Self-Biased PLL/DLL

ECG 721 – Memory Circuit Design (Spring 2017)

Dane Gentry

4/17/17
Outline

• Jitter
• Self-Biased PLL/DLL
• Differential Buffer Delay
• Fig. 19.57
• Bias Generator
• Self-Biased DLL
 • Input/Output Delay Relationship
 • DLL Closed Loop Response
 • Bandwidth Tracking
 • Deriving ω_N/ω_{REF}
 • Zero-Offset Charge Pump
• Self-Biased PLL
 • Input/Output Phase Relationship
 • PLL Closed Loop Response
 • Bandwidth Tracking
 • Deriving ω_N/ω_{REF}
 • Feed-Forward Zero
 • Complete Self-Biased PLL
• References
Jitter

• Jitter: the deviation from true periodicity of a presumably periodic signal, often in relation to a reference clock signal

• From CMOS: Circuit Design, Layout, and Simulation (pg. 591)
 • “Jitter, in the most general sense, for clock-recovery and synchronization circuits, can be defined as the amount of time the regenerated clock varies once the loop is locked.”
Jitter

- From CMOS: Circuit Design, Layout, and Simulation (pg. 591)

Figure 19.51 (a) Idealized view of clock and data without jitter and (b) with jitter.
Jitter

• From CMOS: Circuit Design, Layout, and Simulation (pg. 589)

Figure 19.49 The PD (Hogge) portion of a self-correcting, clock-recovery circuit in lock.
Jitter

- From CMOS: Circuit Design, Layout, and Simulation (pg. 589)

Figure 19.49 The PD (Hogge) portion of a self-correcting, clock-recovery circuit in lock.
Jitter

• From CMOS: Circuit Design, Layout, and Simulation (pg. 589)

Figure 19.50 (a) Possible loop filter used in a self-correcting (Hogge) DPLL
Jitter

• Desire high speed data transmission (need fast clock)
• High clock frequency (f) in Hertz, Hz \Rightarrow small clock period (T) in seconds, s
• Small jitter has more negative effect for small clock period
• Supply and substrate noise induced jitter
Self-Biased PLL/DLL

Self-biased DLL/PLL designs achieve:
• Process technology and environmental variability independence
• Fixed damping factor (\(\zeta\))
• Fixed bandwidth to operating frequency ratio \(\left(\frac{\omega_N}{\omega_{REF}}\right)\)
 • bandwidth = loop bandwidth = natural frequency (radians/second, rad/s) – \(\omega_N\)
 • operating frequency (radians/second, rad/s) - \(\omega_{REF}\)
• \(\omega_N\) that tracks \(\omega_{REF}\)
• Broad \(\omega_{REF}\) range
• Low input tracking jitter / minimized supply and substrate noise induced jitter
• \(\zeta\) and \(\frac{\omega_N}{\omega_{REF}}\) determined solely by ratio of capacitances (cap’s)
• No external biasing (i.e. bandgap bias ckt)
Differential Buffer Delay

- Used in both PLL/DLL
- Contains source coupled pair w/ resistive load elements called symmetric loads
- Sym. loads consist of diode-connected PMOS in shunt w/ equally sized biased PMOS
- V_{CTRL} (loop filter output) generates NMOS/PMOS bias voltages (V_{BP}) and (V_{BN}), respectively
 - Defines lower voltage swing limit of buffer O/P’s (V_{O+} swings VDD to V_{CTRL})
Differential Buffer Delay

- V_{BP} approximately equal to control I/P to the bias generator (V_{CTRL})
- NMOS current source dynamically biased w/ V_{BN} to compensate for drain and substrate volt. Variations
 - Provides high static supply and substrate noise rejection
- Buffer delay changes w/ V_{CTRL} since effective resistance of the load elements changes w/ V_{CTRL}
Differential Delay Element and Voltage-Controlled Resistor

- From CMOS: Circuit Design, Layout, and Simulation (pg. 596)

