Wide I/O DRAM Architecture Utilizing Proximity Communication

by
Qawi Harvard
Thesis Defense – October 8th, 2009
Introduction

Bandwidth and power consumption of dynamic random access memory stifles computer performance scaling

- Background
- Status of Proximity Communication
- DRAM Market Analysis
- 4 Gb DRAM Architecture
- Wide I/O DRAM Architecture Utilizing Proximity Communication
Background

- Memory Gap
 - Main memory does not scale with processor performance

- Power
 - Current consumption is rising
 - Bandwidth increases power
 - Voltage scaling masks the issue

- Density
 - Memory channel loading
 - Limits bandwidth

- Proximity Communication
 - Proposed by Ivan Sutherland – US Patent #6,500,696
 - Promises to reduce power and increase bandwidth
Capacitive Coupled Proximity Communication

- Top metal forms the parallel plates
- Chip-to-chip communication through coupling capacitor

Ref:[1]
Proximity Communication

- **Benefits**
 - Increased I/O density
 - Avoids on/off chip wires
 - Eases chip replacement at the system level
 - Enhances system level testability
 - Enables smaller chip sizes
 - Removes the need for ESD protection

- **Challenges**
 - Mechanical misalignment
 - Applying power to the chips
 - Thermal solution

Ref:[1-5]

Qawi Harvard – Oct. 8th, 2009
Thesis Defense
Proximity Communication

- **Parallel Plate Capacitance**
 \[C = \frac{\varepsilon_0 A}{d} \]
 \[\varepsilon_0 = 8.9 \, \text{aF} / \mu\text{m} \]

- **10 pF/mm\(^2\)**
 - Chip-to-chip separation
 - \(d = 1 \, \mu\text{m} \)

- **One channel**
 - 50 fF
 - 200 signals/mm\(^2\)

Ref: [1] Qawi Harvard – Oct. 8\(^{th}\), 2009
Thesis Defense
Mechanical Misalignment

- Six axis
- Multiple sources

Ref:[5]
Qawi Harvard – Oct. 8th, 2009
Thesis Defense
Proximity Communication

- **Electronic Sensors**
 - Chip-to-chip separation sensors (0.2 µm resolution)
 - Vernier scale incorporated on chip (1.0 µm resolution)

- **Electrical Re-Alignment**
 - Receive array
 - Micro-transmit array
 - Electronic steering circuit

Ref: [1-5]

Qawi Harvard – Oct. 8th, 2009
Thesis Defense
DRAM Market Analysis

- Revisit the Memory Gap
 - “Performance” becomes a relative term
 - Dichotomy in scaling
- Why Density?
- Why Not Latency?

Ref:[6]

Qawi Harvard – Oct. 8th, 2009
Thesis Defense
DRAM Market Analysis

- Moore’s Law
 - 41% increase in transistor count per year
- Selling Price
 - 36% historic decline per year
- Putting it into Perspective
 - 1 Gb 2009 → $2.00
 - 2 Gb 2011 → $1.64
- Density or Bust!!

Historically the price per bit has declined by 9% every quarter (1974 – 2008).

Ref:[7-8]
Qawi Harvard – Oct. 8th, 2009
Thesis Defense
DRAM Market Analysis

- **Cost**
 - Low cost manufacturing process
 - 3 metal layers
 - Increased usage of each level
 - Small chip size
 - Limits I/O count

- **Moore’s Law**
 - 41% scaling per year
 - Wordline cross sectional area
 - Tight metal pitch
 - Contact resistance

- **Physics of Scaling**
 - Latency must increase

Ref:[7-8,13]

Qawi Harvard – Oct. 8th, 2009
Thesis Defense
DRAM Market Analysis

- **Home PC**
 - Plugged into a wall

- **Mobile**
 - Battery life

- **Server**
 - Power consumption
 - Cooling

- **Trending Up**
 - Poor Efficiency
 - Bandwidth Driven

Ref:[14-17]

Qawi Harvard – Oct. 8th, 2009
Thesis Defense
DRAM Market Analysis

- Interface versus Core
 - Interface bares the burden
 - Core cycles
- DRAM Pre-fetch
 - Doubles at each generation
- Density limited by bandwidth
 - SSTL loading in memory channel
 - Increase chip count per module

Ref: [14-17]
Qawi Harvard – Oct. 8th, 2009
Thesis Defense
Possible Architecture

✓ Compared to ITRS

2012 Production Release

74 mm²

56% Array Efficiency

40 nm

Ref: [10, 12, 20-24]

