attenuation in the S/H's output is given by

Attenuation=Sinc ⋅T⋅ f   (3)

For most circuit designs T=T s . And for this problem, f s=1/T s=100 MHz .  Using Eq. 3 we

can calculate the attenuation of the S/H for a 4 MHz sinewave input signal as

Attenuation@ 4MHz=Sinc ⋅T s⋅f in=Sinc⋅ f in

f s 
                             =Sinc⋅ 4 M

100 M =0.997    −0.02 dB
 (4)

which is a very small value. However, for the image at 96 MHz the attenuation is

Attenuation@96 MHz=Sinc⋅ 96 M
100M =0.042    −27.6dB  (5)

Sample and 
hold (S/H)

Sample and 
hold (S/H)

Sample and 
hold (S/H)

Out

Clock

+
-

~



Geng Zheng

Fig. 1 shows the output spectrum of a S/H.

Repetitively sampling and holding a signal does not result in additional attenuation. If we

sample the output of the a S/H circuit using another identical S/H and same clock signal, the

output from the second S/H will be the same as the one from the previous S/H. So the second 

S/H can be seen as just a delay element.  Passing the input through three identical S/H circuits

in series results in the same output spectrum as passing it through one S/H. Thus the output

spectrum of the 3-stage S/H is the same as shown in Fig. 1.

Now let us using SPICE simulation to verify our result. In Fig. 2 the spectrum for a 1-stage S/H

is shown.  Shown in Fig. 3 is the spectrum of a 3-stage S/H. The attenuation for both cases is 

-27.7 dB. The S/H circuit in the simulation is from the Electric jelib file for Fig. 2.18 in [1].

Figure 1   Output spectrum of a S/H

∣Y  f ∣

f s

f0

Signal at 4 MHz Image at 96 MHz

Ideal impulse sampler response

S/H droop
∣Y  f ∣

f s

f0

output at 4 MHz Image at 96 MHz

The resulting output spectrum

0 dB

27.6 dB

Figure 2   The spectrum of a S/H circuit.
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Reference:

[1]    R. J. Baker, CMOS Mixed-signal Circuit Design, Second Edition, Wiley-IEEE, 2009.

Figure 3    The spectrum of the 3-stage S/H circuit.



Lincoln Bollschweiler 
2.5) Repeat Ex. 2.2 with an input sine wave of 30MHz. 
 
Example 2.2 
Using an ideal SPICE model for the S/H show, and discuss, the spectrum resulting from 
sampling a 3MHz sine wave at 100 Msamples/s. 
 
 
The example used a 0.5Vp magnitude sine wave (used here as well). This can be 

interpreted on the dB scale as   
( )0.5 2

20log 9
1.0

rms

rms

V
dB

V
= − . This implies that all spectral 

contents are 9dB below any value that is calculated using the formulae provided in 
chapter 2. Increasing the input signal tenfold from 3MHz to 30MHz reduces the number 
of samples per input signal period, and approaches the Nyquist rate but does not quite 
reach it. The Nyquist frequency is  fn = fs/2 = 100MHz/2 = 50MHz. This indicates that 
one should be able to reconstruct the signal, post processing and post digital to analog 
conversion, alias free. It does not, however, mean that the signal will be a good 
representation of the input signal. Figure 2.5.1 shows sampled and held values (the blue 
curve, Vout) and one can see that to get a good representation of the sine wave, faster 
sampling should be used. 
 
The spectral response is shown in Fig. 2.5.2. We see the primary output frequency 
(30MHz) is, as discussed, 9dB below the attenuated value of, using Eq. 2.16, 

30 0.858 1.32
100

Sinc dBπ ⋅⎛ ⎞ = = −⎜ ⎟
⎝ ⎠

, or -9dB – 1.32dB =  -10.3dB. We see the output 

spectral bands for the S/H repeat at n ⋅ fs  ± 30MHz (70MHz, 130MHz, 170MHz, …).  
 
 

 
Figure 2.5. 1. Transient response of sample and hold. Input signal = 30MHz. Output sampled at 
100MSamples/s. 

 



 
Figure 2.5. 2 Spectral response of output of S/H after sampling a 30MHz sine wave at 100MSamples/s. 

 

The attenuation through the S/H at 70MHz is 70 0.368
100

Sinc π ⋅⎛ ⎞ =⎜ ⎟
⎝ ⎠

. This is -8.7dB. 

When reduced by the input attenuation of -9dB we see an overall attenuation of -17.7dB. 

30MHz, 
-10.3dB 

70MHz, 
-17.7dB 130MHz 

170MHz 
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Problem 2.6 - Re-sketch figure 2.22 if the input signal is a sinewave at 10Mhz, with no other spectral

content.

Frequency domain representation of a 10MHz sinusoid

After applying an anti-aliasing filter with cutoff of 25MHz, the spectra of the input signal is cropped to:

Since the 10MHz sinusoid has no spectral content above the fs/2 Nyquist limit, the anti-aliasing filter

has no actual effect on this theoretical, perfect signal. A real world signal might likely have frequencies

higher than half the sampling frequency.

With a sampling frequency of 50MHz, the attenuation due to an ideal sample and hold at 10MHz is

equal to Attenuation=sinc
⋅ f o

f s

=sinc
⋅10MHz

50MHZ
=.935=−0.6 dB .

Sample and hold without

sampling effects
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Output of ideal sample and hold, including sampling effects:

The reconstruction filter is designed to have gain equal to the attenuation of the sample and hold stage,

reconstructing the exact signal that was initially sampled.

Output after ideal reconstruction:
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Q 2.7 Suppose we are interpolating, with K=8, digital data with fs= 100MHz. Prior to 
interpolation  what is the frequency range of the desired spectrum? After interpolation 
what is the frequency range of desired spectrum? What is the interpolator’s output clock 
rate? 

 
Solution: The block diagram of interpolation scheme is as shown below: 
 

. sTy i
K

⎡ ⎤
⎢ ⎥⎣ ⎦

[ ]sx nT

 
Figure 1 

   
Interpolation is a technique which is applied to overcome the difficulties involved in 
designing the brickwall shaped RCFs (reconstruction filters) with a cutoff frequency of fs/2 
(the Nyquist frequency). In this scheme the incoming signal with sampling frequency of fs 
is upsampled by a factor of K (value of K is in power of 2 usually, but not necessarily) 
while keeping the desired spectrum limited in bandwidth. Thus by oversampling the signal 
by K. fs the effective Nyquist frequency becomes larger than the maximum wanted 
frequency of interest. Then the signal is applied to RCF for the desired data. 
 
