

WIDE RANGE, LOW JITTER DELAY-LOCKED LOOP USING A GRADUATED

DIGITAL DELAY LINE AND PHASE INTERPOLATOR

by

Eric R. Booth

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Engineering, Electrical Engineering

Boise State University

November, 2006

 The thesis presented by Eric R. Booth entitled “Wide Range, Low Jitter Delay-

Locked Loop Using a Graduated Digital Delay Line and Phase Interpolator” is hereby

approved:

 __
 R. Jacob Baker Date
 Advisor

 __
 Scott F. Smith Date
 Committee Member

 __
 Sin Ming Loo Date
 Committee Member

 __
 John R. Pelton Date

Dean, Graduate College

 ii

ACKNOWLEDGMENTS

 First, I would like to thank my advisor, Dr. Jake Baker, for lending his time and

expertise to this effort. He has been an outstanding teacher and a good friend during my

graduate work at Boise State. I am not alone in saying that I appreciate the lengths that

he goes to in order to provide education opportunities to students with full-time jobs.

I would also like to thank Tyler Gomm for being a great mentor to me over the

last year as we have worked together designing DLLs. Tyler, along with Jongtae Kwak

and Gary Johnson were the catalysts for many of the ideas presented in this thesis. I

would also like to thank Micron Technology, Inc. for allowing me to use their resources

and process models to carry out my work.

 Very special thanks to my wife Callie and my daughter Ava for their patience,

love, and support.

 iii

ABSTRACT

High-speed synchronous integrated circuits (ICs), such as microprocessors and

memories, require clock signals to be tightly aligned for proper operation. Clock

synchronization circuits are essential to eliminate clock skew across all process, voltage

and temperature (PVT) variations. Digital delay-locked loops (DLLs) are commonly

used for clock synchronization in modern ICs because of their superior stability and

process portability. However, a drawback to these circuits is that a large number of delay

elements are required to accomplish high performance across a wide operating range. A

digital DLL suitable for use in a DDR-SDRAM is presented. The DLL has a graduated

coarse delay line and a phase interpolating fine delay line, allowing it to cover the

operating range and alignment requirements of all currently defined DDR-SDRAM

families while reducing the number of delay elements by a factor of two over a traditional

digital DLL.

 iv

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION..1

1.1 Open Loop Clock Synchronization Topologies ...3

1.2 Closed Loop Clock Synchronization Topologies...6

CHAPTER 2: CURRENT DLL DESIGN TECHNIQUES...10

2.1 Analog DLL Design ...11

2.1.1 Voltage Controlled Delay Line (VCDL) ...11

2.1.2 Analog DLL Phase Detectors ..15

2.1.3 Loop Filter ...19

2.1.4 Charge Pump and Capacitor Loop Filter ...22

2.1.5 Other First Order Loop Filters...25

2.1.6 Initialization and Lock Range..26

2.2 DIGITAL DLL DESIGN ...29

2.2.1 Register Controlled Delay Line (RCDL)...30

2.2.2 Digital DLL Phase Detectors...35

2.2.3 Digital DLL Control ..37

2.2.4 Dual Loop Digital DLL ...40

2.2.5 Initialization...43

CHAPTER 3: WIDE RANGE DLL FOR DDR-SDRAM ..46

3.1 Graduated Coarse Delay Line ..49

 v

3.2 Phase-Interpolating Fine Delay Line..58

3.3 Initialization Control ..60

3.4 N-Detector and Dynamic Sample Filter...65

3.5 Phase Detector..70

3.6 Shift Control ...71

CHAPTER 4: CONCLUSION ..73

CHAPTER 5: FUTURE WORK ...80

REFERENCES ..82

 vi

LIST OF FIGURES

Figure 1: Application of a clock synchronization circuit.. 1

Figure 2: Clock synchronization waveforms (N=2) ... 2

Figure 3: Open loop clock synchronization model ... 3

Figure 4: SMD block diagram .. 4

Figure 5: MCD block diagram.. 5

Figure 6: Closed loop clock synchronization model... 6

Figure 7: PLL block diagram.. 7

Figure 8: DLL block diagram ... 8

Figure 9: Analog DLL block diagram .. 11

Figure 10: CSI VCDL (a) Schematic and (b) transfer function.. 12

Figure 11: CSI VCDL with linearized current (a) Schematics and (b) transfer function . 13

Figure 12: Current mode logic VCDL schematic ... 14

Figure 13: XOR phase detector... 16

Figure 14: Flip-flop phase detector... 17

Figure 15: PFD phase detector.. 18

Figure 16: Analog DLL control model ... 19

Figure 17: Analog DLL control model (loop only) .. 20

Figure 18: Simplified analog DLL control model .. 21

Figure 19: Charge pump and capacitor loop filter schematics ... 23

 vii

Figure 20: DLL response using a 1p, 0.5p and 0.2p loop filter .. 24

Figure 21: Active proportional + integral loop filter .. 26

Figure 22: Digital DLL block diagram ... 29

Figure 23: Inverter-inverter RCDL block diagram... 30

Figure 24: Quantization error for (a) steady state and (b) oscillating DLL...................... 31

Figure 25: Entry-point NAND-inverter RCDL block diagram... 32

Figure 26: (a) Arbiter and (b) D flip-flop phase detectors.. 35

Figure 27: (a) Schematic and (b) waveforms for a phase detector with hysteresis 36

Figure 28: Digital DLL control... 38

Figure 29: Digital dual loop DLL block diagram ... 40

Figure 30: Capacitor based fine delay line ... 41

Figure 31: (a) Single stage multi-weight and (b) multi-stage binary phase mixers with (c)

 waveforms... 42

Figure 32: Digital DLL initialization (N curves).. 44

Figure 33: Block diagram of the proposed DLL... 48

Figure 34: Block diagram of the graduated coarse delay line .. 49

Figure 35: Graduated coarse delay line delay cell .. 50

Figure 36: Duty cycle performance of the graduated delay line....................................... 52

Figure 37: (a) Total delay and (b) delay per stage versus delay line depth 54

Figure 38: Lock point curves of a (a) typical and (b) graduated delay line...................... 55

Figure 39: Quantization error versus tCK... 57

Figure 40: Phase mixing fine delay line schematics... 58

Figure 41: Phase mixing fine delay line waveforms... 59

 viii

Figure 42: Initialization and N-detect simplified block diagram and waveforms 60

Figure 43: Initialization circuit detailed block diagram.. 61

Figure 44: Waveforms during initialization.. 62

Figure 45: Phase error after initialization ... 64

Figure 46: N-detector and dynamic sample filter block diagram 65

Figure 47: Waveforms showing the operation of the N-detector and dynamic sample

 filter... 66

Figure 48: Lock point curves and N-detector output at fast corner 68

Figure 49: Lock point curves and N-detector output at typical corner 68

Figure 50: Lock point curves and N-detector output at slow corner 69

Figure 51: Schematic of the phase detector .. 70

Figure 52: Schematics of the shift control logic ... 71

Figure 53: Jitter waveform and histogram at typical corner, 2ns tCK................................ 74

Figure 54: Maximum jitter versus tCK ... 75

Figure 55: Jitter waveform and histogram at slow corner, 1ns tCK 76

Figure 56: Arbiter based phase detector schematic .. 77

Figure 57: Jitter waveform and histogram at slow corner, 1ns t with new phase CK

 detector.. 77

Figure 58: Jitter waveform and histogram at typical corner, 2ns t , with slow power CK

 supply noise .. 78

Figure 59: Jitter waveform and histogram at typical corner, 2ns t , with fast power CK

 supply noise .. 79

 ix

LIST OF TABLES

Table 1: Digital DLL performance metrics ...39

Table 2: Performance requirements of DDR-I, DDR-II, and DDR-III........................47

Table 3: PVT values used for slow, typical and fast corner simulations.....................48

Table 4: Delay cell device sizes...51

 x

1

CHAPTER 1: INTRODUCTION

High-speed synchronous integrated circuits, such as microprocessors and

memories, require clock signals to be tightly aligned for proper operation. As clock

speeds and transistor counts continue to increase, this becomes more challenging. A

properly designed clock synchronization circuit is essential to eliminate clock skew

across all process, voltage and temperature (PVT) variations.

Double data rate synchronous dynamic random access memory (DDR-SDRAM)

is an application where clock synchronization is important. It is common for many DDR-

SDRAM components to be placed in parallel on a system to create a wide bandwidth for

data transfer. To ensure that the data bits are aligned, each component uses a clock

synchronization circuit to align its outputs with a system clock. Figure 1 shows the

application of a clock synchronization circuit in an IC – such as a DDR-SDRAM – where

Figure 1: Application of a clock synchronization circuit

2

outputs must be aligned with a system clock. The input to the clock synchronization

circuit is the system clock – delayed in time by D1 through the input buffers – and the

output is a clock that is delayed from the input by exactly

)(D2D1tN CK +−⋅

where D2 is the delay through the clock distribution tree, output latches, and output

drivers; tCK is the clock period; and N is an integer multiple of tCK that is greater than

D1+D2. This creates a total forward path delay of N ·tCK, guaranteeing that the outputs

are aligned with the system clock regardless of the PVT dependent delay through D1 and

D2 (see figure 2). Clock synchronization circuits can also be designed to accept a data

stream as the input instead of a clock signal. This is called clock recovery or clock

synthesis [1].

Figure 2: Clock synchronization waveforms (N=2)

3

Both open loop and closed loop clock synchronization topologies are commonly

used. In either case, a delay model is used to replicate the IO delay. The devices in the

delay model must have the same PVT-dependent delay characteristics as the actual IO

devices to accurately track PVT changes.