Qawi Harvard – Oct. 8th, 2009
Thesis Defense
4 Gb DRAM Architecture

- 6F² Memory Cell
- Feature Size = 40 nm
- Cell Area = 0.0096 µm²
- 3F Pitch per Wordline
- 2F Pitch per Bitline
- 256 kb Array Macro
 - Core Array
 - 512 bitlines ≈ 43.6 µm
 - 512 wordlines ≈ 65.4 µm
- Periphery Circuitry
 - 4 µm space allocated

Ref:[24]
Qawi Harvard – Oct. 8 th, 2009
Thesis Defense
4 Gb DRAM Architecture

Ref: [25]

Qawi Harvard – Oct. 8th, 2009
Thesis Defense
4 Gb DRAM Architecture

- 256 Mb Array
 - ✔ 32 x 32 256 kb macros
 - \[32 \cdot (43.6 \, \mu m + 4 \, \mu m) = 1.532 \, mm\]

- 1 Gb Array
 - ✔ Multiple implementations
4 Gb DRAM Architecture

- **ITRS**
 - 74 mm²
 - 56% Array Efficiency

- **Wide I/O Architecture**
 - Moving the pads
 - Centralized Row
 - Centralized Column

Chip Size = 71.4 mm²
Array Efficiency = 57.7%

Ref: [29]
Qawi Harvard – Oct. 8th, 2009
Thesis Defense
Wide I/O Chip Architecture

- 64 Bytes per Chip
- 6.2% Chip Size Reduction
- 6.6% Increase in Array Efficiency
- Challenges
 - Routing from the edge
 - Array I/O route increase
 - 2.3 mm → 4.6 mm
 - Additional row decode
- Create Eight Internal Banks

Chip Size = 67.0 mm²
Array Efficiency = 61.5%
4 Gb DRAM Architecture

- 1 mm Allocation for Proximity Channel
- Buffers at the Center
 - Increase global I/O metal usage
- Array I/O Routing Reduced to 2.3 mm
- Architecture NOT Efficient for Proximity Communication
 - 6.7 mm versus 10.4 mm
 - Buffers required
 - Large metal usage

Chip Size = 69.68 mm²
Array Efficiency = 59.2%

Proximity Interface

Qawi Harvard – Oct. 8th, 2009
Thesis Defense
4 Gb DRAM Architecture

- Multiple Bank Architectures
- Page Size
 - Standard size = 8k
 - Energy efficiency
- Global Row Routing
 - ~20 ns latency
- Global Column Routing
 - ~5 ns latency
- D – Architecture
 - Page decode

Ref: [13, 16, 27, 30,]

Qawi Harvard – Oct. 8th, 2009
Thesis Defense
Wide I/O Chip Architecture

- Chip Size = 68.88 mm², Array Efficiency = 59.9%
 - Centralized row & column
 - Buffers not required
 - 12.3 mm for proximity communication
 - Enables two levels of metal
Wide I/O DRAM Architecture

- **Split Bank Architecture**
 - 64 bytes = 512 signals
 - 6 mm / 256 ≈ 43 µm per signal
 - 0.4 µm pitch < 1 % metal usage

<table>
<thead>
<tr>
<th>RAS & Address</th>
<th>Local Wordline</th>
<th>Global Wordline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-Bank<7></td>
<td>ROW</td>
<td>Half-Bank<7></td>
</tr>
<tr>
<td>Half-Bank<6></td>
<td>ROW</td>
<td>Half-Bank<6></td>
</tr>
<tr>
<td>Half-Bank<5></td>
<td>ROW</td>
<td>Half-Bank<5></td>
</tr>
<tr>
<td>Half-Bank<4></td>
<td>ROW</td>
<td>Half-Bank<4></td>
</tr>
<tr>
<td></td>
<td>COLUMN</td>
<td></td>
</tr>
<tr>
<td>Half-Bank<3></td>
<td>ROW</td>
<td>Half-Bank<3></td>
</tr>
<tr>
<td>Half-Bank<2></td>
<td>ROW</td>
<td>Half-Bank<2></td>
</tr>
<tr>
<td></td>
<td>COLUMN</td>
<td></td>
</tr>
<tr>
<td>Half-Bank<0></td>
<td></td>
<td>Half-Bank<0></td>
</tr>
</tbody>
</table>

Proximity Interface
Wide I/O DRAM Architecture

- Split Page Architecture
 - 8k page keeps current relative
 - Page decode required
 - 32 differential signals per macro

- Local I/O Routing
 - Space limited
 - Increase space?
 - Increase page size?

