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Abstract  

New alternatives and inventive renewable energy techniques which encompass both 

generation and power management solutions are fundamental for meeting remote residential 

energy supply and demand today, especially if the grid is quasi-inexistent. Solar thermoelectric 

generators can be a cost-effective alternative to photovoltaics for a remote residential household 

power supply. A complete solar thermoelectric energy harvesting system is presented for energy 

delivery to remote residential areas in developing regions. To this end, the entire system was 

built, modeled, and then validated with LTspice simulator software via thermal-to-electrical 

analogy schemes. Valuable data in conjunction with two novel LTspice circuits were obtained, 

showing the achievability of analyzing transient heat transfer with the Spice simulator. Hence, 

the proposed study begins with a comprehensive method of extracting thermal parameters that 

appear in thermoelectric modules. A step-by-step procedure was developed and followed to 

succinctly extract parameters, such as the Seebeck coefficient, electrical conductivity, thermal 

resistance, and thermal conductivity needed to model the system. Data extracted from datasheet, 

material properties, and geometries were successfully utilized to compute the thermal capacities 

and resistances necessary to perform the analogy. In addition, temperature variations of the 

intrinsic internal parameters were accounted for in this process for accuracy purposes. The steps 

that it takes to simulate any thermo-electrical system with the LTspice simulator are thoroughly 

explained in this work. As a consequence, an improved Spice model for a thermoelectric 

generator is proposed. Experimental results were compiled in the form of a lookup table and then 

fed into the Spice simulator using the piecewise linear (PWL) command in order to validate the 

model. Experimental results show that a temperature differential of 13.43°C was achievable 

whereas the simulation indicates a temperature gap of 9.86°C, with the higher error being 
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associated with the hot side. Also, since the analytical method of transient heat transfer analysis 

is cumbersome, an LTspice model of a real-world solar thermoelectric generation system was 

investigated. All the physical parameters were converted into their electrical equivalences 

through the thermal-to-electrical analogy. Real site direct normal insolation was fed into the 

Spice model via PWL in order to capture the true system’s thermal behavior. Interestingly, two 

distinct analogies result from this study: 1) an RC analogy and 2) another analogy similar to an 

N-type doped semiconductor material’s carrier density dependence with temperature. The RC 

analogy is derived in order to demonstrate how thermoelectric generation systems respond to 

square wave-like solar radiation. This analogy is utilized to measure temperature variations on 

the cold side of the Spice model; it shows 80% accuracy. The N-type analogy is intended to help 

analyze the actual performance of a LTC3105 converter. However a few of the problems to be 

solved remain at the practical level. Despite the unusual operation of the thermoelectric modules 

with the solar radiation, the measurements and simulation were in good agreement, thus 

validating the new thermal modeling strategy. 
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Chapter 1: Introduction to the Problem 

Across the nations, around one and half billion people lack consistent access to electrical 

energy [1]. The vast majority of those people dwell in rural and/or remote areas where the 

electrical grid is either practically inexistent or sometimes technically difficult and expensive to 

transmit power through standard ways. The lack of access to this basic component of modern 

civilization is even more acute and commonplace in developing regions, such as countries in 

Africa and Asia. Furthermore, not having this vital resource has hindered any economic 

development up to date in remote and developing regions, and is considered to be one of the 

sources of continued poverty in those areas. Although electrical energy alone is not enough for 

initiating the conditions for economic growth, it is still certainly essential and plays a most 

important part. The number of people accessing electricity is one of the most clear and sound 

indications of a country’s energy poverty status. The ambitious millennium goals that have been 

set forth to eradicate extreme poverty in the World can never be fully achieved without 

confronting and resolving this fact. Thus, the existent inequality gap that has persisted over 

centuries between the West and the East, on one hand, and the urban and rural areas, on the other 

hand, can certainly be explained by means of the aforementioned electrical energy scarcity 

issues. At the same time, the inequality between the Western and Eastern civilizations keeps 

widening even more because of the lack of serious and strong electrical energy policies in the 

East. 

Conversely, electronic gadgets, such as smart electronic devices, mobile phones, and 

computers are becoming more popular in the cities as well as the remote villages [2]. As a direct 

consequence, the electricity to operate and recharge those devices remains a serious challenge. 
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Countless articles have been written on the subject of sustainable and affordable energy, but few 

have approached it, specifically, from the perspective of emerging economies.   

A good understanding of a sovereign country’s energy consumption is important for the 

country’s long term development of its economy. A reliable energy supply is an important 

component for economic achievement and is needed for most aspects of social promotion, 

happiness, security, comfort, and a mobility that is unprecedented to human history [3]. 

Developing nations need to be self-sufficient in terms of both food and energy in order to enjoy 

the benefits of modern life and a high standard of living.  Hence, energy plays a central and 

crucial role for the sustainability and the improvement of the current level of living in developing 

regions. Energy has become an important commodity to the communities in the developing 

countries; it directly affects the economies of the nations and has had a tremendous impact on the 

environment [4].  

However, it is worthy to point out that the major portion of today’s energy supply in the 

World is not regenerative in nature and is destined to be depleted in the near future. In this era, 

humanity finds itself confronting a colossal energy challenge. The latter possesses at least two 

critical dimensions. It has been evidenced that current patterns of energy usage are neither 

environmentally friendly nor sustainable in the long run. The overwhelming dependence on 

fossil fuels, in particular, threatens to modify the Earth’s climate to a point that could have 

irreversible consequences on the integrity of both the eco-system and the human race. 

Additionally, with respect to that alarming depletion rate of the non-renewable energy sources, if 

government policy makers, engineers and scientists altogether put their gut intuition and human 

ingenuity forward, the appropriate solutions to this issue would be sufficient and capable of 

solving the global energy crisis for decades to come. 
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Unfortunately any energy policy that produces improvements in the short term is often 

one that destroys the environment in the long run. It is a universal truth that no exponential 

growth will last forever. In other words, the global net impacts have heavy consequences on the 

entire planet’s inhabitants. Also, as stated above, the Earth is running out of fossil fuel-based 

resources that are neither self-regenerative nor replenished at a much faster rate on a human 

scale.  

As every illness has a cure, there exist alternative solutions to bring electricity to remote 

residential regions. These solutions include micro-grids and distributed energy generations 

(DEG) at smaller scale. In fact, the former has the advantage of being the complete and 

permanent solution to the problem. In contrast, a micro-grid has not only a higher capital 

investment cost, but also requires a specialized workforce [5][6]. The latter supplies only a 

sufficient amount of electricity for basic household needs, such as charging electronic devices, 

light emitting diodes (LEDs) for lighting, and fans for household interior comfort. This 

technology is uncomplicated and inexpensive; it requires no expertise to setup and operate. 

Besides, it will have a tremendous impact on the lives and the economy of the people in those 

areas [7].    

Indeed, a vast array of methods of producing electrical energy does exist today although 

some of the technologies are still rudimentary. They all operate for the benefit of the rural 

inhabitants and are completely independent of the grid infrastructure. Such alternative resources 

are: 1) solar photovoltaic (PV); 2) wind power; 3) geothermal; and 4) thermoelectric generators 

(TEG). As stated in [8], TEG can be utilized to supply electricity to power either main units or 

ancillary devices by directly converting any sort of thermal energy or renewable energies, such 

as solar energy (electromagnetic waves) and geothermal energy to electrical energy. Hence, solar 



 

4 
 

thermoelectric generation (STEG) technology is the main focus of the present research and will 

be given a comprehensive consideration.  

Many researchers have been concentrating their efforts towards photovoltaic (PV) 

energy. Solar energy, however, is a broader concept than just energy delivered by PV system. 

For example, thermoelectric generators (TEG) can also use solar energy, in the form of heat, to 

generate electrical power. It is possible for TEGs to directly convert as much solar energy into 

electrical energy as their fellow PVs do. This conversion of energy from solar radiation to 

electricity is done via the Seebeck effect, named for the discovery made in 1821 by the German 

physicist, Thomas J. Seebeck. TEGs are versatile heat controlled solid-state pn junction devices 

that have no moving parts and emit zero greenhouse gases (GHG) into the environment during 

the course of their operation [9]. In addition, they can be used for cooling, heating or energy 

generation. In contrast to PV, TEGs’ heat sources could be derived directly from the sun, a 

radioisotope reaction or waste heat from any sort of conventional plant [10].  

When one side of the TEG is subjected to heat while the other side is at a lower 

temperature, caused by a highly conductive heat exchanger, an electromotive force (ΔV) is 

generated proportional to the Seebeck coefficient of the TEG semiconductor material as 

discussed in [11]: 

𝑉 = 𝛼 ∙ (𝑇𝐻 − 𝑇𝐶)                                                            (1)  

Where, TH and TC represent the hot and cold side temperatures respectively 

The literature abounds with works related to a Spice thermal-to-electrical modeling of 

TEG devices [12], [13], and [14]. As opposed to the study performed in [12], which deals only 

with one DC-DC converter (LTC3105), we propose to investigate the outcome of an additional 

DC converter (LTC3525). This work also suggests taking full advantage of the free and abundant 
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solar energy by conducting a real-world test, whereby the only heat source is composed of solar 

electromagnetic waves. As a direct consequence, the variability in the incoming solar energy due 

to weather events may affect the way TEG systems perform in the real-world environment. 

Therefore, during cloudy weather days, the TEG power output changes suddenly by responding 

instantaneously to the fluctuations of sunlight. The output power issues related to the variability 

are addressed in this study. It should also be mentioned that the DC-DC converter’s primary 

function is to boost the low DC output voltage up, and then stabilize the power output ripples due 

to intermittencies. Otherwise, the sensible appliances would malfunction and would be 

detrimental to their respective life spans. 

It can be hypothesized that the major drawbacks due to the relatively low overall 

efficiency of thermal electric generators could be overlooked under certain circumstances. Since 

the TEGs’ advantages outweigh their disadvantages, this technology can compete with 

photovoltaic once the appropriate design is laid out, followed by the proper building and testing 

of the correct systems. We also hypothesize that for STEG to be able to compete with PV in 

order to benefit rural inhabitants in arid regions, additional external circuitries are needed. The 

external circuitries (DC-DC boost converter and a battery charge-controller system) could make 

the design ideal, fit, and comparable to PV systems as an alternative and/or a variety in terms of 

systems’ stability, reliability, and efficiency. Finally, we hypothesize that the transient heat 

transfer analysis in TEG by means of the numerical electrical analogy method utilizing an 

LTspice simulator would yield better estimates and insights than the analytical procedures. 

Hence, some of the main objectives this work seeks to accomplish are as follows: 

 Understanding the challenges associated with the probable increase in the overall 

efficiency of the STEG in order to accomplish the intended task. 
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 Developing a unique sense of understanding the physics and theory behind the Seebeck, 

Peltier, and Thompson effects through the device physics and the electronics principles. 

As a matter of fact, it will be advantageous to also investigate the different heat transfer 

modes and the energy losses associated with each one of the effects for overall system 

efficiency improvement purposes. In order to achieve that, we have to not only properly 

design and implement the proper engineering practices, but also to account for the 

assumptions and simplifications made early in the energy-harvesting model during the 

testing and analysis phases.  

 To efficiently construct the STEG system to be electrically and mechanically sound. The 

various integral components that will be either interacting and/or physically tied to one 

another are: solar reflectors, the five (5) TEG modules, two thermocouples, one solar 

flux sensor, a DC-DC boost converter, two heat sinks, one battery charge controller, a 

battery bank, wires, insulation materials, and a data-logger. 

 Applicability of such a system mainly in rural areas would be of a tremendous benefit 

when it comes to alleviating people’s daily energy needs. But it has to emerge from the 

designed structure itself by being a cost-effective system that would be unbeatable as 

compared to other counterparts. 

 The final objective of this proposed study is to be able to run a computer simulation of 

the designed energy-harvesting system based on the aforementioned standards. In 

essence, the aim is to develop a Spice compatible thermal-to-electrical equivalent circuit 

of the entire STEG system. This analogy greatly simplifies the TEG’s transient heat 

transfer analysis by means of the LTspice simulator in comparison to traditional 
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analytical methods. Thus, all the physical parameters (non-electrical processes) are 

described in terms of their electrical analogies, as can be seen in Sec. 3.2. 

1.1 Motivation  

Comparatively to what Antoine L. Lavoisier stated about chemical reactions in which 

“matter is neither created nor destroyed,” energy in its various forms cannot be created or 

destroyed, but rather transformed. In producing electricity, no new energy is being created. In 

reality one form of energy is changed to another kind [15]. In light of this statement, the primary 

source of renewable energy, emitting energy in the form of electromagnetic radiation at a 

relatively constant rate in the entire universe, remains the sun. Although the global tendency of 

the Earth’s current consumption of fossil fuel resources is unsustainable, the sun is undeniably a 

renewable and dependable source of energy for humanity. Furthermore, the theoretical solar 

energy potential striking the Earth’s surface in 1 ½ hours (480EJ
68

) is greater than the worldwide 

energy demands in one year, with all sources combined (430EJ
67

) [16]. Consequently, the energy 

crisis the world is consistently facing lately resides at a transformation level rather than a reserve 

level. Hence, since the vast majority of the twenty-first century’s technology is geared toward 

accommodating more energy-efficient appliances and/or harvesting the new and renewable 

sources of energy across the globe, time has come to shift from a state of skepticism to a more 

optimistic state about the future. Recently, various PV technologies—monocrystalline, 

polycrystalline, thin film, and triple junction—have been proven to harvest this free and 

abundant solar energy for the sake of global sustainability. Another silent and reliable pn 

junction semiconductor device utilized to harvest the above mentioned infinite source of energy 

is the thermoelectric generator. TEGs are more dependable when it comes to working in a harsh 

and arid weather conditions, and have the potential of harvesting all kinds of waste heat.  
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The design of a solar thermoelectric generation (STEG) system for reliable energy 

delivery to remote residential areas in emerging economies remains a technically important and 

challenging task. New alternatives and inventive renewable energy techniques, which encompass 

both generation and power management solutions, are fundamental for meeting remote 

residential energy supply and demand today, especially where the grid is quasi-inexistent.  

  Hence, according to the international energy agency (IEA), the availability of modern 

energy services is vital to human well-being and to a country’s economic growth. Yet, globally 

over 1.3 billion people are without access to an electric power supply. It is very unfortunate that 

more than 95% of these people are either residents of sub-Saharan Africa or emerging Asia; 84% 

of those left-out of the modern world are in rural areas. Conversely, affordable and renewable 

energy sources do not always require a standard transmission system. This kind of system could 

be the first step out of poverty for individuals in rural areas who persistently need electricity. 

It is very unfortunate that most TEG manufacturers do not provide real data for output 

power and output voltage versus differential temperature, which procure significant and valuable 

information to designers of solar thermoelectric energy harvesters. They often provide the 

standard testing condition (STC) parameters, which include the maximum operating voltage, 

VMAX and current, IMAX for a specific TEM.  

Therefore, the primary motivations for this research are to: 1) investigate a real-world 

solar environment energy-harvesting system since most of the TEG technologies, thus far, were 

laboratory based experiments; 2) examine and propose a new transient heat transfer analysis 

method, utilizing LTspice software in conjunction with the thermal-to-electrical analogy theory; 

3) explore new ways to supply cheap and dependable electricity to improve the living standards 

of the inhabitants of remote residential areas in developing regions; 4) as a final motivation, to 
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investigate through a cost comparative study, the feasibility of a real STEG system competing 

with photovoltaic systems.  

1.2 Background 

Solar energy is one of the most abundant and cleanest renewable sources in the universe, 

because it is free from any greenhouse gas (GHG) and other harmful environmental pollutants. It 

also requires no incursion upon the natural habitats of wild animals if harnessed with 

environmentally-friendly semiconductor devices, such as photovoltaics (PV) and thermoelectric 

generator (TEG). In fact, solar energy’s immensity, year round availability, and benign effect on 

the climate, have made it the most appealing energy source on Earth. In spite of the versatility 

and abundance of solar energy, very little of it is directly utilized to power human activities. If 

solar energy is to become a concrete alternative to fossil fuels, efficient ways to convert photons 

into electricity and useful heat must be engineered [17]. However, problems with solar 

renewable energy include variability due to weather events and the nocturnal absence of the sun 

[18]. Since most of the time solar energy is stochastic in nature, there is a great need for energy 

storage. As a result, it is noteworthy to point out that energy storage can be utilized to mitigate 

renewable system transients[19].  

Primarily, TEGs were exclusively assigned for outer space applications. Soon after that, 

they were applied, as stated throughout the literature, to many waste heat recoveries. Among 

these applications, TEGs have been proposed for woodstoves [20]; body heat powered watches 

[21]; car seat cooling/heating for passenger comfort by the major car manufacturers, including, 

but not limited to, Toyota, GM, Nissan, Ford, and Range Rover [22]; bio-sensors [23]; industrial 

waste heat recovery to power ancillary devices [24]; vehicular waste heat recovery to enhance 

fuel economy [25]; and harvesting micro-power for low power applications, such as wireless and 
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mobile sensors [26].. It should be pointed out that currently, TEG applications move beyond the 

above mentioned areas. Hence, solar thermoelectric generators (STEG) are irrefutably one of the 

most recent applications as reported by Crabtree et al. [17], whereby the energy from the sun is 

concentrated on the TEG in order to generate electrical power by means of the Seebeck theory.  

Despite the advantages of thermal electric devices being solid, reliable heat energy 

converters, silent during the course of their operation, and lacking of any mechanical moving 

parts [27], their low energy conversion efficiency (5%) has limited their applications to 

specialized situations as stated above [28]. It is worthy of note that TEG is such a versatile 

technique capable of harnessing heat from naturally occurring sources of energy, such as  solar, 

geothermal, ocean thermal, and waste heat from micro to macro devices [29]. However, their 

potential of power generation through the  utilization of all sorts of heat (ranging from solar 

radiation to manmade heat sources, along with their maintenance free operation) causes TEGs to 

become technically attractive [30]. In contrast to PV systems, TEGs do not rely on solar 

radiation only. They are reliable and scalable quantities required in green technology, applicable 

in harsh and arid environments, such as Southwest United States (US) and Sahel in Africa, etc. 

Previous studies mentioned rural electrification and domestic applications of TEG 

technology for lighting, heating, and ventilating [12], [31], [32], [33], and [34]. However, not 

many of these studies have looked into the thermal-to-electrical analogy which utilizes the 

LTspice simulator to analyze the transient heat transfer as is suggested in this study.  

The proposed model is based on the internal parameter fluctuations, such as the Seebeck 

coefficient, parasitic inductance (L) and capacitance (C), and the internal resistance of the TEG. 

In addition, the proposed system is a real-world environment solar energy harvester mounted on 

a dual-axis tracker. It is important to specify that the values of the parasitic C, and L were 
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borrowed from a previous work reported in [35] because they cannot be determined with the 

equipment available to us. 

This study defines and determines keys concepts for a reliable energy delivery to 

remote residential areas in developing nations. More than a century after the light bulb was 

invented, most of the developing countries are still in the dark after nightfall. Somewhere in 

Africa or Asia, people often cannot read after twilight, businesses are dependent on gas 

lamps, and clinics cannot refrigerate vaccines. In such an economically hostile environment, 

industries are rudimentary, hampering any potential commercial growth. In fact, around 

thirty countries in sub-Saharan Africa, as reported by the World Bank, are facing a severe 

electricity crisis evidenced by continuing electric power shortages and/or total blackouts. 

Despite the African continent being naturally well endowed with renewable resources, there 

is a potential need to not only transform these resources, but also to reach out with reliable 

energy supplies to the remote locations. The manner in which electrical power is unevenly 

distributed throughout the continent continuously creates exacerbating crisis as well as 

windfall profits for some countries. The remote residential areas are naturally factored out 

from this vicious economic game. In order to attain any short or long term development, they 

need to have both a renewable and dependable energy supply.  Additionally, a summary of 

some of the key issues in Africa’s energy sector are: 1) low access and insufficient capacity; 

2) poor reliability with enterprises experiencing frequent power outages; and 3) high 

cost/kWh consumed with an average tariff of USD 0.13/kWh.   

Thus, this work proposes to design, build, and test a STEG energy-harvesting system 

for energy delivery to remote residential areas in developing regions.  
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1.3 Outline of the Dissertation 

This work proposes an innovative concept of a solar thermoelectric generation system 

(STEG). The proposed STEG is a real-world environment energy-harvesting system for 

electrical power delivery to remote residential areas in developing regions. In order to acquaint 

ourselves with the theory and the physics behind TEM technology, the research was first divided 

and conducted in two separate but interrelated steps. The preliminary study was conducted in a 

laboratory in order to develop a thorough understanding of both Seebeck and Peltier phenomena. 

The idea was to accustom ourselves with the technology before the in-depth real-environment 

STEG system’s implementation. In addition to that, the second and most challenging complete 

solar energy-harvesting system was then designed, built, and tested, whereby the only input to 

the system, in the form of heat, was the solar electromagnetic radiation. Furthermore, the first 

step was to investigate the true performance of commercial solar TEGs under arid weather 

conditions comparable to the Southwest of the US or the Sahel in Africa. Then, due to the 

intermittent nature of solar energy in general and STEGs in particular, this study investigated the 

optimal power solutions by means of DC-DC converters for output stability and enhancement 

purposes. The TEG devices were mounted on a solar tracker. The reflectors on the tracker were 

positioned in such a way that the sun is concentrated four times on the devices. The second part 

of this research consists of computing the electrical parameters (resistance, capacitance, and 

inductance) of all the physical parts from both device geometries and properties and then 

accomplishing the novel electrical analogy of the whole STEG system utilizing the LTspice 

simulator. The novel transient heat transfer approach, through the thermal-to-electrical analogy 

schemes, intends to simplify the analysis. Hence, this dissertation is divided into five separate 

chapters: 1) chapter one gives a general introduction to the recurrent problem of energy in the 
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world and presents the main objectives this work seeks to accomplish; 2) chapter two reviews the 

current state-of-the-art in the field of TEGs; 3) chapter three emphasizes  the proposed design 

methodology, electrical parameter extraction, the Spice modeling schemes, and some of the 

energy storage technology followed by a brief economic analysis; 4)  chapter four details the 

experimental verification of the work and then gives the results; 5) and finally, the last chapter 

concludes this work by summarizing concisely the main findings, discussing them succinctly, 

and briefly suggesting the future course of research. 
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Chapter 2: Literature Review 

Much of the solar resources on Earth are inversely related to electrical load centers. Thus 

far, significant motivations prevail for developing new stand-alone energy-harvesting 

technologies. These technologies, such as PV, STEG micro-grid, and the like, can not only 

autonomously convert the incoming solar radiation into DC power, but can also deliver reliable 

power to remote residential zones where the grid is quasi-absent. Hence, TEGs are gaining a 

great deal of research attention in this area since they have proved to perform well in harsh and 

remote locations. Also, they have the advantage of not possessing moving parts, thus less 

maintenance is required. Figure 1 illustrates the most common categories of papers surveyed 

during the course of this work. As can be seen, the articles treating the thermal-to-electrical 

analogy concept that utilize the family of spice simulator software, were given a higher priority, 

as they are the most frequently cited papers throughout this work. A thorough literature survey, 

divided into a general and specific review, is attempted with emphasis on the latter section.  The 

Spice modeling of TEGs based on the thermal-to-electrical analogy using LTspice software is 

the core piece of this study. In a nutshell, a bottom-up fashion survey is methodically organized 

in the two subsequent sections in order to address, through a step-by-step scheme, all the 

research gaps that would be of interest to the current and future potential research works. 
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Figure 1 – The most frequent research areas surveyed 

 

 

2.1 General Review 

During the last century, the population on Earth escalated at a much faster rate than ever 

seen before. In a similar fashion, the human race has attained the highest possible level of 

technological development, leading mankind to taste a certain flavor of happiness, joy, and well-

being. Hence, there are two important concepts worthy of note here: one is the major 

breakthroughs in all matters of Science and Engineering and the second is mankind's ability to 

apply these breakthroughs to their benefit. This is especially true with respect to the use and 

harnessing of all sorts of energy and waste heat to improve mankind's well-being. 

Unfortunately, any energy policy that produces improvements in the short term is usually 

one that destroys the environment in the long term. It is a universal truth that no exponential 

growth will last forever. In other words, the global net impacts have heavy consequences on the 
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entire inhabitants of the planet. There is, in fact, a global tendency to run out of energy resources 

that are either non-regenerative or not replenished at a fast enough rate on a human scale. In 

essence, the major portion of our energy supply is not renewable in nature and is destined to be 

depleted in the near future. 

On the other hand, with respect to this alarming depletion rate of the non-renewable 

energy sources, if the government policy makers, in combination with engineers, and scientists 

work together, the appropriate solutions to this issue would be sufficient and capable of solving 

the global energy crisis for decades to come. 

The sun is inarguably the primary source of energy; it is at the center of all surface 

phenomena and living beings on Earth and beyond. This tremendous amount of energy, in 

conjunction with the global atmospheric greenhouse effect, provides the means for the prosperity 

of the immensely diverse forms of life found on Earth [36]. The greenhouse effect has made life 

possible on Earth by averaging the global temperature to 18°C. That averaged temperature has 

increased during the past century by about 0.7°C. It has been speculated that most of the increase 

is attributable to the manmade greenhouse effect due to the release in the air of not only the 

major GHG in general, but particularly to the millions of tons of carbon dioxide emitted when 

fossil fuels are burned to produce energy on a daily basis. For instance, the US alone emits 2.2 

billion tons of CO2 per annum to produce electricity, which corresponds to approximately 40% 

of the national total gas emissions [37]. Hence, the relative raise of the average temperature 

above the pre-industrial level has led to the relatively new concept of global warming. 

Consequently, methods need to be found in order to solve this global temperature increase 

through curbing global warming in order to better improve people’s lives with clean air and 

clean water. Also, methods must be found for reducing a reliance on fossil fuels, while 
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increasing at the local, regional, and global levels an investment in clean and renewable energy. 

It is noteworthy that the latter is continuously and sustainably replenished at a human scale and 

that it comes from natural sources. Furthermore, green jobs and smarter energy solutions need to 

be found that will contribute to a global economy boost for the benefit of the whole of mankind 

[37]. 

This literature survey is intended to demonstrate the urgent need for finding new long 

term alternative renewable sources to replace the existing fossil fuel-based sources that may be 

depleted in the near future. Furthermore, scientists and those in the field of energy came to a 

valid conclusion in the early 18
th

 century, at the dawn of the industrialization era, that fossil fuel 

was not a perpetual energy source [38]. Therefore, many new renewable technologies have been 

investigated to either firmly supplant fossil fuel-based sources or to provide an alternative to 

them. 

The thermoelectric module (TEM) is considered to be one of the best generators of 

renewable energy because of its extreme reliability. Furthermore, the TEM has no moving parts. 

Thermoelectric generators can use solar energy, in the form of heat, for the generation of 

electrical power. It is possible for TEGs to directly convert as much solar energy into electrical 

energy as their fellow PVs do. This conversion of energy from the sun to electricity is done via 

the Seebeck effect, named for the discovery made in 1821 by the German physicist Thomas J. 

Seebeck. TEM’s main drawback, when compared to other renewable resources, is lower 

efficiency. As reported in [29], a TEM is only about five to six percent efficient. Even with this 

low efficiency, the TEM can utilize the abundance of free thermal energy resources for 

conversion into electrical energy for the benefit of mankind [28]. Thermoelectric solid-state 

devices directly convert thermal heat into electrical energy or vice-versa. In other words, not 
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only can TEMs be used to convert the energy from the sun or any kind of wasted heat into 

electricity, but they also have the potential to transform electrical energy into heating/cooling 

[39]. How much of the energy is being converted from one form to the other is solely dependent 

upon the figure-of-merit which is often called the goodness factor, (GF) [40]. 

𝑍𝑇 = 𝛼2 ∙ 𝛿 ∙
𝑇

𝐾
                                                               (2) 

Where, α, δ, k, and T are the Seebeck coefficient, electrical conductivity, thermal conductivity, 

and absolute temperature in Kelvin, respectively. 

 A key factor to note in Eq. (2) is that the thermal conductivity needs to be lowered for 

the goodness factor ZT to be increased, and thus the efficiency of the TEM to be improved. A 

summary of the important ZT achieved that has so far been found in the literature is illustrated in 

Figure 2. 

 

 

 

Figure 2 –  Reported ZT values across the literature [41] 
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One of the pioneering works in this field was done by Telkes in 1954 [42] before the first 

oil crisis in the world. Utilizing the best alloys available at that time, she was able to improve the 

TEGs efficiency by 3.35 percent. Though the study set the foundation of TEG technology, no 

real solar energy application was attempted. Years later, right at the time of the crisis, Suleebka 

[43] studied a sintered Si-Ge alloy TEG with three different high temperature solar absorbers. 

