Analog Front-End for C5 APDs

Tyler Ferreira
ECG 720

Final Project

The objective of this project is to design an analog front-end for converting current from
an APD into an output voltage.
My design should be able to satisfy the following requirements:

- Total gain: First Stage $-30 k \Omega$ and Second Stage $-10-20 x \mathrm{~V} / \mathrm{V}$
- Study of the need for inclusion of a $2^{\text {nd }}$ stage
- TIA Bandwidth minimum of 250 MHz
- Input referred noise: $<5 p A / \sqrt{\mathrm{Hz}}$ but preferably $1.5 p A / \sqrt{\mathrm{Hz}}$
- $1.5-2$ V output swing
- 3.3 or 5 V power supply operation with less than 5 mA current consumption
- Amplifier output signal is designed to drive high impedance loads (use 1 pF)
- Slew - rate with maximum load $>100 \mathrm{~V} / \mu \mathrm{s}=100 \mathrm{mV} / \mathrm{ns}$

I will use the following models for my LTspice simulations:

NMOS					PMOS					
.MODEL NMOS NMOS (LEVEL	$=8$. MODEL PM	MOS PMOS (LEVEL	
+VERSION $=3.1$	TNOM	$=27$	TOX	$=1.39 \mathrm{E}-8$	+VERSION	$=3.1$	TNOM	$=27$	TOX	$=1.39 \mathrm{E}-8$
$+\mathrm{XJ} \quad=1.5 \mathrm{E}-7$	NCH	$=1.7 \mathrm{E} 17$	VTH0	$=0.6696061$	+XJ	$=1.5 \mathrm{E}-7$	NCH	$=1.7 \mathrm{E} 17$	VTH0	$=-0.9214347$
+K1 $=0.8351612$	K2	$=-0.0839158$	K3	$=23.1023856$	+K1	$=0.5553722$	K2	$=8.763328 \mathrm{E}-3$	K3	$=6.3063558$
+ K3B $=-7.6841108$	W0	$=1 \mathrm{E}-8$	NLX	$=1 \mathrm{E}-9$	+K3B	$=-0.6487362$	W0	$=1.280703 \mathrm{E}-8$	NLX	$=2.593997 \mathrm{E}-8$
+ DVT0W $=0$	DVT1W	$=0$	DVT2W	$=0$	+DVT0W	$=0$	DVT1W	$=0$	DVT2W	$=0$
+DVT0 $=2.9047241$	DVT1	$=0.4302695$	DVT2	$=-0.134857$	+DVT0	$=2.5131165$	DVT1	$=0.5480536$	DVT2	$=-0.1186489$
+U0 $=458.439679$	UA	$=1 \mathrm{E}-13$	UB	$=1.485499 \mathrm{E}-18$	+U0	$=212.0166131$	UA	$=2.807115 \mathrm{E}-9$	UB	$=1 \mathrm{E}-21$
+UC $=1.629939 \mathrm{E}-11$	VSAT	$=1.643993 \mathrm{E5}$	A0	$=0.6103537$	+UC	$=-5.82128 \mathrm{E}-11$	VSAT	$=1.713601 \mathrm{E5}$	A0	$=0.8430019$
+AGS $=0.1194608$	B0	$=2.674756 \mathrm{E}-6$	B1	$=5 \mathrm{E}-6$	+AGS	$=0.1328608$	B0	$=7.117912 \mathrm{E}-7$	B1	$=5 \mathrm{E}-6$
+KETA $=-2.640681 \mathrm{E}-3$	A1	$=8.219585 \mathrm{E}-5$	A2	$=0.3564792$	+KETA	$=-3.674859 \mathrm{E}-3$	A1	$=4.77502 \mathrm{E}-5$	A2	$=0.3$
+RDSW $=1.387108 \mathrm{E} 3$	PRWG	$=0.0299916$	PRWB	$=0.0363981$	+RDSW	$=2.837206 \mathrm{E} 3$	PRWG	$=-0.0363908$	PRWB	$=-1.016722 \mathrm{E}-5$
$+\mathrm{WR}=1$	WINT	$=2.472348 \mathrm{E}-7$	LINT	$=3.597605 \mathrm{E}-8$	+WR	$=1$	WINT	$=2.838038 \mathrm{E}-7$	LINT	$=5.528807 \mathrm{E}-8$
