
Lincoln Bollschweiler 
3.1) Resketch Fig. 3.2 for the following circuit. 
 

 
There is no change that needs to be made to the sketch of Fig. 3.2 for this implementation 
of a first order lowpass filter. Fig. 3.2 was constructed with an RC lowpass filter. Both 
can be considered passive integrators. The only difference is that, for the RC filter, G = 
1/(RC) where as for the LR filter G = R/L. 
 
For completeness, Fig. 3.2 is resketched, as the problem requests. 
 
 
 
 
 
 
 
 
 
The derivation of the transfer function from the schematic is as follows: 
 

1 1 ,     .
1 1

in out
out

in

V R V RV G LR j L V j L R s Gω ω
⋅

= ⇒ = = =
+ + +  

 
The derivation of the transfer function from the block diagram is as follows: 

( ) ( ) ( )
( )

11 .
1 1

out
out in out out in

in

sGV GsG G GV V V V Vs s s sV G s s G
G

= − ⇒ + = ⋅ ⇒ = =
+ +

 

 
One can see the two solutions for Vout/Vin are consistent. 

vin(f)  G
s

 + 
- 

vout(f)  
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3.2 Show that Eq. (3.6) is still valid if the circuit’s inputs and outputs are referenced to the common-

mode voltage, VCM.  (The op-amp inputs should also be at VCM.) 

 

Below is equation 3.6: 

 
𝑣𝑖𝑛
𝑅𝐼

−
𝑣𝑜𝑢𝑡
𝑅𝐹

=
𝑣𝑜𝑢𝑡
1
𝑠𝐶 

 

 

This equation was derived from the fully differential continuous time integrator (CAI) seen on page 75, 

figure 3.4. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

F-1 has several additions which are not shown in figure 3.4.  The current flow directions shown in F-1 

were arbitrarily chosen, and the vx voltage is labeled for completeness.  Please realize that the op-amp will 

try and keep the vx nodes equal.  F-1 shows how, for an analog integrator, your positive input goes to the 

negative terminal of the op-amp, also note that I explicitly drew how we feedback the inverse output to 

the input of the op-amp.  If we didn’t inverse the feedback signal our transfer function would only have a 

180° phase shift, but the magnitude would be unchanged. 

 

To solve this problem we will use Kirchhoff’s Current Law to determine the transfer function of the 

circuit seen in F-1.  Let’s reference the input voltages and output voltages to the common mode voltage 

(VCM): 

 

𝑣𝐼𝑁𝑃 = 𝑉𝐶𝑀 + 𝑣𝑖𝑛𝑝  

 

𝑣𝐼𝑁𝑀 = 𝑉𝐶𝑀 + 𝑣𝑖𝑛𝑚  
 

𝑣𝑂𝑈𝑇𝑃 = 𝑉𝐶𝑀 + 𝑣𝑜𝑢𝑡𝑝  

 

𝑣𝑂𝑈𝑇𝑀 = 𝑉𝐶𝑀 + 𝑣𝑜𝑢𝑡𝑚  
 

We are denoting the input and output voltages have a DC component, VCM, along with a varying voltage 

(often a small signal, or sinewave), vin/out, which can be positive or negative w.r.t. VCM.  Writing KCL: 

 
𝑣𝐼𝑁𝑃 − 𝑣𝑋

𝑅𝐼
=
𝑣𝑋 − 𝑣𝑂𝑈𝑇𝑀

𝑅𝐹
+
𝑣𝑋 − 𝑣𝑂𝑈𝑇𝑀

1
𝑠𝐶 

 

F-1 Implementation of a first-order low-pass filter using a CAI. 
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𝑣𝐼𝑁𝑀 − 𝑣𝑋

𝑅𝐼
=
𝑣𝑋 − 𝑣𝑂𝑈𝑇𝑃

𝑅𝐹
+
𝑣𝑋 − 𝑣𝑂𝑈𝑇𝑃

1
𝑠𝐶 

 

 

Subtracting the two equations to get the fully differential input and output voltages: 

 
𝑣𝐼𝑁𝑃 − 𝑣𝑋

𝑅𝐼
−
𝑣𝐼𝑁𝑀 − 𝑣𝑋

𝑅𝐼
=
𝑣𝑋 − 𝑣𝑂𝑈𝑇𝑀

𝑅𝐹
+
𝑣𝑋 − 𝑣𝑂𝑈𝑇𝑀

1
𝑠𝐶 

−
𝑣𝑋 − 𝑣𝑂𝑈𝑇𝑃

𝑅𝐹
−
𝑣𝑋 − 𝑣𝑂𝑈𝑇𝑃

1
𝑠𝐶 

 

 

After organizing the terms we can see that the vx terms cancel out: 

 
𝑣𝐼𝑁𝑃 − 𝑣𝐼𝑁𝑀 − 𝑣𝑋 + 𝑣𝑋

𝑅𝐼
=
𝑣𝑋 − 𝑣𝑂𝑈𝑇𝑀

𝑅𝐹
−
𝑣𝑋 − 𝑣𝑂𝑈𝑇𝑃

𝑅𝐹
+
𝑣𝑋 − 𝑣𝑂𝑈𝑇𝑀

1
𝑠𝐶 

−
𝑣𝑋 − 𝑣𝑂𝑈𝑇𝑃

1
𝑠𝐶 

 

 
𝑣𝐼𝑁𝑃 − 𝑣𝐼𝑁𝑀

𝑅𝐼
=
𝑣𝑂𝑈𝑇𝑃 − 𝑣𝑂𝑈𝑇𝑀

𝑅𝐹
+
𝑣𝑂𝑈𝑇𝑃 − 𝑣𝑂𝑈𝑇𝑀

1
𝑠𝐶 

 

 

We normally leave out the vx terms to simplify the equations, but we left them in to ensure understanding 

of what we are doing.  We can expand the voltages and show their reference to VCM: 

 
𝑉𝐶𝑀 + 𝑣𝑖𝑛𝑝 − 𝑉𝐶𝑀 − 𝑣𝑖𝑛𝑚

𝑅𝐼
=
𝑉𝐶𝑀 + 𝑣𝑜𝑢𝑡𝑝 − 𝑉𝐶𝑀 − 𝑣𝑜𝑢𝑡𝑚

𝑅𝐹
+
𝑉𝐶𝑀 + 𝑣𝑜𝑢𝑡𝑝 − 𝑉𝐶𝑀 − 𝑣𝑜𝑢𝑡𝑚

1
𝑠𝐶 

 

 

When using a fully differential topology the common mode reference will always be subtracted out of the 

resulting transfer function.  After performing the subtractions we can see that this is the same equation as 

equation 3.6. 

 
𝑣𝑖𝑛𝑝 − 𝑣𝑖𝑛𝑚

𝑅𝐼
=
𝑣𝑜𝑢𝑡𝑝 − 𝑣𝑜𝑢𝑡𝑚

𝑅𝐹
+
𝑣𝑜𝑢𝑡𝑝 − 𝑣𝑜𝑢𝑡𝑚

1
𝑠𝐶 

 

 

Knowing that the differential voltage can be written as, vp – vm = v: 

 
𝑣𝑖𝑛
𝑅𝐼

=
𝑣𝑜𝑢𝑡
𝑅𝐹

+
𝑣𝑜𝑢𝑡
1
𝑠𝐶 

 

 

The LTSPICE results (_FIG3_5_MSD) in example 3.1 use a 0.5V common mode voltage for the input 

and output.  We can change the common mode voltage to 0V (ideal components used, we don’t have to 

worry about input/output common mode range) and show that the results are identical: 

 

 

VCM = 0V VCM = 0.5V 



  Harikrishna Rapole 

3.3. Sketch the implementation of a first-order low pass filter using CAI with 3 dB 

frequency of 10 MHz and a DC gain of 6 dB. Simulate your design to verify it works as 

expected. 

