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Abstract

This dissertation describes the schematic design, physical layout implementation, system-level hardware

with FPGA firmware design, and testing of a camera-on-a-chip with a novel high-speed CMOS image sensor

(CIS) architecture developed for a mega-pixel array. The novel features of the design include an innovative

quadruple column-parallel readout (QCPRO) scheme with rolling shutter that increases pixel rate, its ability

to program the frame rate and to tolerate Total Ionizing Dose effects (TID). Two versions of the architecture,

a small (128×1, 024 pixels) and large (768×1, 024 pixels) version were designed and fabricated with a custom

layout that does not include library parts. The designs achieve a performance of 20 to 4, 000 frames per

second (fps) and they tolerate up to 125 krads of radiation exposure.

The high-speed CIS architecture proposes and implements a creative quadruple column-parallel readout

(QCPRO) scheme to achieve a maximum pixel rate, 10.485 gigapixels/s. The QCPRO scheme consists

of four readout blocks per column and to complete four rows of pixels readout process at one line time.

Each column-level readout block includes an analog time-interleaving (ATI) sampling circuit, a switched-

capacitor programmable gain amplifier (SC-PGA), a 10-bit successive-approximation register (SAR) ADC,

two 10-bit memory banks. The column-parallel SAR ADC is area-efficient to be laid out in half of one pixel

pitch, 10 µm. The analog ATI sampling circuit has two sample-and-hold circuits. Each sampling circuit can

independently complete correlated double sampling (CDS) operation. Furthermore, to deliver over 1010 pixel

data in one second, a high-speed differential Scalable Low-Voltage Signaling (SLVS) transmitter for every

16 columns is designed to have 1 Gbps/ch at 0.4 V . Two memory banks provide a ping-pong operation: one

connecting to the ADC for storing digital data and the other to the SLVS for delivering data to the off-chip

FPGA. Therefore, the proposed CIS architecture can achieve 10, 000 frames per second for a 1, 024× 1, 024

pixel array.

The floor plan of the proposed CIS architecture is symmetrical having one-half of pixel rows to read out on

top, and the other half read out on the bottom of the pixel array. The rolling shutter feature with multi-lines

readout in parallel and oversampling technique relaxes the image artifacts for capturing fast-moving objects.

The CIS camera can provide complete digital input control and digital pixel data output. Many other

components are designed and integrated into the proposed CMOS imager, including the Serial Peripheral

Interface (SPI), bandgap reference, serializers, phase-locked loops (PLLs), and sequencers with configuration
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registers. Also, the proposed CIS can program the frame rate for wider applications by modifying three

parameters: input clock frequency, the region of interest, and the counter size in the sequencer.

The radiation hardening feature is achieved by using the combination of enclosed geometry technique

and P-type guardrings in the 0.18 µm CMOS technology. The peripheral circuits use P-type guardrings to

cut the TID-induced leakage path between device to device. Each pixel cell is radiation tolerant by using

enclosed layout transistors. The pinned photodiode is also used to get low dark current, and correlated

double sampling to suppress pixel-level fixed-pattern noise and reset noise. The final pixel cell is laid out in

20× 20 µm2. The total area of the pixel array is 2.56× 20.28 mm2 for low-resolution imager prototype and

15.36× 20.28 mm2 for high-resolution imager prototype.

The entire CIS camera system is developed by the implementation of the hardware and FPGA firmware

of the small-format prototype with 128× 1, 024 pixels and 754 pads in a 4.24× 25.125 mm2 die area. Differ-

ent testing methods are also briefly described for different test purposes. Measurement results validate the

functionalities of the readout path, sequencer, on-chip PLLs, and the SLVS transmitters. The programmable

frame rate feature is also demonstrated by checking the digital control outputs from the sequencer at dif-

ferent frame rates. Furthermore, TID radiation tests proved the pixels can work under 125 krads radiation

exposure.
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Chapter 1

Introduction

1.1 Overview of Imaging Sensors

A solid-state imaging sensor is a semiconductor device designed to detect optical information that can be

used to create an image. An image sensor converts light into electric signals which use the photo-electric

effect[1]. Image sensors can detect light across the electromagnetic spectrum by using different detector

structures or different light-sensitive materials. This dissertation’s image sensor design focuses on “visible”

light with wavelengths ranging from 390 to 720 nm. A standard CMOS camera prototype is shown in Figure

1.1.