From the question the interpolation is carried on digital data with fs= 100MHz. Based on 
the discussion above the desired frequency range of the spectrum should be 2sf≤  or 

nf (Nyquist frequency) i.e. 50MHzdesiredf ≤ .  
 
After interpolation the new Nyquist frequency ,n newf of the system becomes 
 

2 8 50MHzsK f⋅ = ×  
 

, 400MHzn newf =  
 
As mentioned earlier this new ,n newf  relaxes the criterion for the design of RCF, though the 
original information still resides in frequency spectrum of 2sf≤  i.e. 50 MHz  now the 
RCF can start roll off at 2sf  and extended up to 2s sK f f⋅ − .  
 
Thus after interpolation, the frequency range of desired spectrum is still 2sf≤   i.e. 50 MHz. 
 
From figure 1 it is clear that the interpolator output clock rate is 800MHzsK f⋅ = .Figure 2 
below shows an example spectrum, adapted from Figure 2.27 on page 45 of course book to 
explain the concept better.  
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sK f⋅2sK f⋅

2s sK f f⋅ −

8
100s

K
f MHz
=
=

f

f

f

f
 

Figure 2 
 
Figure 2 demonstrates one of the scheme for interpolation i.e. zero padding when 8K = . 
Part (a) of figure shows the desired signal spectrum and interpolator input. After zero 
padding part (b) shows the image frequencies along with desired signal. In part (c) after 
interpolation an ideal image removal filter removes the image frequencies and signal is 
applied to RCF. The frequency response of RCF is shown in part (c) as well, where it starts 
to roll of at 2sf . Part (d) shows the non-ideal image removal with some minor spectral 
content. After passing it to RCF the major signal power lies in the spectrum of 2sf f≤ . 
 
 
 
 
 

 



          Tyler Hansen 
 
 
2.8: Verify, with simulations, that the topologies seen in Fig. 2.34 are equivalent. 
 
 
First, I will make my life easier by borrowing the LTSpice schematic and setup of an analog S/H (Sample 
and Hold) circuit from the one used in the book to create Figure 2.18. This is seen below in Figure 1: 
 

 
Figure 1: Analog S/H setup borrowed from the book LTSpice set used to create figure 2.18. For 

clarity, in this solution this configuration will be referred to as configuration A. 

 
I will use this setup to generate the single S/H interpolation path. From Figure 1, we can see that Ts is 10ns. 
Since the single path S/H should have twice the frequency of the dual path S/H, the Ts of our dual path 
setup will be 20ns, or half of the sample frequency. 
 
It is a simple matter to copy the previously existing schematic and apply an inverted clock pulse (at half 
the frequency, or double the period of the single S/H config.) to the second S/H path. The Input signal is 
plumbed to both S/H blocks, and the outputs are summed using two 5K resistors (as can be seen in the book 
Figure 1.11). Note that it is a time saver to modify and use previously existing schematics and simulations 
instead of starting from scratch. The K=2 (dual path) S/H schematic can be seen in Figure 2 below: 
 

 
Figure 2: K=2 Dual Path S/H at 1/2 the clock frequency of the single S/H schematic. For clarity, in 

this solution this configuration will be referred to as configuration B, or the K=2 dual path 
configuration. 

 
Now let’s take a look at the simulation results for each configuration. For clarity, in this solution the 
configuration in Figure 1 and in Figure 2 will be referred to as configuration A and B, respectively. Figure 
3 shows the simulation results of config. A. 



 

 
Figure 3: Input and output results of configuration A simulation, along with the fft from 0 to 

800MHz of the output signal. 

 
 
This is what we expect in simulation results of a simple sample and hold circuit. The S/H samples the input 
every 10ns and holds that value until another period passes, at which point it samples again. The fft shows 
our 3MHz signal at a solid ~-9dB (on account of fft’s using rms values instead of peak values), and the 
repeating spectrum at fs +/- our signal frequency. Also, the magnitudes of the higher frequency spectra are 
attenuated according to the expected sinc response of the S/H. 
 
Now let’s take a look at the results for the configuration B simulation. 



 
Figure 4: Input and output results of configuration B simulation, along with the fft from DC to 

800MHz of the output signal. 

 
The configuration B simulation results are also, more or less, what we expect. There are some minor 
differences… 
 
In comparing the simulation results for configuration A and B a few differences are apparent. While it 
appears that the sample and hold occurs for both configuration at a 10ns period, there appears to be more of 
a delay in the K=2 dual path configuration (config B). Also, there appears to be additional frequencies, 
albeit they are quite attenuated, on the fft response for configuration B. Let’s look at these differences, 
starting with the increased delay. 
 
 
 
 
 
 



 
 
 
 
Increased Delay for Configuration B: 
 

 

 
Figure 5: Comparison of the S/H delay characteristics between configuration A and B, respectively. 

 
This difference is explained in the book on page 50. To summarize, when using a two-path topology to 
interpolate, a delay of Ts/K is expected on the output. Ts for configuration B is 10ns, so a delay of ~5ns is 
expected. 
 
Additional fft frequencies in configuration B: 
 
A significant benefit of a 2-path interpolation scheme such as the one we have in configuration B is to 
lower the requirements of the RCF by effectively increasing fs. Using the two-path topology, we don’t need 
to increase the clock frequency in order to increase the output signal frequency. We do this by sampling the 
signal twice inside of a single clock period instead of once. Then we add the two together. Each S/H 
operates at 20ns, a sampling frequency of 50MHz before the signals are added. However, the output sum 
reflects a period of 10ns, or 100MHz. Therefore, when looking at the fft, we see the large frequency spectra 
contributed by the output signal at repeating 100MHz intervals… but we also see some “ghosting” 
frequency spectra at the actual sample frequency of the two constituent S/H circuits at repeating 50MHz 
intervals. In other words, this fft effect is the result of the summing that occurs between two 50MHz signals 
to produce the 100MHz output.  
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2.9 Determine the transfer function, and verify with simulations, the behavior of 4 

paths of the switched-capacitor topology seen in Fig. 2.36. 
 