1.1 Open Loop Clock Synchronization Topologies

In the open loop system shown in figure 3, the input clock is sent through a delay

model. The clock generation circuit uses the input clock and the delayed clock to create

the synchronized output clock. Open loop systems can have very fast initialization times,

low standby current, and can be simpler to design than a closed loop system. However,

because there is no feedback signal, any deviation from the expected behavior will go

undetected and contribute to phase error. The synchronous mirror delay (SMD) and

measure controlled delay (MCD) are common examples of open loop clock

synchronization circuits [2],[3].

Figure 3: Open loop clock synchronization model

4

Figure 4 shows the operation of a SMD. Once the input clock has propagated

through the delay model, it begins to propagate through the forward delay line. On the

next rising clock edge, the mirror control circuit transfers the clock signal from the

forward delay line to the corresponding point in the reverse delay line, so that each delay

line inserts a delay of

)(D2D1tN CK +−⋅

Tracing the delay through the entire path:

=++−⋅⋅+++ D2D2D1tND2D1D1 CK)]([2)(

CKtN ⋅⋅2

Figure 4: SMD block diagram

5

Figure 5 shows the operation of a MCD. It is similar to the SMD. The main

differen

ter

e

ce is that only one delay line is actually in the forward path of the clock; the

measure delay line is only used to determine the delay for the variable delay line. Af

the input clock has propagated through the delay model it begins to propagate through th

measure delay line. On the next rising edge, the measure control circuit measures the

depth of the signal in the measure delay line which will be

)(D2D1tN CK +−⋅

The variable delay line is set to the same value so that the forward path delay is

=++−⋅+ D2D2D1tND1 CK)(

CKtN ⋅

Figure 5: MCD block diagram

6

1.2 Closed Loop Clock Synchronization Topologies

In the clos k is fed back

through

oduce

ck is

ed loop configuration shown in figure 6, the output cloc

 the delay model and compared with the reference clock. The difference is

reported to the clock generation circuit, which continually adjusts as necessary to pr

the desired output. Feedback allows the system to self correct any non-ideal behavior of

the clock generation circuit, but ensuring that the system remains stable under all

conditions presents some design challenges. The input to the clock generation blo

drawn as a dotted line because closed loop systems generate an output clock by either

adding delay to the input clock or by generating a clock internally. Two closed loop

examples are a phase locked loop (PLL) and a delay locked loop (DLL) [4],[5].

Figure 6: Closed loop clock synchronization model

7

Figure 7 shows the operation of a PLL. It consists of a variable speed oscillator, a

phase d

is

etector and a loop control circuit. The output of the oscillator is fed back through

the delay model and to the phase detector. The control adjusts the oscillator frequency

until the phase and frequency of Φ1 and Φ2 are equal. Under these conditions, the PLL

said to be locked. The phase at the output of the oscillator can then be described as

fD2D1Φ1 π2)(⋅+−

Calculating the phase of the input in reference to Φ1 yields

fD1ΦΦ 1IN π2⋅−=

Doing the same for the output proves that the input and output phases are aligned:

IN11OUT ΦπfD1ΦπfD2πfD2)(D1ΦΦ =⋅−=⋅+⋅+−= 222

Because a PLL generates the clock using an oscillator, it is capable of cloc is and k synthes

can take either a data stream or a reference clock as its input.

Figure 7: PLL block diagram

8

Figure 8 shows the operation of a DLL. It is similar to a PLL except that a

variabl

e delay line is used instead of a variable speed oscillator. The control circuit

adjusts the delay of the variable delay line until the inputs to the phase detector are in

phase. When the DLL is locked, the delay through the variable delay line is

)(D2D1tN CK +−⋅

and the forward path delay is

D =++−⋅+ D2D2D1tN1 CK)(

CKtN ⋅

Figure 8: DLL block diagram

Without an oscillator, a DLL is incapable of clock recovery like a PLL. However,

when a clock of the appropriate frequency is available, a DLL provides several

9

advanta

has an

e

r 2 discusses current DLL design

techniq

 a

ment

re

h a

IM

ges. It can be designed as a first-order system, and thus is inherently more stable

than a PLL which – because of the phase-integrating behavior of an oscillator –

extra pole in the transfer function making it at least a second-order system [6]. Other

advantages of a DLL are simpler design, easier process portability, faster locking time,

and the absence of oscillator induced jitter noise [7].

This thesis explores common DLL topologies, emphasizing the effect that a larg

IO delay model has on design considerations. Chapte

ues for both analog and digital topologies. Chapter 3 presents a digital DLL

suitable for use in a high speed DRAM. The DLL has a graduated coarse delay line and

phase-interpolating fine delay line, allowing it to cover the operating range and align

requirements of all currently defined DDR-SDRAM families while reducing the number

of delay stages by a factor of two compared to a traditional digital DLL. An auto-

measure circuit provides fast initialization, and an N-detection circuit - coupled with a

dynamic digital sample and hold filter - allows fast tracking. Conclusions and futu

work are provided in chapters 4 and 5 respectively. All simulation results, unless

otherwise noted, are based on Micron Technology’s 80nm DRAM process models wit

nominal supply voltage of 1.5V and a temperature of 25°C, using HSPICE and HS

simulation tools.

10

CHAPTER 2: CURRENT DLL DESIGN TECHNIQUES

DLLs are generally classified as either analog or digital based on the type of delay

line that is used. An analog DLL uses a continuously variable delay line controlled by an

analog input signal, the most common being a voltage-controlled delay line (VCDL). A

digital DLL uses a delay line made up of a string of digital devices so that it has a fixed

number of discrete delay steps. Usually, a shift register controls the delay setting of the

delay line. This is called a register-controlled delay line (RCDL) [8],[9]. Both digital

and analog DLLs typically employ phase detectors composed of digital elements, making

it more correct to refer to the analog DLLs presented here as mixed-signal. However, for

simplicity, they are referred to only as analog.

Because analog DLLs use a continuously variable delay line, they can be

designed to exhibit less phase error (or jitter) than digital DLLs, which suffer from

quantization error due to the discrete delay steps. Analog DLLs can be designed to use

less layout area and consume less power, but they are more process dependent, making

them less portable than digital DLLs [10]. Analog DLLs also have a tendency to be more

susceptible to digital noise than a digital DLL.

11

2.1 Analog DLL Design

Figure 9 shows a basic block diagram of an analog DLL. The three main

components are the VCDL, the phase detector, and the loop filter. These components are

discussed in detail.

Figure 9: Analog DLL block diagram

2.1.1 Voltage Controlled Delay Line (VCDL)

The VCDL takes two inputs: a control voltage and a clock. The output is a clock

of the same frequency as the input, but phase shifted by some amount proportional to the

control voltage. Figure 10 shows schematics and transfer function of a VCDL using a

current starved inverter (CSI) as a delay element. The maximum current supplied to the

inverters is controlled by the bias voltage Vctrl. A higher bias voltage increases the cell’s

current, thereby reducing the delay. The N and P device sizes for this example are 16/1

12

and 32/1 respectively, chosen to give a nominal delay of 1ns when eight delay elements

are used.

(a)

0

0.5

1

1.5

2

2.5

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Control Voltage

D
el

ay
 (n

s)

(b)

Figure 10: CSI VCDL (a) Schematic and (b) transfer function

The transfer function has a 2
1

X relationship; the delay is inversely related to the

current, which is proportional to the square of the control voltage. These non-linear gain

13

curves are one of the design challenges of an analog DLL. Figure 11 shows how the bias

circuit can be altered so that the current is linear with the input voltage [5]. This

eliminates the square term in the transfer function creating a wider semi-linear region in

the transfer curves (see figure 11).

(a)

0

0.5

1

1.5

2

2.5

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Control Voltage

D
el

ay
 (n

s)

(b)

Figure 11: CSI VCDL with linearized current (a) Schematics and (b) transfer function

14

Because of high susceptibility to noise and poor power supply rejection, the

current starved inverter delay line is not practical for most designs. Figure 12 shows an

alternate VCDL. It uses current-mode logic and voltage-controlled resistors [5],[11].

Current mode means that current is constant whether the output is static or switching.

The top-most PMOS device sets this current value, which consequently sets the delay.

The other two PMOS devices receive differential input to steer the current through one

leg or the other. The NMOS pairs on each leg act as voltage-controlled resistors and are

used to set the maximum output voltage swing. The bias circuit uses a differential

amplifier, with the positive terminal connected to the output of a half-replica delay cell

and the negative terminal connected to a reference voltage Vref. The output of the op-

amp sets the precise voltage for the NMOS bias so that the output swing is always limited

to Vref regardless of the control voltage Vctrl. Keeping the output swing regulated below

Vdd reduces power supply sensitivity, and the differential signals provide common-mode

noise rejection.

Figure 12: Current mode logic VCDL schematic

15

The improved performance does come with an expense. This delay line requires

more layout area for the delay cells, an amplifier in the bias circuit, and level translators

at the output. Also, because of the constant current, it will consume more power than a

traditional delay line, which only requires current during switching. However, as

frequency is increased, there will be a crossover point where the current mode delay line

will actually consume less power because of the reduced voltage swing.

2.1.2 Analog DLL Phase Detectors

A phase detector generates an output signal that is proportional to the phase

difference of two inputs. Analog DLLs typically use phase detectors made from digital

components. The XOR, flip-flop, and phase-frequency detector (PFD) are common

examples. The output of these circuits is a digital signal that must be converted to an

analog voltage before they can control the VCDL.