Figure 1.1: Typical CMOS camera prototype

Solid-state image sensors, in general, are classified by their sensor structures. Two prevalent image sensor

technologies are the complementary metal-oxide-semiconductor (CMOS) and charge-coupled device (CCD)

image sensor. The CCD was first proposed in the early 1970s. The CMOS image sensor chip was first

invented at the Jet Propulsion Laboratory (NASA) in the 1990s [2]. Both technologies depend on the photo-

electric effect to convert light into electric charge and then into an electric signal. CCDs were the main image

sensor technology until about the mid-2000s. A comparison between these two techniques is presented in

Table 1.1.
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CCDs have historically been more competitive regarding image criteria such as low readout noise, higher

quantum efficiency, high fill factor, and high dynamic range. CCDs were the key technology in the imaging

sensor field for over 25 years according to the top cited publications of image sensors from 1973 to 1999.

By using the Publish or Perish software[3], an image sensor survey based on the database of Microsoft

Academic was conducted and the result is shown in Figure 1.2. A special manufacturing process is necessary

for CCD cameras to transfer the charge in the pixel array without distortion. However, CMOS sensors

are more inexpensive than CCDs since they use the standard CMOS manufacturing processes - the same

processes used to make microprocessors. It is difficult to use CCDs in a low light, low temperature, and in

a radiation environment. It is also challenging to design CCDs with a large pixel array, high frame rate and

high integration with other camera functions on the same chip[4].

Figure 1.2: CCD vs CMOS sensors’ publications with top citation from 1973 to 1999
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The CMOS image sensor (CIS) technology has been developed for a couple of years and has become

a mainstream technology. Figure 1.3 shows the developing status of CMOS image sensors by sorting top-

citation image sensor publications from 1999 to 2017. The fast-growing market of CMOS image sensors

benefits from the continuous scaling trend of CMOS technology. Several aspects make CMOS image sensors

as a better alternative to CCDs.

First, the CIS sensor allows for the integration of other functions such as logic, memory, analog to digital

converters (ADCs) and high-speed I/O interfaces on the same chip. Due to such integration, CIS makes it

feasible to realize a camera-on-a-chip [5].

Second, in the CMOS pixel array, each pixel can detect the light and convert the charge to a voltage

Figure 1.3: CCD vs CMOS sensors’ publications with top citation from 1999 to 2017
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independently. With the integration of other analog and mixed-signal integrated circuits, the CMOS sensors

enable digital outputs. However, each pixel only performs the photon-to-electron conversion in a CCD

sensor. The electron-to-voltage conversion is completed by a limited number of output amplifiers. Therefore,

CMOS sensors far exceed at the readout process speed. Figure 1.4 depicts the comparison of CCD and CIS

architectures.

Third, the CIS architecture has developed into an active pixel sensor (APS) from a passive pixel sensor

(PPS). The active pixel sensor brings in better noise performance, higher frame rate, and an enormously

increased functionality [6–18]. Moreover, new CMOS technologies provide a smaller pixel size, lower power

consumption, and faster digital I/O interface.

Within the last ten years, CMOS image sensors have stolen large market shares from CCDs in the imaging

sensor industry. The 2018 O-S-D report, conducted by IC Insights company, predicts that automotive safety

systems, medical and scientific imaging, as well as security and surveillance will be the main growth areas

for CMOS image sensors. Worldwide sales are estimated to rise to about $19 billion total in 2020 as shown

in Figure 1.5. Hence, the demand for CMOS image sensors will lead to continual performance improvement,

and possibly maintain a breakneck growth in the image sensor market.

Table 1.1: Comparisons between CCD and CMOS

CCD sensor
(EMCCD or interline CCD)

CMOS sensor

Pixel Output Electron Voltage
Chip output Analog Digital

Chip Integration Low High
Windowing Limited Multiple

Speed less than 10 frames/s
Hundreds and even thousands

of frames/s

Power Supply
More than one power supply

and various clock pulses
with higher than 10V

One power supply
lower than 5V

Image Artefact Smearing, charge transfer inefficiency FPN, motion
Shutter Mode Global Global or Rolling

Dynamic Range >70dB >70dB
Read Noise less than 1 e- (rms) less than 10 e- (rms)