$+\mathrm{XL} \quad=0$	XW	$=0$	DWG	$=-1.287163 \mathrm{E}-8$	+XL	$=0$	XW	$=0$	DWG	$=-1.606385 \mathrm{E}-8$
+ DWB $=5.306586 \mathrm{E}-8$	VOFF	$=0$	NFACTOR	$=0.8365585$	+DWB	$=2.266386 \mathrm{E}-8$	VOFF	$=-0.0558512$	NFACTOR	$=0.9342488$
+CIT $=0$	CDSC	$=2.4 \mathrm{E}-4$	CDSCD	$=0$	+CIT	$=0$	CDSC	$=2.4 \mathrm{E}-4$	CDSCD	$=0$
$+\mathrm{CDSCB}=0$	ETA0	$=0.0246738$	ETAB	$=-1.406123 \mathrm{E}-3$	+CDSCB	$=0$	ETA0	$=0.3251882$	ETAB	$=-0.0580325$
+DSUB $=0.2543458$	PCLM	$=2.5945188$	PDIBLC1	$=-0.4282336$	+DSUB	$=1$	PCLM	$=2.2409567$	PDIBLC1	$=0.0411445$
+PDIBLC2 $=2.311743 \mathrm{E}-3$	PDIBLCB	$=-0.0272914$	DROUT	$=0.7283566$	+PDIBLC2	$=3.355575 \mathrm{E}-3$	PDIBLCB	$=-0.0551797$	DROUT	$=0.2036901$
+PSCBE1 $=5.598623 \mathrm{E} 8$	PSCBE2	$=5.461645 \mathrm{E}-5$	PVAG	$=0$	+PSCBE1	$=6.44809 \mathrm{E9}$	PSCBE2	$=6.300848 \mathrm{E}-10$	PVAG	$=0$
+ DELTA $=0.01$	RSH	$=81.8$	MOBMOD	$=1$	+DELTA	$=0.01$	RSH	$=101.6$	MOBMOD	$=1$
+ PRT $=8.621$	UTE	$=-1$	KT1	$=-0.2501$	+PRT	$=59.494$	UTE	$=-1$	KT1	$=-0.2942$
$+\mathrm{KT1L}=-2.58 \mathrm{E}-9$	KT2	$=0$	UA1	$=5.4 \mathrm{E}-10$	$+\mathrm{KT} 1 \mathrm{~L}$	$=1.68 \mathrm{E}-9$	KT2	$=0$	UA1	$=4.5 \mathrm{E}-9$
+UB1 $=-4.8 \mathrm{E}-19$	UC1	$=-7.5 \mathrm{E}-11$	AT	$=1 \mathrm{E} 5$	+UB1	$=-6.3 \mathrm{E}-18$	UC1	$=-1 \mathrm{E}-10$	AT	$=1 \mathrm{E} 3$
$+\mathrm{WL} \quad=0$	WLN	$=1$		$=0$		$=0$			WW	
$+\mathrm{WWN}=1$	WWL	$=0$	LL	$=0$	+WWIN	$=1$	WWL	$=0$	LL	$=0$
+LLN $=1$	LW	$=0$	LWIN	$=1$	+LLN	$=1$				
+LWL $=0$	CAPMOD	$=2$	XPART	$=0.5$	+LWL	$=0$	CAPMOD	$=2$	XPART	$=0.5$
$+\mathrm{CGDO}=2 \mathrm{E}-10$	CGSO	$=2 \mathrm{E}-10$	CGBO	$=1 \mathrm{E}-9$	+CGD0	$=2.9 \mathrm{E}-10$	CGSO	$=2.9 \mathrm{E}-10$	CGBO	$=1 \mathrm{E}-9$
$+\mathrm{CJ}=4.197772 \mathrm{E}-4$	PB	$=0.99$	MJ	$=0.4515044$	$+\mathrm{CJ}$	$=7.235528 \mathrm{E}-4$	PB	$=0.9527355$	MJ	$=0.4955293$
+CJSW $=3.242724 \mathrm{E}-10$	PBSW	$=0.1$	MJSW	$=0.1153991$	+CJSW	$=2.692786 \mathrm{E}-10$	PBSW	$=0.99$	MJSW	$=0.2958392$
+ CJSWG $=1.64 \mathrm{E}-10$	PBSWG	$=0.1$	MJSWG	$=0.1153991$	+CJSWG	$=6.4 \mathrm{E}-11$	PBSWG	$=0.99$	MJSWG	$=0.2958392$
+CF $=0$	PVTH0	$=0.0585501$	PRDSW	$=133.285505$	$+C F$	$=0$	PVTH0	$=5.98016 \mathrm{E}-3$	PRDSW	$=14.8598424$
+PK2 $=-0.0299638$	WKETA	$=-0.0248758$	LKETA	$=1.173187 \mathrm{E}-3$	$+ \text { PK2 }$	$=3.73981 \mathrm{E}-3$	WKETA	$=5.292165 \mathrm{E}-3$	LKETA	$=-4.205905 \mathrm{E}-3$
+AF $\quad=1$		= 0)			$+\mathrm{AF}$	$=1$	KF	$=0)$		