To understand how to solve this problem the reader must read sections 2.1.5 – 2.1.6.  The 
reconstruction filter (RCF) will not be able to fully attenuate (set to 0) the spectral 
content above the Nyquist Frequency (fN = fS/2).  F-1 shows the difference between an 
ideal and a typical RCF 
 

 
 
We can increase the sampling frequency (fs) so that the fN moves to a higher frequency 
and we keep the same restrictions on the input spectrum.  Linear interpolation can be 
accomplished by a K path switched capacitor circuit.  To determine the transfer function 
of a K path switched capacitor circuit let us begin with the 1 path switched capacitor 
circuit seen in F-2.  We will go through the derivation shown on pages 51 and 52, 
because they are essential to understanding a 4 path switched-capacitor circuit. 
 

 
 
To determine the transfer function of the switched-capacitor circuit seen in F-2 we will 
use the equations on page 51: 
 

[ ] ( ) ( ) ( )1 12vout out s I F in s I out s FQ v nT C C v n T C v n T C⎡ ⎤= ⋅ + = − ⋅ + − ⋅⎡ ⎤⎣ ⎦⎣ ⎦  

 
To understand this equation let’s take a closer look at how this circuit works.  At t = (n – 
1)·Ts, both switches are open and we must find the charge on the capacitors: 

fN 
f(Hz) 

Ideal RCF 

fN 

Typical RCF 

f(Hz) 

F-1 Representing an ideal and typical RCF 

vin 

Φ1 Φ2 

vout 

CF CI 

Φ2 

Φ1 

t 

t 

snT

( )1
2 sn T−

( )1 sn T−

F-2 Switched-capacitor sampling circuit 



 
( )1

FC out s FQ v n T C= − ⋅⎡ ⎤⎣ ⎦  
 

( )1
IC in s IQ v n T C= − ⋅ ⋅⎡ ⎤⎣ ⎦  

 
When Φ1 closes the charge on CI is updated with charge from the input and at t = (n − 
1/2)·Ts that charge is left on CI: 
 

( )1
2IC s IQ v n T C⎡ ⎤= − ⋅ ⋅⎣ ⎦  

 
Then Φ2 opens at t = (n − 1/2) and because charge must be conserved we can now say 
that the charge left on the output is equal to the charge that was previously on the 
capacitors, or: 
 

[ ] ( ) ( ) ( )1 12out s I F in s I out s Fv nT C C v n T C v n T C⎡ ⎤⋅ + = − ⋅ + − ⋅⎡ ⎤⎣ ⎦⎣ ⎦  

 
Writing this in the z – domain and solving for the gain: 
 

( ) 11 sv n T V z−− ⋅ → ⋅⎡ ⎤⎣ ⎦  
 

( )
( )

1/2

1
out I

in I F F

v z C z
v z C C C z

−

−

⋅
=

+ − ⋅
    (1) 

 
For input frequencies << fs this circuit behaves like a low-pass RC filter.  For f << fs we 
can write: 
 

2
1 2s

fj
f

s

fe j
f

π
π≈ +  

 
The z−1/2 in the numerator only affects the delay of the output by half of Ts and is 
negligible for f << fs.  The transfer function this becomes: 
 

1 2

out I

in
I F F

s

v C
v fC C C j

f
π

=
⎛ ⎞

+ − ⋅ −⎜ ⎟
⎝ ⎠

 

 
 

 



1

1 21 1 2

I

out F

in I
F

I sF s

C
v C

fv C f j Cj C fC f
ππ

= =
⎛ ⎞ ++ − −⎜ ⎟
⎝ ⎠

 

 
The transfer function now looks like a RC low-pass filter with: 
 

1
sc

I s

R
C f

=  

 
To determine the transfer function and behavior of a 4-path switched-capacitor consider 
F-3. 
 

 
 

For the single path, the output is updated at every Ts so, using Eq. (2.56), where z (1-path) 
in Eq. (1) is at the sampling frequency fsnew/K = fs (or KTs = 1/fsnew), we can write: 
 

442
1 zez sTfj

path ==−
π  

 

4

2

)(
)(

−

−

−+
⋅

=
zCCC

zC
zv
zv

FFI

I

in

out  @ a sampling rate of 4fs 

 
It is important to note that the Rsc of a single path is still: 
 

1
sc

I s

R
C f

=  

Φ1 Φ2 

vout 

CI CF 

Φ2 

Φ2 Φ3 

CI CF 
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CI CF 

Φ4 
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Φ1 
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Φ3 

F-3 Schematic and clock pulse of a K=4 switched-capacitor interpolator 
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Because the input is sampled (on a single path every Ts = 1/fs).  If we let CI = 1 pF, CF = 
10 pF, Ts = 10 ns: 
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Which (for f << fs) leads to a low pass filter with: 
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So we would expect the output to be 3dB below the input, or if vin = 1 V then vout = 0.708 
V.  Let’s prove this with a simulations using LTspice and modifying the Figure 2.36 
simulation provided at the book’s website: 
 

 
 

 
This far we have assumed f << fs but what happens if that stipulation isn’t true for a K 
path switched-capacitor interpolator?  We can go back to the z-domain transfer function 
and determine the frequency response of the transfer function: 
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Let’s look at the magnitude of this transfer function: 
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Let x = 2πf(4Ts): 
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Let’s set up a table for this transfer function and determine the magnitude for crucial 
frequencies: 
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We can use this to plot the frequency domain of the K = 4 switched-capacitor interpolator 
and use SPICE to verify it: 
 
 
 
 
 
 
 
 
 
 
 
The simulation results below sets CI = CF and simulates at ~0 and fs/4 (note fs = K·fs): 
 

 
 
So for fin << fs we can approximate the response as a low-pass RC filter.  When the input 
frequency increases to where fin is no longer << fs we can use the frequency response in 
F-4 to determine the approximate response seen the simulation results. 
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F-4 Frequency response of a K=4 path switched-capacitor interpolator 
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Kaijun Li 
Problem 2.10 
In your own words, why the 2φ  switches are shut off after the 1φ  switches in the S/H seen in Fig. 
2.39? 
 
The topology seen in Fig. 2.39 is a fully differential sample and hold circuit. 

 
Fig. 2.39 Fully‐differential S/H differential topology 

The reason why 2φ  switches are shut off after the 1φ  switches is that when 2φ  switches are shut 
off, the charge injected from 2φ  sees capacitor CH as high impedance. In the other words, if the 

2φ  switches are shut off first, the inverting input node of the op-amp connects the top plate of CH 
to the positive output node of the op-amp, and this makes the impedance seen from the bottom 
plate of CH a low impedance. So if the 2φ  switches are shut off first, the charge injected from 2φ  
switches not only goes into input node vinp, vinm, but into hold capacitor CH, which means when 

1φ  switches are shut off, the charge transferred into output node will be input dependent. 
 