Despite the fact that the efficiency has been increased nearly by five times as reported, a major 

drawback was the assumption that the TEGs were receiving a constant solar flux, which was not 

the case in reality, since the weather changes constantly. A decade passed by before David 

Rowe, in 1981, investigated the theoretical performance of a solar-powered TEG [44]. His work 

dealt with fine-grained TEM material fabrication for electricity generation. The maximum 

efficiency of the device at the STC was in excess of 12 percent. Some limitations were obviously 

noticeable, as the experiment was not allowed to be exposed to real-environment test conditions, 

because the cold side temperature was fixed at 300K. In 1998, this same author evaluated the 

power generation performance of a TEG in terms of its efficiency and reliability [45]. He found 

that an optimization mechanism was necessary for the TEGs to deliver maximum output power. 

Thereafter, Meneewan et al. in 2004 applied TEGs in order to enhance indoor air movement in 

hot regions [46]. The aim of their work was to develop a thermoelectric roof solar collector. 

Though the ventilation rate was induced in order to reduce the heat transfer from the roof to 

indoors, it is important to point out that the experiment was lab-scale based, and may not give the 

sought output in a real life experiment. One year later, Vatcharasathien et al. [47] built and 

analyzed a STEG system, where they attempted a comparative design. The project effectively 
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demonstrated the feasibility of a combined TEG with conventional solar thermal collectors by 

minimizing system cost and seasonal adjustment of the slope angle between 0 and 30 degrees. 

  In the year 2008, a group of MIT material scientists demonstrated a possible increase of 

the electrical conductivity and a decrease of the thermal conductivity in bulk nano-materials. 

Hence, the GF, as discussed earlier, of the Bi2Te3 based material was quite enhanced from 1 to 

1.4. [48]. On the other hand, it is worthy to note that the predicted efficiencies are not only hard 

to achieve in real TEG applications, but also are always higher than the real material ones 

because of the effects of parasitic losses. This latter point is further developed in chapter three. 

In contrast, two concomitant but slightly different studies were carried out in 2009. First, 

Juanico and Renalde investigated a comparative economic analysis between TEG and PV for 

rural isolated homes [49].  They found that the load factor of the PV was 10 percent, as 

compared to 100 percent for the TEG. The direct implication is that the TEG system not only 

presented a better performance in all cases, but also could improve the sustainability of firewood 

stoves in rural households. The second study by Eswaramoorthy and Shanmugam, evaluated 

rural residential energy demand utilizing TEG systems [32]. Their results showed that the 

payback period was one year and one month and the electrical grid dependence was 

tremendously reduced. Another STEG economic analysis utilizing parabolic concentrator for 

micropower was performed in 2010 by Amatya and Ram [50]. They discovered that the STEG’s 

peak power price was $1.67/Wp, as compared to $4/Wp for the PV module.       

In the following year, Rinalde et al. investigated the use of TEG for rural electrification, 

where they designed an energy-harvesting prototype for isolated households [31]. In this same 

year 2010, Zhang et al. evaluated the performance of a solar micro-energy harvester based on 

TEG in conjunction with latent heat effects [51]. Their device was sensitive to seasonal 



 

21 
 

variations in solar radiation and wind patterns, which makes it a good candidate for building 

wireless applications. Also, in 2010, Champier et al. attempted to improve rural communities’ 

living standards by incorporating TEG to a cooking stove for electricity generation in developing 

regions. The only drawback to their study was that a thermo-coax electric heater was used, rather 

than a real stove, to provide a continuous power of 150W [33]. Recently in 2011, two important 

research works were conducted. Kraemer et al. analyzed the real performance of Flat-panel 

STEGs with a high thermal concentration at an AM1.5, equivalent to 1kW/m
2
. The latter value is 

too ideal for real STEG testing to yield any meaningful result. Nevertheless, their model 

achieved a peak efficiency of 4.6 percent [52]. Finally, Meng et al. suggested a numerical and 

comparative study of a TEG with multi-irreversibilities [53]. All the major inner effects, such as 

Seebeck, Fourier, Joule and Thomson, were considered in the novel model. Unfortunately, 

accuracy may be lost in the results because the capacitances of the various elements were 

completely ignored.  

It should be mentioned that TEM technology, as per the abundance of literature, consists 

of n- and p-type semiconductor materials connected electrically in series and thermally in 

parallel. When one side of the TEG is subjected to heat while the other side is at a lower 

temperature because of a thermal resistance heat exchanger, an electromotive force (ΔV) is 

generated proportional to the Seebeck coefficient of the TEG semiconductor material as 

discussed in [11]: 

𝑉 = 𝛼 ∙ (𝑇𝐻 − 𝑇𝐶)                                                          (3)  

Where, TH and TC represent the hot and cold side temperatures respectively. 

On the other hand, if an electrical current flows in the junction, this generates a thermal 

difference between the two sides of the device. This phenomenon is referred to as the Peltier 
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effect [54]. One side of the junction will absorb heat (Q), while the other side dissipates heat to 

the surroundings, depending on the amount and the direction of the current flow as in Eq. (4). 

𝑄 = 𝛼 ∙ 𝑇 ∙ 𝐼                                                          (4)  

Where, I represents the current that flows in the device. 

Although some of the aforementioned works described remote application of TEGs, none 

of those studies have looked into the thermal-to-electrical analogy utilizing the LTspice 

simulator to model a complete energy-harvesting system, as investigated in this study.  

2.2 Specific Review 

A chronological literature survey is attempted in this section. The work aims to 

emphasize how the idea of LTspice modeling of transient heat transfer analysis, utilizing 

thermal-to-electrical analogy, evolves over time. 

One of the originators of transient heat transfer analysis utilizing Spice simulator in 

conjunction with TEGs is Chavez et al. in 2000 [55].  This study sought to analyze and propose a 

three port Spice model of a Peltier cooler by using the electrical analogy of the thermal system. 

Four years later, Lineykin and Ben-Yaakov presented a Spice compatible circuit of a TEM [56]. 

The following year, the same authors investigated ways to model and analyze, utilizing Pspice 

software, thermoelectric modules (TEMs) [57]. Comparable to the previous work, their objective 

was to develop a Spice compatible equivalent circuit of a TEM.  In the following year (2006), 

Chen et al. analyzed the transient behavior of a TEG through an Electro-thermal scheme utilizing 

Spice [13]. Although the model was able to reflect the thermo-electric coupled multi-field system 

effect of TEG by considering the finite heat transfer rate at the interface (TEG - thermal 

ambient), the results could be much better if Th and Tc were not idealized to be constant. In 
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reality the Seebeck coefficient is dependent on the above mentioned temperatures, as 

demonstrated in [62] and [63].  

Again, in 2007,, Lineykin et Ben-Yaakov aimed to develop a Spice compatible 

equivalent circuit of a TEM [14]. This study showed that the modeling of the thermoelectric 

cooler (TEC) and the TEG was about the same. Consequently, the same circuit can be utilized to 

simulate both behaviors, providing that the current direction is reversed. In addition, the TEG 

parameters were simply extracted from the datasheet. Unfortunately, there was a major drawback 

to that approach. There was not enough precision in the results because not only was the thermal 

resistance of the aluminum plates assumed to be negligibly small, but also the thermal 

capacitance of the isolation chamber was neglected. These assumptions surely affected the 

accuracy of the overall results. As opposed to the original, previous works, in 2008, Mirocha and 

Dziurdzia proposed an improved electro-thermal model of a micro TEG system utilizing the 

Spice simulator [60]. Their version introduced the Peltier module’s dependence of the internal 

resistance (Rint) variation with respect to temperature changes, since Rint fluctuations have an 

impact on the actual performance of TEG. Nevertheless, a better accuracy was achieved in the 

range of small temperature gradients. 

As a final review, in the years 2012 and 2013, respectively, Mihail Cernaianu [61] and 

Gontean and Cernaianu [12] proposed a TEG energy-harvesting system’s analysis by means of 

the LTspice simulator. Their improved model was solely based on the thermal-to-electrical 

modeling schemes. They investigated the variation of the parameters, such as the Seebeck 

coefficient, internal resistance, and thermal conductance, as heat was being transferred from the 

hot to the cold side. Furthermore, a DC-DC converter (LTC3105) was introduced to boost the 

TEG’s output voltage to a desired level needed to charge the battery. In both studies, the authors 
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did use current-dependent sources rather than voltage-dependent sources. They claimed that the 

former proved to solve different convergence problems that may appear in simulations due to the 

large number of variables. The drawback of these energy-harvesting systems was that they were 

limited to laboratory experiments. Therefore, they did not have as significant an impact as if they 

were conducted in an open environment to harvest the free and abundant solar energy.  

2.3 Conclusion 

There is a generous endowment of solar, wind, geothermal and other renewable resources 

on Earth.  With the current technological development attained, mankind is consistently 

inventing new ways to improve the existing electrical power generation mix. Learning how to 

harness these infinitely important renewable resources to replace the traditional fossil fuel energy 

sources would untangle the current worldwide economic model that is based on fossil fuel.  

This work reviews succinctly the state-of-the-art technologies in the field of 

thermoelectric generation. Since STEG systems recently gained more popularity in terms of real 

solar energy-harvesting applications, the survey is split into two main parts: 1) a general review, 

as a whole, treating the concepts and most important applications of TEGs; and 2) a specific 

review elaborating on the electrical modeling of any thermal system in a chronological manner. 

The survey highlights the recurrent and absolute necessity for finding new methods for 

energy delivery to remote residential regions. Also, this review reveals a gap in terms of transient 

heat transfer analysis of a real-world STEG system utilizing thermal-to-electrical analogy in 

conjunction with LTspice software.  
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Chapter 3: Proposed Design 

A popular saying goes like this: “No one is truly a scientist if [his/her] research 

confirmed all [his/her] ideas, as [s/he] is not stepping into the unknown”.  In line with this 

quotation, the initial research expectations were set high so as to gradually reach a common 

ground, whereby theory and practice mutually meet each other. For a better understanding of the 

four major effects that normally occur in any TEM, an experiment was first initiated in the 

laboratory in order to characterize the device. This also allowed us to familiarize ourselves with 

it for future, more elaborate real-world solar experiments. Having experimented with real 

thermal behavior, in terms of device true performance and limitations, of the TEG elements 

under non ideal testing conditions, the major research goal was adjusted accordingly. The new 

solar energy-harvesting system must be designed to withstand  severe and arid weather 

conditions, but also must be robustly designed to supply electricity to remote residential 

households, so long as is needed. Both the indoor and the real-environment TEG experiments 

were put together following a similar methodology, as their inner heat transfer functionalities 

remain mostly identical. 

3.1 Design Methodology 

This work proposes to design, build, and test a solar thermoelectric generator system. 

Possible methods to enhance its efficiency, understand its functionality, and optimize its 

performance, i.e. the heat transfer capabilities between the top and the bottom surfaces, will be 

investigated. The thermal to the electrical analogy scheme was adopted to simulate the designed 

energy-harvesting model by means of the LTspice simulator software. Experimental and 

simulated results were then analyzed. 
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This study is twofold. The first step was to investigate the performance of a commercial 

solar TEG under arid weather conditions comparable to the Southwest of the US or the Sahel in 

Africa. The TEG devices were chosen to be five in number and were mounted on a solar tracker. 

The reflectors on the tracker were positioned in such a way that the sun is concentrated four 

times on the semiconductor devices. The second step of the project was to not only compute the 

electrical parameters from both the datasheet and device’s geometries and properties, but also, 

and most importantly, to perform the electrical analogy of the whole system with the Spice 

simulator. A lookup table of real experimental data (temp hot side, TH and temp cold side, TL) 

was fed into the circuit to improve simulation speed. The LTspice’s built-in piecewise linear 

(PWL) command was utilized in order to achieve the goals. Due to the complexity of the 

geometry of the system and the corresponding longer simulation time, some assumptions were 

required. The thermal capacitance of the insulation material utilized may be neglected for 

simplicity in the approach. The thermal resistance of the heat transfer grease was assumed to be 

0.45K.W [58]. The necessary temperature values used to simulate the real behavior of the TEG 

are organized in a table and stored for the simulation in a text file, as already stated above. 

Afterward, both the experimental and simulated energy harvested were analyzed and compared. 

Stated differently, the real experimental data served to validate the simulated results by plotting 

them in the same graph.  

Finally, the amount of energy harvested, in relation to the real-environment solar 

experiment, was stored in rechargeable batteries for a later usage, such as in the case of powering 

light emitting diodes (LED) in homes. Furthermore, the LED system may be equipped with USB 

ports to charge cell phones, since people in remote areas today depend on them for exchanging 

news and money as well as education and health services. The performance and characteristics of 



 

28 
 

the major battery technologies are thoroughly addressed. As a result, the best battery technology 

in terms of functionality and cost-effectiveness are chosen to fit the current needs. 

3.2 Parameter Extraction  

An indoor experiment was first conducted to first characterize the device (TEG) 

parameters from: 1) datasheet, 2) device geometries, and 3) material properties. Furthermore, the 

indoor test was to not only understand how the TEG operates in real environment which is 

different from the STC, but also to get accustomed to it before the main part of the work. 

Afterward, a complete solar energy-harvesting system was then set up on the roof of the TBE-B 

building at UNLV. 

3.2.1 TEG Basic Principles  

As reported in [14] and [57], several physical phenomena take place in a thermoelectric 

device. Therefore, only the most significant of them will be mentioned that are of particular 

relevance in this research.  

Convection and Radiation - heat transfers through three thermally possible transport 

mechanisms. The predominant mechanisms in a TEM are convection and radiation [62]. The 

former, is the transfer of internal energy, generally in the form of heat, through fluids by obeying 

the natural laws of diffusion. The latter, i.e., electromagnetic radiation, is the continuous 

emission of energy from all substances due to their molecular, atomic, and sub-atomic agitations. 

Joule heating - another name for this thermo-electrical phenomenon is resistive heating. 

It is known to be the process by which the passage of a current through a conductor emits heat. 

The amount of heat, Q, released due to Joule heating is proportional to the square of the current 

flow times the resistance (𝑅 = 𝜌 ∙ 𝑙/𝐴) as seen in Eq. (5). 

𝑄 = 𝐼2 ∙ 𝑅                                                          (5)      
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Where ρ, Q, I, l, and A are the resistivity of the material (Ω.m), the Joule heating (Watts), the 

current (Amperes), the length of the material (meters, m), and the surface area (m
2
) respectively. 

Peltier cooling/heating - this particular effect is of great interest when the TEM is run as 

a cooler. The Peltier effect supplies power to the thermoelectric module with a resultant cooling 

of one side and heating of the other. 

Finally, the Seebeck power generation - as detailed in [63], the Seebeck effect occurs 

when two dissimilar metals are looped together. They develop an electromotive force (emf) 

when the two junctions are kept at different temperature.  

  The Thompson effect - is explicitly neglected at this stage due to its smaller contribution 

in terms of cooling as reported in [56]. 

3.2.2 Extraction from Datasheet 

The parameters were extracted from the manufacturer's datasheet and utilized in 

conjunction with the internal parasitic components to derive the proposed model [44]. The 

following values were provided by Custom Thermoelectric web site [63]: the maximum power, 

Pmax = 21.6 W; the maximum voltage, Vmax = 7.2 V; the maximum current, Imax = 3 A; Thermal 

Conductivity, k = 2.18W/m·K, and the optimal efficiency of the module, ɳ = 6.5%. The 

following values were then computed and succinctly utilized toward the final goal, which is the 

electrical analogy. 

3.2.2.1 Electrical Resistance 

The electrical resistance of the module, RElect, can be estimated by Eq. (6). 

𝑅𝐸𝑙𝑒𝑐𝑡 =
(𝑉𝑚𝑎𝑥)2

𝑃𝑚𝑎𝑥
= 2.4 𝛺                                                  (6) 

3.2.2.2 Seebeck Coefficient 

The computation of the Seebeck coefficient, α, is done by means of Eq. (7). 
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𝛼 = 2 ∙
𝑉𝑚𝑎𝑥

𝑇ℎ−𝑇𝑐
= 0.0534 𝑉/𝐾                                             (7) 

3.2.2.3 Thermal Resistance of the Module 

The thermal resistance of the module, RTher, is computed by Eq. (8). 

𝑅𝑇ℎ𝑒𝑟 = 2 ∙ ∆𝑇 ∙ 𝜂 ∙ (2 − 𝜂) ∙
𝑅𝑇ℎ𝑒𝑟

(∆𝑇−𝜂∙𝑇𝑎)2∙𝛼2 =
0.6365𝐾

𝑊
                            (8) 

3.2.2.4 Thermal Resistance of the Insulation Foam 

The resistance of the thermal insulation, RInsul as reported by Jan et al. [64] can be calculated as 

follows based on the experimental data gotten after steady state conditions had been reached 

within 32 minutes [63], i.e. TH = 324.89K; TC = 311.46K, as can be seen from Eq. (9). 

𝑅𝐼𝑛𝑠𝑢𝑙 =
𝛼2 ∙ 𝑅𝑇ℎ𝑒𝑟

2 ∙ (𝑇𝑐 + 𝑇ℎ + 2.273)2

(𝑇𝐶 − 𝑇𝐻)2
∙ 

(𝑇𝑐 − 𝑇𝑟𝑜𝑜𝑚)

(2𝑅𝐸𝑙𝑒𝑐𝑡 + 𝛼2 ∙ 𝑅𝑇ℎ𝑒𝑟 ∙ (𝑇𝑐 + 𝑇ℎ + 2.273))
 

= 5.9𝐾/𝑊                                                                (9) 

Where, Troom represents the normal temperature of a living room. 

3.2.3 TEM Modeling Steps  

Modeling a TEM system with SPICE as done in [63] could be ambiguous as it hasn’t been 

clearly explained up to this point. The following are the seven (7) major steps that it takes to 

simulate any thermo-electrical system with an electronic SPICE simulator, such as LTspice. 

1) Identify the physical components 

2) Calculate their Biot number as explained thoroughly in [64]; its value determines the 

approach to adopt in the analysis. Should that value be much less than unity, the lumped 

capacitance method is solely recommended for accuracy in the results. If it isn’t much less 

than, then some sort of numerical discretization method should be considered.  
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3) Calculate the thermal resistances and capacitances of all the mechanical parts mentioned 

in [63] by splitting them into smaller parts. The nature of the material and other properties 

such as density and volume should be accounted for in calculation. 

4) A further step in the design is to not only define, but also draw the electrical parts that will 

encompass all the parasitic elements such as R, L, and C. The latter point is not important 

at this stage in the research, but will be given a further consideration in the second part 

dealing with real-environment solar energy-harvesting design, where the goal is to utilize 

a DC-DC converter for accuracy in the results. 

5) Express the electrical equivalence of the thermal parameters. Table 1 lists the most 

commonly used thermal-to-electrical analogies as presented in [65]. 

 

 

Table 1 - Thermal-to-electrical equivalence 

Thermal Electrical 

Temperature T [°C] Voltage (source) V [V] 

Heat flow/power Φ [W] Current (source) I [A] 

Heat resistance R [°C/W] Resistance R [Ω] 

Heat capacitance C [J/°C] Capacitance C [F] 

Fourier’s law 
Φ =

∆𝑇

𝑅
 

Ohm’s law 
𝑖 =

𝑉

𝑅
 

Heat capacitance equation 
Φ = 𝐶 ∙

𝑑𝑇

𝑑𝑡
 

Capacitor equation 
𝑖 = 𝐶 ∙

𝑑𝑉

𝑑𝑡
 

Ambient Temperature Ground 0 [V] 

 

 

6) Then connect these analogy blocks in series and/or parallel in order to reconstruct the 

actual system. 
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7) Finally, the TEM is ready to be modeled in LTspice, provided the right codes were 

written.  

3.2.4 Parameters Computations  

Some of the material properties that turned out to be helpful in this study were mentioned 

on website of Custom Thermoelectric [66]. Hence, Table 2 depicts the most relevant values. The 

TE modules were specified by the manufacturer to be bismuth telluride (Bi2Te3) and that the 

ceramic substrates or faces were made of alumina (Al2O3).  

 

 

Table 2 – TEM properties 

Material ρ[kg/m
3
];      c [J/kg · K];      κ[W/m · K] 

Aluminum 

Alumina 

Bi2Te3 

   2770                875                     177 

   3570                837                     35.3 

   7530                544                     1.5 

 

 

 

In which, ρ is density, c is specific heat, and κ is conductivity. 

3.2.4.1 Aluminum Plates  

In order to appropriately simulate with the LTspice software all the thermal processes 

taking place inside the thermoelectric module, all the physical parts must be transferable. So, the 

two equal dimension aluminum plates, (Length 56mm, Width 56mm, and Height 12.7mm), 

purposely grooved to hold the hot and cold side thermocouples during the laboratory experiment 

need be accounted for in the computer model. The parameters of interest in the electrical analogy 

are the thermal resistance and the thermal capacity of the above mentioned plates. 
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3.2.4.1.1 Thermal Resistance, RAL 

𝑅𝐴𝐿 =
1

𝜅∙(𝐴/𝑙)
= 2.29 ∙ 10−2[𝐾/𝑊]                                      (10) 

Where κ =177W/m is the thermal conductivity, A is the surface area, and ɭ is the length of the 

plate. 

3.2.4.1.2 Thermal Capacity, CAL 

𝐶𝐴𝐿 = 𝜌 ∙ 𝐶𝑝 ∙ 𝑉 

=
2770𝑘𝑔 ∙ 875𝐽 ∙ (0.056)2 ∙ (0.0127𝑚3)

𝑚3 ∙ 𝑘𝑔 ∙ 𝐾
 

= 96.53𝐽                                                              (11) 

Where, ρ is the density, Cp is the specific heat capacity, and V is the volume of the Al. plate.  

3.2.4.2 Thermoelectric Module, TEM 

It is essential to first have a sound knowledge of the exact mass the TEM, its molar mass, 

M and its molar heat capacity for us to be able to reproduce the heat capacity of the module in 

LTspice. Hence, the mass was simply determined by a sensitive electronic balance and compared 

to the one given on the datasheet. The heat capacity, Cp, of a material can be determined as 

follows: 

𝐶𝑝 =
𝐶𝑚𝑜𝑙

𝑀
 [

𝐽

𝑘𝑔
∙ 𝐾]                                                        (12) 

Where, Cmol is the molar heat capacity in J/mol·K, and M represents the molar mass in g/mol. 

The molar heat capacity of Bi2Te3 was found in [67] to be 126.19 J/mol·K at normal 

temperature, i.e. 298.15 K. In a like manner and for simplicity in the approach, the molar mass, 

M of the aforementioned material, was accessed at [68] website. It was found there to be 800.760 

g/mol. Additionally, the mass of the semiconductor devices can be obtained through a mere 

subtraction knowing the entire mass (mT = 4.8.10
-2

kg) of the TEM and that of the ceramic plates 
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as can be seen from Eq. (14) below. Hence, the following values can be easily computed, Eq. 

(13)—(15). 

3.2.4.3 Mass of the ceramic plates, mcer 

𝑚𝑐𝑒𝑟 = 𝜌 ∙ 𝑉 [𝑘𝑔] =
3570𝑘𝑔

𝑚3
∙ (0.056𝑚)2 ∙ (0.002𝑚) 

= 2.239 ∙ 10−2𝑘𝑔                                                         (13) 

3.2.4.4 Molar heat capacity of the ceramic plates, Ccer 

𝐶𝑐𝑒𝑟 = 𝜌 ∙ 𝐶𝑝 ∙ 𝑉 [𝐽/𝐾] 

=
3570𝑘𝑔 ∙ 837𝑊 ∙ (6.272) ∙ (10−6𝑚3)

𝑚3 ∙ 𝑚 ∙ 𝐾
 

= 18.74𝐽/𝐾                                                           (14) 

3.2.4.5 The mass of Bi2Te3, mBi2Te3 

𝑚𝐵𝑖2𝑇𝑒3 = 𝑚𝑇 − 𝑚𝑐𝑒𝑟 [𝑘𝑔] = (4.8 − 2.239) ∙ 10−2𝑘𝑔 

= 2.561 ∙ 10−2𝑘𝑔                                                    (15) 

3.2.4.6 Molar heat capacity of Bi2Te3, CBi2Te3  

𝐶𝐵𝑖2𝑇𝑒3 =
𝐶𝑚𝑜𝑙

𝑀
∙ 𝑚𝐵𝑖2𝑇𝑒3 [𝐽/𝐾] =

126.16𝐽∙𝑚𝑜𝑙

800.76𝑔∙𝑚𝑜𝑙∙𝐾
∙ 25.61𝑔 =

4.036𝐽

𝐾
                 (16) 

3.2.4.7 The Overall Heat Capacity of the TEM, CTEM 

The heat capacity of the thermoelectric module, under preliminary investigation in the 

laboratory, can be estimated based on the knowledge of the two previous heat capacities already 

determined in Eqs. (13) and (15) by 

𝐶𝑇𝐸𝑀 = 𝐶𝑐𝑒𝑟 + 𝐶𝐵𝑖2𝑇𝑒3 ≅ 23𝐽/𝐾                                             (17) 

Furthermore, the above calculated heat capacity was split into two equal parts to fit in the 

LTspice model, as this technique yielded to accurate TEG modeling and the best possible 

solutions. The idea behind the technique is that, the capacitance value has to be equally 
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distributed between the cold and the hot side of the TEM, or else the results would not be 

precise. 

In order to model the actual thermal behavior of the TEM, its internal parameter 

variations are taking in account in the present model based on the work done in [35]. Hence, the 

internal parasitic inductance and capacitance values for both TEG and TEC are already available 

to use in the latter reference. Thus, they are used in the present work, because the current setup 

[63] is not meant to characterize the internal parameters or their variations with temperatures. 

Thus, it is a paramount importance to point out that, in this work, priority was given to 

the most dominant physical phenomena that take place in a TEM. Therefore, among all the 

potential mechanisms, Seebeck, Peltier, and Joule effects were given the most attention. As part 

of the knowledge assimilation process, occurring whenever a known theory has to be verified 

through practice, the TEM was first run as a heat pump, also identified as thermoelectric cooler 

(TEC). A TEC energy flow is solely based on Joules effect as given in the following, Eqs. (18) 

— (21), energy balance equations by 

The heat flow at the absorbing (cold) side is given by Eq. (18). 

𝑄𝑐 − 𝛼 ∙ 𝑇𝐶 ∙ 𝐼 +
1

2
𝐼2 ∙ 𝑅𝐼𝑛𝑡 + 𝜅 ∙ ∆𝑇 = 0                                      (18) 

The heat flow at the emitting (hot) side is given by Eq. (19). 

𝑄ℎ − 𝛼 ∙ 𝑇𝐻 ∙ 𝐼 −
1

2
𝐼2 ∙ 𝑅𝐼𝑛𝑡 + 𝜅 ∙ ∆𝑇 = 0                                     (19) 

The overall energy balance equation is represented by Eq. (20). 

𝑄ℎ − 𝑄𝑐 − 𝑃𝐸𝑙𝑒𝑐𝑡 = 0                                                      (20) 

Hence, the electrical power consumed by the device necessary to remove the heat from one side 

relative to the other is as written in Eq. (21). 

𝑃𝐸𝑙𝑒𝑐𝑡 = 𝑄ℎ − 𝑄𝑐 = 𝛼 ∙ ∆𝑇 ∙ 𝐼 + 𝑅𝐼𝑛𝑡 ∙ 𝐼2                                    (21) 
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Where, TH and TC represent the hot and cold side temperatures respectively; RInt is the internal 

resistance of the TEM; α, κ, and ΔT as mentioned above are the Seebeck coefficient, the thermal 

conductivity, and the differential temperature (ΔT = TH - TC), respectively. 

According to the study performed in [35], the Spice model behavior of the TEC will be 

unrealistic if the internal parasitic capacitance is neglected, as it was done in [56]. In addition to 

that, α, κ, and RInt variations with temperatures must be accounted for toward the same objective. 

This study is meant to accommodate all the aforementioned issues that might affect the realistic 

Spice implementation of the thermoelectric module [63].  