Ref: [12,20-24,26,28]

Qawi Harvard – Oct. 8th, 2009
Thesis Defense
Wide I/O DRAM Architecture

- **New Column Routing**
 - Global I/O operates at higher frequency
 - Protocol allows for insertion of data

<table>
<thead>
<tr>
<th>Half-Bank<7></th>
<th>BUSY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-Bank<6></td>
<td>FREE</td>
</tr>
<tr>
<td>Half-Bank<5></td>
<td>FREE</td>
</tr>
<tr>
<td>Half-Bank<4></td>
<td>BUSY</td>
</tr>
<tr>
<td>Half-Bank<3></td>
<td>FREE</td>
</tr>
<tr>
<td>Half-Bank<2></td>
<td>FREE</td>
</tr>
<tr>
<td>Half-Bank<1></td>
<td>FREE</td>
</tr>
<tr>
<td>Half-Bank<0></td>
<td>FREE</td>
</tr>
</tbody>
</table>

- **Proximity Interface**
 - Wordline Fires
 - Data Latched & Inserted on Global I/O Bus
 - Next Wordline Fires
 - Data Latched & Inserted on First Available Slot of the Global I/O Bus
 - Global I/O Bus
Wide I/O DRAM Architecture

- **Slice Architecture**
 - Ease of design
 - Uniformity, speed, verification

<table>
<thead>
<tr>
<th>DATA SLICE</th>
<th>DATA SLICE</th>
<th>CONTROL SLICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-Bank<0></td>
<td>ROW</td>
<td></td>
</tr>
<tr>
<td>Half-Bank<6></td>
<td>ROW</td>
<td></td>
</tr>
<tr>
<td>Half-Bank<5></td>
<td>ROW</td>
<td></td>
</tr>
<tr>
<td>Half-Bank<4></td>
<td>ROW</td>
<td></td>
</tr>
<tr>
<td>COLUMN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half-Bank<3></td>
<td>ROW</td>
<td></td>
</tr>
<tr>
<td>Half-Bank<2></td>
<td>ROW</td>
<td></td>
</tr>
<tr>
<td>Half-Bank<1></td>
<td>ROW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Half-Bank<0></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proximity Interface</td>
</tr>
</tbody>
</table>

50 µm
Serves 4 DQ

Qawi Harvard – Oct. 8th, 2009
Thesis Defense
Wide I/O DRAM Architecture

- **64 Bytes per Chip**
 - Significant bandwidth increase

- **Power Consumption**
 - Standard 8k page size
 - Split bank, split page

- **Cost Performance**
 - Two metals enabled for 4 Gb
 - Smaller chip size, higher array efficiency
Wide I/O DRAM Architecture

Power Consumption

- DDR3
- PxCDRAM x16
- PxCDRAM x32
- PxCDRAM x64

Relative Energy [%]

Qawi Harvard – Oct. 8th, 2009
Thesis Defense
Wide I/O DRAM Architecture

- Bandwidth

<table>
<thead>
<tr>
<th>Year</th>
<th>Module Bandwidth [GB/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR3</td>
<td>25</td>
</tr>
<tr>
<td>DDR4</td>
<td>100</td>
</tr>
<tr>
<td>DDR5</td>
<td>225</td>
</tr>
<tr>
<td>PxCDRAM x16</td>
<td>50</td>
</tr>
<tr>
<td>PxCDRAM x32</td>
<td>125</td>
</tr>
<tr>
<td>PxCDRAM x64</td>
<td>200</td>
</tr>
</tbody>
</table>

Qawi Harvard – Oct. 8th, 2009
Thesis Defense
Future Work

- Applying Proximity Communication to New Memory Technologies
 - “High” density
 - Chalcogenide
 - Slice architecture
 - Circuit design techniques

- Local I/O Routing
 - New column global I/O structure
 - Through bitline routing
 - Novel local I/O latch
Acknowledgments

- Dr. Jake Baker
- Dr. Kris Campbell
- Dr. Robert Drost
- Dr. Sin Ming Loo
- Dr. Thad Welch
- Ms. Donna Welch
- Family support

Questions?
References

Rambus, “Challenges and Solutions for Future Main Memory,”

Samsung Semiconductor Inc. Various Datasheets:

J. Handy, “Where Silicon is Headed and Why You Need to Know,” Objective Analysis: http://www.media-tech.net/usa-09.html

References