Eq. (9.15) on pg. 278

\[R \approx \frac{1}{\beta(V_{rbias} - V_{THN})} \]
\[R_{ch} = \frac{1}{KP_n \cdot \frac{W}{L} \cdot (V_{DS,sat} - V_{DS})} \]

Figure 19.57 A differential delay element based on a voltage-controlled resistor. The bias circuit adjusts the value of the resistors used in the delay elements to sink the current sourced by the p-channel MOSFETs.
• V_{CTRL} (control I/P to bias generator) produces bias voltages V_{BN} and V_{BP}

• Bias generator continuously adjusts buffer bias current ($2I_D$) to provide correct lower swing limit (V_{CTRL}) for buffer stages

• Establishes constant current that is independent of supply volt. by using differential amplifier and half-buffer replica

• Amplifier adjusts V_{BN} so that O/P volt. of half-buffer replica is V_{CTRL}, the lower swing limit

• If supply volt. changes, amplifier will adjust to keep the swing and thus the bias current constant
Bias Generator

- Bias generator also provides buffered version of V_{CTRL} at V_{BP} O/P using additional half-buffer replica, isolating V_{CTRL} from potential capacitive coupling in buffer stages.
- Compact layout since sym. load uses same size PMOS’s.
- Bias Initial circuit is self-bias reference aka start up circuit.
Self-Biased DLL

- Neg. f/b in loop adjusts delay through VCDL by integrating phase error that results b/w the periodic reference I/P and the delay line O/P
- Once in lock, VCDL will delay reference I/P by fixed amount to form the O/P such that there is no detected phase error b/w the reference and the O/P
- VCDL delay must be a multiple of the reference I/P clock period
Input/Output Delay Relationship

\[D_O(s) = (D_I(s) - D_O(s)) \cdot F_{REF} \cdot \frac{I_{CH}}{sC_1} \cdot K_{DL} \]

- O/P delay \(-D_o(s)\): delay b/w reference I/P and DLL O/P (established by VCDL)
- I/P delay \(-D_I(s)\): delay to which the phase comparator compares the O/P delay
 - Phase difference for which phase comparator and charge pump generate no error signal
- Reference frequency (Hertz, Hz) \(-F_{REF}\)
- Charge pump current (Amps, A) \(-I_{CH}\)
- Loop filter capacitor (Farads, F) \(-C_1\)
- VCDL gain (seconds/Volt, s/V) \(-K_{DL}\)
DLL Closed Loop Response

• DLL has a first-order closed loop response since loop filter integrates the phase error

\[
\frac{D_O(s)}{D_I(s)} = \frac{1}{1 + s/\omega_N}
\]

\[
\omega_N = I_{CH} \cdot K_{DL} \cdot F_{REF} \cdot \frac{1}{C_1}
\]

• \(\omega_N\) will track \(\omega_{REF}\) if \(I_{CH}\) and \(K_{DL}\) are constant

• However, \(I_{CH}\), \(K_{DL}\), and \(C_1\) are process technology dependent and will cause \(\omega_N\) to vary around the design target
Bandwidth Tracking

• Delay is nonlinear w/ respect to V_{CTRL} and changes proportionally to $1/(V_{CTRL} - V_T)$ w/ slope K_{DL} proportional to $1/(V_{CTRL} - V_T)^2$ or $1/I_D$

Typical symmetric load buffer stage delay as a function of control voltage

• Setting $I_{CH} = 2I_D$ eliminates K_{DL} dependence on $1/I_D$ which allows ω_N to track ω_{REF} without constraining ω_{REF} range
Deriving ω_N / ω_{REF}

$$t = R_{EFF} \cdot C'_{EFF} = \frac{1}{g_m} \cdot C'_{EFF}$$

- Buffer delay (seconds, s) – t
- Effective Resistance of sym. load (Ohms, Ω) – R_{EFF}
- Transconductance (Siemens, S OR mho, μ) – g_m
- Effective buffer O/P capacitance (Farads, F) – C'_{EFF}
Deriving ω_N / ω_{REF}