16

Figure 13: XOR phase detector

Figure 13 shows the schematic, waveforms and low-pass gain curves of the XOR

PD [12]. When the inputs have a phase difference of 90º the XOR PD produces an

output signal with an average value of
2

Vdd . At that condition, phase error is assumed to

be 0. The phase error is defined by °−− 9021 ΦΦ and the average output voltage will

vary from
2

Vdd in proportion to that phase error. When the high frequency components

are filtered out, the XOR PD has a gain of
π

Vdd .

17

Figure 14: Flip-flop phase detector

Figure 14 shows the schematic, waveforms and low-pass gain curves of the flip-

flop PD [12]. It is different than a conventional JK flip-flop. The rising edge of J

triggers the output Q into the high state, while the rising edge of K triggers it into the low

state. When the inputs have a phase difference of 180º the phase error is assumed to be

zero. Like the XOR PD, the average of the output is proportional to the phase error of the

inputs and is equal to
2

Vdd when phase error is zero. The gain is reduced to
π2

Vdd since

only rising edges are used to calculate phase. However, this presents one advantage of

the FF PD over the XOR PD; the input duty cycle is not constrained to 50% for c

operation.

orrect

18

Figure 15: PFD phase detector

Figure 15 shows the schematic, waveforms, and low-pass gain curves of the

phase-frequency detector (PFD) [12]. It is the most common phase detector used in

analog DLLs. It consists of two D flip-flops and an AND gate. It has two outputs: Vup

and Vdn. Because of the AND gate connected to the reset of the flip-flops, both outputs

can not be high at the same time. When Φ1 leads Φ2, the average value of Vup will be

proportional to the phase difference and Vdn will be zero. When Φ1 lags Φ2, the average

19

value of Vdn reports the phase difference and Vup will be zero. When the inputs are in

phase, both outputs are low. With the output interpreted as Vup-Vdn, and the high

frequency components filtered out, the gain of the PFD is
π2

Vdd . Like the FF phase

detector, the PFD phase detector does not require 50% duty cycle.

2.1.3 Loop Filter

An analog DLL is controlled by a loop filter circuit. Many different loop filters

can be used, and the properties of the filter will have a large impact on the performance

of the DLL. Two important performance metrics of a DLL are tracking time and jitter.

Tracking time is the time required for the DLL to respond to phase error, and jitter is the

amount of phase error on the output when the input is constant. The design of the loop

filter must consider the trade-offs between these properties.

Figure 16 shows the control model of a generic analog DLL.

Figure 16: Analog DLL control model

20

The model can be simplified by realizing that the relationship between ΦIN and ΦOUT is

exactly the same as the relationship between ΦREF and ΦFB.

ftttΦΦ DVCDLDINOUT π2)(21 ⋅+++=

ftttΦΦ DDVCDLREFFB π2)(21 ⋅+++=

This is by design, and must be true for the DLL to function properly. The block diagram

can now be simplified by replacing ΦREF and ΦFB with ΦIN and ΦOUT as in figure 17. The

true ΦIN and ΦOUT will be shifted in time by D1.

Figure 17: Analog DLL control model (loop only)

.

If the DLL is designed such that the DLL bandwidth (the rate at which the DLL

will respond to a change in the input phase) is at least one decade below the bandwidth

around the loop (the rate at which a signal will propagate around the entire loop) – a

requirement for good jitter performance [7], [11] – then the delay model can be ignored

21

for small signal analysis, and the DLL control model can be further simplified to figure

18.

Figure 18: Simplified analog DLL control model

Now the transfer function can be easily obtained by

fKKKΦΦΦ VCDLLFPDOUTINOUT π2)(⋅⋅⋅⋅−=

fKKK
fKKK

fKKK
Φ
Φ

VCDLLFPD

VCDLLFPD

VCDLLFPD

IN

OUT

π
π

π

2
11

1
21

2

⋅⋅⋅
+

=
⋅⋅⋅+

⋅⋅⋅
=

The DLL bandwidth for a first order loop filter can be described as ωDLL where

DLL

IN

OUT

sΦ
Φ

ω
+

=
1

1

fKKKs VCDLLFPDDLL πω 2⋅⋅⋅⋅=

The loop bandwidth ωLOOP is defined as 2πfLOOP where fLOOP is the loop frequency and is

equal to one over the total delay around the loop:

D2D1tVCDL
LOOP ++

=
πω 2

The VCDL is typically designed so delay is never more than one period, so the maximum

loop bandwidth can be written as

22

D2D1TLOOP ++
=

πω 2
max

The design rule that DLL bandwidth should be kept at least a decade below the loop

bandwidth can be written as

max10
1

LOOPDLL ωω ≤

D2D1T
fKKKs VCDLLFPD ++

⋅≤⋅⋅⋅⋅
ππ 2

10
12

The performance of the DLL is determined by the relationship between ωDLL and ωLOOP.

The tracking time is proportional to
DLLω
1 and the jitter is proportional to

LOOP

DLL

ω
ω

.

Qualitatively, these relationships make sense. The tracking time will be inversely related

to the DLL bandwidth (a wider bandwidth equals a faster response). However, making

the response too fast will have an effect on jitter. If the DLL bandwidth is greater than

the loop bandwidth, the DLL will adjust for errors seen at the phase detector faster than

the new phase information can make it around the loop. This will cause the loop filter to

oscillate and will be seen as jitter on the output.

2.1.4 Charge Pump and Capacitor Loop Filter

A commonly used first order loop filter is a simple capacitor. This loop filter is

usually coupled with a PFD phase detector and charge pump in the configuration shown

in figure 19.

23

Figure 19: Charge pump and capacitor loop filter schematics

The gain of this loop filter is
sC
ICP . The transfer function of the DLL can now be

defined in terms of the loop filter gain
sC
ICP , the PFD gain

π2
Vdd , and the gain of the

VCDL approximated as a constant value KVCDL, so that

fKIVdd
sCΦ

Φ

VCDLCP

IN

OUT

π
π

2
21

1

⋅⋅⋅
⋅

+
=

The DLL bandwidth ωDLL is

TC
KIVdd VCDLCP

⋅
⋅⋅

The design rule can be used to determine the required charge pump current to capacitance

ratio of the filter to minimize jitter.

VCDL

CP

KVddD2D1T
T

C
I

⋅⋅++⋅
⋅

≤
)(10

2π

24

Using the delay line from figure 11, KVCDL can be approximated at 1.5ns/V.

Setting the IO delay D1+D2 at 5ns, the period T at 2ns, and the charge pump current ICP

at 50uA, the required value of C is approximately 1pF or larger.

pF07.1
2ns1

V
ns5.1V5.1ns6A5010

≥
⋅

⋅⋅⋅⋅
≥

π

u
C

Figure 20 shows simulation results for this DLL using loop filter capacitor values

of 1pF, 0.5pF and 0.2pF. The input phase is stepped by 90°. The waveforms show the

output of the loop filter as it responds to the phase error and attempts to find the lock

point. Using the 1pF filter)(10
1

LOOPDLL ωω = gives a nice damped response. When the

0.5pF filter is used)(5
1

LOOPDLL ωω = there is some overshoot, but the DLL still finds the

lock point. With a 0.1pF filter)(2
1

LOOPDLL ωω = the DLL begins to oscillate and never

locks.

Figure 20: DLL response using a 1p, 0.5p and 0.2p loop filter

25

The stair step shape of the waveforms may look strange, but it is exactly what is

expected when using this filter. The PFD turns on the charge pump for a portion of each

clock cycle proportional to the amount of phase error. During that interval, the capacitor

is charged or discharged at a constant rate. For the rest of the clock cycle, the charge

pump is turned off and the capacitor charge remains constant.

2.1.5 Other First Order Loop Filters

Another first order loop filter is a simple low-pass RC circuit. It can be applied

to the output of the XOR or FF phase detectors to filter out the high frequency

components and allow the VCDL to be controlled directly. However, this filter has a

limitation. The output of the filter is constrained to
2

Vdd when phase error is zero. This

is not practical in most designs since the ideal VCDL input will vary widely with PVT

and frequency.

An active filter, such as the active proportional + integral filter shown in figure

21, can be used instead of an RC filter. The integrating capacitor between the input and

output of the op-amp stores the voltage difference between
2

Vdd and the ideal VCDL

voltage. The gain of the filter is
CsR

CsR

1

21+
− .

26

CsR1

CsR
K F

21+
−=

Figure 21: Active proportional + integral loop filter

2.1.6 Initialization and Lock Range

The analog DLL requires careful consideration of what happens during

initialization, especially when a large IO model is in the feedback path. If the DLL

initializes such that

)()(2
1 D2D1tNt CKVCDL +−⋅+>

the error at the phase detector will be greater than 180º, forcing the DLL to add delay.

The gain curves of the analog VCDL allow practically infinite delay so the DLL will find

the next lock point at

)()1(D2D1tNt CKVCDL +−⋅+=

The final delay in the delay line will be greater than one clock period, and the VCDL gain

will be increased beyond the expected range. This is sometimes referred to as a harmonic

lock.

Another, and potentially more dangerous, problem is when the DLL initializes

such that

27

)()(2
1 D2D1tNt CKVCDL +−⋅−<

In this case, the phase error will be below -180º. The phase detector will report a positive

error, and the DLL will try to remove delay. Since the gain goes to zero when the VCDL

approaches minimum delay, it is likely that the VCDL will saturate and never find the

lock point. For these reasons, a conventional analog DLL is usually designed so that the

VCDL operating range has the following limitations:

)()(2
1

min D2D1tNt CKVCDL +−⋅−>

)()(2
1

max D2D1tNt CKVCDL +−⋅+<

It is possible for the IO delay to vary across PVT by a factor of 3 to 1. If the IO

delay is a significant percentage of the clock period, the VCDL must be constrained to a

very small range to avoid false lock. As clock speeds have increased, it is common for

the IO delay to be greater than the clock period. This makes the traditional analog DLL a

poor choice for clock synchronization in many modern ICs.

