Overview of packaging DRAMs and use of RDL

ECG 721 – Memory Circuit Design
Kostas Moutafis

April 2017
What is Dynamic Random-Access Memory (DRAM)

- **Random-Access**... because data can be accessed in the same amount of time irrespective of their physical location
- **Dynamic**... because data have to be refreshed periodically

DRAM stores each bit of data in a storage cell consisting of a capacitor and a transistor (1T1C DRAM memory cell)

The DRAM cell (bottom left) has remained relatively the same, but the manufacturing technology has kept it competitive for decades [2]
Where is it used?

- Volatile memory
- Fast but not too expensive memory

Growing and Diversifying DRAM Demand [3]

Cost vs speed in memory hierarchy [4]
DRAM types

- Asynchronous DRAM
- Synchronous DRAM (SDRAM)
 - Single Data Rate (SDR)
 - Double Data Rate (DDR)

Samsung has begun mass production of 10-nm class, 8-Gbit DDR4 DRAM chips, which support speeds up to 3.2GT/s (equal to 51.2GB/s) [5]

DDR4 high speed performance compared with DDR3 and DDR2 [5]
DRAM modules

- Single Inline Memory Module (SIMM)
 - early 80s to late 90s
 - 32-bit data path (72 pins)

From top to bottom: SIMM (30-pin), SIMM (72-pin) [5]

- Dual Inline Memory Module (DIMM)
 - contacts on both sides
 - 64-bit data path
 - 288-pins used for DDR4 SDRAM

Small outline DIMM (SoDIMM)
- 260-pins used for DDR4 SDRAM

Crucial 16GB Kit (8GBx2) DDR4 2133 MT/s
UDIMM 288-Pin Memory (Amazon.com - $102.99)

Crucial 16GB Kit (8GBx2) DDR3/DDR3L 1866 MT/s
SODIMM 204-Pin Memory (Amazon.com - $89.99)
Why packaging?

- **Protection**
 - Physical damage
 - Environmental damage

- **Electrical connections**
 - Redistributes I/O

- **Heat dissipation**
 - Transfer via convection
 - Increased surface area

DRAM package evolution [6]
DRAM packaging in time

Samsung: World’s fastest (Jan. 2016), mass produced DRAM, for HPC and graphics cards. 4GB HBM2 package structure – 4H x 8Gb dies – 256GB/s speed [8]

Samsung: World’s largest capacity and highest energy efficiency (Nov. 2015), mass produced DRAM. 128GB TSV DDR4 RDIMM – 36 x (4H x 8) Gb dies – 2.4GB/s speed [9]
Memory Packaging Tradeoffs

Density
- Up to 16Die in a Single Package

Performance
- mNAND
- TSV DRAM
- F2F
- HMC

Custom
- DCA
- PoP

Cost
- TSOP
- BOC
- LOC
- SiP
- 3D
- 2D

System in Package
Integrated Shields

Memory packaging tradeoffs [10]
DRAM Packaging Terminology and Stacking Technologies

- Number of identical die in package.
 - SDP, DDP, 3DP, QDP

- **Re-Distribution Layer (RDL)**, routes edge to center, where DDR dies have the wire-bond sites

- Fine Pitch Ball Grid Array (FBGA)
 - Board On Chip (BOC)

- Chip on Board (COB) or Face-Up without RDL

- Opposing-Face without RDL

- Face-Up with RDL

- Face-to-Face (F2F) with RDL

- **Direct Chip Attach (DCA)**

- **Through Silicon Via (TSV)**
DRAM packages in market today

- **DDR4 (Server, PC, Consumer*)**
 - 78, 96 FBGA, 96 TFBGA,
 - 2 and 4-die stacks using TSV (Samsung – Server DRAM)
 - 1 and 2-die stacks not using TSV (Samsung – Server DRAM)
 - Up to 8-die stacking capability (Micron)

- **LPDDR4 (Smartphones, Tablets)**
 - 196, 200, 272, 344, 366, 376 FBGA
 - 1 and 2-die stack (Micron)
 - Up to 8 GB of mobile DRAM in a single package (Samsung)
 - SK Hynix announced (Jan. 17) industry’s first 8 GB LPDDR4X package, using 4-die stack, for mobile devices

- **GDDR5 (Graphic)**
 - 170, 190 FBGA

*Consumer applications include: smart TV, digital cameras, set top box, gaming console
FBGA packages

Thin Small-Outline Package (TSOP) for DDR SDRAM [15]

Ball Pitch Dimensions and Code (JESD30E) [17]

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Enlarged</td>
<td>≥1.50mm</td>
</tr>
<tr>
<td>Blank</td>
<td>Standard</td>
<td>≥1.00mm and <1.50mm</td>
</tr>
<tr>
<td>F</td>
<td>Fine</td>
<td><1.00mm</td>
</tr>
<tr>
<td>F1 Fine</td>
<td></td>
<td>= 0.80mm</td>
</tr>
<tr>
<td>F2 Fine</td>
<td></td>
<td>= 0.75mm</td>
</tr>
<tr>
<td>F3 Fine</td>
<td></td>
<td>= 0.65mm</td>
</tr>
<tr>
<td>F4 Fine</td>
<td></td>
<td>= 0.50mm</td>
</tr>
<tr>
<td>F5 Fine</td>
<td></td>
<td>= 0.40mm</td>
</tr>
<tr>
<td>F6 Fine</td>
<td></td>
<td>= 0.30mm</td>
</tr>
</tbody>
</table>

