

Wide I/O DRAM Architecture Utilizing Proximity Communication

by Qawi Harvard Thesis Defense – October 8th, 2009

- Bandwidth and power consumption of dynamic random access memory stifles computer performance scaling
- Background
- □ Status of Proximity Communication
- DRAM Market Analysis
- □ 4 Gb DRAM Architecture
- Wide I/O DRAM Architecture Utilizing Proximity Communication

- Memory Gap
 - \checkmark Main memory does not scale with processor performance
- D Power
 - Current consumption is rising
 - ✓ Bandwidth increases power
 - \checkmark Voltage scaling masks the issue
- Density
 - ✓ Memory channel loading
 - ✓ Limits bandwidth
- Proximity Communication
 - ✓ Proposed by Ivan Sutherland US Patent #6,500,696
 - \checkmark Promises to reduce power and increase bandwidth

Proximity Communication

Capacitive Coupled Proximity Communication
 ✓ Top metal forms the parallel plates
 ✓ Chip-to-chip communication through coupling capacitor

Ref:[1]

Benefits

- ✓ Increased I/O density
- ✓ Avoids on/off chip wires
- \checkmark Eases chip replacement at the system level
- ✓ Enhances system level testability
- ✓ Enables smaller chip sizes
- \checkmark Removes the need for ESD protection
- □ Challenges
 - ✓ Mechanical misalignment
 - ✓ Applying power to the chips
 - \checkmark Thermal solution

Ref:[1-5]

Proximity Communication

Parallel Plate Capacitance

$$C = \frac{\varepsilon_0 A}{d} \quad \varepsilon_0 = 8.9 \, \frac{aF}{\mu m}$$

 \Box 10 pF/mm²

✓ Chip-to-chip separation

 $\checkmark d = 1 \ \mu m$

One channel

✓ 50 fF

✓ 200 signals/mm²

Ref:[1]

Proximity Communication

Mechanical Misalignment

- ✓ Six axis
- ✓ Multiple sources

Ref:[5]

Electronic Sensors

- \checkmark Chip-to-chip separation sensors (0.2 µm resolution)
- \checkmark Vernier scale incorporated on chip (1.0 µm resolution)
- Electrical Re-Alignment
 - \checkmark Receive array
 - ✓ Micro-transmit array
 - ✓ Electronic steering circuit

Revisit the Memory Gap

- ✓ "Performance" becomes a relative term
- ✓ Dichotomy in scaling
- U Why Density?
- □ Why Not Latency?

□ Moore's Law

 \checkmark 41% increase in transistor count per year

□ Selling Price

✓ 36% historic decline per year

□ Putting it into Perspective

✓ 1 Gb 2009 \rightarrow \$2.00

✓ 2 Gb 2011 \rightarrow \$1.64

Density or Bust!!

Ref:[7-8]

DRAM Market Analysis

Cost

✓ Low cost manufacturing process

- o 3 metal layers
 - Increased usage of each level
- o Small chip size
 - Limits I/O count

□ Moore's Law

- ✓ 41% scaling per year
 - o Wordline cross sectional area
 - o Tight metal pitch
 - o Contact resistance
- □ Physics of Scaling

✓ Latency must increase

Ref:[7-8,13]

```
Qawi Harvard – Oct. 8<sup>th</sup>,2009
Thesis Defense
```


Generations Features Simple RAS/CAS PM Fast CAS Access **FPM** Latched Output EDO Programmable Burst & Synchronous w/Clock SDR Latency Multi-Bank LVTTL Interface Data Clocked on Both Clock Data Strobe DDR SSTL 2.5 Interface Edges ODT Posted CAS DDR2 OCD SSTL 1.8 Interface Standard Low Voltage Option Drive/ODT Calibration DDR3 Dynamic ODT Write Leveling Faster DDR4 Lower Power

DRAM Market Analysis

Ref:[14-17]

DRAM Market Analysis

- □ Interface versus Core
 - \checkmark Interface bares the burden
 - \checkmark Core cycles
- DRAM Pre-fetch
 - \checkmark Doubles at each generation
- Density limited by bandwidth
 - ✓ SSTL loading in memory channel
 - ✓ Increase chip count per module

Ref:[14-17]

- Possible Architecture
 - ✓ Compared to ITRS
- □ 2012 Production Release
- \Box 74 mm²
- □ 56 % Array Efficiency

🗖 40 nm

Ref:[10,12,20-24]

- □ 6F² Memory Cell
- \Box Feature Size = 40 nm
- \Box Cell Area = 0.0096 μ m²
- □ 3F Pitch per Wordline
- □ 2F Pitch per Bitline
- 256 kb Array Macro
 - ✓ Core Array
 - ✓ 512 bitlines \approx 43.6 µm
 - ✓ 512 wordlines \approx 65.4 µm
- Periphery Circuitry
 - ✓ 4 μ m space allocated