Sol: Let us consider a fully differential op amp topology to implement the first order low 

pass filter using continuous time analog integrator (Note: this topology has better SNR 

compared to single ended op amp topology).   

 

 

Vin+

Vin-

RI

RF C

RI

RF

VDD

C

Vout-

Vout+

Integrator

Summing Block

Vout-

Vout+

Outputs swapped so 

that gain is positive, 

hence the pole is in 

left half s-plane for 

stability

Figure 1. First order low pass filter with CAI 

 

The differential gain of the above topology can be written as  

   
     

 
out out F I

in in F

V V R / R

V V 1 sR C

+ − −+ − −+ − −+ − −

+ −+ −+ −+ −

====

− +− +− +− +

 (1) 

The DC gain of the above topology is given by 

                                            
out out F

DC

in in I

V V R

V V R

+ − −+ − −+ − −+ − −

+ −+ −+ −+ −

    
====    

−−−−    
 (2) 

 
F

I

R
2 (i.e 6dB)

R
====  (3) 

      

 3dB

F

1
f

2 R Cπ

====  (4) 

  

                        Let RF=20k, RI=10k so that gain is 2 then 

     

 3dB

F

1
f 10MHz

2 R Cπ

==== ====  (5) 

Solving equation (5) gives C=0.8p 
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Figure 2. LTSPICE Schematic of Figure 1                   Figure 3. Frequency response of the low pass filter in  

(from cmosedu.com)                                                          Figure 1 
     

 

  
Simulation results with selected values of RF, RI, C is shown in Figure 3. We can see that 

the dc gain is at 6dB, f3dB is at 10MHz. 

 

 

DC gain is 6dB 

Gain at f3dB=10MHz 

is 3dB 



Solution by Geng Zheng

3.4       Plot, in the complex plane, the ideal pole location and the actual pole location due to finite

op-amp unity  gain frequency for the filter described in Ex. 3.4.

Solution:

The schematic of the filter is shown in Fig. 1.

The output and input relationship of the filter using this topology, Eq. (3.14) in [1], is

vout

vin
=

−
RF

RI

s2⋅
C RF

un
s⋅[C RF

1
un1 RF

RI ]1
 (1)

For Ex. 3.4, RF=RI=R  and RC=10 k10 pF =100 ns , so Eq. 1 becomes

vout

vin
= −1

s2⋅RC
un
s⋅[RC 2

un]1  (2)

For ideal op-amp, un∞ , then rewriting Eq. 2 we get

vout

vin
= −1

s⋅RC1  (3)

 So the ideal pole location is

s p , ideal=−1/RC=−10 M  (4)

For the op-amp in Ex. 3.4, un=2⋅ f un=2⋅10 MHz . Substituting un   and RC into Eq. 2 

Figure 1   The schematic of the filter described in Ex. 3.4.



we have

vout

vin
= −1

s2⋅ 100 n
2⋅10 M

s⋅[100 n 2
2⋅10 M ]1

      ≈ −1
s⋅131.8 n1

 (5)

So the actual pole location is

s p , actual=−1/131.8 n=−7.59 M  (6)

The ideal and actual pole locations in the complex plane are shown in Fig. 2.

Reference:

[1]   R. J. Baker, CMOS Mixed-signal Circuit Design, Second Edition, Wiley-IEEE, 2009.

Figure 2   The ideal and actual pole locations in the complex plane.

Re

Im

X X

s plane
s= j
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−10 M −7.59 M

Actual pole



Lincoln Bollschweiler 
3.5) Plot Eq. (2.59) of the last chapter using SPICE and the op-amp model shown in 

Fig. 3.8. 

 ( ) ,

3

1

OL DC out out
OL

in in

dB

A v vA f f v vj
f

+ −

+ −

−
= =

−+
 (2.59) 

 
Figure 3.5.1 Duplication of Fig. 3.8 (mentioned in problem 
statement) from the MSD textbook, with addition of an input 
voltage source on vin+. 

 
This problem requires the addition of one or two voltage sources to the input(s). For 
simplicity, one source is shown and used in this example. The reader will notice that vin- 
has been removed and that it has been shorted to VCM. It is left as an alternative to add a 
second voltage source and connect VCM to its DC offset input (like Vin+). Also of interest 
is to note that VCM can be any arbitrary value desired. There is no limitation in this ‘ideal’ 
simulation with no supply rail constraints. A value of 2.5 was chosen assuming a VDD of 
5V and that ½ VDD was desired for VCM. 
 

 
Figure 3.5.2 Plot of the finite bandwidth op-amp model shown in Fig. 3.5.1; gain vs. frequency. 

 
From the simulation AOL,DC = 86.0dB, f3dB = 1kHz, and fun = 20MHz. As a quick check to 
make sure (2.59) holds, let’s find AOL(20MHz) , the unity gain frequency. 
 

( )
86

20
,

3

10 20 320 1.20 6 20 31 1
1 3

dB
OL DC

OL

dB

A EA MHz f E Ej j
f E

= = = =
+ +
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3.6. Suppose an anti aliasing filter was required for a 12-bit data converter. Further 

assume the filter is to be implemented using an active-RC topology. If VDD=1.0 estimate 

the minimum value of the integration capacitor that should be used, assuming the filters 

noise performance is dominated by thermal noise. Is it wise, for 12-bit system 

performance, to design the filter so that its SNR is equal to the SNR of the data 

converter? 

 

Sol) 

Section 1: Realizing an Anti Aliasing Filter using an active RC integrator 

 Using an active-RC topology we can realize an anti aliasing filter (AAF) as shown in 

Figure 1.    

 

 
            Figure 1. Anti aliasing filter(AAF) 

 

The dominant noise in the AAF in Figure 1 is assumed to be thermal noise. The capacitor 

filters (decreases) the thermal noise at the output. Hence increasing the value of capacitor 

increases the SNR of the filter. The resulting RMS value of thermal noise is given 

by
kT

C
.  The SNR of the active-RC topology shown is     

 
2VDD 8

SNR = 10.log  
kT / C

    
    
    

 (1) 

Where VDD=1V, k=1.38x10
-23

J/K, T=300K 

 

The SNR of the 12-bit data converter is given by 

     

 12bitADC SNR = 6.02N+1.76dB where N=12  (2) 

 

The SNR of the AAF (active RC circuit in this case) should at least be equal to or more 

than the SNR of the 12-bit data converter, so that the noise performance of the system is 

not degraded by the AAF. Note that this is the worst case SNR of the AAF and ideally it 

should be much more than that. 

 

Equating (1) and (2) solving for C we get C=0.83pF.  

 

Note: To minimize the thermal noise in AAF we need to increase the value of capacitor. 

