The Use and Design of Synchronous Mirror Delays

Vince DiPuccio ECG 721 - Spring 2017

Presentation Overview

- Synchronization circuit
- Topologies covered in class
 - PLL and DLL pros and cons
- Synchronous mirror delay introduction
 - Base topology
 - ► Theory of operation
 - Pros/cons
- Alternative topologies
 - DFF topology
 - Analog topology

Synchronization Circuits

- Goal: Regenerate the transmitted clock so that received data can be read correctly
- Clock skew becomes more of a problem as frequency and channel distance increases

Class Taught Topologies

- The phase-locked loop (PLL) and delay locked-loop (DLL) do a good job of correcting clock skew and regenerating a proper clock
- Both are closed loop systems
 - Higher order system = complicated control operations
 - Long lock time = burns power

Synchronous Mirror Delay - Topology

▶ 6 main parts

- Measurement delay line (MDL)
- ► Mirror control circuit (MCC)
- Variable delay line (VDL)
- Input buffer
- Clock driver
- Replica delay line

Synchronous Mirror Delay - Operation

- Consider n, n+1, and n+2 clock pulses
- > MDL delay of nth pulse is T_{clk} $(d_1 + d_2)$; first clock delay
- nth pulse is mirrored into VDL through the MCC by the (n+1) pulse
- > VDL delay of nth pulse is also T_{clk} $(d_1 + d_2)$; second clock delay
- > VDL outputs the nth pulse to a clock driver with delay d_2
- nth pulse arrives at output as n+2 input pulse is at the input

Synchronous Mirror Delay - Operation

Synchronous Mirror Delay - Design

 $\frac{d_1 + (d_1 + d_2) + (T_{clk} - d_1 - d_2) + (T_{clk} - d_1 - d_2) + d_2 = 2T_{clk}}{\text{Input buffer Replica delay line}} \quad \text{Measurement delay line} \quad \text{Variable delay line} \quad \text{Clock driver}$

$$T_{clk,max} = d_1 + d_2 + NT_{cd}$$

$$T_{cd}; cell delay$$

$$T_{clk,min} = d_1 + d_2$$

$$N = \frac{T_{clk,max} - (d_1 + d_2)}{T_{cd}}$$

quantization error will be introduced if N is not a whole number

Synchronous Mirror Delay - Calculation

A typical circuit can have the following properties

- ▶ *d*₁ = 55ps
- ▶ *d*₂ = 220ps
- > T_{cd} = 48ps
- For a design of 1.5GHz
 - $\blacktriangleright T_{clk,max} = 667 \text{ps}$
 - ▶ N = 8.17, round to N = 9
- Notice that for a slower design, N increases
 - $\blacktriangleright 1 \text{GHz} \rightarrow \text{N} = 16$
 - ▶ 100MHz \rightarrow N = 203
 - > This can be less dramatic by increasing T_{cd} , but you add quantization error

Synchronous Mirror Delay - Pros/Cons

Pros

- Less complicated design
- Fast 2 cycle lock time
- Low power consumption
- No feedback jitter

Cons

- Layout blows out for lower frequencies
- Must be designed for specific frequency - not very versatile
- Will only accept an input with 50% or less duty cycle
- ► Has a quantization error

- D type flip-flop and 3-input
 NAND gates replace original
 NAND gates in MCC
- Detects clock edge instead of pulse width

Outputs of MDL are used as the DFF control signals to sample the clock signal

- Each 3-input NAND also contain the output of the next stage
- Only 1 MCC output can change which occurs when the DFF outputs of stage i and i+1 are different (clock edge)

Performance Summary		
Process	TSMC 0.18 µm 1P6M CMOS	
Supply Voltage	1.8 V	
Operating Frequency Range	450 ~ 750 MHz	
Duty Cycle Range	20%~80 %	
Number of delay cells	20	
Lock Time	2 cycle time	
Static Phase Error	<58.7ps	
Jitter @ 450MHz	2.558ps rms / 22ps pk-pk	
Jitter @ 750MHz	2.94ps rms / 24ps pk-pk	
Power Consumption	5.4mW@450MHz 9mW@750MHz	
Active Area	$58 \times 180 \ \mu\text{m}^2$ (without I/O buffer)	
Chip Area	$600 \times 440 \ \mu\text{m}^2$ (with I/O pad)	

Alternative Topology - DFF SMD Pros/Cons

Pros

- Less complicated design
- Fast 2 cycle lock time
- Low power consumption
- No feedback jitter
- Will accept an input with >50% duty cycle

Cons

- Layout blows out for lower frequencies
- Must be designed for specific frequency - not very versatile
- ► Has a quantization error

Goal: use an analog topology (charge pumps) to regenerate the input clock in order to eliminate the effects of quantization

Main components:

- Input buffer
- Delay monitor
- Clock divider
- Charge pump and comparator
- Clock driver

Т	Q	Q ⁺	Operation
0	0	0	Hold
0	1	1	Hold
1	0	1	Toggle
1	1	0	Toggle

- TFF is used for similar reasons as the DFF was used on the previous topology; it operates based on edge detection in order to accept a more arbitrary duty cycle
- ► TFF doubles the period

- {c,d} = {H,L} : eq-period
 - Initialize the voltage of the left node to V^{ref}
- {c,d} = {H,H}: up-period
 - Pump up the voltage of the left node form V^{ref} toward V^{dd} using a current source whose interval is (T^{clk} - T^{dm})
- c = L: down-period
 - Pump down the voltage of the left node from the final up-period value toward ground and measure the time when the "left" crosses V^{ref} and generates an output pulse
- Same logic for "right" which is 180° out of phase
 - > x2 multiple accounts for the $\frac{1}{2}$ of TFF

Alternative Topology - ASMD Pros/Cons

Pros

- Less complicated design
- Fast 2 cycle lock time
- Low power consumption
- No feedback jitter
- Will accept an input with >50% duty cycle
- Ideally, no quantization error
- Will accept a broad range of frequencies
- Layout does not blow out for lower frequencies

Cons

- Dependent on having very linear and matched pumping current
- Consumes more power
 - Comparator and bias circuit constantly consume power

QUESTIONS??

References

- [1] Baker, R. Jacob, "CMOS Circuit Design, Layout, and Simulation," 3rd edition, John Wiley & Sons, 2010
- [2] Hung, C. et al, "Arbitrary Duty Cycle Synchronous Mirror Delay Circuits Design," IEEE Solid State Circuits Conference, 13-15 Nov. 2006
- [3] Shim, D. et al, "An Analog Synchronous Mirror Delay for High-Speed DRAM Application," IEEE Journal of Solid-State Circuits, Vol. 34, pp. 484-493, Apr. 1999
- [4] Cheng, K. et al, "Wide-Range Synchronous Mirror Delay with Arbitrary Input Duty Cycle," Electronics Letters, Vol. 44, Issue: 11, pp. 665-667, 17 June 2008
- [5] "Introduction to Flip Flops: D and T," University of Maryland, 2003, Web, 07 Apr. 2017, <u>https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Seq/flip.html</u>