3.3 LTspice Modeling of TEG Energy-Harvesting System 

Most of the EE engineers have a limited knowledge when it comes to analyzing the real 

behavior of transient heat in a semiconductor device since the concept of heat transfer through 

any medium is entirely exclusive to their curriculum. Thus, modeling a TEM system with 

LTspice would have been confusing, had it not been clearly explained methodically step by step 

in Sec. 3.2.3. In practice, STEG applications are continuously dynamic. The practical 

environments change as the local insolation changes during and throughout the days, the seasons, 

and the years. The electrical load of the system may also vary at each instant, as the energy 

demand is constantly changing. These dynamic variations tremendously affect the way STEG 

operates in terms of efficiency, reliability, and life span. These dynamical changes govern even 

the way the external DC converter performs. Hence, it is important in this study not only to 

understand those transient behaviors and their impacts on the system, but also to accurately 

describe them through thermal-to-electrical analogy techniques. How transient heat is being 

transferred in TEG is analytically cumbersome. Therefore, we propose to analyze numerically 

the transient heat transfer in TEG by means of the LTspice simulator. One of the standard 
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methods of heat transfer analysis is to convert the thermal problem statement into an equivalent 

electrical analogy. The latter is helpful in investigating and understanding any thermal problems. 

Furthermore, the thermo-electrical analogy facilitates not only visual conception of the heat 

transfer problem at hand, but also the subsequent analysis. 

3.4 DC-DC Converter 

It should also be mentioned that the intent of this work is not to design a DC-DC 

converter, but rather to utilize a prefabricated converter that works best for the proposed STEG 

energy-harvesting system. All DC-DC converters’ primary function is to boost the low DC 

output voltage, and then stabilize the power output ripples due to intermittencies. Otherwise, the 

sensitive household appliances would malfunction in such a manner that would be detrimental to 

their life spans. The subsequent figures, viz. Figure 6 through Figure 11, present an in-depth 

illustration of the concept of impedance matching and that of STEG output power’s 

intermittency. 

3.4.1 Brief Description of the Converters 

Two types of converters are under investigation. The first kind is the LTC3105, which is 

a step-up DC-DC converter with power point control and a low dropout (LDO) regulator. It is 

provided on a demonstration circuit (1587A) as a boost converter for relatively high impedance 

and very low voltage input power sources. This type of converter has operating input voltages 

ranging from 250mV to as high as 5V. Figure 3 illustrates the 1587A circuit board, including the 

LTC3105, the MPPC, the three LDO regulator output voltages, and the rest of its functionalities. 
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Figure 3 – 1587A circuit board 

 

 

The second type of DC-DC converter is the LTC3525 micropower synchronous step-up 

converter with an output disconnects functionality. This converter has an advanced feature 

valuable for low-power harvesting, unlike the LTC3105. It was perfectly designed with the 

advanced capability of maximizing the overall energy-harvesting system’s efficiency. Hence, it 

is important to note that this demonstration board comes in two assembly versions: 1) DC879A-

A and 2) DC879A-B. The latter board was solely chosen, as it fits the current need by offering a 

constant 5V output for any input voltage ranging from 1VDC to about 4.5VDC. For clarity, 

Figure 4 has been inserted to depict the DC879A-B board in question, showing the LTC3525 

chip in the center and the rest of the embedded functionalities.  
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Figure 4 – DC879A-B demo board 

 

 

3.4.2 Impedance Mismatch 

The relatively low-level voltage usually generated by STEGs is not appropriate for direct 

usage as power source for most electronic devices. Therefore, as stated above, for many of the 

practical intents and purposes, it is necessary to utilize DC-DC converters to boost the output 

voltage to the desired level. An additional functionality of a DC-DC converter is its ability to 

regulate the fluctuating TEG output under intermittent temperature conditions. Thus, the 
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converter is solely the intermediate stage between the TE generator and the electrical load, as 

simply depicted in Figure 5. 

 

 

 

Figure 5 – Basic thermoelectric generation system block diagram 

 

 

The impedance mismatch between the internal resistor, RInt, of the TEG, and the input 

resistance of the converter, RCONV, is the main problem a DC-DC converter experiences. The 

power supplied by the TEG system to the DC-DC converter can be estimated by 

𝑃𝐼𝑁 = 𝑉𝑂𝐶
2 ∙

𝑅𝐶𝑂𝑁𝑉

(𝑅𝐼𝑛𝑡+𝑅𝐶𝑂𝑁𝑉)2                                                 (22) 

Where, VOC denotes the TEG’s open-circuit voltage, and PIN, the DC-DC converter’s input 

power. 

The variation of the DC-DC converter’s input power as a function of the converter’s 

input impedance was studied by [69]. Figure 6 portrays that dependence. 
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Figure 6 – TEG power supplied as a function of RCONV. [69] 

 

 

As can be observed from the above graph, maximum power is transferable only when the two 

resistors match each other, which is highly unlikely to be achievable in real-environment solar 

applications. 

3.4.3 Effects of Solar Variability 

First, variability in solar energy affects the way solar renewable energy-harvesting 

devices, such as PV systems and TEGs, operate on a daily, seasonal, and yearly bases. This is 

true in the sense that the amount of solar radiation arriving on Earth is influenced by all kinds of 

weather events, such as cloud coverage, storms, and even the Earth’s rotation on its own axis and 

its revolution around the sun. During cloudy weather conditions, the PV power output changes 

suddenly by responding instantaneously to fluctuations in sunlight as reported in [70]. In a 

similar fashion, it has been empirically demonstrated by this study that STEGs also respond 

instantly to variations in the solar radiation. Although the unit is meant to supply light loads in a 

typical remote household in developing regions, its operation may create challenges for system 
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owners without a proper DC-DC converter. Hence, it is essential to point out that adverse 

weather events, such as cloud coverage depend on: 1) the size and shape of the STEG system in 

question; and 2) the clouds’ transparency, speed, and direction of movement. A specific 

emphasis will be put on STEG output variability in the analysis section of this study. 

3.4.3.1 Direct Normal Irradiance 

Direct normal irradiance (DNI) is basically the amount of solar electromagnetic radiation 

received per area unit by a measurement device or any surface that is constantly held normal to 

the solar rays, which are assumed to come in a straight line from the sun. The solar energy-

harvesting system designed to achieve the goals of this work was mounted on a solar tracker. In 

other words, the local DNI was selected to be the only energy input in order to maximize the 

amount of insolation annually received by the STEG system. Hence, Figure 7 depicts the Las 

Vegas DNI for the months of April and May 2015 recorded during the course of this experiment. 

It can be seen that the DNI varies throughout the days, weeks, and months. This is a strong sign 

that the energy harvested by the STEG system will continuously vary. 
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Figure 7 – Solar DNI recorded in Las Vegas, April and May 2015 

 

 

This renewable solar energy-harvesting system takes full advantage of the free and 

abundant solar energy by conducting an open air test, whereby the only heat source is solar 

electromagnetic waves. As a direct consequence, variability of incoming solar energy due to 

weather events is not only a great issue to the converters, but is also affecting the way TEG 

systems perform in the real-world environment.   

3.4.3.2 Real-Environment Performance of the LTC3105 

Figure 8 portrays the real-world performance of converter with two different outputs 

prior to the connection of any external load. For both the 5VDC and 3VDC, the effects of 

variability are remarkable; it will certainly create severe damage to the sensitive electronic 

appliances and gadgets.   
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Figure 8 – Real-environment performance of LTC3105 

 

 

3.4.3.3 Voltage Expanded View (5V select) 

It is much easier to decipher the concept of a DC-DC converter’s output variability 

through an expanded view of specific days. Figure 9 clearly shows the actual performance of the 

LTC3105 during the course of its real-environment operation for a week. The output is highly 

intermittent and dependent on insolation. Hence, during cloudy weather days, the TEG power 

output changes by responding instantaneously to the fluctuations of sunlight. Therefore, output 

power issues, related to variability of incoming sunlight, remain a great technical challenge for 

the DC-DC converter. The converter’s output, by essence, is supposedly free from any variation, 

but counter-intuitively demonstrates the opposite, as can be seen in Figure 9. Furthermore, it has 

also been demonstrated, as can be understood from Figure 9 and Figure 10, in addition to the 
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converter, a reliable energy storage system is strongly needed because the converter is only 

designed to handle a constant input which is obviously not the case in real-environment solar 

applications. Therefore, these momentary power outages, also known as power flickers, which 

last for fraction of seconds to few seconds, are annoying because they can briefly shut down, if 

not totally damage, the appliances and electronic devices in households or businesses.  

 

 

 

Figure 9 – Weekly performance of the LTC3105 

 

 

3.4.3.4 Comparative Performance (5V select) 

Figure 10 compares two distinct days. The first day, the converter performed as intended 

by outputting a constant voltage throughout the day. The second day, it did not fulfill its main 

duties of boosting and stabilizing the output voltage. Also, these two days clearly highlighted 
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distinctly the output patterns of a clear summer day versus a cloudy one. Therefore, solar 

variability is particularly challenging to the DC-DC converter although the output responded 

with some delays to the intrinsic inertia of the entire thermal STEG system. It is worth 

mentioning that this study, once again, demonstrates both the future challenges of a real STEG 

system and the real-time performance of any DC-DC converter in terms of solar applications for 

remote residential usage. Hence, the design of the next generation DC-DC converters should 

incorporate a new solar feature especially when they are to be utilized in real-world solar 

experiments. The new feature must have the capability of responding instantly to the unpredicted 

and stochastic variations of solar radiation. 

 

 

 

Figure 10 – Real performance of LTC3105—Clear summer day versus Cloudy day  
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3.4.3.5 Voltage Expanded View (3V select)  

How the voltage progressed after the insertion of the energy storage unit shed additional 

light on the significant issues with the converter in terms of real solar environment applications. 

The energy storage system (ESS) tested was a 3.2V K2 technology. The battery was placed at the 

very end of the STEG energy-harvesting system in order to store energy for a later usage. As can 

be seen from Figure 11, the converter surprisingly entered in a somewhat new mode of operation 

similar to load following. It is worthy of note pointing out that the new state of operation was 

noticed soon after the K2 battery was completely discharged to 1.5VDC and 0ADC by means of 

the Maccor 4200 series. More details about the test procedures are provided in Sec. 3.5. The 

output of the LTC3105 was not constant as specified by the datasheet. Although the output 

voltage increased as the battery was recharged by the STEG system during the testing period, the 

effects of solar variability were still observable. This phenomenon casts doubt on the real 

behavior of any DC-DC converter applied to an open-air solar thermoelectric generation system. 
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Figure 11 – LTC3105 output voltage 

 

 

3.4.3.6 Real-world Performance of the LTC3525 Converter 

The LTC3525 was compared to the LTC3015 for STEG real-environment performance 

analysis. Unfortunately, this comparative analysis is far from being conclusive since it did not 

yield to any significant result. This failure is directly attributable to the fact that the input voltage 

to the TEGs was not up to the level specified by the manufacturer datasheet. Hence, no further 

assessment is required beyond this point regarding the LTC3525. 

3.5 Battery Tester 

Modern battery testers are fully programmable and automated multiple stations for 

charging or discharging secondary cell (rechargeable battery) systems. They even have the 

ability to sense the external temperature of the battery or the electrolyte’s temperature by means 

of numerous built-in thermocouple ports.  It is important to note that the temperature studies 
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simulate the real-environmental conditions experienced by the system. Performance in different 

climates, types of crank start in case of EVs, and dependence of EV’s acceleration or 

deceleration versus temperature studies to determine anode/cathode performance during cycling 

are some of the conditions. Since sensing the temperature of the device under test will prevent 

irreparable damage, this can enhance the lifespan of the energy storage system. However, energy 

storage system testing is intended, most of the time, to answer some of the following questions 

about individual cells and batteries: 1) Is the energy storage device fully charged or discharged?; 

2) Does the ESS meet the STC specifications?; 3) What is the device’s degree of deterioration in 

performance?; and 4) What is its life time?  

There are basically three methods of ESS testing, i.e. constant current with voltage 

monitored by a predefined algorithm; constant voltage, but stop charging when current drops to 

certain predefined value; and the combination of both methods, which is definitely the best way 

thus far because it guarantees a better lifetime for batteries. Most of the modern smart chargers, 

such as the Maccor 4200 series, have the capability to combine the aforementioned two methods 

of battery testing. Still, it should be pointed out that higher voltages augment capacity, but when 

charging/discharging beyond specifications, the ESS cells deteriorate and deliver a reduced 

service lifespan. 

3.5.1 Special Battery Test Stand: The Maccor 4200 Series 

The Maccor 4200 is multifunction and fully automated ESS testing equipment. Many 

types of products, ranging from batteries and super-capacitors to fuel cells are testable with these 

types of stands. This Maccor model is so versatile that it can virtually perform any type of 

sophisticated test. It has 16 channels, and each one can supply up to 5ADC current. Also, each 

channel can deliver a maximum of 15VDC. Depending on the model or customer preferences, 
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the Maccor test stand may come with a maximum system charge/discharge power of 2400 Watts. 

Alternately, if the customer wishes to charge/discharge at a much higher current than specified 

by the manufacturer, the system can be configured for higher voltages and currents by combining 

two or more channels. Figure 12 is an illustration of the Maccor 4200 energy storage test stand 

utilized to purposely check the performance of the 3.2V K2 battery.  The batteries were kept in a 

wooden box located under the table for safety reasons, as can be seen from the same figure. The 

goal, prior to the real solar investigation, was not only to check whether the K2 battery complies 

with manufacturer’s specifications, but also to assess how these results compare to true solar-

environment’s performance data. 

It is crucial to note that the K2 batteries were selected for this solar design solely because 

of their availability to us, rather than their being the best of the technologies. Nevertheless, the 

appropriate batteries, regardless of technology, can smoothly fit in to meet the energy demands 

of any rural household by connecting the batteries electrically in an appropriate series and/or 

parallel arrangement to deliver the necessary operating voltage and current levels based on the 

owner’s needs and budget. 
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Figure 12 – Maccor 4200 ESS test stand 

 

 

3.5.2 Test Procedures 

The Maccor 4200 energy-storage tester comes with Windows-based sophisticated 

software that has six main Graphical User Interfaces, (GUI). Without going too much into 

details, some of the important GUIs are: Main Screen, Intermediate Screen, Detail Screen, Build 

Test, and View Data. To to perform the tasks at hand (either charging or discharging), valid test 

procedures must be clearly written in accordance with the needs. Hence, when writing any test 

procedure, it is of a good practice to always start with a rest state because it places the channel in 

an open-circuit mode, safer for both personnel and material. Likewise, it is also recommended to 

insert a rest statement, for at least few seconds, at the end of each command before the next one 

starts. By obeying these simple rules, both soft and hardware transition smoothly, at no risk, 

between the major states, such as charge and discharge.  
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3.5.2.1 Charge Test Procedures 

Table 3 illustrates typical test procedures built with the Maccor Windows based software 

for the purpose of testing the 3.2V battery. Moreover, the results of this test serve as a 

benchmark to the open-environment and solar-charging scenario. In addition, this test helps, not 

only to calibrate the real charging results in terms of the time it takes to fully charge and the 

energy capacity, but also to indicate whether the STEG system under investigation is technically 

sound and ready for remote applications in developing regions. 

 

 

Table 3 - 3.2V K2 battery charge procedures 
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3.5.2.2 Discharge Test Procedures 

After getting the results for the previous test, viz. time span, cycle chart, and voltage 

level, among others, at the end of the 100
th

 loop count the program was automatically terminated.  

Additionally, it is worth noting that before charging the battery with the designed STEG energy-

harvesting system, another test procedure was required. Therefore, Table 4 lists the most relevant 

codes necessary to instruct the Maccor 4200 to discharge the battery before the real world-solar 

test begins. As mentioned above, this program starts with a rest statement and then terminates 

whenever the voltage reaches 1.5VDC if any of the three conditions is fulfilled (See Go to 008 in 

Table 4), so as to avoid deep discharge. In the worst case scenario, the test terminates on the 

150
th

 loop count after 10 seconds of rest time. 

 

 

Table 4 - 3.2V K2 battery discharge procedures 
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3.5.3 Some Test Results 

Not all the test results are considered in this section. Only some of the most relevant 

outcomes are reported here for illustrative purposes. The performance of a commercial K2 3.2V 

battery is under investigation. Consequently, various tests were conducted in the power 

laboratory, both on charging and discharging, with the Maccor 4200 ESS tester. Hence, only ½ 

C-rate and 1C-rate were considered as inputs in the programs’ pop-up menu. It should also be 

mentioned that C-rate is simply a measure that governs the current at which a battery charges or 

discharges. For example, a 1C-rate means that the whole battery’s capacity is discharged in just 

one hour. For this purpose, the above programs were each run two times in accordance to the 

number of C-rates.  

3.5.3.1 Comparative Charging Graphs  

The charging and discharging mechanism’s default option is a constant-current type for 

the Maccor 4200 test stand. As can be seen, all the graphs below were plotted based on the 

constant-current theory. As already stated, the test started with a rest period of fractions of 

seconds. Therefore, Figure 13 portrays the experimental results of the time period when the 

voltage stayed nearly constant at 3.2V and the current at 0.36A.  
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Figure 13 – Short rest time 

 

 

Figure 14, on the one hand, shows the 1C-rate constant current charging scenario. As can 

be seen from the abscissa, the experiment took seventy-five hours to complete the cycle of 

discharge-then-charge. Close attention to the graph shows that 78 percent of the time frame was 

consumed while the system was executing the discharge command. Hence, the next half-cycle 

began as soon as the voltage and current reached 1.6V and 0A, respectively.  

 

 

 

Figure 14 – Constant current charging at 1 C 
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On the other hand, Figure 15 illustrates the ½ C-rate constant-current charging sequence. 

This figure is quite different from Figure 14 in many ways. First, this experiment took seven 

hours less to complete. The direct implication is that injecting a lesser current while charging or 

discharging a battery has the potential to saving both energy consumed and time spent. The 

second discovery worth mentioning is that only about 50 percent of the whole time was spent in 

executing the discharge command. This also reveals a huge discrepancy compared to the 1C-

rate’s first half-cycle. However, the third finding is that, it took the battery 50 percent more time 

to be fully charged under ½ C than it took at 1C. So, these events reveal that charging an energy 

storage system with the Maccor 4200 at ½ C burns enormously more power than the discharging 

process of the same ESS. Conversely, the opposite is true under 1C-rate. Hence, if we were to 

only discharge the battery at ½ C-rate, we would have saved twenty-five hours, which represents 

a real gain of more than a day, compared to the 1C-rate. The difference in electrical power 

consumed to perform the experiment is tremendous.    

 

 

 

Figure 15 – Constant current charging at 0.5 C 
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In addition, it can be seen from Figure 16 that different C-rates have, each one, a unique 

discharge pattern. Interestingly, as can be clearly observed from the graph, it took the Maccor 

4200 longer time (or more energy) to discharge the 3.2V K2 battery at 1C than at ½ C-rate. This 

graph helps to confirm the previous analysis. Thus, these experimental results seem, not only 

unusual, but also cast a serious doubt on the existing knowledge on battery testing theory. 

Therefore, a further investigation is required to either re-test a different battery technology or re-

write a different programming code, and then re-test the same battery with the same equipment. 

 

 

 

Figure 16 – Discharge at different C-rates  
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3.5.3.2 Complete Discharge at 1C-rate 

As opposed to the K2 battery testing the under various C-rates, Figure 17 simply presents 

the results of section 3.5.2.2. Additionally, this figure technically highlights the state of charge of 

the battery prior to the real world charging scenario. As can be noticed from the left side 

coordinate, the voltage was safely fixed at 1.5V. Likewise, the right coordinate enlightens about 

the severity of the discharge and the emptiness of the battery in terms of current. It should also 

be remarked that to achieve the desired goal, more than twenty hours were spent to complete the 

test. Afterward, the battery was ready to receive new carriers from novel STEG energy-

harvesting system.  

 

 

 

Figure 17 – Constant current discharge at 1C 

 

 

Finally, the number of cycles necessary for the K2 battery to be completely emptied is 

shown in Figure 18. This figure helps in showing that none of the conditions set forth in the 

procedure (See Sec 3.5.2.2) were fulfilled prior to the completion of the cycle count.  
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Figure 18 – Discharge cycle chart 

 

 

3.6 Assessment of Battery Technologies 

An energy storage system, such as battery stocks electricity produced by a conventional 

generator, wind power, solar PV, or solar thermoelectric generator in a different form and then 

restores it through a reversible electrochemical reaction, when needed, in its original form, by 

means of an electrochemical oxidation-reduction reaction (redox). In remote residential 

applications where the electric grid is absent, battery banks, irrespective of the technology, are 

most frequently used. This section presents an overview on battery basics, including some 

helpful information on how to maintain and manage them safely. 

3.6.1 Types of Batteries 

Remote households in developing countries are most of the time with no access to 

electricity. They often depend on isolated renewable energy systems, such as wind, solar, and 

thermoelectric generators to meet their daily energy demand. Therefore, in order to optimally 

utilize these renewable energy systems by providing continuous and reliable power supply, 

battery buffers play an essential role and are also dependable energy reservoirs.  
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Batteries can be categorized based on size, chemistry, smartness, and functionality as 

well. Although considerable time and investment are spilled into new battery technologies, there 

currently exist essentially six types of batteries for commercial usage: 1) Nickel-cadmium; 2) 

Nickel-metal-hydride; 3) Lead-acid; 4) Lithium-ion; 5) Lithium-ion-polymer; and 6) Reusable 

Alkaline. Analysis of these types immediately follows, and a short note on smart batteries 

concludes this section. 

3.6.1.1 Nickel-Cadmium 

NiCd batteries are a mature energy-storage technology with reasonable energy density 

invented in 1899. The compound NiCd is utilized to manufacture batteries where long lifespan, 

high discharge level, and lengthy temperature range is imperative. The active elements of NiCd 

batteries, in the charge mode, are Nickel Hydroxide (NiOOH) for the anode and Cadmium (Cd) 

for the cathode. This technology performs better on fast and pulse charge. Additionally, NiCd is 

one of the rare technologies that performs satisfactorily under challenging working conditions by 

providing over one thousand (1000) charge/discharge cycles, if it is maintained properly.  

The drawback to NiCd technology is that a periodic full discharge is necessary in order to 

avoid the crystallization of the cell plates that is known as memory. The latter effects will 

severely impact the performance of the NiCd. Hence, it is of a good maintenance practice to 

periodically exorcize the NiCd to avoid memory. Cadmium is an extremely toxic metal; this 

toxicity imposes some additional environmental restrictions on the technology’s use. It has also 

the following disadvantages: high self-discharge rate and lower energy density.  

3.6.1.2 Nickel-Metal-Hydride   

Tremendous time and investment were put in NiMH technology back in the seventies. As 

a result, this technology was mainly utilized for space applications, such as powering satellites. 
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Their bulkiness, far from being a limitation, offers them 30 to 40 percent more capacity than the 

standard NiCd counterpart.  Additional advantages are: 1) NiMH batteries are less inclined to 

memory effect than the NiCd technology; 2) they are environmentally friendly though they 

contain minor pollutants; and 3) they have the potential for larger energy densities. 

In contrast to NiCd batteries, NiMH have a shorter lifetime if repetitively deep cycled at 

higher load currents. After 200 to 300 cycles, their performance starts to significantly deteriorate 

[71]. Therefore, they are better off under shallow discharge and require frequent full discharge to 

avoid crystalline formation. Since their advantages outweigh by far their limitations, compared to 

NiCd, NiMH batteries are more expensive.  

3.6.1.3 Lead-acid Batteries 

Invented in 1859 by the French physicist Gaston Planté, Lead-acid batteries are the oldest 

of all types of rechargeable batteries. Lead-acid batteries are the most mature and most 

economical energy storage technology. These features make them attractive for use in 

automobiles to provide high startup current [72]. They have proved to be outstanding in power 

applications where weight is a concern. In addition, they are the most widely used 

electrochemical energy-storage systems as reported in [73] and [74]. Also, nowadays, lead acid 

batteries are utilized in conjunction with 1) emergency power systems; 2) stand-alone renewable 

energy systems, such as PV; or 3) to support wind generators, etc. This energy-storage 

technology can further be classified as flooded and valve regulated, also known as sealed [75]. 

Its main advantages compared to other battery technologies are, as stated in [74], 1) cost-

effectiveness; 2) low self-discharge; 3) quick response; and 4) the maturity of the technology. 

The drawback of this technology is that, the environmental operating conditions tremendously 

affect its performance to the extent that its lifetime may be significantly reduced [76].  
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3.6.1.4 Lithium-Ion 

Li-Ion batteries, although relatively new energy storage technology, are widely used 

today since they offer substantial benefits to end-users. Since Lithium is the lightest of all metals, 

it has not only the highest electrochemical capability, but also the greatest energy-density-to-

weight ratio. In addition to that, they are durable, have high specific energy, and can respond 

quickly to charge/discharge events. Consequently, they have the largest market share of the 

portable consumer electronic devices, such as cell phones, laptops, and other gadgets. Moreover, 

Li-Ion’s high efficiency and its relatively significant lifespan in addition to its high-capacity 

utilization at high C-rates render it valuable in the field of emergency power supply applications 

[77]. Although Li-Ion’s chemistry is diverse, it is important to note that the most reliable and 

most often cited are LiFePO4/C, which stands for Lithium Iron Phosphate (LFP) and 

LiMn2O4/Li4Ti5O12, which stands for Lithium Titanate Oxide (LTO). The biggest drawback of 

this technology is the price.   

3.6.1.5 Lithium-Ion-Polymer  

Li-Ion-P batteries are gaining popularity in both renewable and EV applications because 

of their high energy and power densities [78]. This technology distinguishes itself from other 

energy storage systems in the type of electrolyte utilized. A non-conductive plastic-like film both 

supplants the conventional porous divider and allows the exchange of charged atoms between 

anode and cathode. Some of their additional benefits include higher safely standard, supple form 

factor, light weight, just to mention a few. 

The drawback with Li-Ion-P batteries is that they are expensive unless mass-produced. In 

addition to their low energy density, their charge/discharge cycle count is very low, compared to 
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Li-Ion technology [71]. Also, the use of this dry lithium polymer scheme makes the Li-Ion-P 

batteries suffer from low conductivity.   

3.6.1.6 Reusable Alkaline 

Two of the dominant characteristics of Reusable Alkaline (Re-Alk) are narrow cycle life 

and low load current. However, this technology has a much higher energy density and longer 

shelf life than other batteries. Re-Alk battery is much cheaper than batteries containing Nickel or 

Cadmium, but obviously the cost per cycle is much higher. They are also bulkier than Lithium 

batteries and have a shorter lifetime. Consequently, their higher internal resistance prevents them 

from lasting longer in applications that require a high startup current. 

3.6.1.7 Smart Batteries 

Most of today’s rechargeable energy-storage systems, such as batteries are of the smart 

types. Even though the smart batteries appear identical with the other types of batteries, in reality 

they do possess special built-in circuitry worth further discussion. In fact, smart batteries are 

manufactured with extra internal microchip which allows them a two-way communication 

strategy with the charger in order to monitor: 1) the performance of the battery; 2) the output 

voltage; and 3) the temperature. Thus, the smart batteries instantly provide the smart charger 

with the charging voltage and current information. They also have the ability to warn the charger 

about the sate-of-charge (SoC) and when it encounters any problem [79]. Hence, the battery acts 

as its own charge controller by being the master while the real charge controller performs as the 

slave. It is stated in [71] that for an energy-storage system to be labelled smart, it must at least 

provide a clear indication of the SoC. Some of the main features that make battery smart are 1) 

the charge controller; 2) the fuel gauge, i.e. the sate-of-charge; and 3) the fault protection [80]. 

Smart batteries generally run 15 percent longer than regular batteries due to the smart control 
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over the energy management. Finally, the major areas of application for these smart batteries are 

1) defense; 2) biomedicine; and 3) PCs. 

3.6.2 The Ideal Technology 

The ideal battery energy-storage system would have the following characteristics: 1) 

infinite energy that will never run down; 2) constant output voltage independent of load current 

profile and working temperature; 3) internal impedance of zero, which means the battery is not 

subjected to joule heating; and 4) it has no parasitic elements, such as internal inductance (L) and 

capacitance (C) which may incur other energy losses.  

Based on the above explanations, such a battery technology is purely imaginative. Each 

of the aforementioned battery types was designed to meet a specific goal, either economic, 

technical, or both. None of the battery technologies is universal; system owners simply select 

them based on their needs and means. In addition to these constraints, some battery types may be 

selected for their small size and longer runtime (the pack will not last for long and wear out 

rapidly), or large size for a shorter runtime, but with a higher energy rate per second. Besides, 

another battery pack could be manufactured for a longer lifespan, but would have two major 

limitations: 1) it will be bulkier and 2) the cost will be higher. In short, a battery pack may offer 

all the required qualities, but the price might be too high for commercial utilization. 