CH

CH
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2.11) Sketch the op-amp’s open loop response, both magnitude and phase, specified by 
Eq. (2.59).  
 
Solution: 
Equation 2.59 gives the open-loop frequency response of an op-amp with a single 
dominant pole.  

dB

OLDC
OL

f
fj

A
fA

3

.1
)(

+
=                       Eq. (2.59) 

For more details about the derivation of this equation, refer to pg.680 of CMOS: Circuit 
Design , Layout and Simulation book.  
 
We are asked to sketch the op-amp’s magnitude and phase response plots versus input 
frequency. To do this, lets find the magnitude of the transfer function.  
Taking magnitude of the above equation we get, 

2

3

21 ⎟⎟
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⎛
+

=

dB

OLDC

f
f

A
Magnitude  

Magnitude Resposne 
To plot the magnitude response, we calculate the magnitude at a few frequencies and plot 
it against input frequency.   
 
- At DC or at f=0, magnitude of op-amp’s open loop response is just OLDCA . 

- For input frequencies less than dBf3 , we can consider .0
3

=
dBf
f  Therefore, magnitude 

still remains at OLDCA .  
- Therefore, we can see that as we get very close to dBf3 , the magnitude response starts to 
decrease. And once the input frequency exceeds dBf3  the magnitude response starts to 
rolloff at a rate of -20 dB/dec. The -20 dB/dec rolloff comes due to the fact that at higher 
frequencies, the magnitude response can be written as, 

f
f

A

f
f

A

f
f

A
sfrequencieHiMagnitude dB

OLDC

dB

OLDC

dB

OLDC 3

3

2

3

@ ⋅==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−  

Now, to plot the magnitude in frequency domain on a log plot, we calculate magnitude as 

equal to ( ) ⎟⎟
⎠
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As the frequency increases up in a decade ( dBff 310 ⋅= ), magnitude of the op-amp’s 
open loop response will be equal to 
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Therefore, for every decade increase in input frequency, the magnitude of the op-amp’s 
open loop response will fall at the rate of -20dB/decade. Sketching the magnitude 
response of the open-loop gain looks like: 
 

 
Figure 1: Magnitude Response of an Op-Amp 

Phase Response:  
 
Calculating the phase of eq 2.59 we get, 
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- At DC, we see that the phase response of the op-amp’s open loop response is 0°. 
- At  dBff 3= , the phase response is 45°.  
- For higher frequencies, the phase response reaches its peak value of -90°.  
 
Using these values, the phase response of the op-amp is sketched below: 

fp = f3dB Frequency (Hz)

Phase (deg)

0º

-45º

-90º

 
Figure 2: Phase Response of an Op-Amp 
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Since an ideal op-amp has a single dominant pole, like a RC response we can see that the 
gain will rolloff at -20dB/decade once the first pole kicks in at f3dB. Also, due to this pole 
we will have a phase shift of 90o in the phase response of the circuit.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Solution by Jake Baker

2.12 What is the voltage across CF in Fig. 2.41 in terms of the input-referred offset and
noise? Verify your answer with simulations commenting on the deviation of the
frequency behavior of the input-referred noise to the frequency response of the
voltage across the capacitor.

Solution: Figure 2.41 including the input referred noise, , power spectralVinoise
2 ( f )

density (PSD with units of V 2/Hz) and op-amp offset voltage is reproduced below for
convenience. When the φ1 switches are closed the op-amp is in the voltage follower
configuration and so the voltage across CF, assuming large op-amp gain so the + and −
op-amp inputs are driven to the same voltage, is

 for VCF = vin − [VCM + VOS + vinoise(t)] t ≤ t1

This isn't really important since the φ3 switch connected to the output of the op-amp is
open and thus vout is isolated from the op-amp. 

At t3, when the φ3 switches close, the voltage on the inputs of the op-amp is

VCM + VOS + vinoise(t3)

The output voltage for  (when the φ3 switches are closed) ist3 ≤ t ≤ t3 + Ts/2

vout(t) = vin(t3) − vinoise(t3) + vinoise(t)

and the voltage on the inputs of the op-amp is

VCM + VOS + vinoise(t)

The voltage across CF during this time is

VCF = vin(t3) − vinoise(t3) + vinoise(t) − [VCM + VOS + vinoise(t)]

or

CF

S/H with input-referred offset and noise shown.Figure 2.41

or

vin
vout

φ2

φ3

φ3

φ1 φ1

t3t2t1to

φ2

φ3

Vinoise
2 ( f ) VOS

VCM

vinoise(t)



VCF = vin(t3) − vinoise(t3) − VCM − VOS

In other words the voltage across CF doesn't vary for  (when the φ3t3 ≤ t ≤ t3 + Ts/2
switches are closed). The DC component of the noise (offset) is removed from vout and
stored on CF as seen in this equation. The higher the frequency of the noise (relative to
1/Ts) the less benefit we get from autozeroing. 

If we could, somehow, get the voltage across CF to vary with the op-amp's
input-referred noise when the φ3 switches are closed then we could remove all of the
noise, not just the slow noise, from the S/H's output. This means that the voltage across
CF would vary when the φ3 switches are closed to cancel-out the op-amp's noise.

The simulation used to generate Fig. 2.44 was run and the voltage across CF is
plotted below. A zoomed in view to show the voltage across CF doesn't vary during

 (again, when the φ3 switches are closed) is also provided.t3 ≤ t ≤ t3 + Ts/2

Zoomed-in view

V
ol

ta
ge

 a
cr

os
s C

F



                                 Harikrishna Rapole 

2.13. Provide a quantitative description of how capacitor mismatch will affect the 
operation of the S/H seen in Fig. 2.46. Verify your descriptions with simulations. 
 
Sol: Consider the S/H topology seen in Fig 2.46. The implementation of this topology is 
as shown below in Fig. 1. 

