

Lecture 23 – eMMC Architecture and Operation

ECG 721 – Memory Circuit Design, Spring 2017

Jonathan K DeBoy

Overview

- Flash memory programming and reading
- MultiMedia Card (MMC)
- Embedded MMC (eMMC)
- Packet Formats & Operation
- Future Technologies

Flash Memory Overview

Floating Gate Memory ch16_16_3_p2_video Delta Sigma Sensing Flash Memory

<u>ch17_17_1_video</u>

Programming Process

Figure 16.58 FNT of electrons from the p-well to a floating gate to increase threshold voltage (showing programming).

Figure 16.62 Programming in a Flash NAND cell.

Source: CMOS Circuit Design Layout and Simulation Page 472

College of ENGINEERING

Erasing Process

Figure 16.59 FNT of electrons from the floating gate to p-well to decrease threshold voltage (showing erasing).

Reading Process – Cell Properties

Figure 16.64 Expanded view showing erased and programmed IV curves.

Reading Process – Sensing

Figure 17.6 Sensing a Flash memory cell using DSM.

MultiMedia Card (MMC)

MMC Overview

- Developed by Joint Electron Device Engineering Council (JEDEC)
- Standard for flash memory
 - Low pin count
 - Cheap compared to large, high performance drives (also use NAND flash)
 - Portable, easily removed
 - Non-volatile
- SD is a **format** for flash memory

Source: JEDEC Standard No. 84-A441 Figure 3

College of ENGINEERING

MMC Adaptor Architecture

Source: JEDEC Standard No. 84-A441 Figure 16

MMC Architecture

Source: JEDEC Standard No. 84-A441 Figure 4

MMC Controller

Source: JEDEC Standard No. 84-A441 Figure 62

Parameter	Symbol	Min	Max	Unit
Supply voltage (NAND)	V _{CC}	2.7	3.6	V
		1.7	1.95	V
Supply voltage (I/O)	V _{CC} Q	2.7	3.6	V
		1.65	1.95	V
		1.1	1.3	V
Supply power-up for 3.3V	tPRUH		35	ms
Supply power-up for 1.8V	tPRUL		25	ms
Supply power-up for 1.2V	tPRUV		20	ms

Source: JEDEC Standard No. 84-A441 Table 106

College of ENGINEERING

• Functions

College of ENGINEERING

- Logical to physical address mapping
- Power off recovery
- Wear leveling (erase/write counts)
- RAM tables and Flash map storage
 - Dangerous for recovery
- FTL algorithms determine physical address
 - Block/Sector/Hybrid Mapping
 - Log Block Scheme

Embedded MultiMedia Card (eMMC)

eMMC Overview

- Optimized for low power and small area
- Used in many mobile platforms: phones, microcontrollers,
- Combines the flash controller, interface adapter, and memory arrays together on the same Silicon dye
- NOT removable (perfect for OS/firmware)
- Very affordable, low tier performance
- Reset signal is unique to eMMC vs other MMC applications

eMMC™

eMMC System Overview

Source: JEDEC Standard No. 84-B51 Figure 1

College of ENGINEERING

- **open-drain**: A logical interface operation mode. An external resistor or current source is used to pull the interface level to HIGH, the internal transistor pushes it to LOW
- **push-pull:** A logical interface operation mode, a complementary pair of transistors is used to push the interface level to HIGH or LOW

Communication

Card state	Operation mode	Bus mode
Inactive State	Inactive mode	Open-drain
Pre-Idle State	Boot mode	
Pre-Boot State	-	
Idle State	Card identification mode	-
Ready State	_	
Identification State	_	
Stand-by State		
Sleep State	Data transfer mode	Push-pull
Transfer State		
Bus-Test State		
Sending-data State	-	
Receive-data State	_	
Programming State	-	
Disconnect State	_	
Boot State	Boot mode	1
Wait-IRQ State	Interrupt mode	Open-drain

Source: JEDEC Standard No. 84-A441 Table 5

11 Signal Bus

- CLK: 0-200MHz
- Data Strobe: output in DDR mode
 - Data output on rise and falling edges
 - CMD and CRC status is still on rising edge
- CMD
 - Bidirectional command channel
 - Open drain for initialization and push-pull for fast command transfer
- DAT[0-7]
 - Defaults to DAT[0] after boot
 - Larger bus widths are negotiated after bootup
 - Pull-ups disconnected when lines are in use

Load Capacitance

College of ENGINEERING

$\mathbf{C}_{\text{L}} = \mathbf{C}_{\text{HOST}} + \mathbf{C}_{\text{BUS}} + \mathbf{C}_{\text{DEVICE}}$

the sum of the host and bus capacitances not to exceed 20 pF

Parameter	Symbol	Min	Тур	Max	Unit	Remark
Pull-up resistance for CMD	R _{CMD}	4.7		$100^{(1)}$	kΩ	to prevent bus floating
Pull-up resistance for DAT0–7	R _{DAT}	10		100 ⁽¹⁾	kΩ	to prevent bus floating
Internal pull up resistance DAT1–DAT7	R _{int}	10		150	kΩ	to prevent unconnected lines floating
Bus signal line capacitance	CL			30	pF	Single Device
Single Device capacitance	CDEVICE			6	pF	
Maximum signal line inductance				16	nH	$f_{\tt PP} \leq 52~MHz$
V _{DDi} capacitor value	C _{REG} ⁽²⁾	0.1			uF	To stabilize regulator output when target device bus speed mode is either backward- compatible, high speed SDR, high speed DDR, or HS200.
		1			uF	To stabilize regulator output when target device bus speed mode is HS400.
V_{DDi2} capacitor value ($e^2 \cdot MMC$)	C _{REG2}	1			uF	To stabilize internal regulated voltage
V_{DDi3} capacitor value ($e^2 \cdot MMC$)	C _{REG3}	1			uF	To stabilize internal regulated voltage
V _{CCQ} decoupling capacitor	C _{H1}	1			uF	(3), (4), (5)
NOTE 1 Recommended maximum pull-up is 30 kΩ for 1.2 V and 50 kΩ for 1.8 V interface supply voltages. A 3 V part, may use the whole range up to 100 kΩ. NOTE 2 Recommended value for C_{REG} created and C_{REG} might be different between e•MMC device vendors. NOTE Confirm the maximum value and the accuracy of the capacitance with e•MMC vendor						