But this results in decreasing the 3-dB frequency (see eq (3)) . Hence the bandwidth of 

the signal allowed is reduced. 
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 3dB

1
f

2 RCπ

====  (3) 

 

 

 

 

Section 2: How much SNR is good for the AAF for 12-bit performance of data 

converter 

The Anti aliased signal goes as input to the Sample and Hold and further to the data 

converter (12bit ADC in Figure 2). If the SNR of the AAF is same as that of ADC, it 

means that the input coming to the ADC itself has a lot of noise and we have quantization 

noise of ADC to deal with. Hence the noise performance of the total system is degraded, 

and we will get say 11-bit or even less performance by the data converter. 

 

 

                                       Figure 2. Anti aliasing filter followed by data converter 
 

Hence it is better to have Anti aliasing filter that has much higher SNR compared to that 

of data converter. 

 

 

 

 

 

 

 

  

  
. 
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Question 3.7 
 
Repeat question 3.6 if the op-amp used in the filter has a linear output swing of 80% of the power supply 
voltage. 
 
Solution 
 
Question 3.6 states: Suppose an anti aliasing filter was required for a 12-bit data converter. Further assume 
the filter is to be implemented using an active-RC topology. If VDD=1.0 estimate the minimum value of the 
integration capacitor that should be used, assuming the filters noise performance is dominated by thermal 
noise. Is it wise, for 12-bit system performance, to design the filter so that its SNR is equal to the SNR of the 
data converter? 
 
Figure 1 below shows a possible topology of the single ended op-amp used as Active-RC filter in data 
converter as AAF.  

inv R

C

VDD

CMV
outV

 
Figure1. A possible implementation of AAF with Active RC filter 

 
The SNR equation for the filter is based on assumptions  
 

  op-amp is not limited by linear output swing as mentioned in question ( outV goes all the way up to VDD) 
  noise performance of filter is dominated by the thermal noise from the R  
  CMV  is 2VDD  or half of the power supply voltage 

 
Based on the discussion (page 82-83) the SNR of filter given by ratio of maximum RMS output voltage of 

( )2 2VDD  to the RMS thermal noise of R limited by capacitor as kT
C

 and given by 

    

( )2 2
20 log

VDD
SNR

kT C
= ⋅  

 
Now if the op-amp has a linear output swing of 80% of power supply then the total output peak to peak 
voltage is given as 0.8VDD  where 0    ppV to VDD=  or in our case VDD = 1V, in other words if 0.5CMV V=  
then output is swinging from 0.9V to 0.1V. Thus the maximum RMS output voltage will be given 
as ( )0.8 2 2VDD⋅ . The new SNR of the filter is will be given as  



Shantanu Gupta 

( )0.8 2 2
20 log

VDD
SNR

kT C

×
= ⋅  

 
In order to obtain the value of C we make one more assumption of equating this value of SNR to ideal SNR of 
12 bit data converter (Nyquist rate date converter and not noise shaping or oversampling type) given as 
 

( ),12 6.02 1.76      where 12ideal bitADCSNR N db N− = + =  
 
final equation can be written as ; with 231 ;    1.38x10 J / K or (V Col/K);      T=300KVDD V k −= = ⋅  
 

( )
( )

0.8 2 2
20 log 6.02 12 1.76

VDD

kT C

×
⋅ = × +  

 
C is given as 1.3pF≈ . It is obvious that as the signal RMS goes down SNR will go down and in order to 
compensate a larger capacitor have to be used to limit the thermal noise. 
 
As for the last section of the question we can say that while designing the filter, assuming the filter’s SNR 
equal to data converter’s SNR was the worst case situation. It is always better to use filter with SNR 
performance much higher than that of data converter because the AAF filter is first stage of the data converter 
design. Looking at the figure 2 below, if noise is not filtered properly in AAF then it will suffer aliasing due to 
S/H stage and will degrade the over all SNR of system in addition to quantization noise. 
 

/S HAAFAnalog Digital

QeV
 

Figure2. General block diagram of A-D converter 
 



Kaijun Li 
Problem 3.8 
Derive the transfer function for the filter shown in Figure 3.16 if the transconductors have 
different gms. Sketch the block diagram, similar to the one seen in Fig. 3.6, for the filter. 

 
Solution: 
The same analysis can be applied to Fig. 3.16 with different for the two transconductors.  

 
Applying KCL to the output node, we have 

( ) ( ) ( ) 021 =−−−−− −+−+−+ outoutoutoutmininm vvCjvvgvvg ω   (1) 
or  

2

21

2

1

1 m

mm

m

m

inin

outout

gCj
gg

Cjg
g

vv
vv

ωω +
=

+
=

−
−

−+

−+    (2) 

Redrawing the block diagram in Fig. 3.6, we can write 

21

2

1

1

GG
s

G
v
v

in

out

+
=  and 

π2
21

3
GGf dB =     (2) 

 

Figure 3.8-1 Applying KCL to the output node

( )−+ − ininm vvg

( )−+ − outoutm vvg ( )−+ − outout vvCjω

Switched for subtraction 

Figure 3.16 implementing a first-order filter using transconductors

vin+

vin-  

( )−+ − ininm vvg



 
Comparing equations (2) and (3), we have 

C
gG

g
gG m

m

m 1
2

1

2
1 , ==  

The  block diagram for the filter with different gms is drawn as below. 
 

 
  
 

Figure 3.8-3 Block diagram for the gm-C filter

s
gg mm 12  -1 

Cg m 1

In Out

Figure 3.8-2 Block diagram seen in Fig. 3.6 (Textbook)

s
G 1

 

-1 

2G
 

In Out
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3.9 Derive the transfer function for the following first-order transcondutor filter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To begin the derivation let’s start by determining the transfer characteristics of the OTA seen in F-2. 

 

 

 

 

 

 

 

 

The properties of the OTA currents are: 

 

𝑖𝑜𝑢𝑡 + = 𝑖𝑜𝑢𝑡 − = 𝑔𝑚  𝑣𝑖𝑛+ − 𝑣𝑖𝑛−  
 

Viewing F-2 we can find the differential output voltage: 

 
𝑣𝑜𝑢𝑡 + − 𝑣𝑜𝑢𝑡 −

1
𝑗𝜔𝐶 

= 𝑖𝑜𝑢𝑡 + = 𝑖𝑜𝑢𝑡 − = 𝑔𝑚  𝑣𝑖𝑛+ − 𝑣𝑖𝑛−  

 

The differential OTA gain for the circuit in F-2 can be written as: 

 
𝑣𝑜𝑢𝑡 + − 𝑣𝑜𝑢𝑡 −

𝑣𝑖𝑛+ − 𝑣𝑖𝑛−
=

𝑔𝑚

𝑗𝜔𝐶
 

 

To create a low-pass filter using the transconductance amplifier, review F-3: 

 

 

 

 

 

 

 

 

 

+ 

_ 

+ 

_ 

+ 

_ 

+ 

_ 

+ 

_ 

+ 

_ 

vin1+ 

vin1- 

vin2+ 

vin2- 

vout+ 

vout- 

gm 

gm 

gm 

F-1 A first-order filter with two inputs. 

F-2 Schematic symbol of an OTA. 

+ 

_ 

+ 

_ 

vout+ 

vout- 

gm 

vin+ 

vin- 

C 

C 

iout+ 

iout- 

𝐺

𝑠
 + 

_ 

vin(f) vout(f) 

F-3 Block diagram of an integrator-based filter. 