3.6.3 Battery Sizing for a Typical Remote Household 

The types of batteries recommended for typical usage in conjunction with solar PV or 

STEG systems are mainly deep cycle batteries. The deep cycle batteries are explicitly designed 

to withstand discharge at a very low energy state, say 20%, and to be rapidly recharged in a 

relatively short amount of time, typically five to six years. Hence, the energy-storage system 
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(ESS) should be large enough to accumulate adequate amount of energy to drive basic remote 

household appliances at night and/or on cloudy days. 

3.6.3.1 Factors Influencing Battery Sizing 

As reported in [81], many factors must be considered in the course of sizing energy-

storage systems. Toward that end, only the most important and essential characteristics are 

addressed in this work. They are: 1) the anticipated household daily kWh of energy consumption 

and 2) the number of hours or days of autonomy. 

Fundamentally, three out of the six aforementioned battery technologies, 1) Lead-acid 

battery; 2) Lithium ion battery; and 3) Nickel Cadmium battery, are chosen solely to perform the 

task at hand for their advantages outweigh by far their disadvantages. Additionally, they turned 

out to be the most promising energy-storage devices and demonstrated themselves to be the most 

marketable thus far. Besides their cost-effectiveness (low initial cost), they present a greater 

lifespan though, may require regular service. 

Irrespective of the type of battery technology utilized on the solar thermoelectric 

generation system, the greater battery capacity would more efficiently achieve a net positive 

aspect. But from an economic standpoint, the larger energy storage system may become 

relatively too expensive for a remote household in developing regions.  

3.6.3.2 Battery Sizing Scenario 

Knowledge about existing electricity use and expenditure patterns of remote household in 

developing regions is essential for proper battery sizing schemes not only to enhance the living 

standards, but also to alleviate the vicious poverty in rural areas. Without any exception from 

fundamental Engineering principles, some assumptions have to be set forth as guidelines. In this 

regard, the average daily household electricity consumption is estimated at about 2kWh [82]. 
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This energy is mainly used for lighting, most of the time in the evenings, although other uses 

may include 1) watching televisions; 2) listening to the radio; and 3) ventilation for domestic 

interior comfort.  

Therefore, about 2kWh of energy must be stored by the ESS of any rural household in 

West Africa, South America, and Asia to keep the home lit and comfortable. It is worth pointing 

out that the average sunlight hours in West Africa, as estimated by the Programme Regional de 

Promotion des Energies Domestiques et Alternatives au Sahel in May 29, 2009, was around 7h 

per day. As a result, the customer’s future battery bank will charge and then supply a continuous 

amount of energy for a period of 7 hours on a daily basis. An additional assumption is that there 

is no critical load in those remote areas. So, the daily power requirement, P, of the remote 

residential household is given by 

𝑃 =
𝐸

𝑡
=

2𝑘𝑊ℎ

7𝐻𝑜𝑢𝑟𝑠
= 0.30𝑘𝑊                                              (23) 

The battery discharge time, tb, is deliberately set up to be 10 hours, just to be on the safe side, as 

the nights are longer in winter than in summer. 

Hence, the equivalent amount of energy (E) required to continuously supply power to the basic 

appliances during that period of time is determined by 

 𝐸 = 𝑃 ∙ 𝑡𝑏 = 3𝑘𝑊ℎ                                                      (24) 

Assume also 12% of combined loss such as charging, discharging, and wiring from the STEG to 

the load as reported in [83]. Also, a depth of discharge (DOD) of 60% (assumption) is factored in 

since the innovative energy-storage system will only be utilized sporadically during the daytime 

to charge cell phones and other portable electronic gadgets. Nevertheless, it will be more 

frequently used during night time from twilight to dawn.  



 

67 
 

Next, Some small PV panels or STEG are good candidates to run DC lighting in rural 

residential areas. Consequently, system owners have the ability to safely parallel connect as 

many 12 volt DC lighting fixtures as needed to the battery bank to meet their lighting needs. 

These DC fixtures can be directly supplied by the STEG in conjunction with the sized energy-

storage system. Therefore, by directly feeding the DC fixtures from the battery bank, the 

expenses of adding and installing an inverter are automatically reduced. By not having the 

inverter, energy losses due to inverter conversion activities are minimized as well. That DC 

lighting fixtures are commonplace, more cost-effective than standard halogen and incandescent 

lighting fixtures, and much more energy efficient in terms of lumens and lifetime than other 

technologies for remote applications leads to this simplification. The load on the battery is 

therefore determined by 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑜𝑎𝑑 =
3𝑘𝑊ℎ

0.88∙0.6
≈ 5.70𝑘𝑊ℎ                                     (25) 

In which, Battery Load stands for the actual battery capacity. 

Unlike TEGs or photovoltaic modules, which are less affected by ambient temperature 

variations, a battery’s lifetime and capacity are drastically reduced by temperature. Since the 

annual low temperature in the Sahel is 10
o
C, which is equivalent to 50 

o
F [84], the latter was 

considered the battery bank’s ambient average low temperature, as well. The derate battery 

bank’s factor (multiplier) accounting for that is approximately 1.19 [85]. Therefore, the Battery 

Load, including the effects of local temperature, can be estimated by 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑜𝑎𝑑 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑜𝑎𝑑𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ∙ 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 

= 5.70𝑘𝑊ℎ ∙ 1.19 =  6.78𝑘𝑊ℎ                                        (26) 
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To have an alternative perspective of the above calculated capacity, a division by the assumed 

battery nominal voltage, 12V, is necessary to find the actual battery bank. The unit of the 

subsequent equation is in Ah.  

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑜𝑎𝑑 = 6.78𝑘𝑊ℎ ∙
1000

12𝑉
= 565𝐴ℎ                                   (27) 

In order to avoid deep discharge, the control algorithm, or, in some cases, the smart 

battery bank itself, should prevent the batteries from delivering more than 80% of their nominal 

capacity. The factor accounting for this strategy is 1.25 [86] as can be seen in Eq. (10). In other 

words, if 20% of their capacity remains, either the smart charge controller or the smart battery 

automatically shuts off the energy supply. This technique will not only preserve the lifespan of 

the batteries, but will also save on frequent maintenance. 

𝐴𝑐𝑡𝑢𝑎𝑙 𝐿𝑜𝑎𝑑 = 565𝐴ℎ ∙ 1.25 = 706.25𝐴ℎ                                    (28) 

Consequently, the real battery size required to constantly supply 10 hours of basic energy to any 

remote residential household in hot and arid developing regions is 706.25Ah. 

As a final step, the theoretical equivalent energy capacity, EGROSS, of the battery bank 

deemed ready to enhance not only the remote house’s interior comfort, but also at the same time 

boosting the living standards of these rural inhabitants, can be determined by Eq. (29). 

𝐸𝐺𝑅𝑂𝑆𝑆 = 𝐴ℎ ∙ 𝑉 = 706.25𝐴ℎ ∙ 12𝑉 ≅ 8.50𝑘𝑊ℎ                               (29) 

It is worth pointing out that one of the objectives of this study was to investigate ways to increase 

the number of remote residential households with access to renewable electricity. With that 

respect, 706.25Ah energy storage systems, independent of the technology, were needed to store 

approximately 8.50kWh for 10 hours of energy autonomy per day. Hence, the appropriate 

batteries, regardless of the technology, can smoothly fit in if connected either in series and/or in 

parallel based on homeowner needs and budget. 
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3.6.4 Battery Maintenance 

This section just provides a small side note on routine battery maintenance, as this topic 

is out of the scope of the current work. It is as important to maintain a battery as it is to buy it. 

Proper maintenance prolongs the life expectancy of an energy-storage system and will help 

assure that it is capable of meeting design requirements. A well-documented battery maintenance 

guide is a valuable tool in preparing financially and technically for the replacement of the battery 

in a timely and professional manner [87]. The battery should not only be clean, but also well 

ventilated in a cool environment, i.e. far away from direct sunlight. For further information about 

how to maximize the performance and life expectancy of batteries refer to the IEEE 1188-2005 

recommended practice for maintenance, testing and replacement of valve-regulated lead-acid 

(VRLA) batteries. Nevertheless, some good practices are summarized as follows: 1) Performing 

frequent visual inspection to assess the general condition of the battery bank; 2) Taking 

corrective action if needed before the next planned maintenance; 3) Reading the cell’s voltage 

because cells of higher temperature will indicate lower cell voltage; 4) Taking frequent 

temperature readings of each cell and recording them for future comparison, etc. 

3.6.5 Real-Environment Battery Charging With STEG System 

  When a remote load is being fed by solar energy, the diurnal availability of the supply is 

as important as the nocturnal presence. Unfortunately, the sun only shines on a particular 

location on Earth some hours and disappears during the night because of the inherent working of 

the solar system. Hence, the need for energy storage systems, such as batteries arises due to this 

nocturnal absence of solar energy. Therefore, batteries have long been regarded as a special way 

to accumulate solar energy during the day to be utilized at night. In short, battery energy-storage 

systems are mainly needed in combination with solar PV or TEG for two important reasons: 1) to 
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smooth out any intermittency in the supply and 2) to store the surplus energy for later usage, 

especially at night.  

Figure 19, as opposed to the Maccor 4200 series, shows in the real-world how the K2 

3.2V battery is charged by the designed STEG system after being completely emptied of current 

by the Maccor tester to below 1.5VDC. Additionally, it is important to note that more of the 

battery’s real-performance analysis is treated in great detail in Sec. 4.2.11.  

 

 

 

Figure 19 – 3.2V Battery charging from STEG 

 

 

3.7 Architecture of the STEG Energy-Harvesting System 

This STEG system was designed to investigate real solar electromagnetic energy 

harvesting, i.e., direct conversion of solar heat to DC power for remote residential applications in 
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developing regions. The system consists of five TEGs connected electrically in series, but 

thermally in parallel. Figure 20 shows the electrical block diagram of the entire system. The 

same schematic shows the five series-connected thermoelectric modules attached to the power 

module. The module is comprised of one DC-DC converter, one charge controller, a battery 

bank, and a load. The latter is symbolically represented by a DC fan for illustration purposes. It 

is worth mentioning that both converter and controller are linear technology based products. 

 

 

 

Figure 20 – Electrical block diagram of the STEG system 
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3.8 STEG Energy-Harvesting System Flow Chart 

This part of the study is explicitly dedicated to the outdoor solar harvesting system. The 

basic steps of the analysis, i.e. the fundamental energy balance equations (Eq. 20), were already 

covered in Sec. 3.2.4.7. The energy flow chart is presented in Figure 21. The STEGs receive four 

suns through the collectors that are assumed to be perfect reflectors. The heat exchanger 

considered in this work is a finned type made of pure aluminum. The overall results in terms of 

useful power output could have been much better if either a vapor-cooled heat sink or a water-

cooled heat sink were utilized, although complications in the modeling and analysis could have 

increased manyfolds.  

 

 

 

Figure 21 – Energy flow chart of the STEG system 
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3.9 Battery Economic Analysis 

The proper evaluation of prospects for commercial batteries for renewable applications 

requires sound feedback on current market trends as well as future projections. Generally quoted 

in the forms of $/kWh or $/kW, the cost of energy-storage devices are often related to the 

satisfaction of a particular application, although some systems will have a higher cost/kWh of 

energy, but obviously a lower cost/kW of power than others, or vice versa. It is shown in [83] 

that the interdependency of the application and its economic feasibility has a lot to do with the 

aforementioned assertion. In addition to that, the market structure, which is sometimes uncertain 

and fluctuating, also plays an important role in the economics of certain types of storage 

technology. According to a recent survey on rechargeable energy storage systems, battery costs 

have fallen dramatically [88]. This same paper reported that the cost of Li-ion battery packs 

declined significantly by 14 percent from 2007 to 2014, i.e., from beyond $1,000/kWh to as low 

as $410/kWh. As a consequence, this significant decrease in price has led to a twofold increase 

in battery sales per year. Despite the fact that some market-leading battery competitors cost/kWh 

range from $225/kWh to $300/kWh, the United States Advanced Battery Consortium’s 

(USABC) goal is to cut the cost to $150/kWh in order for the market to grow. Thus, for that to be 

accomplished, a major breakthrough has to occur in the field of battery technology as a whole. In 

fact, the US DOE had set for the year 2014 the battery prices for PHEV to be sold at $200 to 

$300/kWh, which seemingly failed to happen. Obviously, the current prices, ranging from $250-

$670, and sometimes as high as $1 000/kWh, are still good estimates. 
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3.9.1 General Cost Estimation 

The battery-energy capacity required to bringing joy, happiness, and security to the hearts 

of the inhabitants of remote residential households was estimated to be 8.5kWh. So, by 

considering the $410/kWh [88] of storage for simplicity, confirmed by the survey published in 

Nature Climate Change, the battery bank, irrespective of the technology, could be purchased as 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐶𝑜𝑠𝑡 = $410/𝑘𝑊ℎ ∙ 8.5𝑘𝑊ℎ ≈ $3,485                             (30) 

As can be observed, the price of the battery pack necessary to procure approximately 2kW of 

power each hour for ten hours is exorbitant and unaffordable by any typical rural inhabitant.  

3.9.2 Comparative Cost Analysis 

This section focuses on the comparison of two major battery chemistries: Lithium Ion 

(Li-Ion) and Lead acid. The analysis is based 8.50kWh of energy storage previously calculated 

for remote standalone solar TEG energy-harvesting system. The application needs can simply be 

summarized in Table 5. 

 

 

Table 5 - Energy-storage system specifications 

Battery Specifications Values 

1 Estimated Energy Storage 8.50 kWh 

2 Running Time 10 hours 

3 Discharge Power 0.85 kW 

4 Cycling Frequency 1 charge-discharge/charge/day 

5 Average ambient Temp. 25
o
C 

6 Life Expectancy 1900 Cycles (5.2 years) 
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The transportation and installation fees per kWh of energy-storage systems, in this case 

Li-Ion and Lead-acid, in hot and arid regions were estimated by Albright et al. [89]. Hence, 

Table 6 lists these two major secondary financial parameters. Additionally, an important 

parameter to consider in this comparative assessment is that Li-Ion is 2.5 to 3.5 times energy-

denser than Lead-acid [89] and [90]. Also, the discharge rate is 85 percent for Li-Ion compared 

to 50 percent for Lead-acid battery. These factors will dramatically not only influence the overall 

cost-benefit estimates, but also affect the way customers perceive the commodities. 

 

 

Table 6 - Comparative delivery and installation fees 

Lead acid (Hot climate, 25 to 35
o
C) Li-Ion 

Installation  $20/kWh $3.6/kWh 

Transportation  $28/kWh $5/kWh 

 

 

Therefore, based on the estimates of 8.50kWh of desired energy storage, the installed 

capacity of Lead-acid battery pack is 17kWh since this technology is only good for 500cycles at 

50% DOD. Moreover, the Lead-acid solution-base must be replaced once for temperate climates 

and three times for hot and arid climates due to its inherently lower energy density [89]. 

However, based on the same aforementioned estimates, Li-Ion solution-based batteries are not 

only a one-time investment, but also represent 60 percent more than Lead-acid batteries’ energy 

capacity. So, in terms of kWh, the Li-Ion battery’s installed capacity is 9.775 for 1900 cycles at 

85% DOD. 

Finally, to better understand this introductory energy business model, we need to further 

estimate the cost per cycle. The measurement unit of the cost per cycle is $/kWh/Cycle. Thus, 
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the following computations clearly simplify the procedures. The total cost of Lead-acid battery is 

calculated by 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝐿𝑒𝑎𝑑−𝑎𝑐𝑖𝑑 = (
$

𝑘𝑊ℎ
+ 𝑇𝑟𝑎𝑛𝑠 + 𝐼𝑛𝑠𝑡𝑎𝑙) ∙ 𝑁𝑢𝑚 𝑜𝑓 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 

= ((
$125

𝑘𝑊ℎ
+

$20

𝑘𝑊ℎ
+

$28

𝑘𝑊ℎ
) ∙ 17𝑘𝑊ℎ) ∙ 4 = $11,764                            (31) 

Where, Trans, Instal, and Num of Replacement stand for Transportation cost, Installation cost, 

and the Number of time a new ESS is needed, including the first install. 

The cost per kWh per cycle is estimated by dividing the above product by the net energy 

throughput of the selected storage system in question, the total number of cycles per year, and 

the duration of the project, as in Eq. (32). 

𝐶𝑜𝑠𝑡

𝑘𝑊ℎ ∙ 𝐶𝑦𝑐𝑙𝑒
= 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝐿𝑒𝑎𝑑−𝑎𝑐𝑖𝑑

𝑈𝑠𝑒𝑓𝑢𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∙ 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑦𝑐𝑙𝑒𝑠 ∙ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑦𝑒𝑎𝑟𝑠 𝑜𝑓 𝑢𝑠𝑒
 

=
$11,764

8.5∙365∙5.2
=

$0.72

𝑘𝑊ℎ∙𝐶𝑦𝑐𝑙𝑒
                                                         (32) 

The total cost and cost per kWh per cycle of the Li-Ion battery can also be assessed in a similar 

manner. The results are summarized by Eq. 33 and 34, in that order. 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝐿𝑖−𝐼𝑜𝑛 = ((
$410

𝑘𝑊ℎ
+

3.6

𝑘𝑊ℎ
+

5

𝑘𝑊ℎ
) ∙ 9.775) = $4,092                        (33) 

Correspondingly, the cost per kWh per cycle of the Li-Ion technology for the entire period of 5.2 

years is given by 

𝐶𝑜𝑠𝑡

𝑘𝑊ℎ∙𝐶𝑦𝑐𝑙𝑒
=

$4,092

8.5∙365∙5.2
=

$0.25

𝑘𝑊ℎ∙𝐶𝑦𝑐𝑙𝑒
                                            (34) 

In sum, the lifetime cost throughput of Lead-acid battery and Li-ion battery are found to 

be $0.72 per kWh per cycle and $0.25 per kWh per cycle, respectively. These results revealed 
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that lithium-ion is much more cost effective in hot and arid climates than lead-acid batteries. So, 

despite its higher initial upfront cost, Li-Ion has the lower $/kWh of energy charged and/or 

discharged. This fact is attributable to many factors, such as the higher intrinsic energy density, 

lower delivery and installation costs, and Li-Ion batteries’ stability over Lead-acid technologies 

at temperatures lower than or sensibly equal to 50
o
C.  

3.10 Conclusion 

This work designed, built, and tested a solar thermoelectric generator system. Thermal-

to-electrical analogy schemes were adopted to simulate the designed energy-harvesting model by 

means of the LTspice simulator software. Besides the most commonly used thermal-to-electrical 

analogies presented in this section, the seven most fundamental steps of parameters’ extraction 

were also elucidated succinctly as a core and genuine part of this work.  

In addition, as part of the performance analysis of the commercial solar TEGs, the real 

effects of solar energy on DC-DC converters was not only investigated, but also demonstrated 

for remote applicability purposes under both indoor and outdoor conditions and hot and arid 

weather conditions. Likewise, the performance of the Maccor 4200 battery tester was verified 

under various C-rates and then compared to the real solar-environment battery-charging events.  

Finally, in order to successfully store the harvested energy in durable and efficient 

manners, the major rechargeable battery technologies were thoroughly evaluated and compared 

in terms of intrinsic qualities and overall cost-effectiveness. 
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Chapter 4: Experimental Verification and Results 

In order to acquaint ourselves with the theory and the physics behind TEM technology, 

the research was first divided and then conducted into two separate but interrelated phases. The 

primary research was conducted in one of the ECE laboratories whereby a thorough 

understanding was sought, developed, and acquired at the end of the experiment. In addition to 

that, the secondary and most challenging complete solar energy-harvesting system was set up on 

the roof of the TBE-B building in order to both apply the fundamental knowledge attained and to 

put into practice our understanding of power and renewable systems in general. 

Finally, how closely the experimental and simulated results match one another may be 

subjected to some minor errors. Under a certain threshold point, however, the error rate is 

considered insignificant or acceptable and consequently, the proposed model is validated.  Due 

to the complex device geometries and the different material properties of the parts associated 

with the system, the thermal-to-electrical analogy is difficult. Any inaccuracy can be explained 

by either one or both of the following: 1) the internal parasitic components’ variation, and/or 2) 

the non-homogeneity of the physical blocks that were assumed to be of pure metals during the 

thermal-to-electrical parameters computations. 

4.1 The Indoor Test Stand Description  

For the purpose of this study, one thermoelectric manufacturer's TEM was selected, i.e. 

Custom Thermoelectric [66]. The particular device's model number is 2411G-7L31-15CX1. 

Basic specifications for this TEM were supplied by the manufacturer and the other parameters 

used in the model were extracted in a concurrent work [91]. That the aforementioned internal 

parameters, although given as a constant factor, were revealed in [58] to vary over time with 
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temperatures is worth pointing out. Hence, in order to achieve accurate results, these variations 

were accounted for in the model presented. 

4.1.1 Indoor Experimental Setup 

The module was originally configured to operate as a TEG, but for this specific 

investigation and to accommodate the current needs, it was first run as a Thermoelectric Cooler 

(TEC), which is the same as a heat pump. To achieve that, the polarities of the TEG were 

reversed in order to constrain it to function as a TEC. The purpose was to create a temperature 

differential on each side of the device by applying a stepped 5 VDC, as depicted in Figure 24. 

The experimental setup is illustrated by Figure 22.  The experiment included the 

following items: 1) one TEM; 2) two K-type thermocouples; 3) two aluminum (Al) plates having 

dimensions of 56mm by 56mm by 12.7mm; 4) one data-logger; 5) one Variable DC power 

supply; 6) an insulation chamber in order to minimize the effects of the ambient temperature; 7) 

a laptop; 8) a two-way switch (SW); 9) two resistors; and 10) wires. The TEM was sandwiched 

between the Al plates.  
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Figure 22 – Indoor experimental setup 

 

 

Between the two aluminum plates and the two sides of the TEM, heat transfer grease was 

meticulously applied. The thermocouples for temperature measurement were located one on each 

side of the module. These sensors were first engraved into the Al plates via a U-notch groove 

made by an automatic milling machine. Through the laptop computer connected to the logger as 

depicted in Figure 22, the data were collected and further arranged in a tabular format through 

the loggerNet software. The 1.7Ω resistor, as seen in the schematic depicted in Figure 23, served 

to determine the multiplier (1/R) needed to record the current through Ohm’s Law. The second 

variable resistor was used as a load. It should be noted at this point that maximum power is 

transferred only when the internal resistor and the load match each other. Finally, a programming 

code was written and transferred onto the data-logger through the computer. The code is used to 

facilitate communications between the data-logger and the devices.  
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Figure 23 – Block diagram of the setup: a) electrical and b) thermal diagrams 

 

 

4.1.1.1 Applied Stepped DC Voltage 

As mentioned earlier, Figure 24 portrays the applied stepped 5 VDC needed to ran the 

TEG as a heat pump to achieve the desired experimental goals. These primary but fundamental 

goals were meant to create a meaningful differential temperature across the TEM device not only 

as a solid foundation for the current work, but simultaneously as a way to apprehend the Peltier 

effect in a real test environment. Another significant purpose of this indoor experiment was to 

first characterize the device, as to whether or not it performs as postulated by manufacturer’s 

datasheet, and to get researchers accustomed to this technology before analysis. As can also be 

seen from Figure 24, after reaching the maximum allowable voltage that the data-logger could 

handle, i.e. 5V, the supply was kept constant for a while, so as to reach thermal steady state 

conditions, and then cut off afterward. 
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Figure 24 – Applied stepped 5VDC  

 

 

4.1.1.2 Profile of Drawn Current  

Figure 25 illustrates the experimental current drawn by the system. As can be seen, there 

is a linear relationship between the current drawn and the applied voltage, thus confirming 

Ohm’s Law. The maximum current drained by the system at steady state is approximately 75 

percent of an Ampere. Therefore, these two variables help to determine the exact amount of 

power consumed over the short period of time (32 min) during which the test was conducted. 
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Figure 25 – Current profile 

 

 

4.1.1.3 Power Consumed 

As power is the rate of doing work, it can be clearly seen from Figure 26 that the TEG 

system has consumed, under reverse polarity techniques, a significant amount of energy per unit 

time in order to perform as a heat pump in accordance with the Peltier theorem. Hence, from 

basic circuit theory, since power is the product of voltage times current, the shape of the power 

burned to do the intended work followed the identical combined pattern of the two previous 

profiles. 
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Figure 26 – Power consumed 

 

 

4.1.2 Model Implementation 

It is worth noting that a couple of assumptions were made in order to facilitate the 

simulations presented in this work. A lookup table of real experimental data was fed into the 

circuit to improve simulation speed. Due to the complexity in the geometry of the insulation 

chamber used and the corresponding longer time constant, the thermal capacitance value 

associated with the chamber was neglected. Again, the resistance of the thermal grease was 

assumed to be 0.45K.W based on previous studies [57] and [35].  

The specific placement of the 23 J/K internal heat capacitance of the TEM was a concern 

[91]. The heat capacitance could either be placed on one node or distributed equally between the 

hot and cold sides. After a few trial simulations, it was clear that the latter yielded better results. 
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The proposed model based on a current-dependent source is presented in Figure 27. It is an 

improved version of the circuit presented in [35]. The latter model had the drawback of not 

utilizing the thermal resistances of the Al plate heat exchangers located on the two sides of the 

thermoelectric module. 

It is of a paramount importance that some parameters be explained at this stage of the 

study. The model was implemented using the LTspice software [92] and the work done in [35]. 

The parameter “Seb” in the model stands the Seebeck coefficient. Likewise, “RGrease” and “CAl” 

represent the thermal resistance and thermal capacitance of the thermal grease and the Al plates, 

respectively. The thermal resistances of the hot and cold side Al plates are represented by “R8” 

and “R9”. Similarly, “RInsul” with a value of 5.9 K/W is the thermal resistance of the insulation 

chamber, whereas the internal electrical resistance of the TEM, “RInt”, is 2.4Ω. Also, “RTher” 

refers to the thermal resistance of the TEM (here 0.6365 K/W), as was determined from the 

datasheet. The heat capacities of both the ceramic plates and the semiconductor material (Bi2Te3) 

were summed and then equally split into two 12.5 J/K capacitances [91]. Each capacitance was 

then placed different side of the module for thermal equilibrium purposes. They were represented 

by C4 and C5, as shown in Figure 27. The values of the parasitic components, capacitance C1 and 

inductance L1, were borrowed from previous work reported in [35] because they cannot be 

determined with the available equipment. 
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Figure 27 – LTspice model of a TEM with the internal parasitic LC values 

 

 

4.1.3 Results and Analysis  

This section presents the outcomes of the study, on one hand, and a comparative analysis 

between the experimental results and theory developed thus far, on the other hand. It is worthy to 

note that this improved model was run as a TEC under the reverse polarity feature rather that a 

TEG. Thus, the results of the earlier models (TEG) were expressed in terms of voltage whereas 

the outcomes of the current model are in degrees. Therefore, a direct comparison between the 

two models is solely excluded in this analysis for simplicity purposes.  

The experimental measurements were taken in the period of approximately half an hour, 

say 1920 seconds. The necessary voltage values used to simulate the real behavior of the heat 

pump were organized in a table and stored for the simulation in a text file, labeled as 

Data_Table.txt in the LTspice simulation schematic seen in Figure 27. It is worth mentioning 

that the length of the simulation was 500 seconds since longer simulations can take a 

considerable time to run.  
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A significant temperature difference was developed across the two sides of the 

thermoelectric module as can be seen in Figure 28. The maximum differential value attained 

within that short period of time was 13.43
o
C, as illustrated by the green curve. Indeed, as 

expected, the TE device performed as a heat removal device, that is, it worked as a perfect TE 

cooler.  

So, during the course of this study, it was clearly observed that the hot and cold sides 

were continuously departing from one another with the former absorbing heat and the latter 

releasing it to the surroundings, as can be seen from Figure 28. This fact holds for not only the 

period whereby the applied voltage was increasing in a step by step fashion, but also for the 

whole period that it stayed constant at 5 VDC, as stated earlier. 

 

 

 

Figure 28 – Experimental temp profile on both sides 
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In contrast, as can be observed from the coordinate-axis of Figure 29, simulation results 

express temperatures as voltages. Also, as already stated above, the simulation time was shorter 

than the actual time. In a like manner, the hot and cold sides were continuously departing from 

one another as thermal energy is being increasingly supplied to the bottom and removed from the 

top. 

 

 

 

Figure 29 – Simulated temp profiles: 1) V(ta) represents the hot side and 2) V(te) stands for cold side 

 

 

Finally, Figure 30 compares the experimental results against the simulated results. The 

overall percent error between the experiment and the Spice simulation was 5.47% on the hot side 

as compared to 2.52% on the cold side. The error rate can be explained by either one or both of 
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the following: 1) the internal parasitic components’ variation and 2) the non-homogeneity of the 

physical blocks that were assumed to be pure metals during the thermal and/or electrical 

parameters computations [61] and [91]. 