EMCCD: Electron Multiplying CCD

In the CMOS image sensors, the front-side illuminated (FSI) architecture [20–39] may be used. FSI

technology places the pixel array and peripheral circuits on the same side of the chip. Each CIS pixel

includes a photo-detector (which could be a reverse-biased PN junction, photo-gate, or pinned photodiode)

and several transistors to make a charge-to-voltage (C2V) conversion. The peripheral circuits include a

digital control block, biasing block, ADCs, PLLs, high-speed transmitters, and memory banks. For the CIS

system, there are three main metrics to evaluate the performance of a CIS: pixel layout, pixel physics, and

pixel readout. Pixel layout relates to the number of pixels, pitch size, and fill factor. Pixel physics relates
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Figure 1.5: CIS camera market sales’ trend[19]

to dark current, dynamic range, full-well capacity, quantum efficiency, and conversion gain. Pixel readout

relates to frame rate, bit depth, signal-to-noise ratio, power efficiency, and more.

The pixel size of FSI CISs continue to decrease in size due to the scaling trend of CMOS technologies.

Typically, smaller pixel size results in a higher image format, lower power and cost, and more functionalities

added to the CIS camera. However, a smaller pixel reduces its full-well capacity, fill factor, and signal-to-

noise ratio. A smaller pixel size also results in an increase of the system complexity and output data rate. It

becomes difficult to meet the sub-circuits’ design requirements, especially for high-speed and high-resolution

CISs.

CIS manufactures are seeking new architectures for reducing the pixel size for high-resolution purpose,

while preserving or augmenting electro-optical performance. One promising technology, back-side illumina-

tion (BSI)[7, 8], as shown in Figure 1.6 was developed to collect light through the backside of the chip by

turning the pixel upside down for increasing the fill factor close to 100%.

Recently, a 3D stacked technique has been used to further improve CIS performance (pixel characteristics,

frame rate, and resolution) [6–9, 40–47]. The stacked structure allows for the splitting of the detector array,

memory blocks, and readout block into different chips by using wafer bonding or Cu-Cu connection. Both

the sensor performance and camera functionalities are improved. However, all these improvements have

inevitably increased the design and manufacturing cost of CIS cameras.

6



Silicon substrate

PD

Metal Layers

PD PD

Color filter

On-chip lens

Silicon substrate

PD

Metal Layers

PD PD

Color filter

On-chip lens

Silicon substrate

PD

Metal Layers

PD PD

Color filter

On-chip lens

Bonding 

interface

Upper Chip

Lower Chip

Silicon substrate

(a) (b) (c)

Light Light Light

Figure 1.6: (a) FSI sensor, (b) BSI sensor, (c) 3D-stacked BSI sensor

1.2 High-speed High-resolution CMOS Image Sensor

High-speed high-resolution imagers have widely used CMOS technology with active pixels. The major

advantages include low cost, low power operation, and the integration of the sensor array and processing

circuits on the same chip. High-speed imaging sensors are widely used in the analysis of high-speed machinery,

the observation of high-speed phenomena, and broadcasting television stations and sports. The demand for

slow-motion video capturing in popular smartphones and other portable cameras has also increased. Fast

captured images or videos can achieve a slow-motion feature while playing the images back at a lower speed.

Therefore, more efforts [6–9, 11, 13, 20–39, 47–50] have been made to improve the frame-rate enhancement

in CMOS image sensors.

High-speed CISs can be classified into two main categories: off-chip ADC scheme [20, 33, 35, 37–39] and

on-chip ADC scheme [6–9, 11, 13, 21–27, 29–31, 34, 36, 47–50]. In terms of on-chip ADCs, three major

architectures are widely employed in the CIS cameras: the channel ADC, column-parallel ADCs and pixel-

level ADCs. The channel ADC approach uses a single or several ADCs on-chip for a whole pixel array. This

requires extremely high-speed ADCs for high frame rate achievement in a medium or large pixel array. The

column-parallel ADC method applies one ADC per column. Given the same image format and frame rate,

each column ADC is responsible for one column of pixels instead of the whole pixel array to accomplish

data conversion. This obviously relaxes the requirement of each ADC speed requirement. The pixel-level

ADC allows one ADC per pixel which allows each pixel to output digitally. In this case, the pixel-level ADC

architecture results in extremely high frame rate at the price of silicon area and power consumption.