The block diagram shows that we need to subtract the output from the input; this is accomplished by 

reviewing F-4: 

 

 

 

 

 

 

 

 

 

                                              

Summing the currents at the output gives the following equation: 

 

𝑖3 = 𝑖2 − 𝑖1 
 

𝑗𝜔𝐶 𝑣𝑜𝑢𝑡 − − 𝑣𝑜𝑢𝑡 + = 𝑔𝑚  𝑣𝑜𝑢𝑡 + − 𝑣𝑜𝑢𝑡 − − 𝑔𝑚  𝑣𝑖𝑛+ − 𝑣𝑖𝑛−  
 

𝑔𝑚  𝑣𝑖𝑛+ − 𝑣𝑖𝑛− = 𝑔𝑚  𝑣𝑜𝑢𝑡 + − 𝑣𝑜𝑢𝑡 − − 𝑗𝜔𝐶 𝑣𝑜𝑢𝑡 − − 𝑣𝑜𝑢𝑡 +  
 

𝑔𝑚  𝑣𝑖𝑛+ − 𝑣𝑖𝑛− = 𝑔𝑚  𝑣𝑜𝑢𝑡 + − 𝑣𝑜𝑢𝑡 − + 𝑗𝜔𝐶 𝑣𝑜𝑢𝑡 + − 𝑣𝑜𝑢𝑡 −  
 

𝑣𝑜𝑢𝑡 + − 𝑣𝑜𝑢𝑡 −

𝑣𝑖𝑛+ − 𝑣𝑖𝑛−
=

1

1 + 𝑗𝜔
1
𝑔𝑚

𝐶
 

 

Using this technique we can refer back to F-1 and determine the transfer function by summing the 

currents at the output. 

 

 

 

 

 

 

 

 

 

 

𝑖3 = 𝑖1 + 𝑖2 
 

𝑗𝜔𝐶 𝑣𝑜𝑢𝑡 + − 𝑣𝑜𝑢𝑡 − = 𝑔𝑚  𝑣𝑖𝑛1+ − 𝑣𝑖𝑛1− + 𝑔𝑚  𝑣𝑖𝑛2+ − 𝑣𝑖𝑛2− + 𝑔𝑚  𝑣𝑜𝑢𝑡 − − 𝑣𝑜𝑢𝑡 +  
 

𝑗𝜔𝐶 𝑣𝑜𝑢𝑡 + − 𝑣𝑜𝑢𝑡 − = 𝑔𝑚  𝑣𝑖𝑛1+ − 𝑣𝑖𝑛1− + 𝑔𝑚  𝑣𝑖𝑛2+ − 𝑣𝑖𝑛2− − 𝑔𝑚  𝑣𝑜𝑢𝑡 + − 𝑣𝑜𝑢𝑡 −  
 

 𝑣𝑜𝑢𝑡 + − 𝑣𝑜𝑢𝑡 −  𝑗𝜔𝐶 + 𝑔𝑚  = 𝑔𝑚  𝑣𝑖𝑛1+ − 𝑣𝑖𝑛1− + 𝑔𝑚  𝑣𝑖𝑛2+ − 𝑣𝑖𝑛2−  
 

Let vin1+ - vin1- = vin1 and vin2+ - vin2- = vin2: 

 
𝑣𝑜𝑢𝑡 + − 𝑣𝑜𝑢𝑡 −

𝑣𝑖𝑛1 + 𝑣𝑖𝑛2
=

1

1 + 𝑗𝜔
1
𝑔𝑚

𝐶
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3.10 – Show the derivation details that result in Eqs. (3.44) and (3.46). 

Tyler Hansen 

 
For a perhaps more intuitive explanation, let’s turn to figure 3.10.1, which is a replication 
of book figure 3.25 with an added graphic to help us visualize the clock relationship 
between phi1 and phi2. 

 

 
 

 
Figure 3.10.1: Implementation of a lowpass first-order filter using a switched capacitor DAI 

(Discrete-Analog Integrator) 
 

Note that when phi1 is high, phi2 is low because the two clock signals must be non-
overlapping. When phi1 is high, C1 and C2 are being charged by the input signal, and the 
previous output signal respectively. It is valuable to realize that during this time the 
output is not changing. The circuit can be re-drawn under these circumstances to look 
like figure 3.10.2. 

 

 
Figure 3.10.2: Schematic of figure 3.10.1 when phi1 is high, and phi2 is low. 

 
By the end of timing period B (as defined in figure 3.10.1) the capacitors CI1 and CI2 
have adequately sampled the previous output, and the current input. When phi1 goes low, 
and phi2 goes high, we can re-draw the schematic as shown in figure 3.10.2. 



 

 
Figure 3.10.3: Schematic of figure 3.10.1 when phi2 is high, and phi1 is low. 

 

When phi2 is high, the sampling capacitors CI1 and CI2 charge share. This performs the 
subtraction operation that can be seen in the block diagram of book figure 3.24 (due to 
the reversal of the capacitor nodes when connected in parallel through the phi2 switches). 
The amount of charge on the 2 sampling capacitors is then transferred to the output 
capacitor. This is what allows us to attribute the change in output charge from one cycle 
to the next is a result of the charge-sharing (subtraction in charge) of the previous output 
signal from the input signal. Because the input signal is sampled directly while phi1 is 
high (by contrast, the output is not changing at this point), the input signal only has to 
wait ½ of a clock cycle to be charge-shared with CI2 and transferred to the output. 

Mathematically… 
Book equation 3.46 defines the z-domain transfer function of a switched-capacitor 
implementation of a DAI (Discrete-Analog Integrator), and is copied into this solution as 
equation 3.10.1 below: 
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Note that if we manipulate equation 3.10.1 to work backwards, we get: 
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Equation 3.10.2 is a charge conservation equation that states: 
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Equation 3.10.3 

 



It is equation 3.10.3 coupled with the explanation of how the charge is transmitted 
through figure 3.10.1 that derives the transfer function of 3.10.1. 

Now note that figure 3.10.1 is the schematic implementation of the block diagram 
reproduced in figure 3.10.4 below: 

 

G1/s

G2

Vin(f) Vout(f)

 
Figure 3.10.4: Block diagram of a lowpass first-order filter. 

 

The book example claims that the schematic shown in figure 3.10.1 is the implementation 
of the block diagram shown in figure 3.10.4. Let’s prove it. We will start by deriving the 
transfer function of the block diagram: 
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     Equation 3.10.4 

On the other hand, we know that a switched capacitor configuration can be represented as 
a resistor with a value of 1/fsC according to the discussion on page 51 of the Mixed 
Signal text. That being established, we can re-drawn figure 3.10.1 as figure 3.10.5below: 

 

1

11
IsCf

R =

2

12
IsCf

R =

 
Figure 3.10.5: Equivalent resistor configuration of the switched capacitor lowpass filter seen in fig. 

3.10.1. 



At this point, it is trivial to write the transfer function of this circuit. 
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Comparing the transfer function results from equation 3.10.4, and 3.10.5, we see that they 
are equivalent if: 
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Lincoln Bollschweiler 
3.11)  Show the details of how the gains (G) are derived in Fig. 3.30. 
 
Figure 3.30 from the text was scanned and is reproduced here. 

 
Figure 3.30 Implementation of an active-RC bilinear transfer function filter. 
 