BGA Maximum Package Height Profile (JESD30E) [17]

<table>
<thead>
<tr>
<th>Code</th>
<th>Subcode</th>
<th>Profile Description</th>
<th>Profile Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>B2</td>
<td>Extra thick</td>
<td>>3.50mm</td>
</tr>
<tr>
<td>–</td>
<td>B1</td>
<td>Very thick</td>
<td>>2.45mm and ≤3.50mm</td>
</tr>
<tr>
<td>B</td>
<td>–</td>
<td>Thick</td>
<td>>2.45mm</td>
</tr>
<tr>
<td>Blank</td>
<td>–</td>
<td>Standard</td>
<td>>1.70mm and ≤2.45mm</td>
</tr>
<tr>
<td>L</td>
<td>–</td>
<td>Low</td>
<td>>1.20mm and ≤1.70mm</td>
</tr>
<tr>
<td>T</td>
<td>–</td>
<td>Thin</td>
<td>>1.00mm and ≤1.20mm</td>
</tr>
<tr>
<td>V</td>
<td>–</td>
<td>Very thin</td>
<td>>0.80mm and ≤1.00mm</td>
</tr>
<tr>
<td>W</td>
<td>–</td>
<td>Very very thin</td>
<td>>0.65mm and ≤0.80mm</td>
</tr>
<tr>
<td>U</td>
<td>–</td>
<td>Ultra thin</td>
<td>>0.50mm and ≤0.65mm</td>
</tr>
<tr>
<td>X</td>
<td>–</td>
<td>Extremely thin</td>
<td>≤0.50mm</td>
</tr>
<tr>
<td>–</td>
<td>X1</td>
<td>Extra-thin</td>
<td>>0.40mm and ≤0.50mm</td>
</tr>
<tr>
<td>–</td>
<td>X2</td>
<td>Super-thin</td>
<td>>0.30mm and ≤0.40mm</td>
</tr>
<tr>
<td>–</td>
<td>X3</td>
<td>Paper-thin</td>
<td>>0.25mm and ≤0.30mm</td>
</tr>
<tr>
<td>–</td>
<td>X4</td>
<td>Die-thin</td>
<td>≤0.25mm</td>
</tr>
</tbody>
</table>

Fine-pitch Ball Grid Array (FBGA) Packages [16]
FBGA packages: Features and Benefits

- High density

 Samsung FBGA packages [18]:
 - Up to 600 balls (I/Os)
 - package size: 5x5mm to 19x19mm
 - thickness: 0.8 – 1.4mm

- Chip Scale Package (CSP)
 - package size ≈ die size

- Better heat dissipation
 - thermal vias, thermal balls

- Low-inductance leads

- Soldering requires precision
BGA Surface Mount Technology (SMT)

BGA Surface Mount Technology (SMT) Process Flow [17]

- PCB Design
- Solder Stencil Design

BGA stencils in different shapes and sizes [20]

Reflow Profiles [17]

BGA Ball Attribute Before and After Reflow [17]
Why stacking?

- “Memory wall”, “Memory Bottleneck”
 - “Hitting the Memory Wall: Implications of the obvious” (1995) [21]
- Increased package density (capacity)
- Shorter paths => speed

But...

- “Another Trip to the Wall” (2015)
 - Skepticism about both latency and bandwidth [22]

- In-memory processing, sophisticated memory controller functionality
Wire bonding

- Materials (Micron, 2010) [24]:
 - Pads: Nickel-Palladium (NiPd) and Aluminum (Al)
 - Wires: Gold (Au)
- ~80% of IC packages

Percentage Share of Wire Shipped by Material Type [25]
Redistribution Layer (RDL)

- Metal and dielectric layers on the surface of the die to route the pads to the edges
- Substrate routing to connect signals from die(s) to solder balls

![Commercial DRAM chip after decapsulation (top). Enlarged view of DRAM pads (bottom) [27]](image)

![Wafer-Level RDL process [28]](image)

![BGA substrate routing [29]](image)
Invensas’ no RDL approach

Invensas’ Tri-Face Down (TFD) and Quad-Face Down (QFD) packages [30]

Invensas’ Dual Face Down package (DFD) [12]

Packaging costs comparisons (total assembly and package cost) [12]
Wire Bonding vs TSV

- Shorter distance
 - Reduced RC Delays
 - Lower power consumption
- More space for interconnections
 - Wider buses
 - Increased bandwidth
- Lower profile
 - No spacers
- Heat dissipation
 - Less power
 - Through vias

Stacked die package with 4 dies and 2 spacers [31]
TSV process flow

- Wafer thinning and thin wafer handling make die stacking manufacturing feasible [33]
What’s next?

- More dies stacked together
 - HBM3 promises stack heights > 8
 - Increased bandwidth and density

- DRAM on the same package as CPU
 - Intel will add 16 GB of Multi-Channel DRAM (MCDRAM) on CPU package

Intel’s Knights Landing CPU architecture integrates high-performance, on-package memory directly onto the CPU package [35]
References (1)

References (2)

References (3)

References (4)

References (5)

Questions?