CMOS sensors with on-chip ADCs enable data conversion to occur on the chip. They facilitate serial

digital data to be transferred to the on-board DSP or microprocessor. This on-chip ADCs architecture

permits high-speed data transfer and better resistant to noise, compared to those with off-chip ADCs. Since

the mid of 1990s, high-speed CISs have employed either the column-parallel ADC[11, 21–27, 30–32, 36, 50]

or the pixel-level ADC method[34, 47, 51]. Prior to 2015, the column-parallel ADC approach was preferred

7



because of an excellent trade-off between the number of ADCs, chip size, power consumption, and speed

of readout processing. While the size of CMOS technology used in CMOS image sensors was scaling from

0.5 µm to 0.13 µm to get a smaller pixel size and the larger pixel array, the architecture would not need to

change much. More ADCs are used in each column because of the column-parallel ADCs could be located

at either one side of pixel array or both sides. As a result, for a given pixel array, CIS enables to permit

more pixels to make data conversion at the same, resulting in a shorter readout time in each frame. The

frame rate has been successfully increased from hundreds of frames per second (fps) to thousands of frames

per second.

The design of high-speed CMOS imagers poses three main challenges: I/O bottleneck for high pixel rate,

correlation between frame rate and pixel array, and short exposure time. The first issue is related to the

I/O. High-speed high-resolution CMOS imagers require high pixel rate, which can be implemented either

by increasing the number of I/Os or by increasing the speed of each I/O. However, the CIS architecture

consumes more power and makes the on-board acquisition system more complicated and challenging to

process a massive amount of image data.

The second issue is that the frame rate is tightly correlated to the pixel resolution. Equation 1.1 illustrates

that pixel rate (PR) is a product of frame rate and pixel resolution, in a unit of pixels per second or pixels/s

or pixs/s. The available pixel rate is constrained by the output I/Os. At a given fixed PR, the frame rate is

inversely proportional to the pixel resolution. As shown in Figures 1.7 and 1.8, high-speed (over 1000 frames

per second) CIS imagers do not have an image format over 1 Mpixels. High-resolution CIS cameras have a

lower frame rate of less than 300 fps.

PR = Frame Rate× Pixel Resolution

= Frame Rate×# of pixels per frame (1.1)

The third problem is the challenge of implementing high-speed imaging for low-light applications. A dim

environment requires increased exposure time to ensure that the image is properly exposed. How can such

an increased exposure time be realized in high-speed cameras? The field of view can be sacrificed to allow

for a greater frame rate. Two digital techniques of binning and windowing grant the CIS sensors to have no

restrictions on the location of regions of interest.

Within the last five years, advanced techniques[6–9, 47, 52] such as back-illumination, 3-D wafer/chip

stacking, and Cu-Cu connection techniques have become more popular. These methods are used to increase

the speed of CMOS image sensors without sacrificing the image resolution and other pixel-related parameters,

such as fill factor and full-well capacity. CISs are made to have the capability of employing different CMOS

technologies for pixel design and readout circuitry, separately. Furthermore, a much higher integration of

logic circuits, and column processing circuits are enabled to improve sensor performance and expand sensor

functionality. As a result, the pixel-level ADC architecture has become more prevalent in high-speed imaging.
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Figure 1.7: High-speed CMOS image sensors

ADCs play a significant role in CIS imagers in the conversion of the image data into digital information,

regardless of CIS architecture. Four different types of ADCs are commonly used: successive-approximation

register (SAR) ADC, cyclic ADC, Sigma-delta ADC, and single-slope ADC. The most popular architecture

is the single-slope ADC as shown in Figures 1.9 and 1.10.

The shutter mode is another significant design point for high-speed CIS cameras. There are typically two

modes: rolling shutter and global shutter. Recent high-speed CMOS sensors commonly operate at the global

shutter mode, allowing all pixels to expose simultaneously and to process the readout row by row. Rolling

shutter CISs expose each line of pixels in sequential order and results in visible aberrations by allowing the

target to move from one line to next. The global shutter technique allows the same exposure time for each

pixel resulting in no distortion for high-speed imaging capture, while it achieves lower speed than the rolling

shutter. However, the distortion introduced by rolling shutter becomes less problematic when the speed of

CISs is significantly higher than the moving speed of the target. Also, the rolling shutter provides a higher

exposure time than the global shutter at the same speed operation.
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Figure 1.8: High-resolution CMOS image sensors

