Use of an over-damped PLL in place of DLL in SDRAM

Presented by
Sachin P Namboodiri

SDRAM clock synchronization

- Clock skew: timing difference between input and output interfaces
 - Caused by internal buffers and long interconnect
- Crucial in high speed I/O operation
- Clock synchronization circuit is essential to solve the above issues
- Both DLL and PLL are good to synchronization

Clock Synchronization

Courtesy: [1]

 A PLL/DLL is necessary to reduce the skew and improve the timings for the on-chip and interchip operations

Why Delay Locked loop (DLL)?

Simple

Passing the signal through a delay element

More stable

- First order system
- Process and temperature variation effects are minimal

Jitter Performance

- No Jitter circulation
- However, input jitter will get passed as there is no filtering

Delay locked loop (DLL)

Fig 1. Delay Locked loop Block diagram [2]

PLL vs DLL

- Second order system
- Stability issues
- Frequency lock
- Phase alignment by VCO
- Jitter accumulation

- First order system
- Stable
- No frequency multiplication
- Phase alignment by VCDL
- No jitter accumulation

Phase error (DLL vs PLL)

PLL Components in a nutshell

- PFD: Generates a digital signal depending to the phase error
- CP: Digital error signals converted to analog error current
- LPF: Integrates the error current to generate
 VCO input voltage
- VCO: Oscillator with the frequency depending on the input voltage.

PLL Transfer Function

Closed loop transfer function

$$H(s) = \frac{K_{PD}K_{F}K_{VCO}}{s + \beta K_{PD}K_{F}K_{VCO}}$$

- Low pass filter wrt input reference signal
- Error transfer function

$$H_e(s) = \frac{s}{s + K_{PD}K_FK_{VCO}}$$

High pass filter wrt to noise signal

Second order PLL

Reduced second order transfer function

$$H(s) = \frac{2\zeta w_n s + w_n^2}{s^2 + 2\zeta w_n s + w_n^2}$$

- Where
 - w_n is the natural frequency
 - Zeta is the damping factor
- Underdamped: Damping factor < 1
- Critically damped: Damping factor = 1
- Overdamped: Damping factor > 1

Damping factor and natural frequency

$$w_n = \sqrt{\frac{K_{PDI}K_{VCO}}{NC_1}} \qquad \zeta = \frac{w_n}{2}RC_1$$

- wn is the frequency at which the system oscillates at zero damping
- Set by the resistors and capacitors of the loop filter
- PLL can be stable or unstable depending on the damping factor
- Stability effects phase error (Jitter) and settling time

Stability of a PLL

- Second order system
- Stability depends on the damping factor
- Adding zero
- PFD must sample faster
 - Discrete time stability limit (Gardner's limit)[5,6]

$$w_n^2 < \frac{w_{ref}^2}{\pi (R_{max}C_1w_{ref} + \pi)}$$

Increasing damping factor has limit

Transfer function vs Damping factor

- Gain overshoot at low damping factor
 - Errors will re-circulated and amplified
- Flattens out as damping factor increases

- Gain overshoot at the higher damping factor due to stability limit (Gardner limit)
- Good Compromise damping factor = 1

Transfer function vs Damping factor

PLL Transfer Function (Phase Out/In) vs. Damping

0.5<Damping<2

PLL Phase Transfer Function (FB/Ref) vs. Damping

Phase response Vs damping

- Transient simulation for phase step
- Overshoot and ringing for under-damped systems
- Minimal overshoot and ringing for critically damped
- Overshoot and fast ringing for over-damped systems
 - Due to Gardner's limit

Phase response

Phase Response (Terr/Tstep) to 8 nS Ref Phase Step

Phase response

Phase Response (Terr/Tstep) to 8 nS Ref Phase Step

Other key parameters of PLL

- Hold range: Frequency range that the PLL can track without losing lock
- Lock range: Frequency range at which the loop recapture the lock within one cycle
- Lock time: Time taken for PLL to lock during the lock in process
- Pull in range: Frequency range in which the loop can acquire a lock
- Pull in time: Time taken for PLL to lock during the pull in process

Noise in PLL

- Types of noise
 - Flicker noise: Caused by silicon interface traps
 - Thermal noise: Caused by random Brownian motion of carriers in a resistive medium
- Noise in PLL components
 - Charge Pump: Flicker and thermal
 - Loop Filter: Mostly thermal
 - VCO: Mostly thermal
 - VCO Bias: Flicker and thermal

Some Noise parameters

Signal to noise ratio:

$$SNR = \frac{P_s}{P_n}$$

Noise Bandwidth(B_L):

$$B_L = \frac{w_n}{2}(\zeta + \frac{1}{4\zeta})$$

Noise Bandwidth vs Damping factor

Phase noise(Jitter)

Jitter: A short term timing variation from its ideal position

Jitter measurement

- Phase Jitter
 - Deviation of VCO output edges from ideal placement in time
- Period Jitter
 - Deviation of VCO period from the ideal period
 - Derivative of phase Jitter wrt time
- Cycle to cycle Jitter
 - Change in VCO period from cycle N to cycle N+1
- TIE(Time interval error)
 - Time difference between total of N consecutive actual VCO cycle and N ideal cycles

Phase error vs Bandwidth and Damping factor

Fig. 4. Long-term jitter (due to VCO noise) sensitivity to: (a) loop bandwidth and (b) loop damping factor.

Jitter reduction

- Increase frequency
- Increase the gate area of the transistors
- Increasing the power dissipation
- Choosing number of stages at VCO
 - More stages can reduce noise
- Differential delay buffer as a stage in VCO
- Self biased techniques to track process and temperature variation

Conclusion

- Major advantages of PLL
 - Input noise filtered
 - Can generate frequencies
- Can we use overdamped PLL instead of DLL in SDRAM?
 - Yes. But not recommended
- Disadvantages
 - Stability
 - Jitter accumulation
 - Higher pull in time
 - Must tract frequency input

Reference

- [1] F.Lin, "Research and Design of Low Jitter, Wide Locking-Range All-Digital Phase-Locked and Delay-Locked Loops" 2000.
- [2] J. Baker, CMOS: Circuit Design, Layout and Simulation, Third Edition. Wiley-IEEE, ISBN 978-0-470-22941-5, 2008.
- [3] Dennis Fischette "Practical Phase-Locked Loop Design" ISSCC 2007 Tutorial.
- [4] M. Mansuri, Chih Kong Ken, "Jitter optimization based on phase-locked loop design parameters" JSSC-2002, Vol 37, Issue 11
- [5] F M Gardner, "Charge pump Phase locked loop", IEEE transactions on Communications, Vol 28, No:11, Nov 1980
- [6] F M Gardner, "Phase lock techniques" Third Edition. Wiley-IEEE.
- [7] Roland Best, "Phase locked loops design simulation and applications" Mcgraw hill, Sixth edition
- [8] Changsik Yoo, "Delay-Locked Loop-Design Examples, Design Issues/Tips"

Thank you!