Numerous designs have been presented to address the range limitations of analog

DLLs. A DLL has been designed that uses an auxiliary VCDL to monitor the main

VCDL to detect and prevent a harmonic lock condition [13]. Other DLLs have been

designed that create multiple tap points from the VCDL, and then employ a phase

selection and/or inversion scheme to extend the lock range and prevent false locking

[7],[14],[15]. These designs come at the expense of added control complexity, and if

phase inversion is applied, the duty cycle of the input clock is no longer maintained.

28

When IO delay variation across PVT is a concern, a dual loop analog DLL can be

used. In this configuration, a primary reference DLL – without a delay model in the

feedback loop – locks to the reference clock. This eliminates the range restrictions

imposed by the delay model. It also ensures that the reference VCDL contains exactly

one clock period so that multiple, equally spaced clocks are available across the entire

phase range. A secondary DLL uses a feedback loop with a delay model to select the

output tap from the reference VCDL that yields the smallest phase error [16]. The

accuracy of a dual loop DLL can be increased by using a phase mixing circuit to

interpolate between the reference VCDL tap points [17].

29

2.2 DIGITAL DLL DESIGN

A digital DLL does not suffer from the range restrictions of the traditional analog

DLL, and false locking is easier to prevent. Other advantages are the unconditional

stability of a zero-order transfer function and easier processes portability. This comes at

the expense of larger layout area, more power consumption, and increased jitter – due to

quantization of the discrete delay steps.

Figure 22 shows a block diagram of a traditional digital DLL. The three main

blocks are the register controlled delay line (RCDL), the phase detector, and a counter or

state machine. These components are discussed in detail and compared to their analog

counterparts.

Figure 22: Digital DLL block diagram

30

2.2.1 Register Controlled Delay Line (RCDL)

The RCDL is composed of discrete delay elements and a shift register. The

register setting determines how many delay elements are used between the input and

output. In other words, the RCDL converts a digital code into a time delay. The transfer

function can be expressed simply as delay per stage. This value determines the

maximum phase error due to quantization.

Figure 23 shows a block diagram of a simple RCDL using inverter pairs as delay

elements. In this topology, a shift register controls a large multiplexer circuit to

determine which delay tap is sent to the output; the shift register could be replaced by an

alternate control circuit such as an up-down counter or state machine.

Figure 23: Inverter-inverter RCDL block diagram

The delay per stage tD determines the jitter due to the quantization error. Ideally,

the DLL will select the tap point that produces the smallest phase error between the input

and output clocks, so the maximum phase error is ± ½ tD·2πf and occurs when the ideal

output lies directly between two tap points. Some digital DLLs do not have a steady

31

state. Instead, they oscillate between the two tap points closest to the ideal output. The

maximum quantization error is increased to ± tD·2πf, and occurs when the ideal output is

aligned with a tap point (See figure 24).

(a)

(b)

Figure 24: Quantization error for (a) steady state and (b) oscillating DLL

The quantization error of a digital DLL can be cut in half by using a single

inverter as a delay element. This requires two delay lines which are 180° out of phase

32

with each other. The output taps alternate between the two delay lines to avoid phase

inversion [18]. One drawback to this topology is that mismatch between the two delay

lines can increase quantization error.

Inverters have the smallest intrinsic delay of the discrete devices, so they exhibit

the smallest quantization error. However, power savings cannot be achieved because

there is no mechanism to disable the unused elements, and the large multiplexing circuit

required to select a delay tap can cause duty cycle distortion and increase power supply

sensitivity.

A NAND-inverter delay element allows power savings by providing an enable

path, and eliminates the need for the multiplexing circuit required in the exit point delay

line by allowing multiple entry points (figure 25). A drawback to the entry point

Figure 25: Entry-point NAND-inverter RCDL block diagram

33

topology is that the large drivers required to distribute the clock will cause simultaneous

switching noise on the power bus and substrate, which affects the delay line performance.

Another problem is duty cycle error caused by using two different logic devices. The

duty cycle error can be described in terms of the difference between the propagation

delay of a rising edge tRise and a falling edge tFall.

FallRiseError ttt −=

The propagation delay of a rising edge is calculated by

)(PLHOPHLIRise ttNt +=

and the falling edge is

)(PHLOPLHIFall ttNt +=

where N is the number of delay elements, tPHLI and tPHLO are the high to low transition

times at the inner and outer nodes respectively, and tPLHI and tPLHO are the low to high

transition times of the inner and outer nodes. Using 50% as the switching point, the

transition times can be estimated as

INANDINANDPHLI CRnCRnt ⋅== 7.0)ln(%50
1

OINVPHLO CRnt ⋅= 7.0

INANDPLHI CRpt ⋅= 7.0

OINVPLHO CRpt ⋅= 7.0

where RpNAND , RnNAND ,RpINV and RnINV are the effective pull up and pull down

switching resistances of the NAND and inverter respectively, and CI and CO are the total

34

capacitance of the inner and outer nodes. Using these relationships, the duty error can be

expressed as

)]()([7.0 INVINVONANDNANDIError RpRnCRpRnCNt −−−⋅⋅=

The equation shows that there are two ways to eliminate duty cycle error in this

type of delay line. Either both devices must have an effective P/N drive ratio of 1 (both

mismatch terms go to zero), or the capacitive loads must be matched and the P/N ratios

of both devices must be equal (the mismatch terms cancel each other out). Both of these

conditions rely on the P/N ratio to be tightly controlled which is difficult using current

fabrication methods.

If a delay line uses delay cells composed of two identical logic gates, the duty

cycle error equation simplifies to

))((7.0 RpRnCCNt OIError −−⋅⋅=

This shows that if the capacitive loads are matched at both the inner and outer nodes – a

much easier task using current fabrication methods – the duty cycle is not affected by the

P/N drive ratios. Using a NAND-NAND delay cell requires some extra layout area but

can eliminate P/N ratio induced duty cycle distortion while still allowing the flexibility of

an entry point topology or an exit point topology with power savings.

An alternative digital delay line is a cycle controlled delay line [10]. This type of

delay line reduces layout area by using a delay line that is only a fraction of the required

size. It re-circulates the input through it a fixed number of times, and then uses a

secondary delay line to increase resolution. While this design does have potential to

greatly reduce layout area, it has complex control and timing requirements.

35

2.2.2 Digital DLL Phase Detectors

Digital DLLs operate in the z-domain and use phase detectors which output a

digital code instead of a voltage. Because the digital code is usually just a binary value

indicating whether the DLL should add or remove a unit delay, the phase detector itself

does not have a gain, only a direction. A phase detector commonly used in digital DLLs

is an arbiter circuit (figure 26a). It consists of a NAND set-reset latch and two inverters.

The inverters are powered by the opposing NAND output. This ensures only one output

is high and reduces the likelihood of a meta-stable condition. The signal that arrives first

will cause the corresponding output to pulse high while holding the opposing output low.

 (a) (b)

Figure 26: (a) Arbiter and (b) D flip-flop phase detectors

One drawback of the arbiter is that the output is only valid for half of a clock

cycle (while the leading input is high). A D flip flop can be used as a phase detector

whose output is always valid (figure 26b). It will be synchronous with Φ2 and will be

36

true if Φ1 arrives early and false if Φ1 arrives late. The accuracy of this phase detector is

dependent on the setup and hold time of the flip-flop.

The arbiter and flip-flop phase detectors – if used alone – will lead to a DLL that

oscillates constantly between two tap points. Figure 27 shows how two flip-flop phase

detectors can be used together to create hysteresis and provide a steady state condition for

a DLL. Not only will this reduce the maximum quantization error, but it also reduces

noise and power consumption. A delay is added before the D input of flip-flop 1 so that

Out1 will only go high if Φ1 leads Φ2 by at least ½·tD. The inputs are reversed to flip

flop 2 so that Out2 will only go high if Φ2 leads Φ1 by at least ½·tD. This will prevent

the DLL from responding to phase differences greater than the quantization error of

±½·tD (see figure 27). It is critical that the hysteresis delay match the DLL unit delay. If

it is too small, the DLL will oscillate, and if it is too large, the maximum quantization

error will be increased.

(a) (b)

Figure 27: (a) Schematic and (b) waveforms for a phase detector with hysteresis

37

2.2.3 Digital DLL Control

Because a digital DLL operates in the z-domain, and does not have a continuous

response like the analog DLL, the design rule – that DLL bandwidth should be one

decade below the loop bandwidth – does not directly apply. However a digital DLL must

be designed so that there is sufficient time between shifts for new phase information to

make it around the loop. This is called the wait time. The worst-case wait time is

determined by dividing the maximum loop delay by the minimum clock period:

min

max

T
tt LOOP

WAIT =

A digital DLL usually has some control and buffering devices that add intrinsic delay to

the loop. Because the intrinsic delay is inside the loop, the DLL will compensate for it in

the delay line, so it does not contribute to phase error. Including the maximum intrinsic

delay tDLLmax, the wait time can be written as

max
min

min

min

maxmaxmaxmaxmin)(N
T

TN
T

tD2D1tD2D1TNt DLLDLL
WAIT =

⋅
=

++++−⋅
=

+

where Nmax is the smallest multiple of Tmin that is greater than D1max + D2max + tDLLmax.

The DLL must ensure that shift to shift time is at least Nmax cycles or jitter will be

increased.

38

There are many ways to implement this control in a digital DLL. The example in

Figure 28 shows a generic control scheme where the control block contains a counter and

decode that allow the shift register to directly sample the phase detector every Nmax

cycles. An averaging filter can be used in conjunction with the wait counter to filter out

random phase noise. This will increase the tracking time of the DLL but make the design

more immune to noise events.

