Tutorial Overview Of Analog PLLs

ECG 721 Shada Sharif

Outline

- Introduction about PLLs, Types, and Applications
- PLL Components
- PD
- LF
- VCO
- Equations and Simulations

What is a PLL?

Basic block diagram of PLL

A phase-locked loop (PLL) is a negative feedback system that synchronizes the voltage controlled oscillator (VCO) output signal to the phase of a reference input signal.

Types of PLLs

PLL Types	Phase Detector	Loop Filter	Controlled Oscillator
Analog/Linear PLL (APLL)	Analog multiplier	Passive/active RC	Voltage controlled
Digital PLL (DPLL)	Digital detector	Passive/active RC	Voltage controlled
All digital PLL (ADPLL)	Digital detector	Digital filter	Digitally controlled
Software PLL (SPLL)	Software multiplier	Software filter	Software oscillator

Benefits of Analog PLL and Applications

Benefits

- Low jitter
- Tunability
- Applications
 - RF systems
 - Modulation/Demodulation
 - Frequency synthesis
 - And much more ...

Describing a PLL

- PLLs are described by type and order
- Туре
 - Number of poles of the open-loop transfer function located at origin
 - Number of integrators in the loop
- Order
 - Number of poles in closed-loop transfer function
 - Highest degree polynomial in the characteristic equation

Type 1 G(s)H(s) = $\frac{10}{s(s+10)}$ Order 2 $s^2 + 10s + 10$

PLL Components

- PD
 - Used to generate the phase difference between input signals
- LPF
 - Cancels high frequencies and keeps DC component of error signal
- VCO
 - Provides local frequency for the circuit
 - Controlled by the error signal from the PD

Analog Multiplier/Mixer

Mixes RF and LO signal to produce their frequency sum and difference

- Produces an error signal proportional to phase deviation
 - Phase difference between input and output signal of PLL
- Signals in phase, output error is constant
- Signals not in phase, output error is varying
 - Negative feedback reduces error build up till phases match

Ref [5]

Basic Multiplier Mathematics

$$\sin(x) * \sin(y) = \frac{1}{2}xy(\cos(x-y) - \cos(x+y))$$

Mixer Performance Parameters

- Conversion gain/loss
 - ratio between IF and RF signals (voltage or power)
 - Impacts noise
- Noise figure
 - Measure of SNR degradation
 - Impacts receiver sensitivity
- Port isolation
 - Minimize feedthrough between ports
- Linearity
- Power
 - Low power dissipation desired

Multiplier types

Discrete

- Single diode
 - Bad isolation
 - No conversion gain
- Diode-ring Mixer
 - Poor gain
 - Good isolation
 - Good linearity

■ IC

- Mosfet passive mixer
 - Acts as a switch
 - Low power consumption
- Active mixer
 - Single balanced
 - Intermediate isolation
 - Double balanced
 - Good isolation
 - Good linearity

Double Balanced Multiplier

Ref [7], [12]