 
Figure 1. A “Sample/Hold circuit with gain” implementation of topology as in Fig 2.46 

 
 The differential gain of this topology when there is no mismatch in the capacitors is   

( )1 I FC C+  from equation 2.84 on page 62 of textbook. The capacitances on the 

inverting terminal are CFT, CIT. The capacitances on the non inverting terminal are CFB, 
CIB. CFT and CIT are given by 
                                                            FT FC C=   

 CIT = CI 
Let us say there is a mismatch in the capacitances on the non inverting terminal with 
capacitances on the inverting terminal.   
 FB F FC C ΔC= +    
 IB I IC C ΔC= +     
       
Then vout+ due to vin+ (i.e. Vinsp in Fig .1) is using equation 2.83 on page 62 of textbook  
    ( ) ( ) ( )out I F in I F CMv 1 C C v C C V+ = + −+  
Then vout- due to vin- (i.e. Vinsm in Fig .1) is 

( ) ( ) ( )out IB FB in IB FB CMv 1 C C v C C V− = − −+  

( )I I I I
out in CM

F F F F

C C C Cv 1 v V
C C C C

− = − −
+ +⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

Δ Δ
Δ Δ

 

                                                    
( )
( ) ( ) ( )

( ) ( )I I I I I I
out in CM

F F F F F F

C 1 C C C 1 C C
v 1 v V

C 1 C C C 1 C C
− = − −

⎛ ⎞+ +
+⎜ ⎟⎜ ⎟+ +⎝ ⎠

Δ Δ
Δ Δ

 

Assuming the mismatch in capacitances FΔC , BΔC  is very small compared to CF, CB we 
can   use Taylor series expansion to expand ( ) 1

F F1 C C −+ Δ  and neglecting higher order 
terms in the expansion we derive the below equation. 
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    ( ) ( )1

F F F F1 C C 1 C C−+ Δ = − Δ  
 
Based on above formula and reducing vout- term we get     
 

( ) ( )( ) ( )
( ) ( )( ) ( )

I I I F F I I I F F
out in CM

F F

C 1 C C 1 C C C 1 C C 1 C C
v 1 v V

C C
− = − −

⎛ ⎞ ⎛ ⎞+ − Δ + − Δ
⎜ ⎟ ⎜ ⎟+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Δ Δ

 
Further simplifying we get 

 
  

( ) ( ) ( ) ( ) ( )I I I I F I I I F
out in CM in in CM CM2 2 2F F F F F F

C C C C C C C C Cv 1 v V v v V V
C C C C C C

Δ Δ Δ Δ
− = − − + − −

⎛ ⎞ × × ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 
 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )I` I I F I I I F

out out in in in in CM CM2 2 2F F F F F

C C C C C C C Cv v 1 v v v v V V
C C C C C

Δ Δ Δ Δ
+ − − = + − − − −

× × ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (1) 

 
From equation (1) it is seen that if IΔC =0 and FΔC =0 then  
 

 ( ) ( ) ( ) ( )( )I
out out in in

F

Cv v 1 v v
C

+ − − = + −
⎛ ⎞+ −⎜ ⎟
⎝ ⎠

        (2) 

For simplified analysis assume CI=CF 
 

  ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )I F I F
out out in in in in CM CM

F F I F

C C C Cv v 2 v v v v V V
C C C C

+ − − = + − − − −
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Δ Δ Δ Δ   (3) 

Now let us analyze the following cases. 
Case 1: If ICΔ = FCΔ  then  
  
 ( ) ( ) ( ) ( )( )out out in inv v 2 v v+ − − = + −−  (4) 
Now let us verify the simulation and confirm the theoretical gain matches with the gain 
from simulation. In this example CFT=1p, CIT=1p, CFB=1.1p, CIB=1.1p i.e 

I FC C 0.1p= =Δ Δ . If the differential input i.e. the difference between Vinsp and Vinsm in 
Fig. 1. is 400mV as shown in Fig. 2., the differential output is 800mV i.e. twice the 
differential input. 

 
Figure 2. Simulation output when ICΔ = FCΔ  



                                 Harikrishna Rapole 

 
Case 2: If FC 0Δ =  and   IC 0Δ ≠  then 

 ( ) ( ) ( ) ( )( ) ( ) ( )I I
out out in in in CM

I I

C Cv v 2 v v v V
C C

+ − − = + − − −
⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Δ Δ  (5) 

Now let us verify the simulation and theory. In this example CFT=1p,CIT=1p, 
CFB=1p,CIB=1.1p i.e IC 0.1p=Δ  and FC 0=Δ . vin- has an amplitude of 200mV. 
Substituting these values in (5) we get  
vout+- vout-= 2x400mV - (0.1/1)( 200mV) + (0.1/1)500mV=830mV, the simulated output 
is 835 mV. 
 

 
Figure 3. Simulation output when FC 0=Δ  and ICΔ =+10% 

 
 
Case 3: If IC 0Δ =  and   FC 0Δ ≠  then 

 ( ) ( ) ( ) ( )( ) ( ) ( )F F
out out in in in CM

F F

C Cv v 2 v v v V
C C

+ − − = + − −
⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Δ Δ  (6) 

 
The calculated value in this case for 10% mismatch in CF is 730mV. The simulation value 
in this case is 725mV. 
 

 
    Figure 4. Simulation output when IC 0=Δ  and FCΔ =+10% 



Solution by Jake Baker

2.14 Is it possible to design a S/H with a gain of 0.5? How can this be done or why
can't it be done? Use simulations to verify your answer.

Solution: Yes, it's possible. Consider the modification of Fig. 2.46 seen below. In this
figure we have connected the CF capacitors to VCM instead of the inputs and we've made
CF = 2CI. Below this figure is the simulation output using Fig. 2.48 but with the modified
circuit seen below.

CL

CL

A S/H with gain of 0.5.

CI

CI
VCM

φ1

φ1

φ2

φ3

φ3

φ3φ3

vout+

vout−

vin+

vin−

VCM

VCM

CF = 2CI

CF = 2CI

Simulating the circuit seen above using the parameters used to generate Fig. 2.48.



To determine the equation governing the operation of this circuit let's follow the methods
used in Sec. 2.2. First, 

QI,F
φ1 = CI ⋅ (vin − VCM ± VOS) +CF ⋅ (VCM − VCM ± VOS)

and when the φ3 switches turn on

QI
φ3 = CI ⋅ (VCM − VCM ± VOS)

and

QF
φ3 = CF ⋅ (vout − VCM ± VOS)

Knowing charge must be conserved

QF
φ3 = CF ⋅ (vout − VCM ± VOS) =

=

QF
φ1

CF ⋅ (±VOS) +

QI
φ1

CI ⋅ (vin − VCM ± VOS) −

QI
φ3

CI ⋅ (VCM − VCM ± VOS)

or 

vout =
CI
CF

⋅ vin −
CI
CF

⋅ VCM + VCM

For a fully-differential topology the last two terms are common to both the inverting and
non-inverting inputs of the S/H, or 

vout+ − vout− = ⎡
⎣⎢

CI
CF

⋅ vin+ −
CI
CF

⋅ VCM + VCM
⎤
⎦⎥
− ⎡
⎣⎢

CI
CF

⋅ vin− −
CI
CF

⋅ VCM + VCM
⎤
⎦⎥

so we can write

vout+ − vout− =
CI
CF

⋅ (vin+ − vin−)

A block diagram is seen below.