Figure 28: Digital DLL control

39

Table 1 shows the performance metrics of a conventional digital DLL described

in terms of the minimum and maximum delay per stage tDmin and tDmax, the number of

delay stages X, and NMAX. The jitter is related to the quantization error and is based on

the delay per stage. The minimum frequency can be increased by adding more delay

stages, and the maximum frequency is limited only by the rise and fall time of the delay

elements.

Table 1: Digital DLL performance metrics

 Min Max Units

Jitter (steady-state) 0 max2
1

Dt± seconds

Jitter (oscillating) max2
1

Dt± maxDt± seconds

Operating Frequency
min

1

DtX ⋅
 ~

maxmax

1

DFallDRise tt + hertz

Tracking time
max

min22
N
tf D⋅π

max

max22
N
tf D⋅π

second
radians

40

2.2.4 Dual Loop Digital DLL

In order to reduce quantization error beyond what is possible with discrete

elements, a dual loop topology can be applied to a digital DLL (figure 29). A fine delay

line, composed of analog elements, is used to create smaller delay increments. Each fine

delay step tDF should be equal to
M
tD where M is the number of fine delay steps. In other

words, the total delay of the fine delay line should equal one coarse delay.

Figure 29: Digital dual loop DLL block diagram

Figure 30 shows an example of a fine delay line made up of an array of capacitors

that can be independently switched into the clock path. Usually the switches and

capacitors are implemented using transistors. The capacitor array should be spread out

over two complementary nodes to avoid duty cycle distortion.

41

Figure 30: Capacitor based fine delay line

A dual delay line topology improves performance, but also introduces two design

issues that must be considered. 1) Control discontinuity. When tracking an input whose

phase is changing, the DLL adjusts the fine delay line until it reaches a boundary. It then

must reset the fine while simultaneously adjusting the coarse. If this does not happen

simultaneously, a phase error of up to one coarse delay will be briefly seen on the output.

This essentially throws out the performance benefit provided by the fine delay line. 2)

Delay discontinuity. This occurs when the maximum fine delay is not equal to one

coarse delay, causing a phase error of DFD tMt ⋅− every time a coarse to fine boundary is

crossed. This is much more common since it is difficult to match the delay across PVT.

However, the delay discontinuity can usually be kept small.

A phase interpolating circuit can be used to eliminate both the control and delay

discontinuity problems of a traditional fine delay line. Just like the analog dual loop

DLL, the phase mixer will interpolate between the coarse delay taps. Figure 31 shows

two phase mixer topologies, each capable of creating five interpolation points from two

inputs. The core principle is to create a temporary contention on a common output node.

In the single stage phase mixer, the contention occurs on a single node. A thermal coded

input word determines the weighing given to the input phases by selecting which

42

inverters will be Hi-Z and which will be enabled. In the multi-stage binary phase mixer,

the fight occurs on multiple nodes, and the phases are split in a binary fashion.

(a) (b)

(c)

Figure 31: (a) Single stage multi-weight and (b) multi-stage binary phase mixers with (c) waveforms

43

2.2.5 Initialization

Like the analog DLL, a digital DLL is also susceptible to false lock. If the DLL

resets with the delay line at minimum delay and the phase detector wants to remove

delay, the DLL will never lock. A similar error would occur if the reset condition was for

maximum delay and the phase detector wanted to add delay.

There are many ways to initialize a digital DLL to avoid false lock. One

technique is to reset to the center of the delay line. This does not require any complex

initialization circuitry and ensures that if a lock condition exists, the DLL will eventually

find it. However, if there are multiple lock points for a given frequency, the DLL will

find the one nearest the center of the delay line. To minimize power supply sensitivity,

power consumption, and duty cycle error accumulation, it is best to find the lock point

that uses the minimum number of delay elements. One method is to reset to minimum

delay and force the DLL to add delay until a positive phase error is detected. This

ensures that the 180º boundary has been crossed and allows the DLL to naturally find the

lock point of minimum delay. Figure 32 shows a graph of the forward path delay versus

clock period when this technique is used. When the DLL is locked, the forward path

delay is

CKCK tND2D2)D1tND1 ⋅=++−⋅+]([

where N is the smallest integer multiple of tCK that is larger than D1+D2. In this

example, the IO delay D1+D2 = 5ns. The delay below the dotted line represents the IO

delay, and the delay above the dotted line represents the delay in the delay line.

44

Figure 32: Digital DLL initialization (N curves)

The large discontinuity points in these curves do not represent any discontinuity

in the performance of the DLL during normal operation. The curves represent only

where the DLL will lock when initialized at a given frequency. If the frequency starts to

drift after initialization, the DLL will travel up or down the same N curve to track it. For

example if the DLL initialized at 4ns tCK, and then slowly drifted out to 6ns tCK, it would

stay on the N=2 curve and slide up to 12ns. An exception to this is if the frequency were

to instantaneously change and create a phase error greater than 180°. In that case, the

DLL would lose lock on the N that it was tracking and jump to a different N.

Note that when the IO delay is an exact multiple of the clock period, the DLL will

initialize with zero delay in the delay line. This is a problem if the temperature, voltage,

or frequency shifts, and the DLL needs to remove delay to track. For this reason, the

DLL should initialize so that a portion of the delay line is held in reserve. This is called

45

delay line buffer. The buffer increases power consumption and power supply sensitivity,

so it is usually kept as small as possible.

It is interesting to note that the slopes change with N. This is obvious from the

equation, but is not intuitive. When N = 2, why must the DLL add 200ps when the

period shifts by only 100ps? It is because there are two cycles propagating through the

forward path (and the DLL loop). When the period shifts by 100ps, a rising edge at the

output is affected by both cycles in the pipeline.

46

CHAPTER 3: WIDE RANGE DLL FOR DDR-SDRAM

Double data-rate synchronous dynamic random access memories (DDR-SDRAM)

require output data to be aligned with a system clock. To meet the alignment

specifications, a clock synchronization circuit is required. A digital DLL is a good choice

for several reasons. 1) A clock of the appropriate frequency is provided by a memory

controller, so clock synthesis is not required. 2) The alignment specifications of DDR-

SDRAM are loose enough that the superior jitter performance of an analog DLL is not

necessary. 3) The power savings specifications of DDR-SDRAM require that the clock

synchronization circuit retain the lock point even when the clocks are turned off. This is

difficult for an analog DLL since the loop filter requires a continuous clock to hold its

value. 4) A wide frequency range is required, and a digital DLL can increase low

frequency range by simply adding more delay elements. 5) The DDR-SDRAM market is

commoditized, making it very competitive, and the exceptional process portability of

digital DLLs can increase speed to market.

Currently, three families of DDR-SDRAM have been defined: DDR-I, DDR-II,

and DDR-III. A digital DLL is proposed that will meet the requirements of all three.

Table 2 lists the performance requirements of the DLL. The frequency range is

determined by the minimum frequency of DDR-I (75MHz), and the maximum frequency

of DDR-III (1GHz). The alignment requirements allow jitter of approximately ±10% of

47

the period, but the DLL must be designed to leave margin for non-ideal considerations

such as mismatch in the delay model or clock tree across PVT, and power supply or

Table 2: Performance requirements of DDR-I, DDR-II, and DDR-III

 Min Max Note

Operating Range 75MHz 1GHz

Allowable Jitter N/A ±10% of tCK

Lock Time N/A 200 cycles

IO Delay 3ns 9ns Estimated values

Tracking Time * * See discussion below

coupled noise that can be induced into the data path. The target for this design was a

quantization error no greater than 15% of the allowable jitter window, or 3% of the clock

period. The lock time must be less than 200 clock cycles. Tracking time is difficult to

define for DDR-SDRAM. After initialization, a change in frequency, temperature, or

voltage will create phase error that the DLL must track. Frequency slewing is prohibited,

and temperature changes are orders of magnitude slower than a DLLs typical tracking

ability, but supply voltage is allowed to vary by up to 10%, and there are no

specifications that prevent an instantaneous change in voltage. This is impossible for the

DLL to track, but it should be designed to recover as quickly as possible.

Table 3 shows the parameters used for the PVT corners. The maximum voltage

for DDR1 and DDR2 are outside of the range for this process node, requiring that the

internal voltage be regulated down to at least 1.7V. The minimum voltage of DDR3 is

1.425V, so 1.2V is used to provide at least 200mv of margin at the slow corner.

48

Table 3: PVT values used for slow, typical and fast corner simulations

 Process Voltage Temperature

Slow Corner N/P Slow 1.2V 110ºC

Typical Corner N/P Typical 1.5V 25ºC

Fast Corner N/P Fast 1.7V -40ºC

Figure 33 shows the block diagram of the DLL that was developed in this thesis.

The target quantization error cannot be achieved using discrete devices only, so a dual

loop topology was chosen using a graduated coarse delay line and a phase interpolating

fine delay line. A fast initialization circuit allows lock time in less than 200 cycles, and

an N detect circuit and dynamic digital sample filter allow fast tracking time. Each

component of the DLL is discussed in detail.

Figure 33: Block diagram of the proposed DLL

49

3.1 Graduated Coarse Delay Line

The coarse delay line is made up of NAND-NAND delay cells, a shift register and

exit control circuitry. It is called a graduated delay line because the channel lengths of

the delay elements – and therefore the delay per stage – increase with delay line depth.

This increases the total delay of the delay line without increasing the number of delay

elements. The trade-offs associated with a graduated delay line are discussed in detail.