- Using a half-buffer replica, the bias generator sets the buffer bias current equal to the current through a sym. load w/ its O/P volt. at V_{CTRL}
- In this case, the two equally sized PMOSs are both biased at V_{CTRL} and each source half of the buffer bias current
Deriving ω_N/ω_{REF}

- Drain current for one of the two equally sized PMOSs biased at V_{CTRL}:

$$I_D = \frac{k}{2} \cdot (V_{CTRL} - V_T)^2$$

where k is the device transconductance of one of the PMOS’s

- Taking derivative w/ respect to V_{CTRL}:

$$g_m = k \cdot (V_{CTRL} - V_T) = \sqrt{2 \cdot k \cdot I_D}$$
Deriving $\omega N/\omega_{REF}$

$$t = R_{EFF} \cdot C_{EFF} = \frac{1}{g_m} \cdot C_{EFF}$$

$$g_m = k \cdot (V_{CTRL} - V_T) = \sqrt{2 \cdot k \cdot I_D}$$

$$\Rightarrow t = \frac{C_{EFF}}{k \cdot (V_{CTRL} - V_T)}$$

- Delay (D) for n stage VCDL:

$$D = n \cdot t = \frac{C_B}{2 \cdot k \cdot (V_{CTRL} - V_T)}$$

Total buffer output capacitance for all stages (Farads, F) – $C_B = 2 \cdot n \cdot C_{EFF}$
Deriving ω_N/ω_{REF}

• Delay (D) for n stage VCDL:

$$D = n \cdot t = \frac{C_B}{2 \cdot k \cdot (V_{CTRL} - V_T)}$$

• Taking derivative with respect to V_{CTRL}:

$$K_{DL} = \left| \frac{dD}{dV_{CTRL}} \right| = \frac{C_B}{2 \cdot k \cdot (V_{CTRL} - V_T)^2}$$

$$= \frac{C_B}{4 \cdot I_D}$$

• Gain inversely proportional to buffer bias current
\[K_{DL} = \frac{C_B}{4 \cdot I_D} \]

Deriving \(\omega_N/\omega_{REF} \)

• Let \(I_{CH} \) be set to some multiple \(x \) of the buffer bias current:

\[I_{CH} = x \cdot (2 \cdot I_D) \]

\[\frac{\omega_N}{\omega_{REF}} = \frac{1}{\omega_{REF}} \cdot I_{CH} \cdot K_{DL} \cdot F_{REF} \cdot \frac{1}{C_1} \]

\[= \frac{1}{2\pi} \cdot I_{CH} \cdot K_{DL} \cdot \frac{1}{C_1} \]

\[= \frac{1}{2\pi} \cdot x \cdot (2 \cdot I_D) \cdot \frac{C_B}{4 \cdot I_D} \cdot \frac{1}{C_1} \]

\[= \frac{x}{4\pi} \cdot \frac{C_B}{C_1} \]
Deriving ω_N / ω_{REF}

$$\frac{\omega_N}{\omega_{REF}} = \frac{x}{4\pi} \cdot \frac{C_B}{C_1}$$

• ω_N / ω_{REF} is constant and completely determined by a ratio of capacitances (C_B / C_1) that can be matched reasonably well in layout

• Dramatically reduces process technology sensitivity
Zero-Offset Charge Pump

- Zero static phase offset, charge pump must transfer no net charge to the loop filter for equal duration UP and DN pulses
 - Requires UP and DN currents be identical and independent of the charge pump output voltage

- In-phase inputs:
 - Charge pump will see both UP and DN asserted for an equal and short period of time

- If in-phase PFC inputs produce no UP or DN pulses, it will take some finite phase difference before a large enough pulse is produced to turn on the charge pump, i.e. dead zone
Zero-Offset Charge Pump

• If reference is early, difference b/w UP and DN pulses will be equal to I/P phase difference
• Self-biasing allows charge pump to have zero static phase offset when UP and DN are asserted for equal durations on every cycle w/ in-phase inputs
• By constructing charge pump from sym. load buffer stage, UP and DN currents for equal duration pulses completely cancel out and transfer no net charge to loop filter
Zero-Offset Charge Pump