NOTE Confirm the maximum value and the accuracy of the capacitance with e^{\bullet} MMC vendor because the electrical characteristics of the regulator inside e^{\bullet} MMC is affected by the fluctuation of the capacitance.

NOTE 3 C_{HI} is V_{CCQ}-V_{SSQ} decoupling capacitor required for HS200&HS400 e•MMC device.

NOTE 4 C_{HI} should be placed adjacent to V_{CCQ} - V_{SSQ} balls (around DAT[7..0] balls), It should be located as close as possible to the balls defined in order to minimize connection parasitics.

NOTE 5 e^{\bullet} MMC device vendor may have more specific requirements for CH1 placement. Please confirm such requirements with specific e^{\bullet} MMC device vendor.

Source: JEDEC Standard No. 84-B51 Table 200 / Page 247

Address Spaces

- Mapped Host Address Space
 - Usable space by the host software
- Private Vendor Specific Address Space
 - Cannot be accessed by read command by host
 - Contains firmware and mapping tables for the controller
 - No host data
- Unmapped Host Address Space
 - Cannot be read by host
 - May contain old host data or copies
 - Reason why government does not like flash/SSD memory
- 32 bit addresses imply 2GB max unless multiple sectors are used (512B in size each)

Packet Formats & Operation

Multiple Read Operation

Multiple Write Operation

Source: JEDEC Standard No. 84-B51 Figure 3

Command Token Format

Quick Definitions for Next Slide

- CID: Card Identification number register
- CSD: Card Specific Data register

Response Token Format

Source: JEDEC Standard No. 84-B51 Figure 6

Single Bit Bus Data Packet Format for SDR

4 Bit Bus Data Packet Format for SDR

Source: JEDEC Standard No. 84-B51 Figure 7

Source: JEDEC Standard No. 84-B51 Figure 7

College of ENGINEERING

Data Packet Format for DDR

8 Bits bus DDR (DAT7-DAT0 used):

Notice that bytes data are not interleaved but CRC are interleaved Start and end bits are only valid on the rising edge. ("x": undefined)

Source: JEDEC Standard No. 84-B51 Figure 8

Bus Speed Modes

Mode Name	Data Rate	I/O Voltage	Bus Width	Frequency	Max Data Transfer (implies x8 bus width)
Backwards Compatibility with legacy MMC card	Single	3 V/1.8 V/ 1.2 V	1, 4, 8	0-26 MHz	26 MB/s
High Speed SDR	Single	3 V/1.8 V/ 1.2 V	1,4, 8	0-52 MHz	52 MB/s
High Speed DDR	Dual	3 V/1.8 V/ 1.2 V	4, 8	0-52 MHz	104 MB/s
HS200	Single	1.8 V/1.2 V	4, 8	0-200 MHz	200 MB/s
HS400	Dual	1.8 V/1.2 V	8	0-200 MHz	400 MB/s

Source: JEDEC Standard No. 84-B51 Table 4

Interfacing with eMMC

- Interfacing with the eMMC controller is akin to microcontroller programming
 - Many different control registers
- Bus Width Selection Example:
 - SWITCH command issued on CMD
 - Write to the BUS_WIDTH byte in Modes Segment of EXT_CSD reg
- 7.4 Extended CSD register (cont'd)

7.4.67 BUS_WIDTH [183]

It is set to '0' (1 bit data bus) after power up and can be changed by a SWITCH command. Bus Width, Normal or DDR mode and Strobe mode (for HS400) are defined through BUS_WIDTH register.

Source: JEDEC Standard No. 84-B51 Page 203

Table 144 — BUS_WIDTH

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Enhanced Strobe	Reserved	Reserved	Reserved	Bus Mode Selection			

CRC 16 Generation (Payload)

Source: JEDEC Standard No. 84-A441 Figure 56 / Page 158

Higher Performing Technologies

Source: JEDEC Standard No. 220C Figure 5-4 / 6-1

UFS Communication Overview

SSD

References

- CMOS Circuit Design, Layout, and Simulation, Third Edition R. Jacob Baker <u>http://cmosedu.com/cmos1/book.htm</u>
- A Survey of Flash Translation Layer Tae-Sun Chung, et al. <u>http://idke.ruc.edu.cn/people/dazhou/Papers/AsurveyFlash-JSA.pdf</u>
- JEDEC Standard No. 84-A441

https://www.jedec.org/standards-documents/docs/jesd84-a441

• JEDEC Standard No. 84-B51

https://www.jedec.org/standards-documents/docs/jesd84-b51

• JEDEC Standard No. 220C

https://www.jedec.org/standards-documents/docs/jesd220c

 SSD Architecture and PCI Express Interface – K. Eshghi & R. Micheloni <u>https://link.springer.com/chapter/10.1007%2F978-94-007-5146-0_2</u>