Mixer Simulation I

33	. 0	8	85 B	21	28	85	15	84	$\widetilde{\mathcal{M}}$	33	33		E, .	- 32	33	33	- 55	55	\widetilde{M}	128	85	15	84	82	33	33	28	33	$\mathbf{\tilde{s}}$	33	33	33	95) 1	$\mathbb{S}^{\mathbb{N}}_{\mathbf{a}}$	88	85	85
2 3	F	5	S 3	21	28	86	86	33	84	33	33	1	Ę.	33	33	23	25	95	8	121	86	86	34	83	33	33	38	83	33	33	23	23	95	128	8	86	85
9 3	30	ŧ2	12 3	31	8	82.	12	35	35	33	33	5	128	28	23	\$3	殷	感	38	38	92.	82	33	35	33	33	55	55	28	28	23	T	12	38	32	92.	æ
5 3	1	v	rfp	31	33	92.	12	35	35	33	33	2		Vrfi	m	\$ 3	殷	感	38	38	92.	8 2	33	35	33	33	55	55	58	28	23	- Not		/dd	1	92.	S.
3	(Ŧ	7	1	85	1	35	3	談	谜	83	83	6	₽>	1	1	53	绣	莐	1	1	85	3	痰	谜	83	83	23	83	35	33	\sim	A	3	1	100	33	33
12	1-	1	ž.,	Š.,	ä.,	×.	. E.	.X.	.35	.33		1	-)	1 88	$\mathcal{H}_{\mathcal{I}}$	\mathcal{X}	20	85	15	15	58	58	38	3 8	3	12	3	18	88	88	32	¢-	-1	<u>(</u> 18)	15	38	38
15	T	S	INE(0 1	140	m	100	OME	EG.	00	0)		T	SI	NE(0 1	40n	n 10	DON	IEG	0	0 18	30)	3 8	8	3	(8)	185	88	80	15	2	51	115	18	58	38
83	89	82	80.3	*	38	8	8	63	63	99	95	- 50	3	- 83	ne.	10				12			12	23	93	95	32	1	1 88	58	89	86	392	38	38	38	3
85	*	•		×.	æ	8	3	23	13	55	95	-7.	12		12	83	30	32	38	æ	38	38	88	23	93	55	- 52	-	3.68	53	83	83	30	38	38	8	3
83	1	V	aas	8	R	38	3	39	19	84	34	1	5	vac	12	82	35	3 2	38	×.	38	3	89	39.	39	34	25	194	1.8%	£ 9	\$ 2	82	M	38	8 8	- 38	3
e.	('	.)	81 - 1	8	R	3	3	39	19	39	89	(.	100	١.	83	83	35	385	ж	8	31	/rf	p-	-	/rf	p.	- 15	V	D	89	83	80	÷.	ЭR	ЭR	58	3
4	Y	- 3	20m	ē	з¥	44	48	32	33	32	33	1	Z.	320	m	33	52	50	22	22	v	rf i	m-	-	/rf	m	22	22	-26	v	out	D	- 3	Voi	it i	0	-
43	\sim			2	12	44	4	33	33	33	33		×.			53	50	56	12	22	1	/10	p-	-	/10	D	22	12	30	Ve	out	m	1	Voi	It I	m	24
33	33	1		3	32	82	82	132	102	83	83	8	8	32	33	33	32	32:	32	-34	v	10	-F	-	110	m	1	CI	ID	2			1	1	7		82
33	33	1		3	32	82	82	63	15	84	83	8	8	123	33	33	12	22	-32	-34		· -		E			123			323	33	63	6 303	32	32	82	82
37	-	35	WS - 2	al -	28	175	115	33	33	33	33	3	_	- 38	27	- 27	98	355	22	392	575	116	33	33	33	33	- 22	Z	7	38	27	27	95	122	88	25	18
	-	Í.	us s	a.	80	52	58	38	38	- 13	13		5	- 32	- 37	33		ws.	88	80	53	122	33	38	10	10	- 02	- 22	100	32	33	33	us.	8.0	8.0	53	58
•	Š											5	5																								
\$ 3	3	£.,	2.7	31	35	98.	98.	33	35	33	33	5				\$3	胶	胶	396 1972	396	98.	98.	35	35	+	ran	111	35	28	28	\$3	\$3	胶	39	39	98	88
зą	14	V	lop	8	1	35	88	谟	ця,	83	83	j.	5	VIO	m:	33	汤	欬	1	1	88	88	ġ,	谜	1	incl	uda			àd			i.	. ++	1	33	35
20)	(*'	()	85 I	85	2	8	3	談	漢	83	83	(*		} ????	33	33	淤	淤	1	1	33	35	85	谜	1	mçı	uue	çn	iŲs	qu	u_1	nioc	1¢1	5.14		33	33
12	\searrow	1	ð., j	Š.,	3	ä.	1	3.	.33	E.	3	1	7					÷.,				1	3	38	3	10	3	10	88	18	${\mathcal N}_{\mathcal C}^{1}$	${\mathbb Z}_{2}^{n}$	85	15	15	38	38
\mathcal{O}	8 2		SINE	(0	14	0m	1.0	OM	EG	0 0	0)	1.8	18	51	NE(0 14	10,m	1 10	OW	IEG	0,0	1.8	0).	3 8	3	3	3	18	- 88	80	\mathbb{R}^{n}_{2}	$\mathbb{R}^{n}_{\mathcal{C}}$	25	18	18	38	38
83	89	8	8. I	8	38	8	3	-93	68	99	\mathbb{S}^{1}_{2}	- 50	1		- 85	89	\otimes	38	38	38	38	3	-93	23	93	95	32	3 2	${\mathbb S}^{(2)}_{1}$	58	85	85	30	38	38	38	3
83,	j.	V	dd5		æ	8	3	-93	13	55	\mathbb{S}^{1}_{2}	تۇر.	L	Vdd	14.	83	30	35	×	38	8	3	-93	23	93	95	32	1 2	58	${\bf 5} {\bf 3}$	83	83	35	æ	38	8	3
10	(+)	R 3	8	38	58	3	19	19	39	34	6	+)	100	83	83	36	385	38	38	-	3	89	89	89	39	25	35	89	88	83	82	30	38	38	38	-
83	5	1	æ.)	8	*	38	3	39	19	89	84	6	-	197 196	.*	83	36	32	38	×.	38	3	89	89	89	34	35	25	89	89	83	82	3 2	38	8	- 38	-
÷.,	4	73	20m	È.	22	94	44	33	33	33	33	2	7.	320	m	33	52	52	22	12	44	44	-22	33	33	33	22	23	85	85	53	93	52	22	98 98	44	44