Figure 34 shows a block diagram of the coarse delay line. Each delay cell

consists of a shift register cell, a delay element, and exit control logic. Because the fine

delay line is a phase interpolator, it requires two inputs. To avoid control and delay

discontinuity, only one input should change at a time. To accomplish this, there is one

exit point for even taps and one for the odd taps. The exit control enables the delay taps

Figure 34: Block diagram of the graduated coarse delay line

50

at the 1→0 boundary. When the delay line shifts, this boundary moves, but only one of

the outputs will change. To ensure that this boundary always exists, the left and right-

most register cells are hard-tied to 1 and 0 respectively.

Figure 35 shows a detailed diagram of a delay cell. NANDs A and B are the

delay elements. The second input to NAND A is the enable control and receives the

value of the register on the left. This ensures that the delay cells up to and including the

1→0 boundary are toggling. NAND C enables direct loading of the shift register from

the delay cell. This is used for fast initialization. It will be described in detail later, but it

essentially turns the delay line into a stopwatch. After resetting the register to all zeros,

Figure 35: Graduated coarse delay line delay cell

51

the rising edge of ClockIn becomes a start signal, and the rising edge of ShiftClock

becomes a stop signal. The number of ones in the register represents how far the signal

propagated through the delay line from start to stop. Logic gates D and E are the exit

control. The exit path is enabled only when the register cells on the left and right are 1

and 0 respectively – this is true only if the cell is on a 1→0 boundary. The inputs

ShiftLeft, ShiftRight and LoadEnable, enable the register to be loaded on the rising edge

of ShiftClock from the left, right, or delay cell inputs.

Table 4: Delay cell device sizes

 Buffer (First 8 Stages) Delay Stage M

 W L W L

NAND A 40 1 40 1 + M·0.1

NAND B 40 1 40 1 + M·0.1

NAND C 40 1 40 1.1

NAND E 40 1 40 1

The sizes of NANDs A, B, C, and E are shown in Table 4, where M is the number

of delay stages beyond the last buffer stage. These sizes are critical to the delay line

performance. It was discussed earlier that the capacitive loads must be matched at both

the inner and outer nodes of each delay element or a P/N drive mismatch will cause duty

cycle error accumulation. Duty cycle performance is critical in a DDR-SDRAM because

data is sampled on both the rising and falling edges of the clock. It might seem that if A

matches B, and C matches E, the capacitive loads will be the same. However, in a

graduated delay line, the outer node will see an extra xCoΔLW ′⋅⋅ from the graduation

52

value of the next stage. To compensate, all four devices must have the same widths, and

the length of device C must be greater than device E by the graduation value . ΔL

Figure 36 shows the duty cycle performance of the delay line with and without

load matching. When N and P drives are not matched, duty cycle error begins to

accumulate at the point of graduation because of second order effects that cannot be

compensated for by load matching (Vt variation, capacitive coupling, etc…). However,

load matching keeps the error symmetrical about the typical corner, preventing the error

terms from summing as seen in the slow N fast P corner.

Figure 36: Duty cycle performance of the graduated delay line

53

This is a deep submicron process, so scaling theory says that – because of

mobility saturation of the charge carriers – the drain current is not affected by small

variations of L [5]. The capacitive load of each delay element will increase linearly with

L, so the delay per stage of the graduated delay line increases linearly with delay line

depth, and total delay increases exponentially. Figure 37 shows the total delay and delay

per stage transfer curves for the delay line based on slow, typical and fast process corner

simulations. The delay per stage is constant for the buffer stages, and then begins to

increase at a constant rate.

54

(a)

(b)

Figure 37: (a) Total delay and (b) delay per stage versus delay line depth

55

The benefit of a graduated delay line can be seen by analyzing the initialization

curves discussed earlier. The graphs in figure 38 are similar to the lock point curves

shown in figure 32, but the Y axis is number of delay stages instead of total delay. Using

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14

tCK (ns)

N
um

be
r o

f S
ta

ge
s

 (a)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14

tCK (ns)

N
um

be
r o

f S
ta

ge
s

 (b)

Figure 38: Lock point curves of a (a) typical and (b) graduated delay line

56

the minimum delay per stage of 75ps – taken from the fast corner simulation, and the

minimum predicted IO value of 3ns, the maximum number of taps can be determined.

The data shows that a conventional delay line would require over 130 delay stages to

cover the full operating range. Even though the graduation value is only 3.75ps at the

fast corner, the graduated delay line reduces the number of required delay stages by a

factor of two. This is a significant savings in layout area because the delay line is usually

the largest component of a digital DLL.

Besides the duty-cycle distortion, there is another performance sacrifice involved

with using a graduated delay line; the quantization error increases with delay line depth.

This is acceptable because at higher frequencies – where delay line depth is shallow – the

penalty will not be as severe as at the low frequencies where a larger quantization error

can be tolerated. The maximum expected quantization error is now based on delay line

depth. The delay line depth – accounting for the buffer stages – is given by

BUFCK tD2D1tN ++−⋅)]([

The IO delay will vary based on data path design and PVT, so it must be assumed that at

any given tCK, the maximum delay line depth will be tCK + tBUF. However, the buffer

stages are not graduated, and therefore do not contribute to an increase in quantization

error. The maximum quantization error can then be defined as the delay per stage when

the delay line depth is equal to tCK. The following equations define the delay line depth

tDT and delay per stage tD, by the number of stages X, the delay of the initial delay

element tDo, and the graduation value ΔtD.

DDoD tXtt Δ⋅+=

57

DDoDT tXXtXt Δ
−

+⋅=
2

)1(

Solving for tD in terms of tDT gives

DTDDDoD ttttt ⋅Δ⋅+Δ−= 2)(2
2
1

Substituting tCK for tDT gives the maximum quantization error tE as a function of tCK.

CKDDDoE ttttt ⋅Δ⋅+Δ−= 2)(2
2
1

Figure 39 shows the graph of the error function at slow, typical and fast PVT

corners. The slow corner is worse for quantization error, and compared to the target of

3% of the clock period, the worst case tCK is 1ns, exhibiting nearly 10 times the target

Figure 39: Quantization error versus tCK

58

value. However, the coarse delay line alone was not meant to reach that target. The fine

delay line will allow the target to be met so long as it has a resolution of at least 10
1 of a

coarse delay.

3.2 Phase-Interpolating Fine Delay Line

Figure 40 shows the schematics of the fine delay line. It was implemented using a

single stage multi-weighted phase mixer. A phase mixer was chosen for this design

because it will scale with the variable delay per stage of the graduated coarse delay line.

Figure 40: Phase mixing fine delay line schematics

59

A fine delay line with a fixed delay value – such as a capacitor based delay line – would

create large delay discontinuity. Ten pairs of tri-state inverters were needed to achieve

the required resolution. The N and P devices were sized at 48/1 and 24/1 respectively.

The schematics are shown in. A 10-bit shift register (not shown) provides the thermal-

coded control word for the tri-state inverters.

Figure 41 shows simulation results at the typical PVT corner with the input

phases spaced 200ps apart. Ideally, the output phases should be spaced by 20ps, but they

range from 10ps to 40ps. This non-linearity is proportional to the phase difference of the

inputs and is one of the weaknesses of this circuit. However, it can be tolerated because

the phase difference of the inputs is smaller for high frequencies where the delay line

depth is shallow. Other drawbacks include relatively high power consumption due to the

deliberate contention created at the common output node and duty cycle sensitivity to N

and P drive mismatch.

Figure 41: Phase mixing fine delay line waveforms

60

3.3 Initialization Control

The DDR-SDRAM specification requires the DLL to lock within 200 cycles of

reset. The delay line has 640 effective phase placements (64 coarse * 10 fine), so it

would take too long to let the DLL shift to the lock point. A fast initialization circuit is

required. The fast initialization uses the stopwatch method mentioned earlier to set the

initial value of the coarse delay line near the lock point. The number of cycles in the loop

N is captured during the stopwatch measurement, which is used by the dynamic filter to

set the DLL wait time (the time between shifts). A simplified block diagram and

waveforms of the fast initialization scheme are shown in figure 42.

Figure 42: Initialization and N-detect simplified block diagram and waveforms

The first rising edge of Clk sets the leftmost D flip-flop which enables the N-

detector and sends a rising edge into the delay model. The Start signal begins to

61

propagate through the delay model while the N-detector counts the clock cycles. Once

the signal has propagated through the delay model, it enables the second D flip-flop and

begins propagating through the delay line. On the next rising clock edge, Stop captures

the delay line depth setting the delay to N·tCK - (D1+D2) and disables the counter

preserving the value of N.

To eliminate the need for extra logic, and to ensure that the measurement is as

accurate as possible, the actual DLL loop is used for the measurement. Figure 43 shows

a detailed diagram including the intrinsic delays that affect measurement accuracy.

Figure 43: Initialization circuit detailed block diagram

Several things happen before the initialization sequence begins: the MUX in front

of the delay line selects the lower input instead of Ref, the delay line is set to minimum

delay, and flip-flops A, B and C are held in a reset state long enough to ensure that the

62

DLL loop is clear of all old clock cycles. Once the flip-flops are enabled, the start

sequence begins when the next rising edge of Ref arrives at flip-flop A. This sends a

pulse around the loop measuring the DLL intrinsic delay tDLL1 and tDLL2, and the IO model

D1+D2.

When the pulse arrives at flip-flop B, it sends a rising edge into the delay line and

through the buffer replica delay to flip-flop C. The buffer replica delay ensures that the

edge propagates through the delay line buffer before the stop signal can be asserted. In

other words, the buffer replica will increase N if the DLL attempts to initialize the delay

line in the buffer. On the next rising edge of Ref, the stop signal is sent to the delay line

through an adjustable delay tDC. Figure 44 shows simulation results of the waveforms

during initialization.