The derivation is as follows: 
 

We can first recognize that 1 .1 1
RR C
sRCsC

R

= =
++

 This applies to both the forward 

path and the feedback path. In the forward path RI is in parallel with CI and in the 
feedback path RF is in parallel with CF. Second, we can recognize that the inputs to the 
op-amp share a common mode voltage. We can label this VCM and set it to an arbitrary 
value. For algebraic convenience we will choose VCM = 0. Finally, we can recognize that 
vin

+ = -vin
-. We will use these three identities for simplifications. 

 

( ) ( )

1 1

1 1

out in

F I

F F I I

out F F I in I I F

v v
R R
sR C sR C

v sR C R v sR C R

− +

− −

−
=

+ +

+ = +

 



( )
( )
1
1

I Iout F

in I F F

sR Cv R
v R sR C

+
=

+
. 

 
The transfer function is now in the form of the bilinear transfer function, as follows: 
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We can equate the associated parts of the two equations to find the gains. 
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Jason Durand

Problem 3.12 – Is it possible to tune the gain, Q, and cutoff frequency of the lowpass biquad

independently? If so, how? Give examples using the simulation netlist used to generate Fig 3.38.

The circuit used to generate Fig 3.38 is the general form of the biquad filter, with the two integration

stages (G3 and G6 in the block diagram) set to zero gain. This modifies the biquad into an active

lowpass filter and is accomplished in the circuit by removing capacitors CI1 and CI2 (the integration

capacitors (note – in the figure below, the capacitors have a value of 1e-18 F, which is effectively

removing them).

With the two integration capacitors removed, the general transfer function of this circuit is

Vout

Vin
=

1

RI1 C F1 R I2 CF2

s
2
s 

1

RF1 CF1


1

C F1 R I2 CF2 RF2

, 

where 
2 f 0

Q
=

1

RF1C F1

and 2 f 0
2
=

1

C F1 R I2 C F2 RF2

.

To independently set the gain, note that the DC gain is set by the ratio of the DC terms in the transfer

function, or the s0 terms. This translates into

DC Gain=

1

RI1 C F1 R I2 CF2

1

C F1 R I2 CF2 RF2

=
RF2

R I1

.

Changing RF2 would affect the Q and the cutoff frequency of the circuit, since it is present is the other

coefficients of the transfer function. However, RI1 is not present anywhere else in the transfer function,a

Figure 1: Circuit used to generate Fig 3.38 (Baker 104), modified for lowpass response



and can be changed without affecting the Q or the cutoff frequency of the filter. Therefore, we can say

that the DC gain can be controlled independently of Q and f0, and it is done by modifying the value of

RI1. 

Gain=
RF2

RI1

, only adjust RI1 to independently adjust gain.

The next variable to attempt to individually control is the cutoff frequency, given by

f 0=
1

2
⋅

1

CF1 R I2C F2 RF2

.

This is easy enough, choose values of the resistors and capacitors that can be implemented in the

process and are reasonable, and you set the cutoff frequency. For the Q, however, you have much less

freedom. The Q factor of the filter is given by

Q=RF1 CF1⋅2 f 0=RF1CF1⋅CF1 R I2C F2 RF2
−

1

2 .

Since the value of CF1 is also present in the list of components that adjust cutoff frequency, you can't

alter it to adjust the Q, leaving you with only RF1. The equation to then set Q is given by

Q=RF1⋅2C F1 f 0 , where Q is adjusted by changing RF1.

To use these design equations, alter RI1 at any time to change the gain and RF2 at any time to change the

Q factor, but a change in the cutoff frequency requires you to recalculate a value of RF2 for the desired

Q. 

Examples:

AC response of Figure 1

Q = .707, f0 = 1.59 MHz, Gain = 1 (0dB).



Ex 2, Adjusted gain. RI1 (top and bottom) changed to 20k, for Gain = ½ (-6dB).

Ex 3, Same gain, with adjusted Q. New RF1 = 20k, new Q=2.



George Schwartz  
Problem 3.13 
What happens to the poles in the biquadratic equation, Eq. (3.62), if the Q is less than 
0.5?  Is the fmax equation in Fig. 3.35 valid? 
 
Solution 
 
First of all, we recognize that the poles in a biquadratic transfer function occur where the 
equation in the denominator is equal to zero.  The equation for the denominator in the 
standard biquadratic transfer function is shown below. 
 
P(f) = s2 + (2πf0/Q)s + (2πf0) 2  
 
If the Q of the filter is set equal to 0.5, the equation can be rewritten in the following way 
(since 1/0.5 = 2) 
 
P(f) = s2 + 2(2πf0)s + (2πf0) 2  
 
Which is simply (s + 2πf0) 2, which means that the filter will have a double pole at  
s = -2πf0.  If we remember the discriminant of a quadratic function (b2 – 4ac) we see that 
this corresponds to the case where b2 – 4ac = 0.  This results in a repeated real value for 
the roots of our equation.  Since the filter has only real poles at this point, this transfer 
function that can be realized by a cascade of two first-order filters.  
 
Now let’s see what will happen if we have a lower Q value.  Having a lower value for Q 
corresponds to a larger coefficient for the linear term in the denominator of our transfer 
function.  Having a larger linear term coefficient results in b2 – 4ac > 0, which means that 
we will have two real poles in our transfer function.  These roots will always be negative, 
which means that the filter will also always be stable (recalling from control system 
theory that when all poles are less than 0, the system will be stable).  Also, this type of 
transfer function can be realized with the cascade of two first-order filters. 
 
Finally, lets find when the equation in Fig. 3.35 is valid.  It states in the discussion 
above the figure that the equation is only valid when Q is greater than 0.707.  This is 
because the filter will only experience peaking when Q is greater than this value.  This 
corresponds to the frequency at which the peaking will occur if Q is higher than that 
value.  Since no peaking occurs for Q < 0.707, this equation is not valid and thus doesn’t 
apply.  Notice that if we make Q very high, Fmax will approach f0. 

mailto:curtis_cahoon@ieee.org


Jake Baker 

3.14 Compare the size of the elements used in Exs. 3.8 and 3.9. Is there a benefit to 
using an active element for monolithic implementation? 

 
The inductor in Ex. 3.8 can’t be implemented on-chip hence this filter requires an off-
chip inductor. The issues with adding an off-chip inductor include cost and the added 
parasitics associated with any signal moving on/off chip (e.g., a bonding capacitance). 
The active-RC filter in Ex. 3.9, however, can be implemented entirely on-chip. The 
largest area component in this filter, 10 pF, is still considerably smaller than the 100 pF 
capacitor in Ex. 3.8 and incomparably smaller than the 100 μH inductor from this same 
example. This makes the active-RC filter implementation the preferred solution to 
implement this filter in monolithic form (on a chip).  
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3.15 Show, using the simulations from Ex. 3.14, that increasing the switch resistance, and thus the 

spectral content present in a switched capacitor circuit, can help to stabilize high-Q switched-

capacitor bandpass filters. 

 
  

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
Before we add switching resistance to the schematic of Ex. 3.14 it is important to understand the transfer 

function of the bi-quad filter.  This ensures that we understand how we select the topologies and how to 

determine the filters parameters. 

 

𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

=
𝑎2𝑠

2 + 𝑎1𝑠 + 𝑎0

𝑠2 +  
2𝜋𝑓0
𝑄

 𝑠 +  2𝜋𝑓0 2
 

 

The implementation of this filter is accomplished when we consider the block diagram in F-2. 