I started by designing each stage of my TIA separately and then connecting them. My
first stage is a shunt - shunt amplifier with a gain of $30 \mathrm{k} \Omega$ and minimum bandwidth of 250 MHz . I will test my design by running an AC response without a load because the output of this stage will connect to the second stage through the gate of an NMOS.

First stage of my amplifier with biasing

AC Response of my first stage
Gain $=90.1 \mathrm{~dB} \quad$ Bandwidth $=2.95 \mathrm{GHz}$

My second stage is a series - shunt amplifier using a diff amp topology. I decided to use this topology because it was easy to bias and reach the desired specifications while staying within the maximum current consumption. I chose an NMOS diff amp because the DC output voltage of the first stage was at 3 V and a rising input current results in a lowering output voltage. With a lower output voltage (input voltage to the second stage) the output of the second stage will increase which increases the total output voltage. This results in an increasing output voltage with an increasing input current.

Second stage of my amplifier with biasing

AC Response of my second stage with high impedance load (1 pF capacitor)

$$
\text { Gain }=20.3 \mathrm{~dB} \quad \text { Bandwidth }=346.7 \mathrm{MHz}
$$

The second stage is necessary for my design to be able to drive the high impedance load.

Simulation of my first stage with a 1 pF load on the output

	Gain	Bandwidth
Without load	90.12 dB	2.95 GHz
With 1pF load	90.12 dB	100.5 MHz

Simulation of my second stage with no load

	Gain	Bandwidth
Without load	20.3 dB	658 MHz
With 1pF load	20.3 dB	346.7 MHz

Comparing the first stage to the second stage I noticed the bandwidth of the first stage would drop significantly compared to the second stage bandwidth. The bandwidth of the first stage with the load is reduced to 3% of the bandwidth without the load. The bandwidth of the second stage with the load is reduced to 50% of the bandwidth without the load giving a bandwidth that meets the specification. The second stage is necessary for my design in order to meet the bandwidth specification.

Since both stages work within specification I connected them to make the following schematic:

Final design schematic

Symbol of my final design for clean schematics

Final design with DC operating points labeled

Large signal operation from input source to first stage output

Large signal operation from output of first stage to input of second stage

Large signal operation from input of source follower to the output of the source follower

These large signal simulations show how an increasing or decreasing input will affect the output of the corresponding stage. This is useful for deciding the topology of the following stages because I want to design the output voltage to increase with an increasing input.