S/Hvin vout

CI
CF
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2.15     For the first entry ( v1=input, v2=vCM ) in Table 2.2 derive the frequency response, magnitude

and phase, of the DAI. Use simulations at a few frequencies to verify your derivations.

Solution:

For v1=input, v 2=vCM , the z-domain transfer function of the DAI shown in Table 2.2 in [1], or

1) when output connected to 1 ,

H 1 z =
C I

C F
⋅ z−1

1−z−1  (1)

2) when output connected to 2 ,

H 2 z =
C I

CF
⋅ z−1/2

1−z−1  (2)

To evaluate the frequency response of the DAI, we can use Eq. 1.37 in [1], or

z=e
j 2⋅ f

f s  (3)

Rewriting Eqs. 1 and 2 using Eq. 3 gives

1) when output connected to 1 ,

H 1 f =
C I

C F
⋅ e− j 2 f / f s

1−e− j 2 f / f s
 (4)

2) when output connected to 2

H 2 f =
C I

C F
⋅ e− j f / f s

1−e− j 2 f / f s
 (5)

Now let us derive the magnitude and phase responses of H 1 f   and H 2 f  , respectively.
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I.  Frequency Response of H 1 f 

We can get started by multiplying both the numerator and denominator of Eq. 4 by e j 2 f / f s , or

H 1 f =
C I

C F
⋅ e− j 2 f / f s

1−e− j 2 f / f s
⋅e j 2 f / f s

e j 2 f / f s
=

C I

CF
⋅ 1

e j 2 f / f s−1
 (6)

Using Euler's formula

e j k=cos k j⋅sin k  (7)

we can rewrite Eq. 6 as

H 1 f =
C I

C F
⋅ 1
[cos 2 f / f s−1] j [sin 2 f / f s]  (8)

which is in the form

1
a j b  (9)

And we know that, after reviewing Eqs. 1.59 and 1.60 in Section 1.2.5 of [1], the magnitude of

Eq. 8 is

∣ 1
a j b∣= 1

a2b2  (10)

Thus the magnitude of H 1 f  ,

∣H1 f ∣=
C I

C F
⋅ 1

[cos2 f / f s−1]2[sin 2 f / f s]2

             =
C I

CF
⋅ 1

[cos 2 f / f s]21−2cos 2 f / f s[sin2 f / f s]2

             =
C I

CF
⋅ 1
2⋅[1−cos 2 f / f s]

 (11)

or

∣H 1 f ∣=
CI

C F
⋅ 1

2⋅∣sin  f
f s
∣ (12)
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We can evaluate the phase response directly from z-plane plot by picking an arbitrary frequency

f , and by using Eq. 1.51 in [1], or

∡H  f =∡of zero−∡of pole  (13)

After reviewing Eq. 1, we know that there is no zero for H 1 f  . Thus ∡of zero  is 0. Fig. 1

shows the z-plane representation for H 1 f   which we use to find ∡of pole .

From Fig. 1 we see that

∡of pole =−  (14)

where

=
2
−

2  (15)

and

=2⋅ f
f s

 (16)

Using Eqs. 14 and 15, we can rewrite Eq. 13 as

∡of pole=−2−2 =−2−1
2
⋅2⋅ f

f s
                 =⋅ f

f s


2

 (17)

Figure 1   The z-plane representation for H 1 f 

 x
∡of pole

The pole at DC

f s

2

f



z-planeH  z = z−1

1−z−1=
1

z−1

=2⋅ f
f s



Geng Zheng

Applying Eq. 12, we have

∡H 1 f =0−⋅ f
f s


2  (18)

 or the phase response of H 1 f   is

∡H 1 f =−⋅ f
f s
−

2  (19)

II. Frequency Response of H 2 f 

Again, let us get started by multiplying both the numerator and denominator of Eq. 5 by

e j 2 f / f s , or

H 2 f =
CI

C F
⋅ e− j f / f s

1−e− j 2 f / f s
⋅e j 2 f / f s

e j 2 f / f s
=

C I

C F
⋅ e j f / f s

e j 2 f / f s−1
 (20)

Before going any further, comparing Eq. 20 with Eq. 6 in Part I, we see that the denominators in

both equations are the same. Let's define

H 2a  f =e j f / f S  (21)

and

H 2b f =
C I

C F
⋅ 1

e j 2 f / f s−1
 (22)

So that

H 2 f =H 2a  f ⋅H 2b f   (23)

∣H 2 f ∣=∣H 2a f ∣⋅∣H 2b  f ∣ (24)

∡H 2 f =∡H 2a  f ∡H 2b f   (25)

Since

e j f / f s    1∡⋅ f
f s (26)

the magnitude of H 2a  f   is simply 1 and its phase response is ⋅
f
f s

. H 2b f  , Eq. 22, is the

same as H 1 f   in Part I so we can simply use the result from Part I, or
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∣H 2b f ∣=∣H 1 f ∣=
C I

CF
⋅ 1

2⋅∣sin f
f s
∣ (27)

∡H 2b  f =∡H 1 f =−⋅ f
f s
−

2  (28)

Plugging the magnitude and phase responses of H 2a  f  and H 2b  f   into Eqs. 24 and 25, we

get the magnitude response of H 2 f 

∣H 2 f ∣=1⋅C I

C F
⋅ 1

2⋅∣sin f
f s
∣= C I

CF
⋅ 1

2⋅∣sin f
f s
∣ (29)

and the phase response of H 2 f 

∡H 2 f =⋅ f
f s−⋅ f

f s


2
               =2⋅ f

f s
−

2

 (30)
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III. Simulations

In the simulations, C I=C F=1 pF , VDD = 1 V, and the clock frequency, f s , is 100 MHz.

Table 1 shows the hand calculation results for a few frequencies when the output is connected

1 . Table 2 shows the hand calculation results for a few frequencies when the output is

connected 2 .