This Dissertation mainly focuses on the design of a camera-on-a-chip (CoC) with the implementation

of a column-parallel ADC architecture to achieve high frame rate with a megapixel array. Instead of using

an expensive CMOS process or other advanced techniques, a standard 0.18 µm CIS process is used to take

advantage of the largest chip size to get highest pixel rate and massive resolution.
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1.3 Radhard CMOS Image Sensor

In recent years, a specific set of applications require CMOS image sensors that are capable of operating

in harsh radiation environments. These applications include nuclear applications, space remote sensors,

medical imaging, and particle detection. The definition of radiation in physics is a type of energy emitted or

transmitted through space or a material medium in the form of waves or particles. The radiation effect has

two classifications that depends on the energy of radiated particles: ionizing and non-ionizing effects. These

two mechanisms are illustrated in Figure 1.11.
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Figure 1.11: Representations of energy transfer through (a) ionizing, (b) non-ionizing mecha-
nisms

Ionizing radiation, also called radioactivity, contains enough energy to overcome the binding energy of

electrons in atoms, thus creating ions. Ionizing radiation is induced by radioactive substances that can emit

different types of radiation. The radiation can be characterized by the three forms of radiations: α, β, γ.

Alpha radiation consists of helium nuclei, beta radiation contains electrons and positrons, and gamma

radiation is made up of photons, respectively. The ionizing radiation effect consists of two main effects: the

single event effect and total ionizing dose effect. The generation process of the ionizing mechanism can take

place not only in silicon but also in silicon oxide. Up to now, the ionizing radiation interaction with SiO2

has been widely studied for integrated circuits fabricated using CMOS technology. Two units of ionizing

radiation damage in semiconductors are rad (radiation absorbed dose) and Gy (Grey). One hundred rad

is equal to one Gy, 100 rad = 1Gy. Moreover, the rad is typically to specify the material because of its

material dependence.

Non-ionizing radiation refers to displacement damage (DD) in general. High-energy particles, such as

protons or neutrons, are the source of displacement damage in silicon. DD is a cumulative, long-term

damage to CMOS devices. High-energy particles can kick out an atom from its equilibrium position. The

atom becomes an interstitial defect and leaves a vacancy in the original position on the silicon lattice. Figure

1.12 illustrates a collision and the subsequent displacement of an atom from the silicon lattice. Displacement

effects are measured via the total number of particles crossing a given area, which is defined as the fluence

with units of p/cm2. Although some interstitial defects can be annihilated by the vacancies later, some of

them remain.
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Moreover, divacancies are formed by some vacancies and interrupt the crystal periodicity. Thus, bulk

effects in semiconductor devices and materials are caused by the displacement damage. The measurement

of substrate current could be used to analyze the displacement damage.

Vacancy

Silicon Atom

Interstitial

Energetic incident particle

Exiting Particle

Figure 1.12: Displacement damage causes lattice defect

Two main radiation effects are induced by different sources on CMOS image sensors. They are cumulative

effects and single-event effect. The long-term cumulative effects include total ionizing dose (TID) and

displacement damage (DD). A classification diagram of radiation effects is shown in Figure 1.13. Cumulative

effects are the gradual degradation of semiconductor devices until the damage reaches the maximum value

that the device can tolerate. For the TID effect, the ionization dose is deposited by particles passing through

the semiconductor materials constituting the electronic devices. It is usually characterized by the maximum

drift of the main device parameters.

Figure 1.13: Classification of radiation effects

13



Single event effect (SEE) is caused by the energy deposition from one single particle. SEE is a transient

effect and can happen at any moment. SEE is the immediate result of a single radiant charged particle

that crosses a sensitive device region, which includes single-event upsets (SEUs), single-event functional

interrupts (SEFIs), single-event transient (SETs), and single-event latchups (SELs). Extensive studies have

made on the SEE, which mostly affects digital circuits. The high-energy particle can leave an ionized track

when traveling through a semiconductor. The stochastic effects may lead to destructive or non-destructive

damage to the device. As far as SEE is concerned, the most important figure is the rate of occurrence.

From MOSFETs to bipolar ICs, oxides and insulators are vital components of many electronic devices.

Ionizing radiation can cause device degradation and failure by inducing significant charges built up in these

oxides and insulators. The work in this Dissertation focuses on the high-energy particle accelerator ap-

plication which exposes CMOS image sensors to high fluxes of electrons and protons causing a significant

reduction of system lifetime due to TID. Therefore, the work aims to focus on TID effect on CMOS active

pixel sensors (APSs).
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1.4 Motivations

Two prominent Figure of Merits (FoMs) in CMOS image sensors is the frame rate and resolution. Due to

the high demand of CMOS imaging technique in high-energy physics, space exploration, medical imaging,

or other scientific experiments, radiation tolerance becomes another important FoM.