 

 

 

Figure 30 – Temperature profiles: 1) simulated (dashed) and 2) experimental curves (solid) 

 

 

4.1.4 Summary of the Indoor Experiment 

An experimental setup was designed and built to characterize and study the performance 

of a commercial thermoelectric module (TEM).  An LTspice TEM modeling scheme was 

developed through thermal-to-electrical equivalence strategies. The module, though 

manufactured to be operated as a thermoelectric generator (TEG), was run in this preliminary 

work as a thermoelectric cooler (TEC) under the technique of the reverse polarity features. The 

experiment was conducted for a short period of time (32 minutes) with a variable input DC 

supply voltage starting at 0.8VDC. The DC source was incremented by 0.5 V every minute until 

the maximum limit of 5 V DC was reached. At the end of the experiment the data were arranged 
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in a lookup table and then fed into the LTspice model through the piecewise linear (PWL) built-

in command. Despite the test being conducted for a short period of time, a significant differential 

temperature (ΔT) of 13.43
o
C was achievable. Finally, the experimental and simulated results 

were presented, compared, and concisely contrasted.  

4.2  Solar Thermoelectric Generator (STEG) 

New alternatives and inventive renewable energy techniques which encompass both 

generation and power management solutions are fundamental for meeting remote residential 

energy supply and demand today, especially if the grid is quasi-nonexistent. Solar thermoelectric 

generators mounted on a dual-axis sun tracker can be a cost-effective alternative to photovoltaics 

for remote residential household power generation. A complete solar thermoelectric energy-

harvesting system is presented in this work for energy delivery to remote residential areas in 

developing regions. To this end, the entire system was built, modeled, and then validated with 

the LTspice simulator software via the thermal-to-electrical analogy schemes. Valuable data in 

conjunction with a novel LTspice circuit were obtained, showing the achievability of analyzing 

transient heat transfer with the Spice simulator; however, a few practical problems remain to be 

solved. Nonetheless, despite the unusual operation of the thermoelectric modules with solar 

radiation, the simulation and measurements agreed, thus validating the new modeling strategy.  

In addition, any discrepancy in the outcome could be attributable to some minor 

undetectable errors of imperfect interconnections and/or incompatibilities at a microscopic level. 

The overall efficiency and system performance sought turned out to be counter-intuitively below 

research expectations. How heat is lost in the system due to the material defects certainly played 

a key role as different manufacturers may have different quality standards. This latter point is 

schematically addressed in Sec. 3.8 in an energy flow chart. 
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4.2.1 Pre-Design Considerations  

The design of a solar thermoelectric generation system from scratch has never been free 

from challenges in terms of transient heat transfer analysis and the amount of heat to be 

converted into electrical power. One of the key challenges worth mentioning in solar 

thermoelectric power conversion is how to achieve a significant differential temperature across 

the TEG devices only using the local direct normal insolation (DNI). The STEG system would 

likely utilize the infrared (IR) portion, which is about 42% of the solar spectrum, to achieve the 

ΔT needed to supply power to remote households. Hence, the temperature drop across the 

devices would have been, under certain specific conditions, in the range of 1—5
o
C [52], if 

exclusively based on the conventional heat conduction, whereby 

 𝛥𝑇 =
𝑞𝐿

𝜅
                                                                     (35) 

Where, q is the heat flux traversing the TEG, L is its length, κ is the thermal conductivity, and ΔT 

is TH (hot side temperature) minus TC (cold side temperature). 

Obviously, the above temperature drop would have been too small for efficient power 

generation. In order to differ from the conventional wisdom in terms of TEG, which stipulated 

that thermoelectric modules (TEM) were only good and suitable for waste heat recovery, the aim 

of this study, as already mentioned above, is twofold: 1) to demonstrate that TEGs remain an 

attractive renewable technology that can convert solely solar irradiance into electrical energy for 

energy delivery to remote residential areas; and 2) to show that STEG’s transient heat transfer 

analysis through thermal-to-electrical analogy by means of the LTspice simulator in comparison 

to the traditional analytical methods can not only be achieved, but can also greatly simplify the 

task at hand by improving the system’s overall understanding. 
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4.2.2 The Main Components of the System 

As reported in [2] and [93], the complexity of any engineering system comes not from the 

multitude number of parts, but rather from the inner complexity of each single unit. Having that 

concept in mind, in designing an STEG, there are many more complexities that must be 

meticulously considered. In essence, each single unit must be assessed thoroughly and 

separately, and then evaluated in conjunction with the rest of the system as a whole. Hence, the 

major components are: 1) the sun, as the only source of energy; 2) a dual-axis solar tracker; 3) 5 

TEG modules; 4) a Pyrheliometer, for recording the local DNI; 5) a Solar flux sensor, for 

estimating the four sun coming off the collectors; 6) two aluminum heat exchangers, details are 

in Sec. 4.2.5; 7) two K-type thermocouples; 8) one data-logger; 9) a DC-DC converter; 10) one 

3.2 volts battery, for storing energy; 11) a charge controller; 12) wind speed/direction sensors; 

13) a relative humidity sensor; 14) and thermal insulation foam, just to mention the major units. 

4.2.3 Descriptive Functionality of the Fundamental Components 

This work designed, built, and tested a solar thermoelectric generation system. Figure 31 

and Figure 32, together illustrate the actual STEG setup and the equivalent schematic overview 

of the system, respectively. The former depicts the complete proposed energy-harvesting system 

under investigation. Five commercial TEGs, 2411G-7L31-15CX1, made by Custom 

Thermoelectric with a size of 56 by 56 millimeters were tested for energy delivery to remote 

residential areas in developing regions. The five TEGs were all connected electrically in series 

and thermally in parallel. Above the cold side of the TEGs was a customized aluminum HEX, 

which not only removes the heat, but also provides an adequate differential temperature across 

the TEGs. Along the focal point of the tracker was a solar flux sensor. It was intended to measure 

the magnitude of the four suns, obviously different from the DNI recorded by the Pyrheliometer. 
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The secondary HEX was utilized to cool the flux sensor. The rest of the components mounted on 

a separate iron structure built for the purpose are the relative humidity sensor and wind speed and 

direction sensors, as can be seen on the right hand side of Figure 32. The output of the TEGs, the 

two thermocouples, and the Pyranometer in conjunction with all the sensors, were all connected 

to a data-logger. A laptop was utilized in order to collect the experimental data once a week. 

Knowledge of the DNI, relative humidity, the wind speed and its direction, tell us how the local 

weather affects the instant, average, and total power generated by the energy-harvesting system. 

Finally, the battery energy-storage system is meant to store the harvested energy for a later 

usage. 

 

 

 

Figure 31 – Complete STEG energy-harvesting system 
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4.2.4 System Schematic and Short Research Overview   

The schematic overview of the investigated solar TEG energy-harvesting system is 

presented in Figure 32. This schematic helps not only to better understand the design as whole, 

but also to better distinguish the physical separations between the thermal and the electrical 

aspects. Possible methods to enhance the system’s efficiency, understand its functionality, and 

optimize its performance, i.e. the heat transfer capabilities between the top and the bottom 

surfaces, were investigated as well. The thermal-to-electrical analogy scheme was adopted to 

simulate the designed energy-harvesting model by means of the LTspice simulator software.  

 

 

 

Figure 32 – STEG schematic overview—A and B denote thermocouples 

 

 

Furthermore, this study achieved the following objectives: First, to investigate the 

performance of commercial solar TEGs under arid weather conditions comparable to the 

Southwest US or the Sahel in Africa. Five TEG devices made of bismuth telluride (Bi2Te3) were 
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mounted on a dual-axis solar tracker. The heat-absorbing side of the TEGs was exposed to four 

reflectors covered with a highly reflective thin film material. These reflectors, attached to the 

tracker, were positioned in such a way that the sun was concentrated four times on the devices. 

In addition, on top of the emitting side of the TEGs sat on aluminum (Al) heat exchanger (HEX), 

which created the requisite differential temperature between the two sides. In order to prevent the 

four suns from shining directly on the HEX, polyurethane insulation foam was glued around the 

set of TEGs as can be seen in Figure 33. Also, two lateral aluminum flat plates of equal 

dimensions were utilized to lengthen the aluminum heat exchanger in order to fasten it to the 

main iron structure. The secondary purpose of these Al plates, just as important as the first, was 

to enable them to actively participate in the overall heat-removal process away from the colder 

side of the TEGs. In other words, they increased the functionality of the main HEX. For 

illustration purposes, Figure 34 shows a side view of the above mentioned aluminum heat sinks. 

Additionally, the base of the HEX was grooved to form a meandering channel with an oval shape 

to accommodate a K-type thermocouple (A), which was placed on the back of one of the TEGs 

to measure TC. Also, a second K-type thermocouple (B) was placed on the polyurethane foam, 

between the two sets of TEGs, via the same technique, to record TH, as can be seen in Figure 33. 
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Figure 33 – Front view of the STEG system 

 

 

The second part of the research aimed not only to compute the electrical parameters from 

both device geometries and properties, but also, and most importantly, to accomplish the 

electrical analogy of the whole system with the Spice simulator. The basic idea of the present 

model was derived from previous works done by [55], [61], [62], and [97]. So far, this study is 

the only one to attempt to model a real-world environment STEG energy-harvesting system 

utilizing LTspice software as a simulation tool. The temperature dependence of the internal 

resistance was taken into account in the model via the arbitrary behavioral voltage source 

technique. Also, a lookup table of real experimental data (the local DNI, meaning the hot side 

Temp.) was fed into the circuit to: 1) simulate the real system’s behavior; and 2) to improve 

simulation speed. Moreover, all the heat capacitance values calculated in Sec. 3.2.4 were scaled 
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down in the Spice model in order to significantly reduce the running time created by the 

magnitude of the electrical-equivalent circuit. The LTspice built-in piecewise linear (PWL) 

command was purposely utilized in order to facilitate the achievement of the anticipated goals 

set forward.  

 

 

 

Figure 34 – Side view of the STEG system 

 

 

4.2.5 Preliminary Assumptions 

Due to the complexity in the geometry, the unique nature of the STEG system and the 

longer projected simulation time, some assumptions were essential. Therefore, the thermal 

capacitance of the dynamic volume of air between the four collectors and the five TEGs was 

calculated based on the assumption that the air was confined in addition to the sound knowledge 
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of the specific heat capacity of dry Air at 80°C. In a like manner, the thermal resistance of that 

same unquantifiable amount of air was also determined based on the aforementioned assumption 

combined with its known thermal conductivity, κ = 0.0299 W/m.K for simplicity in the approach. 

The thermal resistance of the heat transfer grease, as mentioned above, was assumed to be 

0.45K.W  [57].  

Ultimately, all the thermal components, such as L, C, and R determined in Sec. 3.2.4 or 

assumed for technical limitation purposes were strategically connected either in series and/or in 

parallel to construct the electronic model of the entire physical STEG system in LTspice. As a 

decisive step, the STEG is ready to be modeled in Spice provided the relevant codes have been 

properly written.  

Finally, due to the stochastic nature of solar energy most of the time, there is a potential 

need for energy storage, as stated previously. The harvested energy is stored in a rechargeable 

3.2-volt K2 battery, connected to the load via a charge controller for a later usage (See Figure 32 

for more details). 

4.2.6 Infinite Source of Energy 

At this point, it is worth highlighting some of the technically relevant facts about this 

giant fire ball, the sun, since it is the only heat input to the system.  So, solar energy, or solar 

radiation, is basically energy in the form of heat, particles, and shock waves from the sun, which 

result from nuclear fusion and eruptions on the sun’s surface that travel all over space, as shown 

in Figure 35. These nuclear explosions are self-sustaining and are one of the greatest natural 

phenomena in the entire universe. This phenomenon results from two hydrogen atoms being 

compressed together into one helium atom by the enormous pressure and temperature of the sun. 

During the transformation, some of the mass of the two hydrogen atoms disappears and is 
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converted into a huge quantity of energy that appears as sunlight. As an example, the heat and 

light that we experience every day are evidently solar energy. 

 

 

 

Figure 35 – Solar eruptions at the surface of the sun [95]  

 

 

Remarkably, there exists a clear limitation on how the sunlight arrives on Earth every day 

due to the Earth’s revolution around the sun. For thousands of years, humans believed that the 

Earth was in the center of the solar system rather than the sun being at the center of the solar 

system. Hence, the limitation of the solar system is that the sun shines only during the day and 

may be intermittent even then due to cloud coverage. Moreover, due to the Earth’s rotation on its 

axis, only part of the Earth is illuminated at once. Therefore, we need to find other means of 

providing power when the sun is covered is technically essential and economically viable when 

using solar energy with back up energy storage for our daily energy needs. Although solar 
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energy suffers from some drawbacks, it is important to note that its advantages far outweigh the 

shortcomings related to variability. 

4.2.6.1 Some Advantages of Solar Energy 

It is imperative that some of the advantages of solar energy be outlined before getting 

into the solar thermoelectric generator modeling proper, which represents the main focus of this 

study. Therefore, some of the advantages of solar energy are: 1) it is infinitely renewable at a 

human scale; 2) when harvested, it produces zero greenhouse gases (GHG); 3) it utilization can 

help cut down utility bills at an individual level and at societal level; 4) it can help save scanty 

forests at global levels; 5) its large-scale integration into the grid can help utilities avoid and 

prevent power outages and blackouts by controlling the quality of the voltage, frequency, and 

power factor angle; 6) it can help utilities generate inexpensively the extra energy needed during 

peak hours instead of firing expensive and dormant peaker plants; 7) it can help arid and remote 

regions attain energy independence without necessarily being interconnected to the grid, etc. 

Nonetheless, many of the environmental issues the planet Earth currently faces result from our 

dependence on nonrenewable resources.  

4.2.6.2 Direct Consequences of Nonrenewable Energy Sources 

The global temperature increase was provoked and aggravated by the ways humans, 

mostly in the industrialized world, utilize nonrenewable fossil fuels. This fact certainly leads to 

the continuing global weather and climate changes. This will consequently constitute serious 

public health threats facing all nations, and most severely, the poor and arid regions around the 

world equipped with the least protective means. It is specifically reported in [37] that the most 

vulnerable people affected are children, the elderly, and communities living in extreme poverty. 

Therefore, to ensure healthy air, clean water, and stable climates for future generations, 
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responsible decisions about energy sources must be made ipso facto. The vicious dependence on 

fossil fuels that currently dominates US power generation can be affordably reduced through the 

use of sound and existing technologies. The major existing energy conversion technologies, as 

already mentioned above, pollute at an alarming rate, and the heat-trapping gases will certainly 

cause irreversible harm to communities around the world [96]. Consequently, some of the 

damage caused by the massive usage of fossil fuels are, as reported by [97]: 1) sea-level rise 

causing flooding and erosion in coastal communities; 2) air and water pollution; 3) acid rain; 4) 

extreme weather conditions, including more intense droughts and hurricanes; 5) reduced 

productivity of some agricultural regions; 6) loss of many treasured landscapes; and 7) loss of 

various animal and botanic species, just to mention a few. 

For all the aforementioned reasons, there is a vital and crucial need to promote renewable 

sources, such as solar, wind, geothermal, thermoelectric generator (TEG), etc. Although the 

concept could be ambitious regarding the current US energy policies, a remodeling of the global 

energy system is desirable in order to provide sustainable and green energy for the present and 

the future generations. The desire is to satisfy not only the present energy needs attained in the 

developed nations, but also, and most importantly, to meet the quickly growing energy demands 

of developing countries through green technologies. This will further mitigate the negative 

effects of climate change [98]. Furthermore, at the core of the global synergies stand the new and 

renewable sources of energy that could kick start the model of green economies, eradicate 

poverty, and, ultimately, trigger sustainable development throughout the world. Hence, the cost 

of renewable energy technologies and off-grid systems must be significantly reduced by a 

worldwide, coordinated energy strategy and established national energy policies, such as 

selective incentives or technological breakthrough. Achieving these goals will enable wide-
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spread standalone systems, either photovoltaics or TEG systems, to be utilized by the poorest 

fragments of populations living in rural and arid areas. 

4.2.6.3 Effect of Excessive Heat on TEG Devices 

In a similar way that temperature beyond certain limit affects the efficiency of PV 

systems by means of the temperature coefficient, it also does affect the performance of TEG in 

the sense that they are both made out of pn-junction semiconductor devices. 

The maximum ambient heat a TEG can withstand depends on many factors, such as the: 

1) heat exchanger; 2) types of cooling system (whether fan, air, liquid, or temperature cooled; 3) 

desired reliability); 4) amount of heat being dissipated to the ambient; 5) temperature rating of 

the TEM; and 6) quality of the insulation material. How excessive heat can affect STEGs may, 

however, be viewed under two different perspectives. On the one hand, if the heat is so intense 

and the setting of thermal insulation and heat exchanger are not good enough, the STEG system 

would perform poorly since the differential temperature, which is fundamental for the Seebeck 

theory, may not be significant. On the other hand, the carrier density of doped semiconductor 

devices is strongly dependent on temperature. Also, as temperature increases more and more, the 

extrinsic region, originally flat, will flip into an intrinsic region; thus the number of thermally 

generated carriers exceeds the number of donors or acceptors depending on the type of doping 

[99]. Therefore, if that eventuality occurs, the overall efficiency of the STEG would significantly 

drop since it would no longer behave as a semiconductor, but rather as a mere piece of 

conducting material. In essence, the performance of any TEG system is exclusively dependent on 

the quality and type of heat sink utilized, but also on how well the insolation foam was 

manufactured. 
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4.2.7 Parameter Extraction 

A total of five TEGs were used in the proposed energy-harvesting system. The heat 

capacity and the internal thermal resistance of each module were estimated in the previous work 

to be 23J/K and 0.64K/W, respectively [91]. The former value was further split into two equal 

parts to fit in the LTspice model, as that yielded to accurate STEG modeling and the best 

possible solutions.  

The modules were specified by the manufacturer to be bismuth telluride (Bi2Te3) and that 

the ceramic substrates were made of alumina (Al2O3). By virtue of that, some of the properties 

that turned out to be useful in the succeeding computations were densities, specific heat 

capacities, and the thermal conductivities of the Al HEXs, the substrate, and the Bi2Te3, as 

mentioned in [91]. Hence, the most relevant thermoelectric properties are listed in Error! 

Reference source not found. of Sec. 3.2.4.  

Two heat exchangers were used in this design: 1) the main heat sink was placed on the 

cold side of the TEGs in order to keep them as cool as possible; and 2) the secondary heat sink 

was utilized to remove the heat from the bifacial solar flux sensor. To re-iterate, the role of each 

one of these heat exchangers is independent from one another and they are of the extruded type, 

made of pure aluminum material. Besides, in computing the thermal resistance and capacitance 

of the following parts, the geometries and properties were also taken into account. 

4.2.7.1 Aluminum Heat Exchanger, Al HEX 

The dimensions of the primary heat exchanger were carefully documented, and then 

listed in Table 7. In addition to that, the lateral aluminum plates were also measured and 

documented in the same table. These plates also contributed to the removal of some of the heat 

from the TEGs, since they were not only fastened directly beneath the main heat exchanger, but 
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were also adjacent to the insulation foam. The overall Spice simulation of the thermal process 

would not be accurate without properly taking into consideration the aforementioned plates.  

4.2.7.1.1 Purpose of the Aluminum Heat Sink 

Among all the components that made up the design, the main finned heat sink is a 

parameter of sufficient importance to merit further consideration. One of the reasons for stating 

the above postulate is that for the TEG to moderately generate electrical power, the differential 

temperature between the hot and cold sides has to be within some threshold values. In other 

words, the two sides have to be maintained apart as far as possible in terms of temperature. 

Hence, that can only be achieved through a cooling mechanism. For this specific application, 

owing to the simplicity in the procedures and design (this research focuses on remote and 

residential application of TEGs), a dry and natural cooling system was chosen. It is worthy of 

note to emphasize that in natural convection, heat transfer relies exclusively on the free buoyant 

flow of air surrounding the heat sink. Therefore, an efficient aluminum (Al) heat sink was 

conveniently chosen to do the task at hand at the expense of some reduction in the overall 

efficiency.  

Heat sinks are devices that augment heat dissipation from a hot media, such as a heat 

generation component, to a cooler ambient which is usually air [100]. Far from the electrical 

grid, energy utilization has to be solely minimized to basic daily energy needs by all means and 

its conservation be thus maximized as much as possible. This theory of energy efficient 

utilization started at the early stage of the novel energy-harvesting project by cutting down any 

active cooling device, such as a water pump, oil pump, and any temperature controlled device in 

the design. For the aforementioned reason, air is simply selected to be the cooling fluid. The 

main purpose of the heat sink can be mainly break down into two functions: 1) to not only lower 



 

105 
 

the solid-air interface barrier to heat flow, but also to increase the contact area that is in direct 

contact with the air; and 2) to maintain the device differential temperature within the allowable 

TEM manufacturer’s specifications for satisfactory electrical power to be generated. 

Furthermore, choosing the right heat sink is paramount as the aim was to achieve a significant 

differential temperature across the TEGs by dissipating away more heat. Therefore, high purity 

extruded aluminum material has at all times been a good heat exchanger for electronic 

components. 

 

 

Table 7 - Dimensions of the physical components 

N
o
 Components Length(cm) Height (cm) Width (cm) 

 

Thickness (cm) 

 

1 Heat exchanger 1 50.165 7.112 7.62 0.985 

2 Lateral Al plate (R) 30.48 0.635 10.16 

3 Lateral Al plate (L) 30.48 0.635 10.16 

4 PUR Insulation foam 40.132 (l) 1.905 (h) 31.115 (W) 

5 Insulation foam (hole 1) 16.764 (l1) 1.905  5.715 (W1) 

6 Insulation foam (hole 2) 16.764 (l2) 1.905 5.715 (W2) 

7 TEG 5.6 0.445 5.6 

 

 

To better understand the physical nature of all the components listed in Table 7 above, see Figure 

33 in Sec. 4.2.4. Apart from the dimensions, it is necessary to point out that the two heat 

exchangers are of the same kind, in all aspects, i.e. physical shape and chemical composition 

(pure Aluminum); the only exception is their size.   

4.2.7.1.2 Thermal resistance, RHEX   

Besides the dimensions listed in Table 7, it is worthy of note to point out that the heat 

exchanger is of pure Aluminum. As a result, the total number of fins is eight (8) and the distant 
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between them is in the neighborhood of 0.635 cm. So, the area, AHEX, of the heat exchanger can 

be calculated simply by Eq. (36). 

𝐴𝐻𝐸𝑋 = 𝑙 ∙ 𝑊 = 0.50165 ∙ 0.0762 = 0.0383 𝑚2                           (36) 

Where, ɭ is the length of the Al heat exchanger in meters (m) and W is its width, also in meters. 

With the perfectly documented knowledge of all the physical dimensions of the Al HEX’s 

contact area, the associated thermal resistance can be found by Eq. (37).   

𝑅𝐻𝐸𝑋 =
1

𝜅∙(𝐴/𝑙)
= 0.074 [𝐾/𝑊]                                           (37) 

Where, κ = 177W/m is the thermal conductivity, A is the surface area, and ɭ is the length of the Al 

heat exchanger. 

4.2.7.1.3 Thermal Capacity, CHEX 

In a similar fashion, the volume of the plate-fin HEX needs to be computed although it is 

much more cumbersome and involved compared to ordinary aluminum plates. So, the aluminum 

heat sink has eight (8) fins, whereby the first seven (7) fins are of the same dimensions, but the 

eighth one, i.e. FinB, has a different size as displayed in Table 8,  

 

 

Table 8 - Fins’ dimensions 

Designation  Quantity  Length (l) Height (h) Thickness (ta) Thickness (tb) 

FinA 7 501.65 62.20 3.60 2.40 

FinB 1 501.65 62.20 2.70 2.10 

 

 

in which, all the units were measured in millimeters (mm). 

For simplicity purposes, we assumed the thicknesses at the bottom and the top of the two 

categories of fins to be the same size and then utilized their average (tavg) in the calculations. 
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Therefore, determining their volume is reduced to calculating the volume of a rectangular 

parallelepiped, as can be seen in Eq. (38). 

𝑉𝐹𝑖𝑛_𝐴 = 𝑙 ∙ ℎ ∙ 𝑡𝑎𝑣𝑔 = 0.00009361 𝑚3                                   (38) 

Where, l, h, and tavg are the length, the height, and the average thickness, respectively. 

The volume of the seven fins, VTotal, of equal size can be calculated as follows, Eq. (39).  

𝑉𝑇𝑜𝑡𝑎𝑙 = 7 ∙ 𝑉𝐹𝑖𝑛_𝐴 = 0.00066 m3                                          (39) 

Following a similar judgment, the volume of the unique FinB, can be determined after averaging 

its bottom and top thicknesses as in Eq. (40).   

𝑉𝐹𝑖𝑛_𝐵 = 𝑙 ∙ ℎ ∙ 𝑡𝑎𝑣𝑔 =  0.00007489 𝑚3                                     (40) 

The volume of the two categories of fins can be summed up to the overall volume, VFins, by  

𝑉𝐹𝑖𝑛𝑠 = 𝑉𝑇𝑜𝑡𝑎𝑙 + 𝑉𝐹𝑖𝑛𝐵 = 0.000735m3                                      (41) 

The Al HEX’s compact base volume computation, where all the fins originated, is now made 

straightforward, knowing the length, the width, and the height, as can be seen by Eq. (42). 

𝑉𝐵𝑎𝑠𝑒 = 𝑙 ∙ 𝑤 ∙ ℎ =  0.00037652 m3                                       (42) 

Finally, the volume of the entire HEX, VHEX, as written in Eq. (43), can be assessed by summing 

up the individual volumes calculated above. 

𝑉𝐻𝐸𝑋 = 𝑉𝐵𝑎𝑠𝑒 + 𝑉𝐹𝑖𝑛𝑠 = 0.00111152 m3                                 (43) 

Hence, the heat capacity proper, CHEX, to accurately model the heat exchanger’s effect on the 

STEG system, via the Spice simulator, can be computed by Eq. (44). 

𝐶𝐻𝐸𝑋 = 𝜌 ∙ 𝐶𝑝 ∙ 𝑉𝐻𝐸𝑋 

=
2770 𝑘𝑔 ∙ 875 𝐽 ∙  0.00111152 𝑚3

𝑚3 ∙ 𝑘𝑔 ∙ 𝐾
 

= 2694𝐽/𝐾                                                                    (44) 

Where, ρ is the density, Cp is the specific heat capacity, and VHEX is the volume of the Al HEX.  
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4.2.7.2 Lateral Aluminum Plates 

Two aluminum plates of equal dimensions were utilized as part of the components to 

build this solar energy-harvesting system. Their primary purpose was to lengthen the aluminum 

heat exchanger (HEX) in order to be able to fasten it to the main iron structure. The secondary 

purpose of the Al plates, which is as important as the first one, is that they actively participate in 

removing the heat away from the colder side of the TEGs by acting as an extension to the main 

heat sink mentioned earlier.  

4.2.7.2.1 Thermal resistance, RLAl  

As already mentioned, the physical dimensions are all summarized in Table 7. 

Consequently, the thermal resistances of the twin Al plates can be evaluated simply by Eq. (45).  

𝑅𝐿𝐴𝑙 =
1

𝜅∙(𝐴/𝑙)
= 0.056 𝐾/𝑊                                                   (45) 

Where, κ = 177W/m is the thermal conductivity, A the surface area of the plate, and ɭ its length. 

It is therefore worth noting that the actual thermal resistance of the twin aluminum plates, 

RLAl_Total, is twice as much as RLAl shown in Eq. (46).  

𝑅𝐿𝐴𝑙_𝑇𝑜𝑡𝑎𝑙 = 2 ∙ 𝑅𝐿𝐴𝑙 = 0.112 𝐾/𝑊                                           (46) 

4.2.7.2.2 Thermal capacity, CLAl 

Having measured with ultimate care, the length (l), width (w), and height (h) of the two 

lateral Al plates as listed in Table 7, it is now of paramount importance to compute the total 

volume, VLAl_Total, using Eq. (47), since it is needed in the subsequent equation. 

𝑉𝐿𝐴𝑙𝑇𝑜𝑡𝑎𝑙
= 𝑉𝐿𝐴𝑙𝑅

+ 𝑉𝐿𝐴𝑙𝐿
= 2 ∙ 𝑙 ∙ 𝑤 ∙ ℎ 

=  2 ∙ 0.3048 ∙ 0.1016 ∙ 0.00635 = 0.0004 m3                                    (47) 

Where, VLAl_R and VLAl_L denote the volumes of the right and left lateral Al plates, respectively. 
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So, the heat capacity of the two lateral Al HEXs, CLAl, needed to accurately model the 

whole new concept of the energy-harvesting system with the Spice software is determined by Eq. 