Frequency 1 kHz 25 MHz 50 MHz

V out , peak-to-peak ∞ 0.71 V 0.5 V

Delay 2.5 ns 7.5 ns 5 ns

Table 1   Hand calculation result when output connected through 1 .

Frequency 1 kHz 25 MHz 50 MHz

V out , peak-to-peak ∞ 0.71 V 0.5 V

Delay 2.5 ns 10 ns 5 ns

Table 2   Hand calculation result when output connected through 2 .

1) Simulations for  output connected through 1 .

Figure 2   Schematic for output connected to 1
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Figure 3   Simulations for output connected to 1

Vout goes to ∞

0.703V

9.2 ns

0.487 V

5.2 ns

f=1 kHz

f=25 MHz

f=50 MHz
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2) Simulations for  output connected through 2 .

Reference:

[1]    R. J. Baker, CMOS Mixed-signal Circuit Design, Second Edition, Wiley-IEEE, 2009.

Figure 4   Simulations for output connected to 2 .

Vout goes to ∞

0.703V

10.1 ns

0.487 V
5.2 ns

f=1 kHz

f=25 MHz

f=50 MHz



Solution by Jake Baker

2.16 Repeat Question 2.15 for the second entry. Here is Question 2.15: For the first
entry (v1 = input, v2 = VCM) in Table 2.2 derive the frequency response, magnitude
and phase, of the DAI. Use simulations at a few frequencies to verify your
derivations.

Solution: 

Both Table 2.2 and Fig. 2.54 are shown below.

Table 2.2 Discrete analog integrator (DAI) input/output relationships.

Input Output connected to φ1 Output connected to φ2

v1 = input and v2 = VCM z−1

1 − z−1 ⋅
CI
CF

z−1/2

1 − z−1 ⋅
CI
CF

v2 = input and v1 = VCM −z−1/2

1 − z−1 ⋅
CI
CF

−1
1 − z−1 ⋅

CI
CF

v1 and v2 are both inputs V1(z) ⋅ z−1 − V2(z) ⋅ z−1/2

1 − z−1 ⋅ CI
CF

V1(z) ⋅ z−1/2 − V2(z)
1 − z−1 ⋅ CI

CF

We'll derive the frequency response for

H(z) = vout(z)
v2(z)

= CI
CF

⋅ − z−1/2

1 − z−1 =
CI
CF

⋅ − z1/2

z − 1

noting that if we change the numerator from  to  we simply get a phase shift in− z−1/2 −1
the DAI.

Figure 2.54 Schematic diagram of a discrete analog integrator (DAI).

Bottom
plate

t

(the plate closest
to the substrate)

VCM

CF

v1

v2

CI

φ1
φ1

φ2

φ2

VCM = VREF+ + VREF−
2

vout

φ1

φ2

n
n − 1/2

n − 1

Ts



The figure below shows the z-plane representation for the second entry in the
table along with its magnitude and phase responses. To determine equations for the
magnitude and phase responses we can write

H(z) = CI
CF

⋅ − z1/2

z − 1 →

Phase shift

e jπ ⋅ e jπ f
fs ⋅CI

CF
⋅ 1

ej2π f
fs − 1

= e j⎛⎝π+π
f
fs
⎞
⎠ ⋅

CI
CF

(−1 + cos 2π f
fs
) + j sin 2π f

fs

noting  and . We can now writee j⎛⎝π+π
f
fs
⎞
⎠ = 1 ∠e j⎛⎝π+π

f
fs
⎞
⎠ = π + π f

fs

H( f ) =
CI
CF

⎛
⎝−1 + cos 2π f

fs

⎞
⎠

2
+ ⎛⎝sin 2π f

fs

⎞
⎠

2
=

CI
CF

2(1 − cos 2π f
fs
)

or

H( f ) = CI
CF

⋅ 1
2 sinπ f

fs

Evaluating the phase response,

 (degrees)  for  ∠H( f ) =
From inversion

π +

From zero

π
f
fs −

From pole

⎛
⎝π

f
fs
+ π

2
⎞
⎠ = + 90 0 < f < fs

Noting that the phase shift, as mentioned above, for the second case

H(z) = −1
1 − z−1 ⋅

CI
CF

z-plane

degrees

90

90

f

f

1/2 fs/2 3fs/2fs

H( f )

∠H( f )

H(z) = CI
CF

⋅ − z−1/2

1 − z−1 =
CI
CF

⋅ − z1/2

z − 1

1
2

CI
CF



is 

∠H( f ) = π − π
f
fs
− π

2 = π
2 − π

f
fs

To show that these equations are correct lets use an fs of 100 MHz, CI = CF = 1 pF and an
input frequency of 5 MHz. The simulation schematic is seen below. The magnitude of the
output is

H( f ) = 1
2 sinπ 5

100

= 3.2

For a peak input amplitude of 10 mV the output amplitude will be 32 mV. The phase shift
for the first case is exactly + 90 degrees (output leading the input) while it's
approximately 90 degrees (to be exact it's  degrees). Note how the90 − 90 ⋅ 5/100 = 85.5
intial voltage on the output of the integrator shifts the output voltage.

H(z) = − z1/2

z − 1
H(z) = −1

z − 1Output through phi1 switches and through phi2 switches
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2.17)  For the third entry ),( 21 inputvinputv ==  in Table 2.2 derive the frequency 
response, magnitude and phase, of the DAI. Use simulations at a few frequencies to 
verify your derivations.  
 
Solution 

inputvinputv == 21 , . Output connected to Φ1. Connecting to output to Φ1 or Φ2 just 
delays the output by 2/sT , it will not have any affect on the magnitude response. We 
shall see that in the derivations below:  

Case I 
The transfer function of the Discrete Analog Integrator (DAI) shown in  figure 2.54 with 

both 21andvv  going to inputs is 
F

I
Out C

C
z

zzVzzVzV ⋅
−
−

= −

−−

1

2/1
2

1
1

1
).().()(  – (1) 

Splitting the transfer function into an addition of two terms, we get 

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅= −

−

−

−

)(
1

)(
1

)( 21

2/1

11

1

zV
z

zzV
z

z
C
CzV

F

I
Out  – (2) 

Setting, )(
1 1

1

zP
z

z
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− −

−

 and )(
1 1

2/1

zQ
z

z
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− −

−

, we can rewrite the equation 2 as, 

[ ])()()()()( 21 zVzQzVzP
C
CzV

F

I
Out ⋅−⋅⋅=  – (3) 

Lets synthesize )(zP and )(zQ separately, we get 

12sin2cos

1

1

1
1

1
1

1

11

1

1
)(

21

1

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅+⎟⎟

⎠
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⎜⎜
⎝

⎛
⋅⋅

=
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=
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=
−

=
−

=
−

=
⋅⋅⋅
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– (5) 
Substituting )(zP and )(zQ back in equation 3 for OutV we get the frequency response of 
the system to be, 
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To find the magnitude and phase response and verify with schematic, lets assume 

that both the input capacitor and feedback capacitor are equal. Also, to simplify the 
algebra, lets assume that both 1V and 2V inputs are equal. 
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Magnitude response 
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– (9) is the magnitude response of the Discrete Analog 

Integrator with both the inputs 21andvv . 
 