The high frame rate can provide the feature of capturing images in a short time. High resolution can

quantify the sensor’s ability to capture images in a vast region of interest. Radiation hardness brings

resistance to the effects of ionizing radiation for CMOS image sensors having a longer lifetime.

However, high-speed CISs, in general, suffer from high power consumption and low pixel format. High-

resolution CISs need either a large chip area for photodetectors or advanced CMOS technology with smaller

fill factor and lower sensitivity. Having a radiation hardness feature makes the CMOS image sensor design

more challenging.

The work discussed in this Dissertation can be applied to high-energy physics applications for studying

the nature of particles. Specifically, the CIS prototype will be used in a particle accelerator to capture

images in a harsh environment. Particle accelerators, as the well-known tool, plays an essential role in

national security and scientific experiments for particle and nuclear physics.

Recent research discoveries in radhard CMOS CISs are promising. Yet, none of them push the radhard

cameras to be high speed and high resolution.

This dissertation aims to design a radhard CMOS image sensor with a high frame rate and a megapixel

array. Two CIS prototypes are fabricated using XFAB CIS 0.18 µm process. They use the same readout

architecture, a new radhard 4T pixel, and high-speed SLVS transmitters. The primary purpose of this

dissertation is to create a more power, area, cost and speed efficient radhard CMOS imager - while considering

results for future optimization.
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1.5 Dissertation Organization

This dissertation is organized into six chapters. Chapter 1 gave an overview of the CMOS image sensors. It

also provided a survey of CISs with high frame rate and high pixel format. A brief discussion on radiation

effects on CMOS technology and CISs was also contained in Chapter 1.

Chapter 2 reviews the characterization of CMOS image sensors. This chapter includes further details

regarding the radiation effects on CMOS image sensors.

Chapter 3 introduces a high-speed readout architecture for a 10,000 fps CIS with 1024 × 1024 pixels.

The pixel array is specially designed for radiation tolerance.

Chapter 4 discusses more details on the entire system and its sub-components. These components in-

clude a row decoder, column-parallel ADC, programmable amplifier, time-interleaving sample and holds for

correlated double sampling, and SPI interface. Technical discussions with simulations have been given for

some circuits. Two prototypes with the same architecture and different pixel format have been fabricated.

In the end of the chapter, pictures of final layouts, CIS die and chip are posted.

Chapter 5 briefly discusses the hardware design and PCB implementation for testing the small-format

CIS chip. The chip measurement of the proposed CIS has also been described. The functionality of the

sequencer, master PLLs, and SLVS drivers have been demonstrated. Moreover, the programmable feature

of the frame rate and radhard pixels are validated.

Chapter 6 summarizes the results of the Dissertation including the work’s specific contributions to ad-

vancing the state of the art beyond previous work. It also gives some suggestions for future work.
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Chapter 2

Overview of CMOS Image Sensors

and Radiation Effects

This chapter provides a discussion of light-to-electric conversion, two types of photodiodes, and radiation

effects. The first section discussed the light-to-electric conversion process. Then, the second section describes

two types of photodiodes in CMOS technologies: the PIN photodiode and the pinned photodiode. The PIN

photodiode is a PN junction with an intrinsic region between the n- and p-doped regions. The pinned

photodiode, not be confused with the PIN photodiode, places a shallow doped p+ layer above an N+/P-sub

diode. The additional p+ layer pins the potential at the surface to that of the substrate yielding a low dark

current and an improvement of the quantum efficiency for the photodiode. Various parameters, such as

dark current, quantum efficiency, and full-well capacity, are also discussed for better characterizing the CIS

performance. Finally, the ionizing radiation effects on CISs are detailed, with total ionization dose (TID)

effect as the primary focus.

2.1 Light-to-Electric Conversion

According to classical electromagnetic theory, light is made up of small particles, called photons. When

light shines on photodetectors, some of the incident photons enter the semiconductor device and collide with

atoms. When the energy of photons exceeds the semiconductor’s band-gap energy, Eg, some electrons in the

active area absorb the energy from the photons and break free from the atom, resulting in the generation of

electron-hole pairs, which is called the photoelectric effect.