Ref:[24]

Ref:[25]

- □ 256 Mb Array
 ✓ 32 x 32 256 kb macros
- $32 \cdot (43.6 \,\mu m + 4 \,\mu m) = 1.532 \,mm$
- □ 1 Gb Array
 - ✓ Multiple implementations

□ ITRS

 \checkmark 74 mm²

- ✓ 56% Array Efficiency
- □ Wide I/O Architecture
 - \checkmark Moving the pads
 - ✓ Centralized Row
 - ✓ Centralized Column

Ref:[29]

Wide I/O Chip Architecture

- □ 64 Bytes per Chip
- □ 6.2% Chip Size Reduction
- □ 6.6% Increase in Array Efficiency
- Challenges
 - \checkmark Routing from the edge
 - ✓ Array I/O route increase
 - o $2.3 \text{ mm} \rightarrow 4.6 \text{ mm}$
 - ✓ Additional row decode
- Create Eight Internal Banks

- 1 mm Allocation for Proximity Channel
- □ Buffers at the Center
 - ✓ Increase global I/O metal usage
- Array I/O Routing Reduced to 2.3 mm
- Architecture NOT Efficient for Proximity Communication
 - ✓ 6.7 mm versus 10.4 mm
 - ✓ Buffers required
 - ✓ Large metal usage

Ref:[13,16,27,30,]

 \Box Chip Size = 68.88 mm², Array Efficiency = 59.9%

- ✓ Centralized row & column
- ✓ Buffers not required
- ✓ 12.3 mm for proximity communication
- \checkmark Enables two levels of metal

□ Split Bank Architecture

- ✓ 64 bytes = 512 signals
- \checkmark 6 mm / 256 \approx 43 μm per signal
- ✓ 0.4 μ m pitch < 1 % metal usage

RAS & Address	Local Wordline		rdline	Global Wordline
Ha	alf-Bank<7>	ROW	Half-Bank<7>	
Ha	alf-Bank<6>	ROW	Half-Bank<6>	
Ha	alf-Bank<5>	ROW	Half-Bank<5>	
Ha	alf-Bank<4>	ROW	Half-Bank<4>	
COLUMN				COLUMN
Ha	alf-Bank<3>	ROW	Half-Bank<3>	
Ha	alf-Bank<2>	ROW	Half-Bank<2>	
		个		
Н	alf-Bank<0 _{>}		Half-Bank<0>	
Proximity Interface				

College of Engineering

College of Engineering

BLSA

BLSA

256 BL

256 BL

32 LIO

32 LIO

DQ<3:0> Region

DQ<60:57> Region

□ Split Page Architecture

- ✓ 8k page keeps current relative
- ✓ Page decode required
- ✓ 32 differential signals per macro

Local I/O Routing

- ✓ Space limited
- ✓ Increase space?
- ✓ Increase page size?

Ref:[12,20-24,26,28]

Wide I/O DRAM Architecture

□ New Column Routing

✓ Global I/O operates at higher frequency

 \checkmark Protocol allows for insertion of data

Half-Bank<7>	BUSY			Wordline Fires
<u>}</u>				
Half-Bank<6>	FREE	Half-Bank<6>		Data Latched & Inserted on Global I/O Bus
Half-Bank<5>	FREE	Half-Bank<5>		
Half-Bank<4>	BUSY			Next Wordline Fires
S Half-Bank<3>	FREE	Half-Bank<3>		Data Latched & Inserted on First Available Slot of the
Half-Bank<2>	FREE	Half-Bank<2>		Global I/O Bus
Half-Bank<1>	FREE	Half-Bank<1>		Global I/O Bus
> Half-Bank<0>	FREE	Half-Bank<0>		
}		Proximity Interface	•	

Wide I/O DRAM Architecture

□ Slice Architecture

- \checkmark Ease of design
 - o Uniformity, speed, verification

DATA (DATA \$	Proximity Interface	CONTR
SLICE	SLICE	Half-Bank<0>	
		Half-Bank<1>	R
		Half-Bank<2>	ROW
		Half-Bank<3>	ROW
		COLUMN	
		Half-Bank<4>	ROW
		Half-Bank<5>	ROW
		Half-Bank<6>	ROW
		Half-Bank<0>	ROW

- □ 64 Bytes per Chip
 - ✓ Significant bandwidth increase
- Power Consumption
 - ✓ Standard 8k page size
 - ✓ Split bank, split page
- Cost Performance
 - \checkmark Two metals enabled for 4 Gb
 - ✓ Smaller chip size, higher array efficiency

D Power Consumption

Wide I/O DRAM Architecture

Bandwidth

Applying Proximity Communication to New Memory Technologies

- ✓ "High" density
- ✓ Chalcogenide
- ✓ Slice architecture
- ✓ Circuit design techniques
- Local I/O Routing
 - ✓ New column global I/O structure
 - ✓ Through bitline routing
 - ✓ Novel local I/O latch

- Dr. Jake Baker
- Dr. Kris Campbell
- Dr. Robert Drost
- Dr. Sin Ming Loo
- Dr. Thad Welch
- □ Ms. Donna Welch
- □ Family support

Questions?