AC response of my final design probing the outputs of each stage

	Gain	Bandwidth
VoutTIA	90.1 dB	1.39 GHz
VoutDiffAmp	111.6 dB	446 MHz
Vout	110.4 dB	295 MHz

.noise V(Vout) lin dec 1k 1k 1G .include C5_models.txt

Schematic used to obtain noise performance of my design

Simulation showing my input and output referred noise

Schematic used to obtain noise performance of my design with input capacitance

Simulation showing that input capacitance becomes significant at 300fF

Capacitor	Input noise
100 fF	$2.00 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
200 fF	$3.68 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
300 fF	$5.42 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
400 fF	$7.16 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
500 fF	$8.91 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
600 fF	$10.66 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
700 fF	$12.42 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
800 fF	$14.18 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
900 fF	$15.93 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
1000 fF	$17.69 \mathrm{pA} / \sqrt{\mathrm{Hz}}$

Table showing the input noise with varying input capacitance

.noise V(Vout) lin dec 1k 100k 1G .include C5_models.txt
.step param R 60k 70k 1k

Schematic used to obtain noise performance of my design with input resistance

Simulation showing that input resistance needs to be at least 69 k to meet the noise specification

Resistor	Input noise	DC Voltage
60 k	$6.84 p A / \sqrt{\mathrm{Hz}}$	2.81 V
61 k	$6.58 p A / \sqrt{\mathrm{Hz}}$	2.82 V
62 k	$6.33 p A / \sqrt{\mathrm{Hz}}$	2.83 V
63 k	$6.10 p A / \sqrt{\mathrm{Hz}}$	2.84 V
64 k	$5.88 p A / \sqrt{\mathrm{Hz}}$	2.85 V
65 k	$5.67 p A / \sqrt{\mathrm{Hz}}$	2.86 V
66 k	$5.46 p A / \sqrt{\mathrm{Hz}}$	2.87 V
67 k	$5.27 p A / \sqrt{\mathrm{Hz}}$	2.88 V
68 k	$5.08 p A / \sqrt{\mathrm{Hz}}$	2.89 V
69 k	$4.9 p A / \sqrt{\mathrm{Hz}}$	2.89 V
70 k	$4.74 p A / \sqrt{\mathrm{Hz}}$	2.90 V

A smaller resistor on the input will increase the amount of noise on the input and reduce the DC bias voltage. This is a problem with my design because the input of my TIA is on the gate of an NMOS device. With a 69 k resistor my DC bias voltage is at 2.89 V which will properly bias my diff amp. Using a larger resistor will reduce the input noise and increase the bias voltage on the gate of the NMOS which will pull the output DC voltage down. The APDs cathode should be connected to my VDD with the anode connected to the input (gate of NMOS) of the front-end and a resistor to ground. The resistor should be chosen based on the above information to bias my diff amp correctly as well as reduce the input referred noise of the circuit.

Schematic used to obtain the output swing of my design

Simulation of my output swing

Operating current	Output swing
-40 uA to 40 uA	454 mV to $3.11 \mathrm{~V}=2.659 \mathrm{~V}$

My output voltage swings from 454 mV to 3.11 V centered around 1.8 V .

Schematic used to obtain slew rates and settling times of my design

Simulation showing settling time with no load

Simulation showing settling times with varying loads

Capacitive load	Peak Value	Settling Time
1 pF	2.617 V	1.205 ns
6 pF	2.617 V	5.211 ns
11 pF	2.617 V	9.706 ns
16 pF	2.617 V	13.42 ns
21 pF	2.617 V	17.03 ns
no load	2.617 V	600 ps

Settling times for varying capacitive loads

Simulation showing slew-rate with no load

Simulation showing slew-rates with varying loads

Capacitive load	Slew-Rate
1 pF	$1.25 \mathrm{GV} / \mathrm{s}$
6 pF	$375 \mathrm{MV} / \mathrm{s}$
11 pF	$224 \mathrm{MV} / \mathrm{s}$
16 pF	$159 \mathrm{MV} / \mathrm{s}$
21 pF	$116 \mathrm{MV} / \mathrm{s}$
no load	$2.32 \mathrm{GV} / \mathrm{s}$

Slew-rates for varying capacitive loads