Figure 44: Waveforms during initialization

After initialization, the delay tDX in the delay line will be equal to

SETtStartStop −−

63

SETDLL1DBDLL2DLL1DADCCK tttD2D1tttttN −++++++−+⋅⇒)()(

The desired tDX delay is

)(D2D1tttN DLL2DLL1CK +++−⋅

To cancel out the error terms caused by intrinsic delay and the setup time of the shift

register, the tunable delay tDC must equal to

SETDBDLL1DA tttt +++

Because the timing of this circuit is so sensitive, it is important to check the

operation across all PVT and frequencies. Figure 45 shows the measured phase error

immediately after initialization across tCK at the slow, typical and fast PVT corners. If the

measurement path is tuned properly, the maximum error should be the quantization error

of the coarse delay line. That explains why the error distribution has a wider spread at

slow tCK than at the faster tCK. The initialization sequence takes about 30 cycles, leaving

170 cycles for the DLL to dial in on the lock point.

64

Figure 45: Phase error after initialization

65

3.4 N-Detector and Dynamic Sample Filter

The N-detector serves two purposes. First, it holds off the init sequence until the

feedback loop can clear out all of the old clock cycles. Second, it detects and stores the N

value that is used by the dynamic sample filter. Initially, the N-detector was

implemented using a 4-bit binary counter. That topology had a smaller gate count and

used less power, but the time required to decode the output and reset the counter was

more than 1ns at slow PVT creating a possible race condition. The circuit was

redesigned using shift registers. The topology is shown in figure 46.

Figure 46: N-detector and dynamic sample filter block diagram

Both the N-detector and sample filter consist of a 10 bit shift register, but they

differ slightly in their controls. The N-detect register can shift left or right, while the

sample filter can shift left or load an external value. The waveforms in figure 47 show

the simulated operation of the sample filter and N-detector. Upon reset, both registers

66

initialize to all ones, and the NAND set-reset latch is set. This asserts Wait which holds

off the initialization sequence by keeping Start and Stop low. Because Start is low, the

N-detector will shift left until a zero is output to the NAND set-reset latch. This clears

the latch and allows the initialization sequence to begin. These 10 cycles of hold time are

required to ensure that any clocks propagating through the feedback path have cleared out

before the initialization sequence begins. Since the N-detector has already pre-loaded

itself with zeros, it is ready to begin counting the number of cycles between Start and

Stop. Once Start is asserted, it will begin shifting right on every rising clock edge until

the Stop signal is asserted.

Figure 47: Waveforms showing the operation of the N-detector and dynamic sample filter

When Stop goes high, it allows the sample filter to begin shifting left. This will

take a full 10 cycles, allowing the feedback path to clear out from the initialization

sequence and populate with clocks. When a zero is output from the sample filter, it

67

triggers a sample of the phase detector and asserts the Load signal. On the next rising

edge, the value from the N-detect register will be loaded directly into the sample filter.

This clears the load signal and allows the register to begin shifting left. After N

consecutive cycles, it will output another sample and repeat the process so that a sample

is triggered every N+1 cycles (N cycles of shifting plus one cycle of sample/load time).

This topology requires very little sequential logic, allowing it to run extremely

fast with no race conditions even at the slowest PVT corner, but it is expensive in terms

of layout area and power consumption. The graphs in figures 48 through 50 show the

lock point and N-detector value versus tCK across all PVT corners. A preliminary design

of the N-detector required it to use the same inputs as the flip-flops that controlled the

start and stop signal. This created discontinuities at the lock point boundaries if the setup

times of the shift register and flop-flops were not perfectly matched. The new topology –

using the output of the flip-flops – shows continuity across all PVT and frequency, and is

not susceptible to process induced setup and hold mismatch.

68

Figure 48: Lock point curves and N-detector output at fast corner

Figure 49: Lock point curves and N-detector output at typical corner

69

Figure 50: Lock point curves and N-detector output at slow corner

Figure 50 shows that at the slow corner, 1ns tCK, there are 11 cycles in the forward

path, but the N-detector is stuck at the maximum value of 10. This is because the delay

through the delay line buffer is 2ns at this corner. That was not taken into account when

the maximum value of N was determined. The topology allows N to be increased simply

by increasing the size of the shift registers. However, that is not necessary. The buffer

70

increases the measured loop delay, but it does not contribute to the delay from shift to

new information at the phase detector. The fine delay line is after the coarse, and the

coarse delay line uses an exit point topology. This means that when a shift occurs, the

new phase information does not have to propagate through the buffer.

3.5 Phase Detector

The phase detector used in this design is a D flip-flop phase detector. The

schematics are shown in figure 51. It is comprised of three NAND set-reset latches, one

master and two slaves. The bottom NAND is for load matching, and the two inverters

minimize the load and increase the gain of the master set-reset latch.

Figure 51: Schematic of the phase detector

Hysteresis was not implemented because the nature of the graduated delay line

makes it difficult to realize. If the hysteresis delay was set to the minimum delay per

71

stage, the DLL would oscillate when the DLL is locked deep. If it were set at maximum

delay, it would hurt the performance when the delay line was locked shallow. A replica

delay line could be used to set the hysteresis delay, but the increase in layout area and

power consumption makes this solution impractical.

3.6 Shift Control

A shift is performed every time that the phase detector is sampled. The shift

control logic determines the direction of the shift and whether it will be applied to the

coarse or fine delay line. The schematics are shown in figure 52.

Figure 52: Schematics of the shift control logic

72

When a sample is generated by the filter, the signal FbEarly from the main phase

detector – indicating whether to add or remove delay – is latched by the D flip-flop. The

coarse direction is determined directly from the output of the flip-flop. A shift right will

add delay and a shift left will remove it.

The fine direction is not as straightforward. It cannot be determined directly from

the main phase detector because the phase mixer does not know which input is early and

which is late. This can be determined by decoding the register setting of the coarse delay

line, but it is a large register and would require too much logic. Instead, a local phase

detector is used to detect which output from the coarse delay line, ClkE or ClkO, is early.

The fine shift direction is determined by an XOR function between the main phase

detector and the local phase detector. A shift right is performed to add weight to the

phase of ClkO if the phase detector wants to remove delay and ClkO is early, or if the

phase detector wants to add delay and ClkO is late. Otherwise a shift left is performed.

The logic on the bottom determines whether a fine or coarse shift is required. The

inputs FMaxR and FMaxL are flags from the fine shift register that are set when the

register hits the right or left end. A coarse shift is only done if a fine shift would result in

an overflow. The logic on the top creates the shift clock. The pulse generator sets the

width of the shift clock pulse, and the delay on the output of the generator creates setup

time for the shift direction.

73

CHAPTER 4: CONCLUSION

This thesis discussed common topologies for clock synchronization. Analog and

digital DLL implementations were discussed in detail, paying special attention to the

effects of a large delay model in the feedback path. Design considerations were

discussed and supported with simulation results. A digital DLL was presented that used a

graduated digital delay line to cover the full operating range of all currently defined

DDR-SDRAM families.

To measure the performance of the DLL, the circuit was simulated across PVT

corners and over the full operating range. The DLL was given exactly 200 cycles to lock.

The next 150 cycles of data were captured, and the DLL output was analyzed for jitter.

This allowed both lock time and jitter to be measured simultaneously; because if the DLL

did not lock in time, it would show up as increased jitter.

It is generally accepted that the jitter transfer function of a DLL is unity. A DLL

simply adds delay, so jitter on the input clock is passed directly through to the output.

The total jitter is the input jitter plus the jitter induced by the DLL. However, it has been

shown that jitter can be amplified in a DLL under certain conditions [19]. This is mainly

a concern for applications where multiple DLLs are cascaded. A full treatment of jitter

transfer and phase noise suppression is beyond the scope of this paper. The simulations

were run without any input jitter, and jitter amplification will be lumped with other non-

ideal considerations for which the DLL has been designed to provide margin.

74

Figure 53 shows simulation results at the typical process corner, 2ns tCK. The

waveforms show 24.4ps of maximum jitter, and the histogram below shows the jitter

grouped into two nearly equal groups spaced approximately 20ps apart. This is

consistent with the expected results. The two groups represent two discrete delay steps

that the DLL is oscillating between. Assuming that the delay model is tuned properly,

the ideal clock output will lie somewhere between the two steps, and the maximum

possible error is 24.4ps.

Figure 53: Jitter waveform and histogram at typical corner, 2ns tCK

Figure 54 shows the simulated jitter values across PVT and frequency. The target

of 3% of tCK is achieved except at 1ns. At tCK above 2ns, the DLL provides plenty of

margin to the target. However, at 1n, slow corner, the DLL exhibited jitter of 50ns

compared to the target of 30ns.

75

Figure 54: Maximum jitter versus tCK

Figure 55 shows the jitter waveform and histogram at 1ns tCK, slow corner. Three jitter

bands are evident instead of two, implying that the DLL is actually oscillating between

three delay steps. If these were real measurements taken from a physical circuit on a

DRAM, this would not be surprising because of the noisy environment, but in an ideal

simulation environment this was not expected. One possibility is that the wait time was

too short. This would cause a second shift to be issued before the phase information from

the first shift made it around the loop.

76

Figure 55: Jitter waveform and histogram at slow corner, 1ns tCK

Tracing the signal around the loop showed that the new phase information was

actually making it around the loop with time to spare, but the phase detector was not

changing state. It was not sensitive enough to detect a phase difference of a single unit

delay at the slow corner, so it was forcing two consecutive shifts in the same direction.