References

- R. Drost, R. Hopkins, I. Sutherland, "Proximity Communication," *Proceedings of the IEEE 2003 Custom Integrated Circuits Conference*, vol. 39, issue 9, pp. 469-472, September 2003.
 Salzman, T., Knight, "Canacitively, Coupled, Multichip, Medules," *Multichip, Medule, Conference, Proceedings*, 121
- [2] D. Salzman, T. Knight, "Capacitively Coupled Multichip Modules," *Multichip Module Conference Proceedings*, pp. 487-494, April 1994.
- [3] R. Drost, R. Ho, R. Hopkins, I. Sutherland, "Electronic Alignment for Proximity Communication," *IEEE International Solid State Circuits Conference*, vol. 1, pp. 144-145, February 2004.
- [4] D. Hopkins, A. Chow, R. Bosnyak, J. Ebergen, S. Fairbanks, J. Gainsley, R. Ho, J. Lexau, F. Liu, T. Ono, J. Schauer, I. Sutherland, R. Drost, "Circuit Techniques to Enable 430Gb/s/mm² Proximity Communication," *IEEE International Solid State Circuits Conference*, pp. 368-369, pp. 609, February 2007.
- [5] A. Chow, D. Hopkins, R. Ho, R. Drost, "Measuring 6D Chip Alignment in Multi-Chip Packages," *Proceedings of IEEE Sensors*, pp. 1307-1310, October 2007.
- [6] J. Hennessy, D. Patterson, *Computer Architecture A Quantitative Approach*, 4th ed., Morgan Kaufmann Publishers, San Francisco, 2007. ISBN 978-0-12-370490-0
- [7] G. Moore, "Cramming more components onto integrated circuits," *Electronics Magazine*, pp. 4-6, April 1965.
- [8] D. Klein, "The Future of Memory and Storage: Closing the Gap," *Microsoft WinHEC 2007*, May 2007.
- [9] B. Pang, Caris & Company http://www.semi.org/cms/groups/public/documents/web_content/p043628.pdf, March 2008.
- [10] K. Kim, G. Jeong, "Memory Technologies for sub-40nm Node," *IEEE International Electron Device Meeting*, pp. 27-30, December 2007.
- [11] J. Burnim, "On the Scaling of Electronic Charge-Storing Memory Down to the Size of Molecules," *The MITRE Corporation*, November 2001.
- [12] Y. Park, S. Lee, J.W. Lee, J.Y. Lee, S. Han, E. Lee, S. Kim, J. Han, J. Sung, Y. Cho, J. Jun, D. Lee, K. Kim, D. Kim, S. Yang, B. Song, Y. Sung, H. Byun, W. Yang, K. Lee, S. Park, C. Hwang, T. Chung, W. Lee, "Fully Integrated 56 nm DRAM Technology for 1Gb DRAM," *IEEE Symposium on VLSI Technology*, pp. 190-191, June 2007.
- [13] D. Rhosen, "The Evolution of DDR," VIA Technology Forum, 2005.
- [14] SUN Microsystems, "SUN SPARC Enterprise T5120, T5220, T5140, T5240, Server Architecture,"
- http://www.sun.com/servers/coolthreads/t5140/wp.pdf, April 2008.
- [15] Micron Technology Inc., "TN-41-01: Calculating Memory System Power for DDR3 Introduction," http://www.micron.com/support/part_info/powercalc.aspx, 2007.
- [16] Micron Technology Inc. Various Datasheets: http://www.micron.com/products/dram/