 
 

 

 
 

 

 
 

 

 

 
The analysis of F-2 is performed in the book and leads to the equations that allows us to select the gain 

terms in order to precisely set the parameters to develop the band-pass, low-pass, or all-pass filters used 

extensively in this section.  The transfer function of F-2 is: 
 

𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

=
𝑠2𝐺1𝐺3𝐺4𝐺6 + 𝑠 𝐺1𝐺3𝐺4 + 𝐺1𝐺4𝐺6 + 𝐺1𝐺4

𝑠2 + 𝑠 𝐺1𝐺2 + 𝐺1𝐺4𝐺5𝐺6 + 𝐺1𝐺4𝐺5
 

 
The transfer function of a second order low-pass filter is: 
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F-2 Block diagram of the implementation of the bi-quad transfer function 



𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

=

1
𝐿𝐶

𝑠2 + 𝑠𝑅
𝐿
+ 1
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So if we want to use the bi-quad circuit to implement a second order low-pass filter we will set a2 = a1 = 

0.  To do this with our bi-quad block diagram implementation we can set G6 = G3 = 0, because that is the 

only way to remove the s and s
2
 terms from the numerator without removing them from the denominator.  

More details are given in the book and should be understood before trying to complete this problem. 
 

Let’s now simulate the circuit in F-1 (Ex. 3.14) and show with simulations that increasing the switch 

resistance will improve stability.  The LTSPICE schematic is seen in F-3 and is taken from the LTSPICE 
file provided on the book’s website (_Fig3_48_MSD.asc). 

 

 
 
 

The reason for instability can be seen by examining the pole/zero plot of the second-order bandpass filter. 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

F-4 shows that for high-Q circuits the pole locations move closer to the right half plane, and poles in the 
right half plane will make the system unstable.  

 

We can add switch resistance to the schematic by placing a resistor in series with the switch.  We can do 

this for every switch in F-3, or we can modify the switch_1.asc schematic. 
 

 
 

F-3 LTSPICE schematic and simulation results showing instability for a high-Q second-order bandpass circuit 
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F-4 Pole/Zero plot of a second-order bandpass filter 
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F-5 Adding switch resistance to the switch_1.asc schematic 



The simulation results for varying switch resistances are seen below: 

 

 
 

 

F-6 shows that the magnitude of oscillation decreases by a substantial amount.  Increasing the switch 

resistance to a large value will eventually filter out the input signal.  The analysis performed in Yantao 
Ma’s original solution states that (paraphrasing): 

 

1. “Voltage drops on the resistors helps to reduce the positive feedback gain when the circuit is 
unstable and oscillating”  

2. “The resistance helps to filter high frequency components associating with switching” 

3. “The output is attenuated (filtered by switches R and the capacitive element) at f0 and reduces the 
magnitude of the oscillation” 

F-6 Simulation results of Ex.14 with varying simulation results 

RSW = 1Ω 
RSW = 1kΩ 

RSW = 5kΩ 



Kaijun Li 
Problem 3.16 
Redesign and simulate the operation of the filter discussed in Ex 3.14, with a Q of 5, 
while trying to minimize the difference between CI1 and CF2. Suggest a possible 
modification to the filter topology (similar to how we add G2Q in Fig. 3.45) to 
reduce this component spread. 

 
Solution: 
In order to redesign the system to meet the specification, let us investigate how each 
parameter in the switch capacitor (SC) implementation affects the overall performance of 
the biquadratic filter.  
 
The specification for this SC implementation is: 

1,59.1,5 0 === vAMHzfQ  
And these specs place requirement for relative parameters as follows: 
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So we have the following relations: 
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By combining the equations (1), (2) and (3), we have the following relations between 
capacitors’ sizes. 
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It is noted that in the original design of Ex. 3.14 Q  is 20, so the parameters needed to be 
adjusted are: 

From equation (4), Q  drops from 20 to 5, 
22

1

I

I

C
C  should be enlarged by 4. To meet the 

design goal of minimizing the difference between 1IC  and 2FC , if 2FC  is left out the 
same as 5pF, the size for 1IC  can be chosen as 4.8pF (0.4 pF in Ex. 3.14) resulting 22IC to 
be 2.4pF (0.8 pF in Ex. 3.14) 83.33fF. In other words, compared to the values in Ex. 3.14, 

1IC is 12 times larger, 22IC  is 3 times and Q  is 4 times, and equation (4) is still valid. 
 

21IC  and QIC 21  are selected to be 0.6pF and 0.48pF with 1FC  of 4pF to meet the equation 
(1) in which Q  is 5. 
 

12IC  is changed from 125fF to 83.33fF (two thirds smaller) since in equation (5) 22IC  is 3 
times larger than it is in Ex. 3.14 and 1FC  is twice larger with 2FC  staying the same. 
 
After above analysis, simulation is performed in LTSpice, and the results are shown as 
follows. The simulation is 15us, and it starts saving data from 10us. So one way to check 
the input frequency change is by looking at the starting value for the input at 0us in the 
plot, which is actually the 10us for the simulation. 
 



 
Fig. 3.16-1 Schematic for simulation 

 

 
Fig.3.16-2 Input frequency is 1.59MHz 



 
Fig.3.16-3 Input frequency is 1.45 MHz 

 
Fig.3.16-4 Input frequency is 1.77 MHz 

 
 
It is noted that the 3dB frequency for this SC implementation are 1.45 MHz and 1.77 
MHz respectively. And this means the actual Q  is 1.59/(1.77-1.45)=4.93, which is pretty 
close to targeting value 5.  
 
 
The two suggested topologies are shown in following two figures intending to minimize 
the component spread. It is noted that the negative feedbacks are introduced in order to 
reduce the component spread while maintaining the same transfer function. 
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Fig.3.16-5 Topology 1 for reducing component spread 
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Fig.3.16-6 Topology 2 for reducing component spread  
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3.17) Show how to derive the transfer function of the transconductor-C biquad filter 

seen in Fig. 3.53. Can this filter be orthogonally tuned? If so, how? 
 

Sol)  Shown here is a transconductor-C biquad filter from Fig. 3.53 of the textbook 

 
Figure 1: Transconductor-C Biquad Filter 

 

To derive the transfer function, let’s re-draw the first portion of the circuit as shown 

below, 

 
Figure 2: Only the first portion of the biquad filter is shown without the crossing wires to show how 

the feedback gain is implemented 
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Summing up the currents at the Vout1P node, we get 

( ) ( ) ( )1 2 4

1 2

1 1
1 1 0

1/ 2 1/ 2

P P P
P M P M M P

Vin Vout Vout
gm Vin Vin gm Vout Vout gm Vout Vout

s C s C

   − −
 − + + + − − + − =     

   
[1]

( ) ( ) ( ) ( ) ( )1 1 2 2 42 1 2 1 1 1 0
P M P P P P M P M

gm Vin Vin s C Vin Vout s C Vout gm Vout Vout gm Vout Vout− + − − − − − − =

[2] 

 

We also know that,  

1 1 1

1 1

2

1/ 2 1/ 1/

P M

P M

P M

P P P M

Vout Vout

Vout Vout

Vin Vin

Vin Vin Vin Vin

s C sC sC

= −

= −

= −

⋅ −
= =

 

 

Using these equations, lets rewrite Eq. 2, 

 

( ) ( ) ( ) ( ) ( )1 1 2 2 42 2 1 2 1 1 1 0
P M P P P P M P M

gm Vin Vin sC Vin Vout sC Vout gm Vout Vout gm Vout Vout− + − − − − − − =

[3] 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 42 2 1 2 1 1 1 0
P M P P P P M P M

gm Vin Vin sC Vin sC Vout sC Vout gm Vout Vout gm Vout Vout− + − − − − − − =

[4] 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 41 1 1 1 1 1 0
P M P M P M P M P M P M

gm Vin Vin sC Vin Vin sC Vout Vout sC Vout Vout gm Vout Vout gm Vout Vout− + − − − − − − − − − =

[5] 

( )( ) ( )( )( ) ( )1 1 2 1 2 41 1 0
P M P M P M

Vin Vin gm sC gm s C C Vout Vout gm Vout Vout− + − + + − − − =  [6] 

( )( ) ( )

( )( )

1 1 4

2 1 2

1 1
P M P M

P M

gm sC Vin Vin gm Vout Vout
Vout Vout

gm s C C

+ − − −

− =

+ +

 [7] 

 

 Now, let’s look at the second portion of the transconductor-C biquad filter and 

write the nodal equations for the currents getting summed up at the output VoutP. 