Figure 56 shows an alternate phase detector with improved accuracy. The core of

this phase detector is the arbiter circuit described in the digital DLL section. It is more

accurate than the D flip-flop for two reasons. First, there is no setup versus hold issue,

because the paths to the output are identical for both inputs. Second, the arbiter core

itself has no “memory”; the previous state is cleared as soon as both inputs go low. A

flip-flop based phase detector retains its previous state making it more likely to repeat the

same decision.

77

Figure 56: Arbiter based phase detector schematic

The extra inverters inside the arbiter core increase the gain of the NAND latch and

provide protection from capacitive coupling back into the latch. The extra circuitry

outside of the core is used to latch the state of the arbiter so that the output is valid for a

full clock cycle. Using the new phase detector, the DLL behaved as expected, and the

jitter target of 30ps was achieved at the slow corner 1ns tCK (see figure 57).

Figure 57: Jitter waveform and histogram at slow corner, 1ns tCK with new phase detector

78

Although the design provides margin for non-ideal operating conditions, it is

important to understand how noise will affect the performance of the DLL. Figure 58

shows the performance of the DLL under slow power supply noise. A voltage bump of

25mV over 1μs was applied after the DLL had locked at 2ns tCK, typical corner. This is

enough noise to cause the IO delay to shift by over 100ps, but since the DLL is tracking,

jitter is kept within the target window. The jitter increased by about 15ps when compared

to the simulation results presented in figure 53 – the same conditions but without noise.

The main reason for the increase in jitter is due to the phase interpolator. The DLL was

forced to shift across an entire coarse delay step, so the worst case non-linearity was

brought out.

Figure 58: Jitter waveform and histogram at typical corner, 2ns tCK , with slow power supply noise

79

Figure 59 shows the DLL performance under fast power supply noise. A 10MHz

sine wave with peak to peak amplitude of 50mV was applied after the DLL had locked at

2ns tCK, typical corner. The DLL cannot track noise at that frequency, so the jitter is

increased significantly. This illustrates the importance of good power supplies for DLL

performance. Any supply noise that is outside of the DLL tracking bandwidth will be

directly translated to jitter. For this reason, a DLL typically uses power rails that are

isolated from other circuitry as much as possible, and large decoupling capacitors are

used to filter out AC noise.

Figure 59: Jitter waveform and histogram at typical corner, 2ns tCK , with fast power supply noise

80

CHAPTER 5: FUTURE WORK

 The jitter simulations showed that at high frequency there was much less margin

to the jitter target than at lower frequencies. To improve this, the delay line could be

divided into three sections: a shallow section with no graduation for maximum

performance at high frequencies, a middle section with moderate graduation for balanced

performance versus layout area, and a deep section with a large graduation value to take

advantage of the jitter margin at the lower frequencies. Because the shallow section is

not graduated, a phase detector with hysteresis could be used to create a steady state

condition to further improve the ideal jitter performance at high speed.

Although the simulation results show that this design will perform well in an ideal

environment across all PVT corners, improvements could be made to make it more

immune to the noisy environment of a DRAM circuit. The fast initialization is a one-shot

measurement that will be directly affected by instantaneous input clock jitter; power

supply noise; or cross-coupled noise in the delay line, initialization circuitry, or any point

along the loop. If the noise event were severe enough, the DLL might not lock in time.

An initialization scheme that sent several pulses around the loop and averaged the

measurement would be more immune to noise.

 Noise events will also be an issue when the phase detector is sampled. If the

noise event coincided with a sample, the DLL might shift in the wrong direction. This

would not be a problem for a single event because the DLL would quickly recover.

81

However, if the frequency of the noise event was harmonic with the sample frequency,

multiple shifts could occur in the wrong direction, severely affecting jitter performance.

An averaging filter could be used in conjunction with the dynamic sample filter to

provide some noise protection.

 Another possible area of improvement is the fine phase mixer. The graduated

delay line topology would not be possible without it, but the non-linearity and duty-cycle

distortion hurts the overall performance of the DLL. A full analysis of the performance

of different phase mixing topologies is enough work for a thesis within itself but would

be the next step to improve this design further.

82

REFERENCES

[1] T. Hsu, B. Shieh and C. Lee, “An all-digital phase-locked loop (ADPLL)-based

clock recovery circuit,” IEEE J. of Solid-State Circuits, vol 34, pp. 1063–1073,
Aug. 1999.

[2] T. Saeki et al., “A 2.5-ns clock access, 250-MHz, 256-Mb SDRAM with
synchronous mirror delay.” IEEE J. of Solid-State Circuits, vol 31, pp. 1656-
1668, Nov. 1996.

[3] W. Kim, K. Kim, Y. Jeon, and S. Kim, “A Ring & Counter Controlled Delay Line
for a Wide Operation Range and Low-Jitter Performance,” Journal of the Korean
Physical Society, vol. 42, pp. 246-250, Feb 2003.

[4] F. M. Gardner, Phaselock Techniques, Wiley-Interscience, 2005.

[5] R. J. Baker, CMOS Circuit Design, Layout and Simulation, IEEE, 2005.

[6] M. G. Johnson and E. L. Hudson, “A variable delay line PLL for CPU-coprocessor
synchronization,” IEEE J. of Solid-State Circuits, vol 23, pp. 1218-1223, Oct.
1988.

[7] H. Chang, J. Lin, C. Yang and S. Liu, “A wide-range delay-locked loop with a
fixed latency of one clock cycle,” IEEE J. of Solid-State Circuits, vol 37, pp. 1021-
1027, Aug. 2002.

[8] F. Lin, J. Miller, A. Schoenfeld, M. Ma and R. J. Baker, “A Register-Controlled
Symmetrical DLL for Double-Data-Rate DRAM,” IEEE J. of Solid-State Circuits,
vol 34, pp. 565-568, Apr. 1999.

[9] A. Hatakeyama et al., “A 256-Mb SDRAM using a register-controlled digital
DLL,” IEEE J. of Solid-State Circuits, vol 32, pp. 1728-1734, Nov. 1997.

[10] H. Chang and S Liu, “A wide-range and fast-locking all-digital cycle-controlled
delay-locked loop,” IEEE J. of Solid-State Circuits, vol 40, pp. 661-670, Mar.
2005.

83

[11] J.G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased
techniques,” IEEE J. of Solid-State Circuits, vol 31, pp. 1723-1732, Nov. 1996.

[12] R. E. Best, Phase-Locked Loops: Design, Simulation, and Applications, McGraw-
Hill, 2003

[13] E. Song, S. Lee, J. Lee, J. Park and S. Chae, “A reset-free anti-harmonic delay-
locked loop using a cycle period detector,” IEEE J. of Solid-State Circuits, vol 39,
pp. 2055-2061, Nov. 2004.

[14] S. J. Kim, S. H. Hong, J. K. Wee, J. H. Cho, P. S. Lee, J. H. Ahn and J. Y. Chung,
“A low-jitter wide-range skew-calibrated dual-loop DLL using antifuse circuitry
for high-speed DRAM,” IEEE J. of Solid-State Circuits, vol 37, pp. 726-734, Jun.
2002.

[15] B. Kim and L. Kim, “A 250-MHz-2-GHz wide-range delay-locked loop,” IEEE J.
of Solid-State Circuits, vol 40, pp. 1310-1321, Jun 2005.

[16] Y. Jung, S. Lee, D. Shim, W. Kim, C. Kim and S. Cho, “A dual-loop delay-locked
loop using multiple voltage-controlled delay lines,” IEEE J. of Solid-State Circuits,
vol 36, pp. 784-791, May 2001.

[17] S. Sidiropoulos and M. A. Horowitz, “A semidigital dual delay-locked loop,” IEEE
J. of Solid-State Circuits, vol 32, pp. 1683-1692. Nov. 1997.

[18] B, Garlepp, K. S. Donnely, J. Kim, P.S Chau, J. L. Zerbe, C. Huang, C. V. Tran, C.
L. Portman, D. Stark, Y. Chan, T. H. Lee, M. A. Horowitz, “A portable digital DLL
for high-speed CMOS interface circuits,” IEEE J. of Solid-State Circuits, vol 34,
pp. 632-644, May 1999.

[19] M.-J. E. Lee, W. J. Dally, T. Greer, H.-T. Ng, R. Farjad-Rad, J. Poulton, R.
Senthinathan, “Jitter transfer characteristics of delay-locked loops - theories and
design techniques,” IEEE J. of Solid-State Circuits, vol 38, pp. 614-621, Apr 2003.

	Prelim Pages.doc
	Body.doc
	CHAPTER 1: INTRODUCTION
	1.1 Open Loop Clock Synchronization Topologies
	1.2 Closed Loop Clock Synchronization Topologies

	CHAPTER 2: CURRENT DLL DESIGN TECHNIQUES
	 2.1 Analog DLL Design
	2.1.1 Voltage Controlled Delay Line (VCDL)
	2.1.2 Analog DLL Phase Detectors
	2.1.3 Loop Filter
	2.1.4 Charge Pump and Capacitor Loop Filter
	2.1.5 Other First Order Loop Filters
	2.1.6 Initialization and Lock Range

	 2.2 DIGITAL DLL DESIGN
	2.2.1 Register Controlled Delay Line (RCDL)
	2.2.2 Digital DLL Phase Detectors
	2.2.3 Digital DLL Control
	 2.2.4 Dual Loop Digital DLL
	2.2.5 Initialization

	CHAPTER 3: WIDE RANGE DLL FOR DDR-SDRAM
	 3.1 Graduated Coarse Delay Line
	3.2 Phase-Interpolating Fine Delay Line
	3.3 Initialization Control
	 3.4 N-Detector and Dynamic Sample Filter
	3.5 Phase Detector
	3.6 Shift Control

	
	CHAPTER 4: CONCLUSION
	
	CHAPTER 5: FUTURE WORK
	
	REFERENCES