- Composed of 2 NMOS source coupled pairs each with a separate current source and connected by current mirror made from sym. load elements
- With both UP and DN asserted, left source-coupled pair behaves like half-buffer replica and produces V_{CTRL} at current mirror node
- PMOS in right source coupled pair will have V_{CTRL} at its gate and drain which is connected to loop filter
- PMOS will then source exact same buffer bias current sunk by remainder of source coupled pair
- With no net charge transferred to loop filter, charge pump will have zero static phase offset

Offset-cancelled charge pump with sym. loads

- Current mirror constructed from sym. load elements
- Unselected source coupled pair outputs connected to sym. load elements to match the voltages at the other outputs
Self-Biased PLL

- Res. used for stability
Input/Output Phase Relationship

• PLL has a second-order closed response b/c loop filter integrates the charge representing the phase error and the VCO integrates the O/P freq. to form the O/P phase

\[P_O(s) = \left(P_I(s) - \frac{P_O(s)}{N} \right) \cdot I_{CH} \cdot \left(R + \frac{1}{sC_1} \right) \cdot K_V \cdot \frac{1}{s} \]

• Output phase - \(P_o(s) \)
• Input phase – \(P_i(s) \)
• Charge pump current (Amps, A) - \(I_{CH} \)
• Loop filter resistor (Ohms, Ω) – \(R \)
• Loop filter capacitor (Farads, F) - \(C_1 \)
• VCO gain (Hertz/Volt, Hz/V) – \(K_V \)
PLL Closed Loop Response

\[
\frac{P_O(s)}{P_I(s)} = \left(\frac{1}{N} + \frac{s}{I_{CH} \cdot (R + 1/(sC_1)) \cdot K_V} \right)^{-1}
= \frac{N \cdot (1 + s \cdot C_1 \cdot R)}{1 + s \cdot C_1 \cdot R + s^2/(I_{CH}/C_1 \cdot K_V/N)}
\]

OR

\[
\frac{P_O(s)}{P_I(s)} = N \cdot \frac{1 + 2 \cdot \zeta \cdot (s/\omega_N)}{1 + 2 \cdot \zeta \cdot (s/\omega_N) + (s/\omega_N)^2}
\]

where

\[
\zeta = \frac{1}{2} \cdot \sqrt{\frac{1}{N} \cdot I_{CH} \cdot K_V \cdot R^2 \cdot C_1}
\]

\[
\omega_N = \frac{2 \cdot \zeta}{R \cdot C_1}
\]

• \(\zeta = 1 \): Critically damped
• \(\zeta > 1 \): Overdamped
Bandwidth Tracking

• I_{CH}, R, and K_V are constant for typical PLL \Rightarrow const. ζ and ω_N

• Const. ω_N can constrain wide ω_{REF} range and low I/P tracking jitter

• Want ω_N as close to ω_{REF} as possible to minimize total phase error
 • However, ω_N must be a decade below the lowest ω_{REF} for stability

• Ideally, ζ and ω_N/ω_{REF} const. for improved jitter performance and no limit on ω_{REF} range
Bandwidth Tracking

• To keep ζ constant w/ ω_{REF}, I_{CH} can be set equal to buffer bias current ($2I_D$) and R can be set to vary inversely proportionally to the square root of the buffer bias current ($R \sim 1/\sqrt{2I_D}$)

$\Rightarrow \zeta$ const., but ω_N will be proportional to square root of buffer bias current ($\omega_N \sim \sqrt{2I_D}$)

• For tracking bandwidth, VCO operating freq. should have same dependency on buffer bias current as ω_N
Bandwidth Tracking

- Sym. load buffer stages used to implement VCO to obtain a broad frequency range

![Graph]

Typical VCO frequency as a function of control voltage when implemented with symmetric load buffer stages

- Freq. proportional to $V_{CTRL} - V_T$ or, equivalently, the square root of I_D ($\sqrt{I_D}$) and slope const. slope
 - $\Rightarrow K_v$ const. and ω_{REF} proportional to square root of buffer bias current ($\sqrt{2I_D}$)