Mixer Simulation I Continued

DC Characteristics of DBM I

Ref [8]

DC Characteristics of DBM II

 $K \times V_y \times X_{int} = Y_{int}$ Ex- $K \times 0.1 \times 99.8m = 0.2$ $\rightarrow K = 20$ A K=20 B K=23.3 C K=22.7

D K=20.2

Different DBM phases

 $0^{\circ}\, phase\, difference$

30° phase difference

Ref [9]

Phase Detector Gain

Voltage Controlled Oscillator (VCO)

- The VCO generates a sinusoidal/pulse signal that is controlled by its input voltage
- The higher the control signal, the higher the frequency

VCO Specifications

- Phase noise
 - In frequency domain when phase and amplitude are time variant
- Tuning range
 - Output frequency is controlled by the input
- Power consumption
 - Low power consumption is desired

VCO Types

- Ring VCO
 - Wide tuning range
 - High phase noise
- LC VCO
 - Large area
 - Narrow tuning range
 - Low phase noise
- Current-starved ring VCO
 - High phase noise
 - High frequency

Figure 19.25 Limiting the current in a current-starved VCO.

Current starved VCO Simulation

-	52	44	33		VZ	2	(x)	99 .	18	50	12	33	12	-	52	ŝ.	33	×	58	2	4	33	86	4
23	25	26	33	4	1.	+)			1	33	<u> 2</u> 1	83	<u>88</u>	32	95	36	34	£5,	33	121	86	33	32	ŝ
30	恣	35	8		ì	1.	32	83		33	1	ġţ,	8	35	35	32	ġţ,	23	33	1	35	8	30	ē.
58	30	38	55	- 92	. 8	38	88	30		83	38	ਗ਼	-72		\otimes	8	18	- 52	83	38	8	Se	- 58	Э
88	×	3	84	- 83	182	38	-38	32	VDD	182	38	-89	- 83	86	30	3	89	-35	83	38	3	89	- 89	3
<u>10</u>	1	82	83	- 53	18	.32		83	10	33	38	SX.,		10	20	. 22	<u>_</u> 03	- 88	33	32	- 22	84	30	÷,
	Г	2.22	0	-	Vin	IVC	0					- 0	DSC	9	-	ou	t							
10	+	VI	133	- 55	133	5	38	-33		53	38	- 85	10	28	12	194	33	- 55	- 53	- 35	32.	33	- 28	- 3
(1	}	8	13	20	*	3	13	GND	in:	*	10	- 83	10	35	35	谜	23	33	38	35	83	35	ġ
2	÷	1	1	- 32	10	38	18	80		165	3E	33	-92	. 10	3	3	18		. St.	æ	2	. S.	-83	3
tr	an	10	o On	12	53	×.	14	1	V	10	ЗЙ	33	2	.inc	iuc	ie (me	sec	iu_	me	ae	15.0	KI.	ŝ
120	10	12	24	- 53	- 633	144	82	124	123	33	144	132	- 58	123	- 222	62	132	- 53	33	14	82	124	123	6