 
Figure 3: Only the output end of the biquad filter is shown here 

( )3

3 4

1
1 1 0

1/ 2 1/ 2

P P P
M P

Vout Vout Vout
gm Vout Vout

s C s C

   − −
− − + + =   

  

   [8] 

( ) ( ) ( )3 3 41 1 2 1 2 0P M P P Pgm Vout Vout s C Vout Vout s C Vout− + − − = [9] 
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( ) ( ) ( ) ( )3 3 3 41 1 2 1 2 2 0P M P P Pgm Vout Vout sC Vout sC Vout sC Vout− + − − = [10] 

( ) ( ) ( ) ( )3 3 3 41 1 1 1 0P M P M P M P Mgm Vout Vout sC Vout Vout sC Vout Vout sC Vout Vout− + − − − − − =

[11] 

( )( ) ( )( )3 3 3 4
1 1 0

P M P M
gm sC Vout Vout s C C Vout Vout+ − − + − = [12] 

( ) ( ) ( )( )3 3 3 41 1P M P Mgm sC Vout Vout s C C Vout Vout+ − = + −  [13] 

 

Substituting Eq. 7 in Eq. 13 we get, 

( )
( )( ) ( )

( )( )
( )( )

1 1 4

3 3 3 4

2 1 2

P M P M

P M

gm sC Vin Vin gm Vout Vout
gm sC s C C Vout Vout

gm s C C

+ − − −

+ = + −

+ +

 [14] 
 

( ) ( )( ) ( ) ( ) ( ){ } ( )3 3 1 1 4 2 1 2 3 4P M P M P M
gm sC gm sC Vin Vin gm Vout Vout gm s C C s C C Vout Vout + + − − − = + + ⋅ + ⋅ − 

[15] 
 

( ) ( )( ) ( ) ( ) ( ){ } ( )3 3 1 1 4 3 3 2 1 2 3 4P M P Mgm sC gm sC Vin Vin gm gm sC gm s C C s C C Vout Vout + ⋅ + − = + + + + ⋅ + ⋅ − 
[16] 

 

( ) ( )( ) ( ) ( )( ) ( )
2

3 3 1 1 3 4 4 3 2 3 4 1 2 3 4P M P M
gm sC gm sC Vin Vin gm gm gm sC sgm C C s C C C C Vout Vout + ⋅ + − = ⋅ + ⋅ + + + + + ⋅ − 

[17] 

( ) ( )

( )( ) ( )

3 3 1 1

2

1 2 3 4 4 3 2 3 4 3 4

P M

P M

gm sC gm sCVout Vout

Vin Vin s C C C C s gm C gm C C gm gm

+ ⋅ +−
=

−  + + + + + + 
 [18] 

 

( )

( )( ) ( )

2

1 3 3 1 1 3 1 3

2

1 2 3 4 4 3 2 3 4 3 4

P M

P M

s C C s gm C gm C gm gmVout Vout

Vin Vin s C C C C s gm C gm C C gm gm

+ + +−
=

−  + + + + + + 
 [19] 

 

Dividing the numerator and denominator by ( ) ( )1 2 3 4C C C C+ + , 

( )( ) ( )( ) ( )( )

( )

( )( ) ( )( )

2 1 3 3 1 1 3 1 3

1 2 3 4 1 2 3 4 1 2 3 4

4 3 2 3 42 3 4

1 2 3 4 1 2 3 4

P M

P M

C C gm C gm C gm gm
s s

C C C C C C C C C C C CVout Vout

Vin Vin gm C gm C C gm gm
s s

C C C C C C C C

 +
+ +  + + + + + +−  

=

−  + +

+ +  + + + + 

[20] 

 

So finally, the transfer function of a transconductor-C biquad filter is given by, 

  

( )( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

2 1 3 3 1 1 3 1 3

1 2 3 4 1 2 3 4 1 2 3 4

2 4 3 3 42

1 2 1 2 3 4 1 2 3 4

P M

P M

C C gm C gm C gm gm
s s

C C C C C C C C C C C CVout Vout

Vin Vin gm C gm gmgm
s s

C C C C C C C C C C

 +
+ +  + + + + + +−  

=

−  
+ + +  + + + + + 

[21] 
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From Eq. 3.70 on Pg. 100 of the textbook, we have the general equation for the 

transfer function of the biquad filter as, 

 

( )

( )

2

1 3 4 6 1 3 4 1 4 6 1 4

2

1 2 1 4 5 6 1 4 5

P M

P M

s G G G G s G G G G G G G GVout Vout

Vin Vin s s G G G G G G G G G

+ + +−
=

− + + +

 [22] 

 

 

Comparing Eq. 22 to Eq. 21 we have 

( )

( )

1 2 1
1 2 3

1 2 1 1

3 34
4 5 6

3 4 1 3

gm gm C
G                      G                      G

C C gm gm

gm Cgm
G                      G                      G

C C gm gm

= = =

+

= = =

+

 

 

 This biquad filter can be orthogonally tuned, where the locations of poles and 

zeros can be moved without affecting the other’s location. From the equations above, C4 

and gm4 can be tuned without effecting the other terms. Using this, we can tune the 

location of the poles and zeros and can create a required filter.  



  Harikrishna Rapole 

3.18. Repeat Ex 3.9 using the transconductor-based biquad. 

Sol. 