- Both ω_N and ω_{REF} proportional to $\sqrt{2I_D}$
 - $\Rightarrow \omega_N$ will track ω_{REF}
Deriving ω_N/ω_{REF}

- Oscillation freq. (F) of n-stage VCO:

 $$ F = \frac{1}{2 \cdot n \cdot t} = \frac{k \cdot (V_{CTRL} - V_T)}{C_B} = \frac{\sqrt{2 \cdot k \cdot I_D}}{C_B} $$

- Taking derivative w/ respect to V_{CTRL}:

 $$ K_V = \left| \frac{dF}{dV_{CTRL}} \right| = \frac{k}{C_B} $$

 - Independent of buffer bias current

- Let I_{CH} be set to some multiple x of the buffer bias current: $I_{CH} = x \cdot (2 \cdot I_D)$

- Let diode-connected sym. load in bias generator that establishes loop filter resistance be y times larger than sym. loads used in buffer stages

 $$ R = \frac{y}{2 \cdot g_m} = \frac{y}{\sqrt{8 \cdot k \cdot I_D}} $$
Deriving $\omega_N/\omega_{\text{REF}}$

$$K_V = \left| \frac{dF}{dV_{\text{CTRL}}} \right| = \frac{k}{C_B}$$

$$\zeta = \frac{1}{2} \cdot \sqrt{\frac{1}{N} \cdot I_{CH} \cdot K_V \cdot R^2 \cdot C_1}$$

$$= \frac{1}{2} \cdot \sqrt{\frac{1}{N} \cdot x \cdot (2 \cdot I_D) \cdot \frac{k}{C_B} \cdot \frac{y^2}{8 \cdot k \cdot I_D} \cdot C_1}$$

$$= \frac{y}{4} \cdot \sqrt{\frac{x}{N}} \cdot \sqrt{\frac{C_1}{C_B}}.$$

$$I_{CH} = x \cdot (2 \cdot I_D)$$

$$R = \frac{y}{2 \cdot g_m} = \frac{y}{\sqrt{8 \cdot k \cdot I_D}}$$

$$\frac{\omega_N}{\omega_{\text{REF}}} = \frac{1}{2\pi} \cdot \frac{F_{\text{REF}}}{\zeta} \cdot \frac{2 \cdot \zeta}{R \cdot C_1}$$

$$= \frac{1}{2\pi} \cdot \frac{N \cdot C_B}{\sqrt{2 \cdot k \cdot I_D}} \cdot \frac{y}{4} \cdot \sqrt{\frac{x}{N}} \cdot \sqrt{\frac{C_1}{C_B}}$$

$$= \frac{x \cdot N}{2\pi} \cdot \sqrt{\frac{C_B}{C_1}}.$$

- ζ and $\omega_N/\omega_{\text{REF}}$ are both equal to a const. times square root of the ratio of two capacitances $= x \cdot \sqrt{C_1/C_B}$

- ω_N will track ω_{REF} and, therefore, sets no constraint on the operating frequency range
Feed-Forward Zero

- Form res. (R) to vary proportionally to $1/\sqrt{2I_D}$ from small-signal resistance $1/g_m$ for diode-connected device
 - $\Rightarrow (g_m \sim \sqrt{2I_D})$

![Loop filter transformation for integration of loop filter res.]

- V_{CTRL} typically sum of volt. drops across cap. and res.

- Volt. drops across cap. and res. generated separately
 - As long as same charge pump current is applied to each of them

- 2 volt. drops summed to form V_{CTRL} by replicating volt. across cap. w/ volt. source placed in series w/ res.

- Bias generator can implement this volt. source and res. since it buffers V_{CTRL} to form V_{BP} with a finite O/P resistance
Complete Self-Biased PLL

- Res. formed by diode-connected sym. load or, equivalently, a diode-connected PMOS device as seen in Bias Generator
 - Resistance is equal to $1/g_m$ or inversely proportional to $\sqrt{2I_D}$
- Self-biased PLL completed by adding additional charge pump current to bias generator’s O/P
References

Questions???