(48). It would then be converted into an equivalent electrical value by means of the thermal-to-

electrical analogy theory and then fit in the circuit to simulate its real-world impact on the 

performance of the STEG system.  

𝐶𝐿𝐴𝑙 = 𝜌 ∙ 𝐶𝑝 ∙ 𝑉𝐿𝐴𝑙𝑇𝑜𝑡𝑎𝑙
 

=
2770 𝑘𝑔∙875 𝐽∙0.0004 𝑚3

𝑚3∙𝑘𝑔∙𝐾
≈ 970𝐽/𝐾                                            (48) 

Where, ρ is the density of the lateral Al plates and Cp is their specific heat capacity.  

4.2.7.3 Thermal Insulation Foam 

To study the effects of insulation materials in this design, a rigid polyurethane foam 

(PUR) was specially selected to best fit the needs. It is important to mention here that the rigid 

PUR is quite different from the common insulation foams, as it is a closed-cell plastic. Also, 

PUR has an immensely great resistance to thermal energy propagation because it is one of the 

most efficient, high performance insulation materials. This enables a very effective way of 

preventing the solar radiation to directly shine on the heat exchanger mounted on the cold side of 

the TEGs. In this regard, the PUR allows the entire system to attain a much higher efficiency by 

not only enhancing the temperature differential across the two sides as the free solar energy is 

being harvested, but also by making the STEG system physically robust. 

Thermal insulation, in most cases, is needed either to keep a device cool or warm, 

depending on the application. The thermal conductivity and the heat capacity of the insulation 

foam were first tested in a laboratory up to temperatures greater than 100
o
C as can be seen from 

the water boiling in Figure 36. Thus, an electrical heater, as displayed in the same figure, was 

used as the heat source during this indoor test. In addition to that, a piece of aluminum was 
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utilized for comparison purposes, as they were both core parts of the preliminary indoor 

experiment. 

 

 

 

Figure 36 – Insulation foam being tested 

 

 

Also, how thermal energy propagates through a material, such as aluminum or insulation 

foam is, generally well known. Heat transfers naturally through a polyurethane foam by 

conduction in a form of atomic vibration (phonon) as well as radiation to some extent. Further, 

the particular phonons of interest in this study are the shorter-wavelength ones of higher 

frequency because they give rise to heat. The purpose of the insulation foam in this experiment 

was to prevent the solar radiation concentrated four times from reaching the aluminum heat 
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exchanger. That would not only decrease the differential temperature, but would also offset the 

accuracy in the measurements. 

4.2.7.3.1 Thermal Resistance, RInsul   

One of the most important properties of any insulation material is inarguably its 

insulation performance. The benchmark for such insulation performance is a high thermal 

resistance or a low thermal conductivity. Furthermore, it is worthy of note to emphasize that the 

thermal resistance of any PUR is dependent on certain parameters. These parameters includes the 

cell gas used, density, temperature, behavior in the presence of water and moisture, and the time 

of measurement [101]. The most commonly utilized properties of this rigid PUR are enumerated 

in Table 9. 

 

 

Table 9 - Rigid PUR properties [101] 

Material Thermal conductivity, κ Density, ρ Specific heat capacity, Cp 

Rigid polyurethane 

foam, PUR 

0.025 W/(m.K) 30 kg/m
3
 1500 J/(kg.K) 

 

 

As can be seen from Figure 37, computing the area and volume of the insulation foam 

can be somewhat difficult because of the nature of its shape. The area of the insulation foam, 

AInsul, can be obtained by Eq. (49). 

𝐴𝐼𝑛𝑠𝑢𝑙 = 𝑙 ∙ 𝑊 − (𝑙1 ∙ 𝑊1 + 𝑙2 ∙ 𝑊2) = 𝑙 ∙ 𝑊 − 2 ∙ (𝑙1 ∙ 𝑊1) 

= 0.40132 ∙ 0.31115 − 2 ∙ (0.16764 ∙ 0.05715) = 0.106 𝑚2                  (49) 

Where, ɭ is the length of the insulation foam, W is its width, ɭ1 is the inside length of the hole on 

the foam’s surface located at the right, W1 is the inside width of the hole on the foam’s surface 
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located at the right, ɭ2 is the inside length of the hole on the foam’s surface located at the left, and 

W2 is the inside width of the hole on the foam’s surface located at the left. 

The above equation is further reduced because, based on the measured values tabulated in 

Table 7, the two rectangular holes cut into the surface of the foam were of equal dimensions. 

Hence, the mathematical expression for that is shown in Eq. (50) since l1 is the same as l2 and W1 

is identical to W2. 

 𝑙1 ∙ 𝑊1 + 𝑙2 ∙ 𝑊2 = 2 ∙ (𝑙1 ∙ 𝑊1)                                                (50) 

Now that the area is known, the thermal resistance of the PUR, RInsul, can be simply computed by 

means of Eq. (51). 

𝑅𝐼𝑛𝑠𝑢𝑙 =
1

𝜅∙(𝐴/𝑙)
=

1

0.025∙(0.106/0.29)
≅ 109 𝐾/𝑊                                  (51) 

Where, κ = 0.025 W/m.K is the thermal conductivity, A is the surface area, and ɭ is the 

approximate length of the insulation foam. 

4.2.7.3.2 Thermal Capacitance, CInsul 

If we had not accommodated for the thermal insulation foam to fit in the design, the four 

suns would directly shine on the aluminum heat exchanger. The major consequence would then 

be purely a bad engineering design. The foam played a crucial role as it was the thermal barrier 

that kept the hot (front) side and the cold (back) side of the TEGs at different temperatures. 

Placing the foam around and in the middle of the two groups of TEGs, as portrayed by Figure 37, 

helped not only to achieve a significant differential temperature, but also allowed the 

implementation of the Seebeck theory in a real-world experiment.  
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Figure 37 – Insulation foam facing the solar collectors 

 

 

Information on the volume of the insulation foam, VInsul, can be easily obtained from the 

previous knowledge of its area. Therefore, the volume is computed as in Eq. (52). 

𝑉𝐼𝑛𝑠𝑢𝑙 = 𝐴𝐼𝑛𝑠𝑢𝑙 ∙ ℎ = 0.106 ∙ 0.01905 = 0.00202 𝑚3                       (52) 

Where, h is the height of the insulation foam. 

Finally, the heat capacity of the insulation foam can be numerically estimated in Eq. (53) by 

𝐶𝐼𝑛𝑠𝑢𝑙 = 𝜌 ∙ 𝐶𝑝 ∙ 𝑉𝐼𝑛𝑠𝑢𝑙 

=
30𝑘𝑔∙1500𝐽∙0.00202 𝑚3

𝑚3∙𝑘𝑔∙𝐾
= 91 𝐽/𝐾                                              (53) 

Where, ρ is the density and Cp is the specific heat capacity of the insulation foam.  

4.2.7.4 Air Properties at NTP 

At Normal Temperature and Pressure (NTP) air has specific properties that are 

experimentally predetermined. Therefore, under the NTP that is customarily used as the standard 
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testing conditions (STC) when it comes to most of the engineering open air tests, the air 

temperature is 20
o
C, and the atmospheric pressure is 1atm, equivalent to: 01.325 kN/m

2
, 101.325 

kPa, or 760 torr. As a result, Table 10 gives the most relevant properties of air needed to 

compute the thermal resistance and capacitance. 

 

 

Table 10 - Air properties [102] 

Temp. (
o
C)  ρ (kg/m

3
) Cp [kJ/(kg.K)] κ [W/(m.K)] 

0 1.293 1.005 0.0243 

60 1.067 1.009 0.0285 

80 1.0 1.009 0.0299 

100 0.946 1.009 0.0314 

 

 

Where, Temp is the temperature in degrees Celsius, ρ is the density, Cp is the specific heat 

capacity, and κ is the thermal conductivity.  

4.2.7.4.1 Thermal Resistance of Air 

How the natural and invisible quantity of matter known as Air influences the flow of 

thermal energy in the form of heat, termed RAir, can be simply computed by means of the Eq. 

(54) below.  

𝑅𝐴𝑖𝑟 =
1

𝜅∙(𝐴/𝑙)
=

1

0.0229∙0.762
= 57.30 𝐾/𝑊                                      (54) 

Where, κ = 0.0299 W/m.K, the thermal conductivity is assumed to an average temperature value 

of 80
o
C, A is the contact surface area, and ɭ is the length of the five (5) TEGs. It is worth noting 

that the computation is solely based on some simplifications as previously mentioned since the 

volume of air in our case is experimentally hard to determine. 
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4.2.7.4.2 Thermal Capacitance of Air 

For simplicity purposes in our steps, we assumed the air to be contained in a fixed 

volume, i.e. stationary between the solar collectors and the TEGs, though in reality it was 

dynamic and dependent on the weather. Also, the shape of the imaginary immobile container 

(Air volume) was assumed to be a pyramid, as it is the closest possible shape. Hence, the volume 

of air can be determined as in Eq. (55).  

𝑉𝐴𝑖𝑟 =
𝑙∙𝑊∙ℎ

3
=

0.94∙0.762∙0.61

3
= 0.147 𝑚3                                 (55) 

It follows that the thermal capacitance of that volume of air can be easily calculated as in Eq. 

(56), provided the density and the specific heat capacity of air are all known. 

𝐶𝐴𝑖𝑟 = 𝜌 ∙ 𝐶𝑝 ∙ 𝑉𝐴𝑖𝑟 

=
1.0 𝑘𝑔∙1.009 𝑘𝐽∙0.147𝑚3

𝑚3∙𝑘𝑔∙𝐾
≅ 148𝐽/𝐾                                      (56) 

4.2.8 Thermal Resistance Circuit of the STEM System 

In order to successfully design a technically sound solar thermoelectric energy-harvesting 

system, the modules have to be selected based on the highest VMAX.IMAX product in accordance 

to a certain TEG size. Also, the HEX must be properly sized to fit the TEGs. When placing a 

TEG between two surfaces at different temperatures, a differential temperature would be 

automatically developed across it due to its intrinsic semiconducting nature. As reported in[103], 

TEGs have a fairly low thermal resistance ranging from typically 1
o
C/W to 10

o
C/W between its 

ceramic plates. It is also important to point out that larger TEG devices have astonishingly 

smaller thermal resistance because of larger contact area. Therefore, utilizing an aluminum heat 

exchanger with the smallest possible thermal resistance not only boosts the output power, but 

also has the potential to maximize the differential temperature (ΔT) across the TEG because of its 

higher thermal conductivity. The STEG system in conjunction with the thermal resistance of the 
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HEX dictates what percentage of ΔT stays across the TEG, as can be seen from the simple 

thermal resistance model portrayed in Figure 38.   

 

 

 

Figure 38 – Thermal resistance model of the STEG system  

 

 

As already calculated in Sec. 4.2.7, Table 11 summarizes the thermal resistances of the 

major components that mutually interacted during the solar energy-harvesting process. 
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Table 11 - Thermal resistance of the main components 

S/N Designations Thermal resistance [K/W] 

1 TEG 0.64 

2 Polyurethane insulation foam 109 

3 Aluminum HEX  0.074 

4 Lateral Aluminum plates 0.112 

5 Air 57.30  

6 Solar collectors Neglected 

 

 

Before getting into the calculation of the resulting temperature differential (ΔT) proper, the 

equivalent thermal resistances of the top and bottom sides must be evaluated. The equivalent 

resistance of the top part of the thermal model, RTOP is given by 

1

𝑅𝑇𝑂𝑃
=

1

𝑅𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝐿𝑒𝑓𝑡
+

1

𝑅𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑅𝑖𝑔ℎ𝑡
+

1

𝑅𝐴𝐿 𝐻𝑒𝑎𝑡 𝑆𝑖𝑛𝑘
 

=
1

0.056
+

1

0.056
+

1

0.074
= 49.22                                      (57) 

Therefore, the value of RTOP is 0.02 K/W. 

In a similar fashion, the value of the bottom equivalent thermal resistance can be estimated to be 

sensibly equal to that of air since the solar collectors were assumed to be perfect reflectors.  

𝑅𝐵𝑂𝑇𝑇𝑂𝑀 = 𝑅𝐴𝑖𝑟                                                     (58) 

Therefore, the temperature differential developed across the TEG units can be simply determined 

by Eq. (59). It is worth mentioning that the ΔT, in this case, does not yield to a single value, but 

rather to a multitude set of values which are stochastic in nature, depending on some other 

factors, such as local insolation. These factors may include: 1) seasons of the year; 2) ambient 

temperature; and 3) cloud coverage, as can be seen in Figure 39 below. 

𝛥𝑇 = (𝑇𝑆𝑜𝑢𝑟𝑐𝑒 − 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡) ∙
𝑅𝑇𝐸𝐺𝑠

𝑅𝐴𝑖𝑟+𝑅𝑇𝐸𝐺𝑠+𝑅𝑇𝑂𝑃
 [𝑜𝐶]                                (59) 
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Figure 39 – Temperature differential across the TEGs 

 

 

4.2.9 The Inner Setup of LTspice Software 

This passage emphasizes the description of the algorithms used in LTspice. Hence, this 

quick side note is meant to give short detail about the uniqueness and powerful insights on the 

inner mechanisms of LTspice software. In relation to that, a lookup table is utilized to transpose 

the real-world solar energy behavior on the model. The table is merely a list of pairs of numbers, 

where the second column refers to the recorded hot side temperature from the experiment, which 

is indirectly the local DNI. If the control algorithm is beyond the range of the look-up table, the 

spice simulator linearly extrapolates the output voltage and/or temperature on the cold side as a 
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constant voltage and/or constant temperature, respectively, of the last data point of the look-up 

table. 

4.2.10  STEG Spice Model Implementation 

As can be seen from both Figure 40 and Figure 42, the complementary circuits of the 

Spice model for the whole STEG system are composed of an electrical portion and a thermal 

circuit, in that order. The most important benefit of utilizing the LTspice simulator to model a 

complex transient heat transfer process is the convenience in viewing and interpreting the 

interactions between the four major effects: Seebeck, Joule, Peltier, and Thomson. 

With a sound knowledge of the energy equilibrium on both emitting and absorbing sides 

of the TEGs, the electrical power harvested can be simply quantified as seen in Sec. 3.2.4.6, Eq. 

(18). There are mainly two alternative methods to model the energy balance and electrical power 

equations, as reported throughout the literature, viz. current dependent and voltage dependent 

sources. The former method was chosen for rapid convergence purposes. In contrast to some 

previous work, this study did incorporate the Seebeck coefficient, the thermal conductivity, and 

the internal thermal resistance variations with temperatures in the LTspice model through the 

arbitrary behavioral voltage sources (ABVS). Also, all the thermal resistances and capacities of 

the various physical parts of the STEG’s system determined in Sec. 4.2.7 above were expressed 

in their electrical equivalence before reconstructing the energy-harvesting system in Spice. 

Figure 40 and Figure 42 also show that all the parts obtained via the thermal-to-electrical 

analogies were either connected in series, and/or in parallel, to achieve the proposed STEG 

model. In addition to that, some of these components were equally split so that their effect would 

be perceived on either side of the STEG model. 
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4.2.11.1 Electrical Portion of the STEG System  

The electrical circuit analogy of thermal systems is valuable to electrical engineers and 

other related branches of physics because circuits offer a good representation for the study of 

complex energy systems as well as electrical equipment. Thus, Figure 40 depicts the electrical 

portion of the proposed STEG system, where the positive terminal at the end of the fifth TEG 

denotes the output voltage of the energy-harvesting system. The communication between the 

thermal and electrical circuits was made possible by the voltage sources V2, V4, V5, V7, and V9 

through the current-voltage dependent schemes. It is extremely important to point out that the 

internal parasitic components (Ln and Cn) were experimentally determined in [35], where the 

values are 0.54µH and 41nF, respectively. In this electrical model, the (Ln, Cn) pairs are 

respectively from TEG1 through TEG5: (L1, C21), (L2, C20), (L4, C23), (L6, C25), and (L5, C24). 
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Figure 40 – Electrical portion of the STEG system 

 

 

4.2.11.2 Spice Representation of the Thermoelectric Generators  

Figure 41 depicts the Spice thermal analogy of the five TEGs under investigation. As can 

be noticed, they are placed electrically in series, but thermally in parallel. As mentioned earlier, 

an aluminum heat sink sits on top of the emitting side of the thermoelectric module string for 

cooling intents and purposes. Therefore, the whole energy-harvesting system generates output 

voltage based on the developed temperature differential across the two sides of the 

thermoelectric generators. It is important to mention that the same figure shows the 
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implementation of the electrical resistance, thermal conductance, and the Seebeck coefficient of 

each individual TEG device through the arbitrary behavioral voltage source (ABVS) technique. 

The values of the above parameters, extracted from both datasheet and device geometry and 

property, are uniquely applied in ABVS command and are solely dependent on temperatures. 

This can be shown through the emitting and absorbing side temperatures, i.e., Te-n and Ta-n, 

respectively, in which n is equal to 1, 2, 3, 4, and 5 or the number of TEGs. 
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Figure 41 – Spice representation of the series TEGs 
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4.2.10.3  Thermal Portion of the STEG System   

The proposed thermal model of our STEG system for Solar Energy Harvesting is based 

on the initial works [12] and [54]. Figure 42 portrays the LTspice model of the thermal part of 

the proposed STEG energy-harvesting system, including the 5 TEGs connected electrically in 

series and thermally in parallel. In line with the above reasoning, the following pairs of 

capacitances—C1&C3, C2&C4, C22&C26, C27&C28, and C29&C30—enabled to capture the real-

world performance of the STEG in LTspice. RInsul and CInsul represent the thermal resistance and 

thermal capacity of the polyurethane foam, respectively. In a similar manner, the pairs (R23&C14) 

and (R24&C15) stand for the thermal resistance and thermal capacity of the two lateral aluminum 

plates. 
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Figure 42 – Thermal portion of the STEG system 

 

 

Furthermore, the values of the thermal resistances and capacities, computed from both 

device properties and geometries in order to achieve an accurate electrical analogy of the entire 

real-world thermal process, are succinctly listed and explained in Table 12. The first part of the 

table deals with the thermal resistance, followed by the thermal capacitances in the second half. 
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Also, it further sub-divides them into components, designations, and then equation or actual 

value, depending on the deterministic or stochastic nature of the element. 

 

 

Table 12 - Thermal parts’ descriptions 

Numbers Components Descriptions Equation/Value 

Thermal Resistances [K/W] 

1 Rm Internal resistance of the TEG  

( ) Nn p

mR
G

  


  

2 RInsul , R21and R28 Resistance of the insulation foam split into 

two equal parts for convenience 

5.9 

3 R6, R8, R14, R18, R17, R34, 

R39, R44, R47, R49 or 

R_grease 

Thermal resistance of the thermal grease 0.20 

4 R9, R11, R35, R40, R45 Thermal resistances between the cold and 

hot side due to any transient or stationary 

air gap 

20 

5 R10, R36, R41, R46 Thermal resistances between the TEGs 25 

6 R20 Thermal resistance of the ambient Air 57.30 

7 R23, R24 Thermal resistance of the lateral HEX, 

Right and Left, respectively 

0.056 

8 R12 or R_HEX Thermal resistance of the HEX to the 

ambient 

0.074  

9 R13, R15, R16, R19, R48  Thermal resistance of the aluminum HEX 0.074 

Thermal Capacities [J/K] 

1  C18 or CHEX  Capacitance of the Aluminum HEX 2694 

2 C11 Thermal capacitance of the ambient Air 148 

3 C12 Thermal capacitance of the insulation foam 91 

4 C14, C15 Thermal capacitance of the lateral HEX, 

Right and Left, respectively 

485 

5 C6, C7, C8, C9, C10 Thermal capacitances of the solar reflectors 

virtually sitting on the TEGs 

25 

6 C1, C2, C3, C4, C22, C26, 

C27, C28, C29, C30 

Thermal capacitances of the TEGs split 

equally into two per device 

11.5 
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4.2.11 Results and Analysis 

A good starting point in this analysis is to first address the local insolation and then how 

the tracker in conjunction with the four mounted solar collectors contributed to input the 

necessary hot side temperature. The purpose of the collectors is to multiply the incoming solar 

radiation on the hot side of the TEG by a factor of four. Consequently, the solar energy landing 

on the absorbing side of the TEGs was four times (4X) bigger than it would have been with a 

single reflector. Figure 43 portrays a portion of the local DNI, responsible for the above 

mentioned fact, experimentally recorded with a Pyrheliometer mounted on a dual axis sun 

tracker. Each single unit represents the solar irradiance recorded during the course of a day. As 

can be seen clearly, each day shows a unique insolation pattern with the effect of variability, 

relative to the local weather conditions. Hence, these effects of variability illustrated in Figure 44 

through Figure 46, tremendously impacts, in a proportional manner, the outcome of the 

experiment, viz. ΔT and the subsequent energy generated by the system. 
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Figure 43 – Local direct beam radiation 

 

 

4.2.11.1 Hot Side Temperature 

Figure 44 presents the absorbing-side temperature determined experimentally over days. 

This hot side temperature was organized in a lookup table and then fed into the LTspice TEG 

model as the sole thermal energy source to the system. As can be clearly observed, this 

temperature varies throughout the days, the weeks, the months, and the seasons of the year. The 

highest peak, obviously, occurred during day time and was as high as 125 °C, whereas the 

minima typically occurred after sunset. The hot side temperature, as already stated, is the only 

thermal energy input to the STEG energy-harvesting system. Therefore, the emitting side 

temperature is dependent solely on it. 
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Figure 44 – Temperature variations, Hot side 

 

 

4.2.11.2 Cold Side Temperature 

Figure 45 presents the experimental cold-side temperature results of the commercial 

TEGs manufactured by Custom Thermoelectric. It ought to be mentioned that this temperature is 

analogous to the one just stated above. In a similar fashion, this emitting-side temperature varies 

throughout the days of the year and also possesses some peaks and troughs. The peaks generally 

occur in daytime during summer months; the highest recorded peak value is 72 °C. Conversely, 

the lowest temperatures occur after sunset, as can be seen from the same graph. Hence, the 

distance of the instant emitting-side temperature from its instant absorbing-side counterpart 

would determine the magnitude of the useful temperature (ΔT) necessary to validating the 

Seebeck theory. The Seebeck effect is thoroughly explained in chapter 1. 
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Figure 45 – Temperature variations, Cold side 

 

 

4.2.11.3  Useful Temperature  

Figure 46 shows the experimental temperature differential (ΔT) developed across the 

TEGs based on the aforementioned two significant variables, i.e. TH and TC. It is worth 

mentioning that without any ΔT, there would be zero potential difference across the 

semiconductor devices. This fact would negate Seebeck’s entire theory. Therefore, it is not only 

necessary to keep the two sides of the TEGs as far apart as possible, but also to have a good heat 

sink with the least thermal resistance possible. Figure 46 also shows on average a temperature 

differential of about 40 °C and above throughout the period, with some maxima in the 

neighborhood of 60 °C.  
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Consequently, in order to validate the experiment, a novel electrical-analogy scheme of 

this STEG system was developed by means of the LTspice simulator. The subsequent section 

critically analyzes some of the experimental and simulated findings of this work. In addition to 

that, Sec. 4.2.11.7 and 4.2.11.8 provide more details on these three variables, namely absorbing 

side, emitting side, and the useful temperatures. 

 

 

 

Figure 46 – Temperature differential, TH-TC 

 

 

4.2.11.4  Thermal Efficiency of the System 

Figure 47 depicts the thermal energy efficiency of the entire STEG system. This 

efficiency is consequently estimated based on the daily solar energy received by the absorbing 

side of the system in conjunction with the resultant useful thermal energy (ΔT).  On one hand, the 

0 0.5 1 1.5 2 2.5

x 10
5

-10

0

10

20

30

40

50

60

Time [min]

T
e
m

p
e
ra

tu
re

 [
C

]

Temperature Profile--Delta Temp

 

 



 

132 
 

efficiency is highly variable, with positive values as long as the sun shines. Hence, the average 

daily efficiency is about 25 percent. On the other hand, the overall average thermal efficiency 

over the course of 24 hours is estimated to be 14.3 percent. It is worth mentioning that the 25 

percent efficiency is more realistic than the latter value due to, again, the nocturnal absence of 

the sun. 

Conversely, the electrical efficiency of these kinds of TEG under investigation was 

estimated by the manufacturer to be 6 percent under STC. Hence, in these standard and optimal 

conditions, the hot-side temperature was fixed at 300 °C while the cold-side temperature was 30 

°C, thus yielding a temperature differential of 270 °C across the device. In contrast to that, this 

work aimed at studying the impacts of real environmental situations on the STEG system 

influenced by many factors, such 1) wind speed and direction; 2) relative humidity; 3) DNI; 4) 

frequent cloud coverage; and so on.  
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Figure 47 – Thermal efficiency variations 

 

 

Therefore, far from the STC performance claims made by the manufacturer, the overall 

real-world solar thermoelectric generator (STEG) test results show an achievable efficiency of 

1.30 percent, and are conveniently summarized in Table 13. The real-environment results, as can 

be seen from the table, vary from zero to a final value, irrespective of the variables because of 

two major factors: 1) sudden weather events, and/or 2) the nocturnal absence of the sun. 

 

 

Table 13 - Comparative results—STC vs real-world test 

Designations STC Real-Environment STEG 

Hot Side Temp 300°C 0 to 125°C 

Cold Side Temp 30°C 0 to 70°C 

Temp Differential 270°C 0 to 58°C 

Efficiency 6 % 0 to 1.30 % 
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4.2.11.5 Comparative Temperature Analysis 

Figure 48 shows the typical temperature profiles both recorded and simulated, for the two 

sides of the STEG system. These temperatures were plotted separately for clarity purposes. 

Otherwise, it would be hard to decipher if they were to be plotted all together in the same graph. 

Accordingly, Figure 48 a) and c) on one hand, refer to the experimental and simulated 

temperatures across the energy-harvesting system respectively, where TH is the same as V(Te5) 

and TC is represented by V(Ta5). On the other hand, Figure 48 b) and d) illustrate the useful 

differential temperatures needed to produce a meaningful output voltage through the Seebeck 

effect. As can be seen from these two curves (ΔTs), the error rate between simulation and 

experiment varied from 0°C to about 10°C, and more than 80% of the error rate was attributable 

to the cold side of the STEG system. This acceptable discrepancy between the real-world solar 

experiment and the LTspice model can be explained by either or both of the following: 1) the 

internal parasitic components’ variation, and 2) the non-homogeneity of the aluminum blocks 

that were assumed to be pure metal heat exchangers during the computation of the thermal 

parameters. Another way of viewing this error is that the LTspice model is roughly 25% less 

accurate than the actual experiment. The latter lesson would serve as a valid benchmark that 

would enable the rectification of any future similar solar STEG design and Spice modeling. 

Additionally, two main findings can be identified: 1) The ΔT, as significant as 55 °C was 

in both cases found to be proportional to the local DNI, which was the only input to the system. 

2) Because of the laws of proportionality stated above, the variability in the incoming sunlight 

was likewise noticeable on the two sides’ temperature of the STEG as seen in Figure 48 a) and 

c).  
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Figure 48 – Temperature variations across the STEG system: a) Experimental temperature profiles, b) Experimental 

ΔT, c) Simulated temperature profiles, d) Simulated LTspice ΔT 

 

 

4.2.11.6 Comparative Voltage Analysis (LTspice) 

This solar TEG energy-harvesting system was designed and built to serve typical remote 

residential areas in developing regions. The local direct solar radiation, which was the only input 

to both experimental and simulated systems, was recorded by means of a Pyranometer. In other 

terms, the projected energy harvested for the benefit of the remote inhabitants took into 

consideration not only the actual solar data at the site, but also the typical weather conditions, 

such as relative humidity, rainfall, and wind speed and direction.  
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In a like manner, issues of variability remain a critical factor even on the final output of 

the entire STEG system. As depicted in Figure 49, the continuous voltage supplied, based on the 

above ΔTs developed across the devices, varies between 0V (cases of complete cloud coverage 

or after sunset) to 8.57V (clear summer sky) throughout the sample of days simulated. Hence, it 

is worth noting that since there are more sensitive electronic gadgets in rural households today, 

due to breakthroughs in cellular communication and the medical field, a DC-DC converter is 

solely recommended for a better lifespan of those appliances. 