Phase response 
Lets now derive the phase response of the transfer function of the given DAI, transfer 
function given is, 
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rewritten as, 
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Now, we can find the phase response of the above transfer function easily, 
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Simulations 
 

Let’s verify the above derivations by simulating the DAI with equal inputs V1 
and V2. This circuit will be clocked at 100MHz, therefore MHzf s 100= . Also notice 

that both the capacitors are set to 1pF so the gain across is just 1=
F

I

C
C . The schematic for 

the circuit is given below, 

 
Figure 1: Circuit implementation of a DAI 
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@ Input frequency = 5MHz ( )DC~   

 
Simulated Vout = 500.462mV. Hand calculated Vout = 501.5mV 

@ Input frequency = 45MHz ⎟
⎠
⎞

⎜
⎝
⎛

2
~ sf

 

 
Simulated Vout = 648.93mV. Hand calculated Vout = 657mV 
 
 
 
 
 
 



Avinash Rajagiri 
Spring 2009 

@ Input frequency = 100MHz ( )sf   

 
Simulated Vout keeps increasing. Hand calculated Vout = infinite! 
 
From equation 2, we notice that the transfer function of the DAI is just a sum of two 
integrating circuits discussed in chapter1. Similar to the integrator circuit, the output goes 
to infinity of blows up at fs frequency as seen in the figure above.  
 
Therefore, we see that our frequency response values match pretty close the simulation 
results seen above.  
 

Case II 
 

inputvinputv == 21 , , but now the output is connected to Φ2 instead of Φ1. As mentioned 
earlier, this should just delay the output of the DAI while the magnitude response remain 
unaffected. Lets verify, 
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)().()( – (14) is the transfer function. Following the steps 

similar to the derivations in Case I, we get 
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Setting, )(
1 1

2/1
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z

z
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⎠

⎞
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⎛
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−

 and )(
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1
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− − , we can rewrite the above equation as, 
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Avinash Rajagiri 
Spring 2009 

Lets synthesize )(zP and )(zQ separately, we get 
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Substituting )(zP and )(zQ back in equation for OutV we get the frequency response of the 
system to be, 
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To find the magnitude and phase response and verify with schematic, lets assume that 
both the input capacitor and feedback capacitor are equal. Also, to simplify the algebra, 
lets assume that both 1V and 2V inputs are equal. 
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The term sf
fj

e
⋅π

 is factored out in the expression above because, we know 1=
⋅

sf
fj

e
π

 and 

s

f
fj

f
fe s ⋅=∠

⋅

π
π

. Also, the rest of the expression above is similar to the previous case and 

therefore we can now see that by connecting the output Vout to Φ2 just delays the output 
by Ts/2 . It has no effect on the magnitude of the output, only phase will vary. 
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Therefore, using the result derived in the previous case, magnitude of the above 
expression is, 
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 – (22)  is the magnitude response of the Discrete Analog 

Integrator with both the inputs V1 and V2 and output is sampled using Φ2. 
 
Lets now derive the phase response of the transfer function of the given DAI, transfer 
function given is, 
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 this function can be rewritten as, 
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Now, we can find the phase response of the above transfer function easily, 
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180 πo   – (27), therefore we can see that compared to the phase response of 

previous case, the output is just a delayed version; it is delayed by Ts/2 or by o180− . 
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Simulations 
Similar to the simulations performed in case I, here we can vary the input signal 

frequency and check the output response. Notice that the output is now clocked on Φ2 
instead of Φ1 
 

 
Figure 2: DAI, but now the output is connected to Φ2 instead of Φ1 

 
@ Input frequency = 5MHz ( )DC~  

 
Simulated Vout = 500.416mV. Hand calculated Vout = 501.5mV 
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@ Input frequency = 45MHz ⎟
⎠
⎞

⎜
⎝
⎛

2
~ sf

 

 
Simulated Vout = 648.93mV. Hand calculated Vout = 657mV 
 
@ Input frequency = 100MHz ( )sf   

 
Simulated Vout keeps increasing. Hand calculated Vout = infinite! 
 

The simulation results from spice match with the hand calculated magnitude 
response.  
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The DAI has a response similar to the magnitude response of an integrator 
covered in chapter 1. The circuit just passes the input signal at lower frequencies and as 
we keep going higher in frequency, the DAI starts to act like an accumulator and has a 
peak value at fs frequency, where the magnitude blows up.  The magnitude response of 
the discrete analog integrator looks like a response of an integrator circuit from chapter 1, 
but with a delay of Ts/2.  

( )f Hz

out

in

V
V

0.5

sf sf⋅2  
Figure 3: Magnitude resposne of an DAI 

 



Kaijun Li 
Problem 2.18 
Does the DAI use CDS? Why or why not? Use simulations to support your answers. 
 
To answer yes or no to this question, we should investigate on the charge transfer when the 
switches are turned on and off. 
 
To simplify the math, we set v2 to be VCM . When 1φ  switches are closed, the charge on CI is 

Q1=CI(v1-VCM). When 2φ  switches are closed, the charge on CI is Q2,1=CI(VCM +Vov -VCM)= 
CIVov , and the charge on CF is Q2,2=C F (ΔVout -VCM). Due to charge reservation, Q1= Q2,1 +Q2,2, 
and this means that CI(v1-VCM)= CIVov +C F (ΔVout -VCM), which is Vout (1-z-1)= CI/CF(Vin - 
Vov). Therefore, the offset is not cancelled out in DAI, and DAI doesn’t use CDS. 
The simulation results are shown as follows. 

 

Fig. 1 Discrete analog integrator (DAI).

v2 

v1 

vCM 
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CF 
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