References

[17]	Rambus, "Challenges and Solutions for Future Main Memory,"
	http://www.rambus.com/assets/documents/products/future_main_memory_whitepaper.pdf, May 2009.
[18]	P. Chiang, M. Fung, "Dual-edge extended data out memory," US PATENT 5,950,223, September 1999.
[19]	R. Barth, "2007 Test and Test Equipment," 2007 ITRS December Conference, December 2007.
[20]	H. Fujisawa, M. Nakamura, Y. Takai, Y. Koshikawa, T. Matano, S. Narui, N. Usuki, C. Dono, S. Miyatake, M. Morino, K. Arai, S.
	Kubouchi, I. Fujii, H. Yoko, T. Adachi, "1.8-V 800-Mb/s/pin DDR2 and 2.5-V 400-Mb/s/pin DDR1 Compatibly Designed 1Gb SDRAM
	With Dual Clock Input Latch Scheme and Hybrid Multi-Oxide Output Buffer," IEEE International Solid-State Circuits Conference, pp.
	862-869, April 2005.
[21]	C. Yoo, K. Kyung, G. Han, K. Lim, H. Lee, J. Chai, N. Heo, G. Byun, D. Lee, H. Choi, H.C. Choi, C. Kim, S. Cho, "A 1.8 V 700 Mb/s/pin
	512 DDR-II SDRAM with on-die termination and off-chip calibration," IEEE International Solid-State Circuits Conference," Vol. 1, pp.
	312-496, February 2003.
[22]	C. Park, H. Chung, Y. Lee, J. Kim, J. Lee, M. Chae, D. Jung, S. Choi, S. Seo, T. Park, J. Shin, J. Cho, S. Lee, K. Kim, J. Lee, C. Kim.
	S. Cho, "A 512 Mbit, 1.6 Gbps/pin DDR3 SDRAM prototype with C _{IO} minimization and self-calibration techniques," Symposium on
	VLSI Circuits, pp. 370-373, June 2005.
[23]	Y. Moon, Y. Cho, H. Lee, B. Jeong, S. Hyun, B. Kim, I. Jeong, S. Seo, J. Shin, S. Choi, H. Song, J. Choi, K. Kyung, Y. Jun, K. Kim,
	"1.2V 1.6Gb/s 56nm 6F ² 4Gb DDR3 SDRAM with hybrid-I/O sense amplifier and segmented sub-array architecture," IEEE
	International Solid-State Circuits Conference, pp. 128-129,129a, February 2009.
[24]	F. Fishburn, B. Bush, J. Dale, D. Hwang, R. Lane, T. McDaniel, S. Southwick, R. Turi, H. Wang, L. Tran, "A 78nm 6F ² DRAM
	technology for multigigabit densities," Symposium on VLSI Technology, pp. 28-29, June 2004.
[25]	C. Wintgens, "The 50-nm DRAM battle rages on: An overview of Micron's technology," http://www.eetimes.com, March 2009.
[26]	H. Lee, D. Kim, B. Choi, G. Cho, S. Chung, W. Kim, M. Change, Y. Kim, J. Kim, T. Kim, H. Kim, H. Lee, H. Song, S. Park, J. Kim, S.
[0]	Hong, S. Park, "Fully integrated and functioned 44nm DRAM technology for 1GB DRAM," Symposium on VLSI Technology, pp. 86-87.
[27]	K. Kilbuck, "Main Memory Technology Direction," Microsoft WinHEC 2007, May 2007.
[28]	B. Keeth, R.J. Baker, B. Johnson, F. Lin, DRAM Circuit Design: Fundamental and High-Speed Topics, Second Edition, Wiley-IEEE,
[00]	2008. ISBN 978-0-470-18475-2
[29]	International Technology Roadmap for Semiconductor, 2007 Edition,
[20]	http://www.itrs.net/Links/200711RS/Home2007.htm, 2007.
[30]	Samsung Semiconductor Inc. Various Datasneets:
[04]	http://www.samsung.com/global/business/semiconductor/productList.do?imiy_id=690
[31] [22]	J. Hanuy, Where Shicon is Headed and Why You Need to Know, Objective Analysis: http://www.media-tech.het/usa-09.html
[32]	5. Radivar, new memory rechnologies: Evolving roward Greener Solutions, Samsung Semiconductor Inc.:
	nup.//www.samsung.com/us/business/semiconductor/news/downloads/Green_iviedia_Event_Skadival.pdl, March 2009.

References

- [33] Hewlett-Packard, "Memory technology evolution: an overview of system memory technologies, technology brief, 8th edition,":
- http://h20000.www2.hp.com/bc/docs/support/Support/Manual/c00256987/c00256987.pdf, April 2009.
- [34] T. Jung, "Memory Technology and Solutions Roadmap," *Samsung ANALYST DAY*, 2005.
- [35] R.J. Baker, CMOS: Circuit Design, Layout, and Simulation, Revised Second Edition, Wiley-IEEE, 2008. ISBN 978-0-470-22941-5
- [36] L. Luo, J. Wilson, S. Mick, J. Xu, L. Zhang, P. Franzon, "3 gb/s AC coupled chip-to-chip communication using a low swing pulse receiver," *IEEE Journal of Solid-State Circuits*, vol. 41, Issue:1, pp. 287-296, January 2006.