 

  

 

Figure 49 - Voltage waveform over seven (7) days 
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4.2.11.6.1 Voltage on a Cloudy Day 

As real local DNI data from our experiment were imported into the Spice model via the 

built-in piecewise linear (PWL) command, any intermittency in the insolation would 

automatically be reflected in the outcome of the model. As an example, Figure 50 portrays the 

Spice model’s output voltage of the system on a typical cloudy day. It is clear that variability 

remains a big challenge even on STEG energy-harvesting systems. It is important to note that the 

unit does not always output the exact amount of power that is expected because of random and 

severe weather events. Therefore, this proves, once again, that variability due to cloud coverage 

affects real-world STEG systems, the same way it affects PV systems. During cloudy weather 

conditions, the STEG’s output changes suddenly by responding instantaneously to fluctuations in 

sunlight. An indirect consequence of this finding is that, if a large STEG farm is tied to the grid, 

the system could have large and frequent ramp events that may create challenges for grid 

operators. Also, cloud coverage and STEG output variability are intimately related and could be 

dependent on the system size, shape, speed, and other unknown natural factors. The average and 

RMS values of the voltage generated by the system on this typical cloudy day are 927.05mV and 

2.2065V, respectively (see Figure 50). 
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Figure 50 – Voltage comparison—Typical cloudy day 

 

 

4.2.11.6.2 Voltage on a Clear Day 

Similarly, the energy harvested on a typical and fairly normal day is illustrated by Figure 

51. As compared to Figure 50, this voltage profile is more like that of a PV system mounted on a 

dual-axis tracker. It looks coherent and smoother although this curve also replicates, at a 

somewhat smaller scale, the effects of the inherent variability of solar energy. Thus, it is worth 

pointing out that the latter changes constantly throughout the days and seasons of the year. 

Likewise, the average and RMS values of the voltage generated by the system on this clear day 

are 4.632V and 5.0727V, respectively. As can be seen, the difference between the results of these 

two days (Figure 50 and Figure 51) is tremendous as the voltage of the clear day is 44 percent 

better. 
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Figure 51 – Voltage comparison—Normal sunny day 

 

 

4.2.11.7 Typical Cloudy Day before the Converter (Real-world) 

Figure 52 presents the results of the STEG energy-harvesting system before the DC-DC 

converter was added not only to boost the output voltage, but also to stabilize it in a reliable 

manner. In Figure 52, four important variables are plotted, each in its own quadrant by means of 

Matlab software subplots command: 1) the DNI recorded on the cloudy day; 2) the resulting 

absorbing side temperature; 3) the emitting side temperature; and 4) the output voltage. Hence, it 

is important to notice two phenomena that occurred concurrently. First, only the cold-side 

parameter of the TEG did not replicate the intermittency pertaining to the DNI. This fact clearly 

implies the existence of a huge thermal inertia between the absorbing and the emitting sides of 

the system. Second, the voltage on that particular day was not reliable because it was highly 

intermittent, nor was it high enough to turn on electronic appliances or charge batteries. So, the 
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direct consequence is that without any additional electronic conditioning circuitry, STEG 

systems would not be suitable in meeting remote residential energy demands. 

 

 

 

Figure 52 – Related STEG system’s variables, Cloudy day 

 

 

4.2.11.7.1 DNI on a Cloudy Day 

Additionally, for clarity, the insolation is separately presented in Figure 53. It can be 

observed that the changes in the incoming sunlight were instant and abrupt. It changes from high 

value to low and back again, many times a day. Hence, instead of having a concave-like 

downward shape, the DNI kept varying from 0.3 to 1.2kW/m
2
. 
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Figure 53 – DNI, Cloudy day (CER) 

 

 

4.2.11.7.2 Comparative Temperature Profiles, Cloudy Day 

Figure 54 compares the three interrelated temperature variables: 1) hot-side temperature 

(blue); 2) cold-side temperature (green); and 3) temperature differential (red), also known as 

useful temperature. These three variable parameters were utilized to empirically describe the 

thermal performance of the STEG system. As can be seen, the temperature differential trends 

were much more affected by the absorbing side temperature compared to the emitting side 

temperature. This implies that, since the useful temperature imitates the exact same pattern of the 

hot side temperature at a lower scale, the thermal inertia across the pile of TEGs had had a lesser 

effect on it. This can further be interpreted as a good or a bad phenomenon: 1) it is good in the 

sense that a higher hot side temperature always yields a significant useful temperature, providing 

a good heat sink is utilized; 2) it is a bad phenomenon in the sense that a lower or intermittent 
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absorbing side temperature results either a much more lower intermittent or a trivial ΔT 

incapable of generating sufficient voltage through the Seebeck effect. 

 

 

 

Figure 54 – Comparative Temperatures: Hot side (blue), Cold side (green), and ΔT (red) 

 

 

4.2.11.7.3 Useful Temperature versus ambient (Cloudy Day) 

Figure 55, likewise, illustrates for comparative study demonstration, the temperature 

differential (red) and the ambient temperature (green). Hence, it important to note that these two 

variables like the aforementioned parameters were recorded on the same cloudy day.  The 

ambient temperature, as noticed has fewer ripples in it and has stayed in the neighborhood of 33 

°C throughout the day. Cloud coverage can be said to have little to no impact on the ambient 

temperature. This fact contrasts with the effects of cloud coverage on the useful temperature as 
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viewed from the red curve.  However, after sunset, they both converged and adopted the exact 

same patterns, as the only remaining heat source to the STEG energy-harvesting system was the 

ambient thermal energy.  

 

 

 

Figure 55 – Ambient (green) and temperature differential (red) trends 
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was less than a volt that particular day. Also, the voltage was extremely intermittent throughout 

the day and the supply was therefore far from being dependable. 

 

 

 

Figure 56 – STEG system’s voltage without converter, Cloudy day 

 

 

4.2.11.8 Normal and Clear Day with the Converter (Real-world) 

Figure 56 depicts the results of the STEG energy-harvesting system on a clear day after 
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output. Similar to the investigation performed on the cloudy day, four important variables are 
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the converted output voltage. Of these variables, the output voltage has shown some dips 

although the converter supposedly yields a constant output of 5VDC. Hence, each of these solar 

energy features is analyzed thoroughly in the subsequent sections.  

 

 

 

Figure 57 – Related STEG system’s variables, Clear day 

 

 

4.2.11.8.1 DNI on a clear day  

Figure 58 illustrates the direct normal insolation recorded at the solar site located at the 

University of Nevada, Las Vegas (UNLV), where the real-world STEG experiment was 

conducted. As opposed to Figure 53, the downward concave shape is achievable on this 

particular clear day. It can be observed that fewer ripples arise in the direct electromagnetic 
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transitioned with a positive slope from about 0.875 to almost 1.10kW/m
2
. It stayed at that 

constant value (approximation) the whole day and then completed the concavity by drawing a 

negative slope. Therefore, the real-environment parameters, such as the absorbing side, emitting 

side, and useful temperatures exclusively depend on the quality of both the instantaneous and 

cumulative electromagnetic waves that continuously arrive on the STEG system. 

 

 

 

Figure 58 – DNI, Clear day (CER) 
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as previously stated, were utilized to empirically define and investigate the thermal performance 

of the novel STEG system. The temperature differential trends were tremendously affected by 

the behavior of the absorbing side temperature. The effect was to the extent that one would 

undoubtedly think of it as a duplicate, but at a much lower scale. Again, the direct implication is 

that the thermal inertia across the stack of TEGs had not had as much of an effect on the useful 

temperature in reference to the emitting side temperature. Furthermore, it can be inferred from 

these two graphs (blue and green) that a sunny day always yields a significant ΔT which is the 

sufficient prerequisite for the applicability of the Seebeck theory.  

On the contrary, the phenomenon happening on the cold side temperature was totally 

opposite, but unique in the sense that it stood alone due to the retention of the thermal 

momentum across the semiconductor pellets. 
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Figure 59 – Temp comparative analysis: Hot side (blue), Cold side (green), and ΔT (red) 

 

 

4.2.11.8.3 Temperature differential versus ambient (Clear Day) 

In light with the same comparative logic approach, Figure 60 purposely compares the 

temperature differential to the ambient. By extension, it also compares and then contrasts 

between Figure 60 (Clear day) and Figure 55 (Cloudy Day). As can be seen throughout the day, 

the ΔT rose above the ambient except during some patchy periods. Also, unlike the ambient that 

was fairly linear, the temperature differential was highly intermittent, although the DNI shown 

earlier disclosed that the day was clear. Consequently, the ΔT is shown to vary between 18 °C to 

roughly 51 °C through the TEGs. The ambient temperature, as observed, has a distinctive pattern 

evidently independent of what is happening on either side of the TEGs, as long as the sun shines 

in the sky.  
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However, as compared to the previous study done under cloudy day conditions (see 

Figure 55), after sunset, the ambient as well as the ΔT both have to converge and adopt the same 

exact patterns. It is worth noting that the only remaining heat source to the whole STEG energy-

harvesting system and its surrounding was the ambient thermal energy. 

 

  

 

Figure 60 – Comparison: Ambient (green) and differential temperature (blue) trends 
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that some intermittent phenomena might have taken place either in the circuitry or in the input 

thermal energy. The occurrence of this weird, but enlightening, phenomenon absolutely shows 

that a real-world STEG system is far from being safe of frequent transitory behaviors even 

though the DC-DC converter was utilized.  

On the contrary, the safest way to deliver constant and reliable electrical energy to remote 

residential areas is by utilizing energy storage systems, such as batteries, in conjunction with the 

STEG system. Therefore, it can be clearly seen that the output of the 3.2V K2 battery remained 

constant throughout the study period. A significant insinuation is that the proposed system was 

capable of charging the battery to 3.4 VDC in an efficient manner. It is now an easy practice to 

connect many of such batteries either in series, and/or in parallel combination, in order to 

achieve the desired voltage and current levels.  
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Figure 61 – Comparative STEG system’s voltage with converter, Clear day 

 

 

4.2.11.9 Charge Profiles Analysis 

As already mentioned in the previous chapters, solar energy is not available all day long. 

This fact makes energy storage a suitable technology for remote areas which are far from the 

grid. K2 batteries, manufactured by a local company were chosen to fit our needs in order to cut 

down part of upfront costs. A comparative charging analysis was considered and investigated. 

Figure 62 highlights the various K2 battery charging patterns performed in line with this study. 

The Maccor 4200 series was used to charge the 3.2V battery in roughly seventeen hours (17 hrs.) 

in the power laboratory at 1C-rate. After a careful discharge of the battery, the same test stand 

was re-utilized to recharge the battery at a different C-rate, i.e. ½C, as can be seen in Figure 62. 

The recharging scenario at ½C-rate was completed at about 33 hours, which almost doubled the 

charging time at the unit rate capacity (1C-rate).  
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Besides the two different C-rates, other important discoveries made are: 1) achieving the 

understanding of how the STEG system charges the energy storage system in question and 2) the 

insight on how real-environment ESS recharge compares to the Lab test.  As can be seen from 

the blue curve, it seemingly takes the real-world system much longer time to charge the battery 

to the desired level of 3.2 VDC than the Maccor does, irrespective of the C-rates. A more 

detailed analysis on how the experiment charges the battery is covered in Sec. 4.2.11.9. 2.  

 

 

 

Figure 62 – 3.2V battery charging patterns 

 

 

4.2.11.9.1 New States Relative to the Old States 

Figure 63 presents the various states of charge (SoC) of the LTC3105 converter and 

compares them to those of the K2 battery. Therefore, in this same graph, four of the important 
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variable curves were plotted, each in its own quadrant by means of a Matlab software subplots 

command. The two green curves belong to the ESS. The one on the left depicts its Old SoC 

before the discharge event took place, whereas the remaining one on the right hand side (RHS) 

illustrates the New SoC of the battery while it’s being continuously charged. Likewise, the two 

blue curves located at the bottom of Figure 63 portray the Old Output and the New Output of the 

converter, before and during the ESS recharge events correspondingly. The Old Output is on the 

left hand side (LHS) and the New Output is illustrated on the RHS. A more in-depth analysis is 

presented in the two subsequent sections. 

 

 

 

Figure 63 – The states of charge of the K2 ESS and the output of LTC3105 converter 
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4.2.11.9.2 States of the K2 Battery ESS  

Figure 64 shows for comparative purposes the two performance states of charge of the 

energy storage system under study. As previously stated, the blue curve denotes the old state of 

the battery, whereas the green curve indicates the new state. At the very beginning of the 

investigation, the battery was only utilized as a backup system without any preceding knowledge 

of how it would actually perform in a real-world scenario in terms of charging and discharging. 

As can be seen by the blue curve, the battery was not only fully charged but stayed constant at 

3.3VDC through the assessment period. 

Alternatively, to capture the real charging mechanism of the storage system, the battery 

was meticulously discharged with the Maccor tester to a safe voltage level of 1.25VDC, as 

shown by the ordinate axis of Figure 64. The battery was then brought back and hooked up to the 

STEG energy harvester for real-performance analysis. As shown by the green curve, even after 

55 days, the STEG system was unable to recharge the battery to its previous state of charge. This 

is a great indication that the chemistry of the K2 battery has reached a certain threshold limit 

beyond which it ceases to convert any of the incoming solar energy into chemical energy. In fact, 

from the 12
th 

day, the battery has reached its useful limit after the vertical jump from 2.54 VDC 

to 3.0 VDC in terms of charge retention. Also, beyond that point, the battery was saturated and 

stayed almost flat for the rest of the 43 days without any significant improvement. Conclusively, 

the useful and threshold limit of the battery is about 3.0 VDC. Obviously, the Maccor 4200 tester 

has shown great signs of efficacy compared to the real-world STEG system. 
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Figure 64 – The old and new states of charge of the battery 
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battery charger or the value of the C-rates, however, two valuable parameters worthy of 

consideration for battery performance analysis are: 1) the Time span, t and 2) the Final Voltage, 
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duration and voltage level. 
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Table 14 - Summary of K2 charge characteristics 

Designations Maccor 4200 series STEG 

0.5 C 1C 

Final Voltage (VF) 3.2 V 3.2 V 3.0 V 

Time Span (t) 33 hrs. 17 hrs. 12 Days 

 

 

4.2.11.9.3 States of the LTC3105 Converter   

As briefly stated in the introductory discussion of this section, Figure 65 depicts a 

comparative illustration of the Old Output (blue) and the New Output (green) of the converter 

before and during the K2 battery charging events. Hence, it is worthy of note to point out that 

this part of the analysis focuses primarily on the whole days as a SET, rather than a single day as 

many events, such as transients and discontinuities, might have happened due to unpredictable or 

sudden weather changes. Therefore, we are more interested at this stage of the analysis at the 

global trend of the LTC3105 output voltage over the charge time span. As seen from the blue 

curve, despite some sporadic voltage dips related to the inherent variability effect of solar 

energy, the output of the converter can be estimated at 5.0 VDC all day long for the entire 52 

days of the test period. This indicates an intimate linear relationship between the battery Old SoC 

and the LTC3105 Old Output, as they both stayed constant at their respective values throughout. 

In contrast, the green curve reveals three valuable and major findings worthy of 

discussion: 1) after the addition of the discharged battery, the output of the LTC3105 dropped to 

2.4V; 2) the output of the converter has three sections, each carrying a different value and 

meaning; and 3) the curve also shows a close linear relationship between the battery New SoC 

and the LTC3105 New Output.  

The overall trend of the green curve is comparable to an N-type doped semiconductor 

material’s carrier density dependence on temperature. The similitude of the first region (first 12 
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days) as compared to the ionization region is termed in this work, the Initialization region, where 

the converter re-adjusts itself to the new environment and then it starts increasing its output 

voltage as the battery gradually moves to a new SoC.  

 

 

 

Figure 65 – Comparison between the old and new LTC3105 output 
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At this time, any additional thermal energy is regarded as not effective until a new state is 

reached as days are passing by. The third resemblance has to do with an intrinsic-like region. In 

this particular similarity, as more and more days were passing by (~24 days), the constant region 

turned into a Normal-Operation region, and the output voltage of the LTC3105 exceeds the 

voltage of the K2 battery.  Finally, this analysis by the use of a technique known as SIMILIE, 

strictly applies to the aforementioned New SoC of the K2 battery energy-storage system covered 

in the humidity (RH) on the entire outcome of the STEG system is investigated in this work and 

then analyzed based of the actual site data. Toward that goal, Figure 66 presents both the RH 

curve (green) and the useful temperature (blue) retained across the string of TEGs. As can be 

seen, there is a close correlation between the two variables. The first insight is that these two 

juxtaposed curves helped to confirm a FACT: RH is always higher night time, but obviously 

lowers during day time due to a high evapotranspiration phenomenon caused by electromagnetic 

waves. Second insight can be clearly noticed from the 7
th

 column that a higher RH percentage in 

the air has a strong negative impact on the amount of ΔT that can be achieved. The direct 

implication of that is, by extension, the Seebeck effect, which is the fundamental TEG working 

principle, would yield to an insignificant potential difference. Thus, a high RH is irrefutably 

synonymous of low STEG system performance. The third insight is seemingly at the advantage 

of any solar energy-harvesting system, such as PV, TEG, and the like. Simply stated, the 9
th

 

column of the same comparative graphs reveals that the opposite effect of the above discussion is 

also correct. Although RH slightly increases the cooling of solar panels which could be of a great 

benefit in terms of VOC, it does equally demonstrate the tendency to lower the useful temperature 

of the TEG system in question. In the long run, decreasing ΔT by any means, when it is still 



 

159 
 

within the manufacturer’s specifications is considered as a potential source of negative impact. 

To sum up, the higher the RH, the lower the inclusive STEG energy generation would be. 

In a similar fashion, the wind speed and direction effects on the output of the solar 

thermoelectric generation system under study can also be analyzed based on real data available 

to us. For the time being, this phenomenon is overlooked as it is not the focus of this current 

work. 

 

 

 

Figure 66 – Local relative humidity vs delta temp (CER) 
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4.2.12 TEG RC Analogy and Analysis  

It has been proven throughout this research that the solar irradiance is directly 

proportional to the temperature on the hot side of the TEG. So, an impulse of light was organized 

in a lookup table to simulate the local DNI and then fed into the Spice model by means of the 

built-in LTspice piece wise linear (PWL) command. Hence, V (Te2) denoting the temperature on 

the hot side of each one of the five TEGs, as can be seen in Figure 67, follows the exact same 

pattern of the impulse light. In the same figure, V (Ta2) denotes the temperature on the cold or 

absorbing side. It is worthy of note to point out that two parameters, viz. the internal parasitic 

capacitance (C) and the internal resistance (R) of the TEG, turned out to be of great importance 

in the current study. Figure 45 illustrates a novel way of analyzing an RC circuit as can be seen 

from R42 and R43, C29 and C30 (5
th

 TEG at upper right of Figure 42). Further, the impulse-like 

lookup data were fed through V3 (low left of Figure 42). For clarity purposes, the combination of 

the two resistances is equivalent to the TEG’s internal resistor, whereas the summation of the 

capacitances is referred to as internal parasitic capacitor effects.  
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Figure 67 – Ramp rate in an STEG circuit 

 

 

Therefore, If the input square wave, which is temperature in this study, transitions from 0°C to 

100°C (Tpulse), then the temperature across the cold side of the TEG is calculated as 

𝑇𝐶𝑜𝑙𝑑(𝑡) = 𝑇𝑝𝑢𝑙𝑠𝑒 ∙ (1 − (e)−
𝑡

𝑅𝐶) + 𝑇𝐼𝑛𝑖𝑡𝑖𝑎𝑙                                            (61) 

Where, TCold, Tpulse, and t are the temperature on the emitting side, temperature on the absorbing 

side, and the time variable respectively; TInitial is assumed equal to zero in this case. 

Also, it should be mentioned that due to the internal parasitic components effects, such as 

inductance and capacitance on one hand, and the effect of the heat exchanger on the other hand, 

the TEG RC analogy is slight different from the conventional RC circuit behavior. In essence, 

the Seebeck theory is only applicable if a certain temperature differential appears across the 

TEG. So, by virtue of that, when steady state is reached, Tpulse and TCold are quite alike. In 
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addition to that, when the applied pulse goes to zero, V (Ta2) stays at certain threshold value 

because of the same aforementioned reasons. 

In other words, the time it takes the TEG to reach half of the input pulse, although not 

similar to the conventional delay time, td, can be calculated by  

𝑇𝑝𝑢𝑙𝑠𝑒

3
= 𝑇𝑝𝑢𝑙𝑠𝑒 ∙ (1 − (e)−

𝑡

𝑅𝐶)𝑡𝑑 ≈ 0.4 ∙ 𝑅𝐶                                 (62) 

The new RC theory, though has some limitations because it is only applicable to TEGs, 

needs further explanations. TCold, as can be seen from Figure 67, begins its ascension at 10% of 

the applied pulse. It then flattens out at approximately 80% of the latter temperature, which 

implies that all the computations and the subsequent reasoning would be in the useful range of 

0.6 to 0.7Tpulse. 

From the traditional RC circuit theory, the rise time is known to be the time the output 

pulse takes to go from 10% to 90% of the input pulse. In this particular similitude, we are dealing 

with temperature rather than voltage. So, in the solar thermoelectric generation RC analogy, it 

goes from 20% to 60% as can be viewed from Figure 67 and Figure 68. Therefore, the rise time, 

tr, in terms of RC time constants is given Eqs. (63) and (64).  

0.2 ∙ 𝑇𝑝𝑢𝑙𝑠𝑒 = 𝑇𝑝𝑢𝑙𝑠𝑒 ∙ (1 − (e)−
𝑡

𝑅𝐶)                                              (63) 

and 

0.6 ∙ 𝑇𝑝𝑢𝑙𝑠𝑒 = 𝑇𝑝𝑢𝑙𝑠𝑒 ∙ (1 − (e)−
𝑡

𝑅𝐶)                                               (64) 

So, after solving these two equations independently for t0.2 and t0.6; the results are 0.22RC and 

0.92RC respectively.  

Finally, the rise time in question, tr, of the STEG RC analogy is given by Eq. (65). 

𝑡𝑟 = 𝑡0.6 − 𝑡0.2 = 0.92 ∙ 𝑅𝐶 − 0.22 ∙ 𝑅𝐶 = 0.7 ∙ 𝑅𝐶                                 (65) 
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In summary, we have demonstrated and developed a novel RC theory applicable only to 

solar TEG. This new theory explicitly shows not only the implications, but also the effects of 

internal parasitic elements (R, C, and L) on the inner transient heat transfer occurring in any solar 

energy-harvesting TEG. Also, for those who are not very familiar with the RC concepts, the tr 

found in the current study is the same as td found in the conventional RC analysis. The only 

exception made is that, although they both carry significant meaning, they must be interpreted 

and understood independently from one another. 

Figure 68 illustrates the pulse-like hot side temperature (blue) and how the emitting side 

temperature rises and falls in response to the applied thermal energy (green). Also, presented in 

this same graph is the output voltage of the overall energy-harvesting system in red.  

 

  

 

Figure 68 – Spice STEG response to RC analogy 
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Consequently, the output voltage of the STEG system in response to the applied 

electromagnetic pulse of light is displayed by itself in Figure 69 for clarity purposes. In like 

manner, as the pulse like input solar energy was rising, flattening, and then falling sharply, the 

overall system’s output voltage was also varying. It is worth mentioning that when the hot side 

temperature flattens at 100 °C, the output stabilizes to a certain threshold voltage in the 

neighborhood of 6V, as can be clearly seen from Figure 69. It then falls with a negative slope 

and the cycle repeats itself in a periodic fashion. Further, due to the thermal inertia and the way 

the Seebeck theory works, the voltage continues its negative and abrupt descent until the next 

thermal pulse kicks in. Hence, this trend once again confirms the need for a DC-DC converter in 

conjunction with any real-environment STEG energy-harvesting system or it would otherwise be 

detrimental to costumer sensible electronic appliances. In addition to that, an energy storage 

system, mainly any of the dominant battery technologies, is highly recommended towards the 

same goals since solar energy is not only stochastic in nature, but is also absent during night 

time. 
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Figure 69 – STEG output voltage in response to light pulse 

 

 

4.2.13 Summary 

A stand-alone and real-world environment solar thermoelectric generator energy-

harvesting system was designed, built, and simulated for energy delivery to remote residential 

areas in developing regions. All the thermal capacitances and resistances of the various physical 

parts which constitute the system were computed based on the multipart geometries and 

properties of the device. An LTspice model for the entire system was then developed utilizing 

the thermal-to-electrical analogy schemes. The internal thermoelectric generators’ parasitic 

inductances and capacitances variations with temperatures were captured in this model for 

accuracy purposes in the analogy. The local direct normal solar insulation was the only input to 

the system. Overall, the main objective for energy delivery to off-grid remote and developing 

regions was positively demonstrated and achieved. Simulated results agreed with the 
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experimental data recorded on site. Any error rate in the model can be explained by either one or 

both of the following: 1) the internal parasitic components’ variation, and 2) the non-

homogeneity of the physical blocks that were assumed to be a pure aluminum heat exchanger 

during the computation of the thermal parameters.  

Additionally, this work has introduced a second important and unique analogy. 

Therefore, this novel RC analogy of the designed solar thermoelectric generator was intended to 

exclusively estimate the cold side temperature variations of a TEG when an impulse-like 

electromagnetic wave radiation is applied on the absorbing side of the system.  For the time 

being, this RC analogy is only applicable to a Spice model of any thermoelectric module power 

generation system or real-world TEG energy-harvesting systems until the theory is widespread.  

4.3 Comparative Analysis 

Energy researchers have long attempted to convert thermal energy into usable power for 

daily electrical needs. The sun is the main source of energy on Earth. Several methods have been 

investigated to harness the tremendous amount of energy that is infinite at a human scale. The 

conversion of these electromagnetic waves to direct electricity has been dominated to date by 

solar thermal power generation and photovoltaics. As part of this work, ways were investigated 

by which TEG systems could, in a near future, compete with solar PV systems, at least for 

remote off-grid applications in terms of reliability and efficiency. Although this comparative 

study is not completely conclusive in favor of the solar TEG energy-harvesting systems, the 

latter affords numerous advantages over PV systems. 

4.3.1 Efficiency Comparison  

The temperature measurements reveal insufficient temperature difference between 

absorbing and emitting ceramic plates of the STEG system if compared to the results obtained 
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under standard test conditions. Nevertheless, the average daily temperature efficiency is about 25 

percent, but the overall average temperature efficiency over the course of 24 hours is estimated at 

14.3 percent. It is worth mentioning that the 25 percent efficiency is more realistic than the latter 

value due to, again, the nocturnal absence of the sun. Therefore, the temperature efficiency, not 

to be confused with neither thermal nor electrical efficiency, of this system is evidently higher 

than that of most PV systems, except the triple junction technology. This previous finding, 

however, is not meant to obstruct the real electrical efficiency of the STEG system. Thus, the 

real-world solar thermoelectric generator (STEG) test results show an achievable efficiency of 

1.30 percent under arid weather conditions, which is clearly far below the actual solar conversion 

efficiency of any of the existing PV a technology. 

Although the current price of thermoelectric modules is seemingly high, they are 

extraordinarily small. Therefore, this fact can be viewed as a great advantage for solar projects 

where space is of a big concern. 

Besides, it would have been more convincing to conduct a comprehensive economic 

analysis to truly disclose the real benefits of TEG without any superficial verdict based on the 

efficiency alone. This understanding is required to finalize the comparison. Unfortunately for this 

supplemental study, not only does the comparison require extra time and money, but it is 

assuredly outside the scope of this research plan.  

4.3.2 Reliability Comparison 

In contrast to photovoltaic cells, thermoelectric devices can, however, operate anywhere 

and anytime, day or night, providing there is a significant heat source. Since steam turbines 

supply around 90 percent of the US daily electrical energy demand, TEGs can be competitively 

attached to the plants’ exhausts to potentially recover waste heat. On the plus side, again, the 
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biggest advantage of thermoelectric generators is that waste heat is freely available and TEG 

may be the most common way to transform it to usable power. 

 Conversely, the thermal stability of TEGs is another challenge that has not been totally 

understood. Additionally, the lifetime of TEG modules is shorter (less than 20 years) as 

compared to PV, especially when the absorbing side temperature is sufficiently higher to cause 

permanent damage at the junctions. The projected service life of PV cells is in the neighborhood 

of three decades.  
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Chapter 5: Conclusions, Contributions, Discussions, and Suggestions for Future Research 

5.1 Overview and Conclusions 

This work seeks to investigate ways to deliver renewable energy to remote residential 

areas in developing regions. Thermoelectric modules that work based on the principles of 

Seebeck theory were selected for both technical and economic reasons to accomplish the work at 

hand. A novel transient heat transfer analysis method was introduced, whereby a circuit 

simulator was proposed rather than the complex analytical heat transfer equations to analyze the 

experimental system in its entirety. The proposed thermal analysis method is based on the 

thermal-to-electrical analogy schemes. Hence, effects of internal parasitic components, such as 

inductance and capacitance were estimated and taken into consideration in the current research 

project. Considering these elements helps to capture the real-world performance of the STEG 

energy-harvesting system in the LTspice simulation model.  