 

 

 

       Figure 1. Implementing a biquad low pass filter using transconductors 

  

 

The transfer function of the biquad shown in Figure 1 is given by  

 
2

out out 1 3 4 6 1 3 4 1 4 6 1 4

2
in in 1 2 1 4 5 6 1 4 5

V V s G G G G s(G G C G G G ) G G

V V s s(G G G G G G ) G G G

+ − −+ − −+ − −+ − −

+ − −+ − −+ − −+ − −

+ + ++ + ++ + ++ + +    
====    

+ + ++ + ++ + ++ + +    
                  (1) 

For a low pass filter C1=C3=0 

 

As stated in equation 3.62 in the book the transfer function is also given by 

 

(((( ))))

2
out out 2 1 0

in in 0 22
0

V V a s a s a

V V 2 f
s s 2 f

Q

π
π

+ − −+ − −+ − −+ − −

+ − −+ − −+ − −+ − −

+ ++ ++ ++ +    
====    

        
+ ++ ++ ++ +    
    

                                                (2) 

 

 

Comparing the denominator in (1) and (2) we have  

1 2 1 4 5 6G G G G G G++++ =
02 f

Q

π    
    
    

          (3)  

1 4 5G G G = (((( ))))
2

02 fπ            (4)  

 

 

But we know for low pass filter C1=C3=0 and hence the below equations follow.             
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1 1

1

2

2

2

1

1

3

1

3 3

4

4

5

1

3

6

3

gm gm
G

C1 C C

gm
G

gm

C
G 0

gm

gm gm
G

C4 C

gm
G

gm

C
G 0

gm

1 2 4=  as C =0 and assuming C =C =C

=  as C1=0

 =

 as C3=0

====

++++

====

====

====

====

= == == == =

 

From equation (3)  we have 

0 1 2 2

1

2 f gm gm gm

Q C gm C

π    
= × == × == × == × =    

    
 

2

0

gm
2 f Q

C
π = ×= ×= ×= ×                 (5) 

From equation (4) we have 

0 1 4 52 f G G Gπ ====  

3 4

0

gm gm
2 f

C
π

××××

====                   (6) 

 

From equation (5) and (6) we have 

3 42 gm gmgm
Q

C C

××××

× =× =× =× =  

3 4

2

gm gm
gm

Q

××××

====                  (7) 

Assuming   gm1=gm3=gm4=gm and substituting in (7) we get 

 

2

gm
gm

Q
====  Assuming the value of gm=gm3=gm4=100 uA/V and given Q=0.707 

we have  

 

gm2=141 uA/V  

 

Substituting the value of gm2 in equation (5) we get C=C2=C4=10 pF 
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                                  Figure 2. LTspice schematic for biquad low pass filter 

 

 
Figure 3. frequency response of biquad transconductor lowpass filter 

 

The gain at dc is 
4

1

gm

gm
i.e. 0 dB as verified in simulation (see Figure 3). 

f3dB=1.59 MHz 



Solution by Geng Zheng

3.19     How would a “high-Q” biquad be implemented using transconductors? Repeat Ex. 3.12 using

the transconductor-based biquad.

Solution:

Ex. 3.12 asks for a bandpass filter with the following specifications:

         f o=1.59 MHzo=10 MHz
          Q=20
Apassband=1  0dB

 (1)

Let's get started by writing the filter's transfer function

vout

v in
=

a1 s

s22 f o

Q s2 f o
2  (2)

To minimize the component spread, we can use the topology show in the Fig. 3.44 in [1]. The

biquad implementation using transconductors (gm-C) is shown in Fig. 1.

Now let's derive the transfer function for this biquad gm-C filter. First, we apply KCL to node

out1p, or

v in+−v in-⋅gm1v in+−vout1+ ⋅s2 C1−vout1+⋅s2 C2−vout+−vout- ⋅gm4

−vout+−vout-⋅g m2vout1+−vout1-⋅g m2Q=0  (3)

Knowing

  v in=v in+−v in-=2v in+

 vout=vout+−vout-=2 vout+

vout1=vout1+−vout1-=2vout1+

 (4)

we can rewrite Eq. 3 as

v in gm1sC1=vout1 [s C1C2g m2−g m2Q ]vout g m4  (5)

Figure 1   Implementation of "high-Q" gm-C biquad transfer function filter.



Next we apply KCL to node outp

vout1+−vout1-⋅gm3vout1+−vout+⋅s 2 C3−2 vout+⋅sC4=0  (6)

Again, using Eq. 4, we can rewrite Eq. 6 as

vout1=vout⋅
s C 3C4
sC3g m3

 (7)

With Eqs. 5 and 7, we can relate the input, v in , and the output, vout

vout

v in
=

s2C1 C3s g m1C3g m3C1g m1 g m3

s2C1C 2C3C 4s [ gm4 C3g m2−gm2QC3C 4]gm3 gm4

 (8)

Comparing Eq. 8 with Eq. 2, we can make a2=a0=0  by setting g m1=0  and C3=0 . Note that

we cannot set g m3=0  and C1=0  since we will end up getting 2 f o
2=0  if doing so. The

transfer function for setting g m1  and C 3  to zero and having g m2Q=g m2⋅
Q−1

Q  is

vout

v in
=

s⋅
g m3C1

C1C2C4

s2s⋅
gm2

C1C 2Q


gm3 gm4

C1C 2C 4

 (9)

Thus

          a1=
gm3C1

C1C2C4

   
2 f o

Q
=

gm2

C 1C2Q

2 f o
2=

g m3 g m4

C1C 2C4

 (10)

For simplicity we can set g m2=gm3=gm4=10 A/V , then C1C2  and C4  must be 1 pF in

order to satisfy the requirement of f o=1.59 MHz . Since we also want the passband gain to be

1, or

Apassband=
a1Q

2 f o
=

g m3C1

C 1C2C4
⋅ Q

2 f o
=
10 A/V ⋅C 1

1 pF1 pF
⋅ 20

10 MHz
=1  (11)

we have C1=0.05 pF  and C2=0.95 pF . And g m2Q=g m2⋅Q /Q−1=9.5 A/V . The “high-Q”

biquad transconductor bandpass filter using these component values and the SPICE simulation

are shown in Fig. 2. Note that for g m1=0  and C3=0 , we simply remove these components

from the circuit.



Reference:

[1]   R. J. Baker, CMOS Mixed-signal Circuit Design, Second Edition, Wiley-IEEE, 2009.

Figure 2   The "high-Q" transconductor biquad bandpass  filter and the simulation.



Solution by Geng Zheng

3.20     Show, using biquad section, how the lowpass ladder filter seen in Fig. 3.56 can be implemented.

Solution:

In order to implement Fig. 3.56 in [1] using biquad sections, we can first divide the lowpass

ladder filter into three sections as shown in Fig. 1. Each section ( H 1 ~ H 3 ) can be implemented

using biquad filter section ( HB1 ~ HB3 ). We the can design each of the biquad sections so they

have the same frequency responses as the original circuit, or

H k s =HBk  s  , k=1, 2, 3  (1)

Next, we write down H  s  for the each original section, or

H 1 s=
1/L1C1

s2s R1/L11/L1C1

H 2 s =
1/L2C 2

s21/L2C 2

H 3 s=
1 /L3C3

s2s /R3 L31/L3 C3

 (2)

Figure 1   Implementating a lowpass ladder filter using biquad sections.



A biquad filter has a transfer function

HB  s=
a2 s2a1 sa0

s22 f o

Q s2 f o
2  (3)

In order to satisfy Eq. 1 (so each biquad section has the same transfer function as the original

circuit), we need to properly design each biquad section so their transfer function have the

desired coefficients ( a2, a1, a0, f o , and Q ). Comparing Eq. 3 with Eq. 2, we can have

1) For Section 1,

a2=a1=0, a0=
1

L1 C 1

Q= 1
R1L1

C 1

2 f o= 1
L1C1

 (4)

2) For Section 2,

a2=a1=0,a0=
1

L2C2

Q=∞

2 f o= 1
L2 C2

 (5)

3) For Section 3,

a2=a1=0, a0=
1

L3 C3

Q=R3C3

L3

2 f o= 1
L3C 3

 (6)

The biquads with above coefficients can be implemented using either active-RC,

transconductor-C, or SC filter.

Reference:

[1]   R. J. Baker, CMOS Mixed-signal Circuit Design, Second Edition, Wiley-IEEE, 2009.
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