Gain of VCO

$$K_{VCO} \cong 100 MHz/V$$

Ref [8]

Loop Filter

- Low pass filter used to suppress noise and unwanted multiplier outputs.
- Passive
 - Uses R and C
- Active
 - Uses amplifier
- First order RC low pass filter was used

$$- K_F = \frac{1}{1+s}$$

PLL Equations

$$H(s) = \frac{K_{PD}K_FK_{VCO}}{s + K_{PD}K_FK_{VCO}}$$

Second order, type II system TF

$$\omega_n = \sqrt{\frac{K_{PD}K_{VCO}}{RC}}$$

Natural Frequency

$$H(s) = \frac{K_{PD}K_{VCO}\frac{1}{1+sRC}}{s + K_{PD}K_{VCO}\frac{1}{1+sRC}}$$

Second order, type II system TF $\zeta = \frac{1}{2RC\omega_n}$

Damping Ratio

Analog PLL

	DBM \$	
	VDD VTL Vout p Vout p Vout m Vout	
viena en la companya		⊥ []]. []
		1 181
SINE(320m 100m 100MEG 0 0 0) SINE(320m 100m 100MEG 0 0 180)		
	ti i stati i s	
tran 2u		

APLL Waveform I Zoomed in

LO and RF waves line up at the same point for every cycle so the loop is locked

FFT Check

The frequency of LO signal is exactly equal to RF signal so the loop is locked

References

[1] *MT-086 Tutorial - Fundamentals of Phase Locked Loops (PLLs)*, 1st ed. Analog Devices, 2017, p. 1.

[2] P. Allen, LECTURE 010 – CMOS PHASE LOCKED LOOPS INTRODUCTION, 1st ed. 2003.

[3] S. Palermo, Lecture 3: PLL Analysis, 1st ed. 2014.

[4] G. Nash, Phase-Locked Loop Design Fundamentals, 1st ed. Freescale Semiconductor, 2006.

5] U. A. Belorkar, S. Ladhake and S. N. Kale, "2.45 GHz Gilbert mixer using 45 nm CMOS technology", *IEEE*, 2012.

[6] D. Chen, *Mixer Design, EE*507, 1st ed. 2017.

[7] Mixers and Modulators, 1st ed. Analog Devices, 2017.

[8] R. Baker, CMOS - Circuit Design, Layout, and Simulation, 3rd ed. IEEE Press, 2003, pp. 924-929, Ch19.

[9] A. Roy, A Tutorial Approach To Analog Phase-Locked Loops, 1st ed. Las Vegas: cmosedu.com, 2015.

[10] S. Al-Araji and Z. Hussain, *Digital Phase Lock Loops*, 18th ed. Springer, 2006, p. Ch 2.

[11] Tektronix, Inc., "Analog phase-locked loop", US 7642822, 2010.

[12] Z. Li. "Low Power CMOS Analog Multipliers," Order No. MQ92475, University of Windsor (Canada), Ann Arbor, 2004.

[13] V. Thakur and V. Verma, Low Power Consumption Differential Ring Oscillator, 1st ed. 2013.

[14] M. Kulkarni and K. Hosur, Design of a Linear and Wide Range Current Starved VCO for PLL, 1st ed. IJCI, 2013.

[15] P. Gillingham and J. Erkku, "Analog phase locked loop", US 4803705 A, 1989.

THANK YOU