Chapter 1 presents the current situation in emerging economies in terms of access to 

electricity and how severely the lack of electricity obstructs all sorts of advancements. 

Additionally, it also highlights the ever-increasing demand for electrical energy on a daily basis 

with the plethora of electronic gadgets that invade both urban and rural households in developing 

countries. The chapter, moreover, elaborates on the vivid need for any sovereign country to 

attain energy independence through not only dependable, but also, and most importantly, 

renewable sources, such as hydropower, wind power, photovoltaics, solar thermoelectric 

generators (STEG), and the like, for the sake of global sustainability. 

Furthermore, this opening chapter serves as an initial platform where all the important objectives 

and challenges of the current work are emphasized in a concise manner. Finally, this chapter 
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covers the motivations and background of the work, and also outlines the dissertation plans in 

chronological order.  

Chapter 2 reviews the literature through identification of the advances accomplished 

thus far at both academic and industrial levels in the field of thermoelectric devices and systems. 

The chapter further focuses on categorizing the various areas of thermoelectric modules’ 

applications. Therefore, TEG with DC-DC converter, TEG with energy storage system, Spice 

modeling of TEGs, and solar TEGs are some of the applications in the literature. Particular 

emphasis is put on the articles treating the thermal-to-electrical analogy concept, utilizing the 

family of spice simulator software, as they are the most frequently cited papers throughout this 

study. 

Finally, this literature survey chapter serves as the benchmark to this work because it lays 

the conceptual foundation for understanding the STEG research and also clarifies the potential 

research gaps. The chapter is further subdivided into a general and a specific review for clarity 

purposes, followed by brief concluding remarks. 

In chapter 3, the proposed energy-harvesting-system methodology and the 

implementation of the novel thermoelectric LTspice modeling techniques are thoroughly 

covered. Hence, this project has designed, built, and tested a solar thermoelectric generation 

system. Investigation of a commercial TEG has been attempted under real conditions similar to 

arid and harsh weather situations comparable to the Sahel, a unique geographical band located in 

the northern hemisphere of Africa. Second, and especially worthy of note, electrical parameters 

have been computed from both a datasheet and the device’s geometries and properties.  
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Additionally, the internal parameters variations with temperatures of the thermoelectric 

modules have been implemented in the electrical model of the thermal system via the arbitrary 

behavioral voltage sources (ABVS) command. 

In a nutshell, after establishing the basic working theory of TEG modules, the following 

investigations were performed in a sequential fashion: 1) description of two major LTC DC-DC 

converters, viz. LTC3105 and LTC3525 (although the latter converter has proved not to be 

applicable to the current STEG system) and ways in which they can enhance the outcome of the 

study; 2) the performance of the Maccor 4200 series battery tester followed by a rigorous 

assessment of different battery technologies and some practical sizing scenarios; 3) the 

simplification of the visual acquisition of the whole system by designing an architectural 

compact view and energy flow chart; and 4) lastly, a brief cost-effective analysis of a typical 

rural household’s energy storage needs concludes the chapter.  

Finally, chapter 4 presents the experimental verification of the thermo-electricity theory 

and the results under different scenarios. This chapter is further divided into two separate parts. 

First, an indoor thermoelectric module performance was investigated; satisfactory results were 

achieved, compared and then contrasted with the simulated results. It is worth mentioning that 

the indoor test was conducted for 32 minutes, a relatively short period of time. A relatively 

significant temperature differential (ΔT) of 13.43
o
C was achievable.  

Second, a real-world-environment solar thermoelectric generator energy harvesting 

system was designed, built, and simulated for energy delivery to remote residential areas in 

developing regions. In a like manner, all the physical parts were converted to electrical 

parameters via the thermal-to-electrical analogy utilizing their various geometries and properties. 

The circuit model of the thermal system was 75% accurate although the TEGs’ internal parasitic 
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inductance and capacitance variations with temperatures were captured. This error rate in the 

model can be explained by either one or both of the following: 1) the internal parasitic 

components’ variation and, 2) the heterogeneity of the physical blocks that were assumed to be a 

pure aluminum heat exchanger during the computation of the thermal parameters.  

Interestingly, this work has introduced two novel analogies. To begin with, a novel RC 

analogy of the solar thermoelectric generator system was introduced to evaluate the emitting side 

temperature variations when an impulse-like electromagnetic wave is applied on the absorbing 

side.  In contrast to the conventional RC, the rise time was estimated to be 0.7RC. Then the other 

novel analogy, comparable to an N-type doped semiconductor material’s carrier density 

dependence with temperature, was proposed.  In this similitude, we discovered that the 

converter’s new output state has three different regions of operations: 1) Initialization region, 

similar to the ionization region of the N-type carrier density; 2) Constant-but-Consistent region, 

comparable to the carriers’ constant region where the output of LTC3105 is equivalent to that of 

the K2 battery; and 3) Normal-Operation region, analogous to the extrinsic region. 

5.2 Contributions 

A summary of the six major contributions of this research is presented. 

5.2.1 Thermal-to-Electrical Conversion Steps 

The seven major steps for modeling any thermal system by means of its equivalent 

electrical analogy were first identified and proposed. 

5.2.2 Design and Construction of an Indoor Thermoelectric Cooler 

Through reverse polarity techniques, a TEG was demonstrated to function as a heat-

removal pump and was proposed to be modeled by LTspice simulator. The device was placed in 
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an insulated box to avoid any heat exchange with the surroundings. Therefore, this system can be 

proposed to be utilized for cooling electronic chips. 

5.2.3 LTC Circuits 

Through an accurate computation of all the physical components that made up the two 

thermal systems, viz. the indoor thermoelectric cooler (TEC) and the real-world solar 

thermoelectric generation system (STEG), two separate electrical circuits were not only 

achievable, but also proposed as novel ways to model complex heat-transfer systems. Thus, a 

much simpler way of investigating transient heat propagation through various media is 

developed for use by thermal Engineers. 

5.2.4 RC Analogy 

A novel RC analogy, exclusively applicable, for the time being, to a Spice modeling of 

any solar thermoelectric generator was investigated and proposed. Through this analogy, we 

estimated the cold-side temperature variations of a TEG when an impulse-like electromagnetic 

wave is applied on the absorbing side of the system. The rise time (tr) is proposed to be 

equivalent to the delay time (td) of the conventional RC analysis.  

5.2.5 N-types Semiconductor Temperature Dependence Analogy 

Another novel similarity, comparable to an N-type doped semiconductor material’s 

carrier density dependence with temperature, was discovered and then proposed.  Through the 

analysis process, we found that the converter’s new output state has three different regions of 

operations, viz. 1) an Initialization region, similar to the ionization region of the N-type carrier 

density; 2) a Constant-but-Consistent region, identical to the carriers’ constant region where the 

output of the converter is equal to the output of battery; and 3) a Normal-Operation region, 

analogous to the extrinsic region. 
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5.2.6 Reliable and Cheap Power Supply 

A cheaper and reliable method for energy delivery to remote residential areas is 

proposed. This system can be used to power households’ vital daily energy needs in developing 

economies in conjunction with the proper energy storage systems. It can also be utilized to power 

communication devices and bio-sensors, whenever needed, in a dependable manner.  

5.3 Suggestions for Future Research 

 Similar investigations could be done with different types of TEMs for calibration 

purposes. Then, the performance of the new set of TEGs with and without a DC-DC 

converter, and their consequent respective results, should be studied meticulously. This 

future study should then put a particular emphasis on a comparison of the two STEG 

energy harvesting systems, for both curves and LTspice equivalent circuits.  

 We also propose to further investigate how this solar STEG energy harvesting system 

will actually perform under different electrical load conditions, i.e. light, normal, and 

heavy loads. 

 Finally, we propose a thorough and systematic cost-effective investigation of the STEG 

system and then perform a reliability and economic comparison with PV system setup for 

the same purpose of energy delivery to remote residential regions in developing 

countries.  

5.4 General Conclusion 

In the first part, an experimental setup was designed and built to characterize and study 

the performance of a commercial TEM.  One of the main objectives of this part of the work was 

to develop a solid foundation essential to model thermal systems by an equivalent electrical 

analogy via LTspice simulator. Through this pilot research, we were able to extract TEM 
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parameters from manufacturer datasheet and device geometries and properties. These parameters 

were then utilized to perform the thermal-to-electrical conversion required for the simulation to 

be as accurate as possible. The module, though manufactured to be operated as a TEG, was run 

in this setup as a TEC under the technique of the reverse polarity features. Although the indoor 

test lasted about half an hour, a significant amount of data was recorded.  The data were arranged 

in a lookup table and fed into the SPICE model through the PWL option.  

The second part of this work deals with the designing, building, and analysis of a 

standalone solar thermoelectric generation system for energy delivery to remote residential areas 

in developing regions. All the thermal capacitances and resistances of the various physical parts, 

which constitute the system, were computed based on the multipart geometries and properties of 

the device. An LTspice model for the entire system was then developed by means of thermal-to-

electrical analogy schemes. All the internal parasitic components variations with temperatures 

were incorporated in the model for accuracy purposes. At this stage, the direct solar irradiance 

was the only input to the system mounted on a double axis solar tracker.  

In the third part, three novel and unique analogies were investigated and proposed: 1) an 

electrical analogy of a thermal system to simulate an indoor as well as a real-world solar 

thermoelectric generation system; 2) a novel RC analogy to estimate the cold side temperature of 

a TEG when an impulse of light is applied on the hot side; and 3) another analogy, similar to an 

N-type doped semiconductor material’s carrier density dependence with temperature, was also 

introduced.  

Overall, the chief objective for energy delivery to off-grid remote and developing regions 

was positively demonstrated, achieved, and understood. Simulated results for both the indoor and 

outdoor were in good agreement with the experimental data recorded in the laboratory and on 
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site respectively. Any minor offset error is likely the result of internal parasitic effects or the 

non-homogeneity of the physical blocks that were assumed to be pure aluminum heat sinks 

during the computation of the thermal parameters. 

Conclusively, the real-world STEG system, in conjunction with battery energy storage, 

can be utilized for all kinds of remote energy applications including domestic, 

telecommunications, and bio-medical. Overall, the real-environment energy harvesting system is 

suitable for charging battery cells from 1.2 to 6 volts. 
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Appendix A 

A1 Matlab Codes for Many Days 

%% 

clear all; 

close all; 

clc; 

 

%% 

%-----------------Start Input Data for STEG SIM------------------------ 

filename = 'STEG_SIM'; 

a = xlsread(filename); 

x = a(:, 1); 

BATTERY_OLD = a(:, 2); 

BATTERY_CHARGING = a(:, 3); 

CONVER_OLD = a(:, 4); 

CONVER_During_CHG = a(:, 5); 

WIND_SPEED = a(:, 6); 

WIND_DIR = a(:, 7); 

AMBIENT_TEMP = a(:, 8); 

RELATIVE_HUM = a(:, 9); 

TEMP_HOT = a(:, 10); 

USEFUL_TEMP = a(:, 12); 

 

Etha = (USEFUL_TEMP./TEMP_HOT)*100; % Energy Efficiency Assessment in percent 

Average = mean(Etha); 

% 

figure(01); 

subplot(2,2,1) 

plot(x,BATTERY_OLD,'g','LineWidth',2) 

title('K2 Battery Old State of Charge','fontsize',18) 

grid on; 

xlabel('Time,Min','fontsize',17); 

ylabel('Voltage,mV','fontsize',17); 

 

subplot(2,2,2) 

plot(x,BATTERY_CHARGING,'g','LineWidth',2) 

title('K2 Battery Charging','fontsize',18) 

grid on; 

xlabel('Time,Min','fontsize',17); 

ylabel('Voltage,mV','fontsize',17); 

 

subplot(2,2,3) 

plot(x,CONVER_OLD,'b','LineWidth',2) 

title('Old Output State of LTC3105','fontsize',18) 

grid on; 

xlabel('Time,Min','fontsize',17); 
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ylabel('Voltage,mV','fontsize',17); 

 

subplot(2,2,4) 

plot(x,CONVER_During_CHG,'b','LineWidth',2) 

title('LTC3105 State during Charge','fontsize',18) 

grid on; 

xlabel('Time,Min','fontsize',17); 

ylabel('Voltage,mV','fontsize',17); 

 

%% 

figure(02); 

 

plot(x,BATTERY_OLD,'b','LineWidth',3); hold on; 

grid on; 

plot(x,BATTERY_CHARGING,'g','LineWidth',3);  

title('Comparative Battery State of Charge','fontsize',17) 

legend ('Battery OLD','Battery Charging'); 

xlabel('Time,Min','fontsize',17); 

ylabel('Voltage,mV','fontsize',17); 

hold off 

 

figure(03); 

plot(x,CONVER_OLD,'b','LineWidth',3); hold on; 

grid on; 

plot(x,CONVER_During_CHG,'g','LineWidth',3);  

title('Comparative Converter Output State','fontsize',17) 

legend ('Converter OLD','Converter New'); 

xlabel('Time,Min','fontsize',17); 

ylabel('Voltage,mV','fontsize',17); 

hold off 

 

figure(04); 

plot(x,WIND_SPEED,'b','LineWidth',2);   

grid on; 

title('Wind Speed','fontsize',24) 

xlabel('Time,Min','fontsize',24); 

ylabel('Speed,m/s','fontsize',24); 

 

figure(05); 

plot(x,WIND_DIR,'g','LineWidth',2); 

grid on; 

title('Wind Direction','fontsize',24) 

xlabel('Time,Min','fontsize',24); 

ylabel('Direction,degrees','fontsize',24); 

 

figure(06); 



 

179 
 

plot(x,RELATIVE_HUM,'k','LineWidth',2); 

grid on; 

title('Relative Humidity','fontsize',24) 

xlabel('Time,Min','fontsize',24); 

ylabel('Percentage,%','fontsize',24); 

 

figure(07); 

plot(x,AMBIENT_TEMP,'g','LineWidth',2); hold on; 

grid on; 

plot(x,USEFUL_TEMP,'r','LineWidth',2);  

title('Comparison between Ambient vs Useful TEMPs','fontsize',24) 

legend ('AMBIENT','DIFFERENTIAL'); 

xlabel('Time,Min','fontsize',24); 

ylabel('Temperature,Deg C','fontsize',24); 

hold off 

 

figure(08); 

plot(x,Etha,'b','LineWidth',2); 

grid on; 

title('Energy Efficiency','fontsize',24) 

xlabel('Time,Min','fontsize',24); 

ylabel('Percentage,%','fontsize',24); 

 

figure(09); 

plot(x,RELATIVE_HUM,'g','LineWidth',2); hold on; 

grid on; 

plot(x,USEFUL_TEMP,'b','LineWidth',2);  

title('Comparison between Relative humidity and Useful TEMP','fontsize',24) 

legend ('RH','DELTA TEMP'); 

xlabel('Time,Min','fontsize',24); 

ylabel('Temperature,Deg C','fontsize',24); 

hold off 

 

%% 

subplot(2,1,1); plot(USEFUL_TEMP) 

title('TEMP Differential','fontsize',24); 

xlabel('Time,Min','fontsize',24); 

ylabel('Temperature,Deg C','fontsize',24); 

 

subplot(2,1,2); plot(RELATIVE_HUM) 

title('Relative Humidity','fontsize',24); 

xlabel('Time,Min','fontsize',24); 

ylabel('Percentage,%','fontsize',24); 

%%%%% 

figure % new figure 

[hAx,hLine1,hLine2] = plotyy(x,RELATIVE_HUM,x,USEFUL_TEMP,'plot'); hold on; 
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grid on; 

title('Comparison between Relative humidity and Useful TEMP','fontsize',24) 

legend ('RH','DELTA TEMP'); 

xlabel('Time,Min','fontsize',24); 

ylabel(hAx(1),'Percentage,%','fontsize',24); % left y-axis 

ylabel(hAx(2),'Temperature,Deg C','fontsize',24); % right y-axis 

hold off 

 

A2 Clear Day Matlab Codes 

%% 

clear all; 

close all; 

clc; 

 

%% 

%-----------------Start Input Data for STEG SIM on Clear Day-------------- 

filename = 'Clear Day'; 

a = xlsread(filename); 

x = a(:, 1); 

IRRADIANCE = a(:, 2); 

HOT_TEMP = a(:, 3); 

COLD_TEMP = a(:, 4); 

DIFF_TEMP = a(:, 5); 

AMBIENT = a(:,6); 

VOLTAGE_LTC3105 = a(:, 7); 

VOLTAGE_K2 = a(:, 8); 

% 

figure(01); 

subplot(2,2,1) 

plot(x,IRRADIANCE,'g','LineWidth',2) 

title('Direct Normal Insolation, Clear Day','fontsize',24) 

grid on; 

xlabel('Time,Min','fontsize',24); 

ylabel('DNI,kW/m^2','fontsize',24); 

 

subplot(2,2,2) 

plot(x,VOLTAGE_LTC3105,'g','LineWidth',2) 

title('STEG Output With LTC3105','fontsize',24) 

grid on; 

xlabel('Time,Min','fontsize',24); 

ylabel('Voltage,mV','fontsize',24); 

 

subplot(2,2,3) 

plot(x,HOT_TEMP,'b','LineWidth',2) 

title('Absorbing Side TEMP','fontsize',24) 

grid on; 
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xlabel('Time,Min','fontsize',24); 

ylabel('TEMP,Deg C','fontsize',24); 

 

subplot(2,2,4) 

plot(x,COLD_TEMP,'b','LineWidth',2) 

title('Emitting Side TEMP','fontsize',24) 

grid on; 

xlabel('Time,Min','fontsize',24); 

ylabel('TEMP,Deg C','fontsize',24); 

 

%% 

figure(02); 

 

plot(x,IRRADIANCE,'b','LineWidth',3);  

grid on; 

title('Local DNI on Clear Day','fontsize',24) 

xlabel('Time,Min','fontsize',24); 

ylabel('Insolation,kW/m^2','fontsize',24); 

 

figure(03); 

plot(x,HOT_TEMP,'b','LineWidth',3); hold on; 

grid on; 

plot(x,COLD_TEMP,'g','LineWidth',3); 

plot(x,DIFF_TEMP,'r','LineWidth',3); 

title('TEMP Variations Across the STEG System','fontsize',24) 

legend ('Absorbing','Emitting','Differential'); 

xlabel('Time,Min','fontsize',24); 

ylabel('TEMP,Deg C','fontsize',24); 

hold off 

 

figure(04); 

plot(x,AMBIENT,'g','LineWidth',3); hold on; 

grid on; 

plot(x,DIFF_TEMP,'b','LineWidth',3);  

title('Comparison Between Ambient & Useful TEMP','fontsize',24) 

legend ('AMBIENT','DIFFERENTIAL'); 

xlabel('Time,Min','fontsize',24); 

ylabel('Temperature,Deg C','fontsize',24); 

hold off 

 

figure(05); 

plot(x,VOLTAGE_LTC3105,'g','LineWidth',3); hold on; 

grid on; 

plot(x,VOLTAGE_K2,'r','LineWidth',3);  

title('Output Voltage Comparison','fontsize',24) 

legend ('CONVERTER','K2 BATTERY'); 
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xlabel('Time,Min','fontsize',24); 

ylabel('Voltage,mV','fontsize',24); 

hold off 

 

A3 Cloudy Day Matlab Codes 

%% 

clear all; 

close all; 

clc; 

 

%% 

%-----------------Start Input Data for STEG SIM on Cloudy Day-------------- 

filename = 'Cloudy Day'; 

a = xlsread(filename); 

x = a(:, 1); 

IRRADIANCE = a(:, 2); 

VOLTAGE = a(:, 3); 

HOT_TEMP = a(:, 4); 

COLD_TEMP = a(:, 5); 

DIFF_TEMP = a(:, 6); 

AMBIENT = a(:, 7); 

USEFUL_TEMP = HOT_TEMP-COLD_TEMP; 

% 

figure(01); 

subplot(2,2,1) 

plot(x,IRRADIANCE,'g','LineWidth',2) 

title('Direct Normal Insolation, Cloudy','fontsize',18) 

grid on; 

xlabel('Time,Min','fontsize',17); 

ylabel('DNI,kW/m^2','fontsize',17); 

 

subplot(2,2,2) 

plot(x,VOLTAGE,'g','LineWidth',2) 

title('STEG Output before LTC3105','fontsize',18) 

grid on; 

xlabel('Time,Min','fontsize',17); 

ylabel('Voltage,mV','fontsize',17); 

 

subplot(2,2,3) 

plot(x,HOT_TEMP,'b','LineWidth',2) 

title('Absorbing Side TEMP','fontsize',18) 

grid on; 

xlabel('Time,Min','fontsize',17); 

ylabel('TEMP,Deg C','fontsize',17); 

 

subplot(2,2,4) 
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plot(x,COLD_TEMP,'b','LineWidth',2) 

title('Emitting Side TEMP','fontsize',18) 

grid on; 

xlabel('Time,Min','fontsize',17); 

ylabel('TEMP,Deg C','fontsize',17); 

 

%% 

figure(02); 

 

plot(x,IRRADIANCE,'b','LineWidth',3);  

grid on; 

title('Local DNI on Cloudy Day','fontsize',24) 

xlabel('Time,Min','fontsize',24); 

ylabel('Insolation,kW/m^2','fontsize',24); 

 

figure(03); 

plot(x,HOT_TEMP,'b','LineWidth',3); hold on; 

grid on; 

plot(x,COLD_TEMP,'g','LineWidth',3); 

plot(x,DIFF_TEMP,':r','LineWidth',3); 

title('TEMP Variations Across the STEG System','fontsize',24) 

legend ('Absorbing','Emitting','Differential'); 

xlabel('Time,Min','fontsize',24); 

ylabel('TEMP,Deg C','fontsize',24); 

hold off 

 

figure(04); 

plot(x,AMBIENT,'g','LineWidth',3); hold on; 

grid on; 

plot(x,USEFUL_TEMP,'r','LineWidth',3);  

title('Comparison Between Ambient & Useful TEMP','fontsize',24) 

legend ('AMBIENT','DIFFERENTIAL'); 

xlabel('Time,Min','fontsize',24); 

ylabel('Temperature,Deg C','fontsize',24); 

hold off 

figure(05); 

plot(x,VOLTAGE,'g','LineWidth',2) 

title('STEG Output before LTC3105','fontsize',18) 

grid on; 

xlabel('Time,Min','fontsize',17); 

ylabel('Voltage,mV','fontsize',17); 

 

  



 

184 
 

Appendix B 

Color-code based wiring diagram 
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Appendix C 

YACOUBA MOUMOUNI 

ELECTRICAL AND COMPUTER ENGINEERING 

UNIVERSITY OF NEVADA, LAS VEGAS 

TOPIC: THERMOELECTRIC GENERATOR TESTING AND OPTIMIZATION 

PROGRAMMING CODES FOR DATALOGGER 

CR1000 

'Created by Short Cut (2.5) 

 

'Declare Variables and Units 

Public Batt_Volt 

Public SlrkW 

Public SlrkJ 

Public WS_ms 

Public WindDir 

Public AirTC 

Public RH 

Public DiffVolt 

Public DiffVol_2 

Public PTemp_C 

Public DiffVol_3 

Public Temp_C 

Public Temp_C_2 

 

Units Batt_Volt=Volts 

Units SlrkW=kW/m² 

Units SlrkJ=kJ/m² 

Units WS_ms=meters/second 

Units WindDir=Degrees 

Units AirTC=Deg C 

Units RH=% 

Units DiffVolt=mV 

Units DiffVol_2=mV 

Units PTemp_C=Deg C 

Units DiffVol_3=mV 

Units Temp_C=Deg C 

Units Temp_C_2=Deg C 

 

'Define Data Tables 

DataTable(Table1,True,-1) 
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 DataInterval(0,1,Min,10) 

 Average(1,Batt_Volt,FP2,False) 

 Average(1,SlrkW,FP2,False) 

 Average(1,WS_ms,FP2,False) 

 Sample(1,WindDir,FP2) 

 Average(1,AirTC,FP2,False) 

 Sample(1,RH,FP2) 

 Average(1,DiffVolt,FP2,False) 

 Average(1,DiffVol_2,FP2,False) 

 Average(1,DiffVol_3,FP2,False) 

 Average(1,Temp_C,FP2,False) 

 Average(1,Temp_C_2,FP2,False) 

EndTable 

 

DataTable(Table2,True,-1) 

 DataInterval(0,1440,Min,10) 

 Minimum(1,Batt_Volt,FP2,False,False) 

EndTable 

 

'Main Program 

BeginProg 

 Scan(30,Sec,1,0) 

  'Default Datalogger Battery Voltage measurement Batt_Volt: THIS IS 

NECESSARY FOR THE OPERATION OF THE DATALOGGER. 

  Battery(Batt_Volt) 

  'LI200X Pyranometer measurements WITH THE UNITS OF THE INSOLATION 

SET IN S.I UNIT (kW). THIS RECORDS EVERY MINUTE THE AMOUNT OF ENERGY 

HITING THE RELFECTORS. 

  VoltDiff(SlrkW,1,mV7_5,1,True,0,_60Hz,1,0) 

  If SlrkW<0 Then SlrkW=0 

  SlrkJ=SlrkW*6.0 

  SlrkW=SlrkW*0.2 

  '03001 Wind Speed & Direction Sensor measurements WS_ms and WindDir. 

THESE TWO COMPONENTS AFFECT THE AMOUNT OF ENERGY BEING 

CONVERTED: 

  PulseCount(WS_ms,1,1,1,1,0.75,0.2) 

  If WS_ms<0.21 Then WS_ms=0 

  BrHalf(WindDir,1,mV2500,7,1,1,2500,True,0,_60Hz,355,0) 

  If WindDir>=360 Then WindDir=0 
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  'HMP45C (6-wire) Temperature & Relative Humidity Sensor measurements 

AirTC and RH. SIMILAR TO THE ABOVE, THE HUMIDITY WILL ALSO AFFECT THE 

CONVERSION: 

  PortSet(9,1) 

  Delay(0,150,mSec) 

  VoltSE(AirTC,1,mV2500,8,0,0,_60Hz,0.1,-40.0) 

  VoltSE(RH,1,mV2500,9,0,0,_60Hz,0.1,0) 

  PortSet(9,0) 

  If RH>100 And RH<108 Then RH=100 

  'THE Differential Voltage 1 MEASURES THE VOLTAGE ACROSS THE 

DIVIDER EVERY MINUTE. IT DOESN'T REPRESENT THE TOTAL VOLTAGE 

GENERATED BY THE TEGS: 

  VoltDiff(DiffVolt,1,mV5000,6,True,0,_60Hz,1.0,0.0) 

  'THE Differential Voltage 2 MEASURESS THE VOLTAGE ACROSS THE 

SHUNT RESISTOR (R=0.003 OHM) WHICH WILL HELP TO DETERMINE THE 

CURRENT PRODUCED BY THE TEGS: 

  VoltDiff(DiffVol_2,1,mV5000,7,True,0,_60Hz,0.330,0.0) 

  'Wiring Panel Temperature measurement PTemp_C: 

  PanelTemp(PTemp_C,_60Hz) 

  'THE Differential Voltage 3 MEASURES THE DIFF VOLTAGE GENERATED 

BY THE SOLAR FLUX SENSOR. THE ACTUAL VALUE WILL BE DTERMINE BY 

UTILIZING THE MULTIPLIER: 

  VoltDiff(DiffVol_3,1,mV5000,8,True,0,_60Hz,1.0,0.0) 

  'Type K (chromel-alumel) Thermocouple MEASURES THE TEMPERATURES 

ACROSS THE HOT SIDE OF THE TEGS IN DEGREES C: 

  TCDiff(Temp_C,1,mV7_5C,2,TypeK,PTemp_C,True,0,_60Hz,1,0) 

  'Type K (chromel-alumel) Thermocouple MEASURES THE TEMPERATURES 

ACROSS THE COLD SIDE OF THE TEGS IN DEGREES C: 

  TCDiff(Temp_C_2,1,mV7_5C,3,TypeK,PTemp_C,True,0,_60Hz,1,0) 

  'Call Data Tables and Store Data 

  CallTable(Table1) 

  CallTable(Table2) 

 NextScan 

EndProg 
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