Ephoton = h× v =
h× c
λ
≥ Eg (2.1)

where v is the speed of light, λ is light wavelength, h is Planck’s constant(4.135× 10−15 eV ), and c is light

speed (3× 108 m/s).
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The equation above is used to compute the energy of a photon that corresponds to different visible

light wavelengths as depicted in Figure 2.1. The visible Ephoton varies from 1.7 eV to 3.8 eV . The silicon

(Si) bandgap is 1.14 eV as shown in Table 2.1. Since the silicon’s bandgap energy is less than the energy

of the photon, silicon is a widely used semiconductor material for visible light detection. When a photon

has an energy less than 1.1 eV , or its wavelength is longer than 1100 nm, silicon is transparent. Thus,

silicon material can be used for photodetection in CMOS image sensors. which accommodate image capture,

readout, and processing on a single chip.

Figure 2.1: Energy of a photon vs visible light wavelength

Table 2.1: List of bandgap in different materials[78]

Group Material Symbol
Bandgap (eV)

@ 302K
IV Germanium Ge 0.67
IV Silicon Si 1.14
III-V Gallium arsenide GaAs 1.43
III-V Gallium phosphide GaP 2.26
III-V Gallium nitride GaN 3.4
IV-V Silicon nitride Si3N4 5
IV Diamond C 5.5
III-V Aluminium nitride AlN 6
IV-VI Silicon dioxide SiO2 9
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2.2 Photodetectors

Each pixel in an image sensor is a photodetector (PD). A photodetector acts like a “charge bucket” that

accumulates charge in the active area of the photodetector during the exposure time. The charges at a

photodetector are converted into an equivalent current or voltage that corresponds to a certain light intensity.

Various types of PDs exist, including photodiodes, photogates, phototransistors, and avalanche photodiodes.

These diodes can detect photons and generate electron-hole pairs (EHP). They also have different strengths

which can be applied to different applications. This section focuses on two main structures: the PIN

photodiode and the pinned photodiode.

2.2.1 Photodiode

Many types of photodiodes exist in CMOS imaging sensors. The most basic photodiode is a PN junction.

The photodetection occurs within the depletion area of the diode. Figure 2.2 illustrates the cross-sectional

view of a standard PN photodiode. When a photodiode is illuminated by light with energy greater than the

band-gap energy, electrons in the valence band are excited to the conduction band by absorbing the photon

energy. Vacancies are left in the valence band resulting in hole generation. The generation of electron-hole

pairs happens throughout the depletion layer, that is, in both the p- and n-layers of the diode’s depletion

region. A photocurrent is then generated by the electric field in the depletion layer attracting electrons to

the cathode as well as pushing holes to the anode. The current caused by the generation of electron-hole

pairs is proportional to the amount of the incident light.

long 

wavelength

short 

wavelength

STI STI

N+

P-sub

Figure 2.2: Cross-sectional layout view of a standard PN diode

Another popular form of photodiodes is the PIN photodiode. It is constructed by inserting an intrinsic
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region in between the P and N layers in order to stretch out the electric field and thus increase the volume

of the diode that can absorb photons. This results in more photogenerated current from a fixed amount of

light. Figure 2.3 shows a reverse-biased PIN photodiode.

N-sub

i-region

P-sub

photons

Cathode

Anode

Figure 2.3: Cross-sectional view of a PIN photodiode

There are three operating modes in a photodiode, that is, the photovoltaic mode, photoconductive mode,

and avalanche mode. Under a zero-biased condition, the photodiode operates in a photovoltaic mode having

a small dynamic range and nonlinear photon-to-voltage generation. Under a reverse-biased condition, the

photodiode operates in the photoconductive mode. The reverse voltage increases the width of depletion

region (or absorption region) to capture photons and also creates a electric field to sweep the electron-

hole pairs in the depletion region. Under a high reverse-biased condition, the photodiode operates in the

avalanche mode. The electric field is increased by the high reverse voltage. The velocity of free carriers

generated through absorption of a photon is increased in the depletion region. The primary fast-moving

electron or hole collides with the silicon lattice and kicks out some electrons creating secondary electron-hole

pairs. This collision ionization will keep on repeating in the new generated electron-hole pairs resulting in

an avalanche. Consequently, the avalanche photodiode obtains an internal multiplication.

In the early generation of CMOS image sensors, these two types of photodiodes, PN and PIN, were

commonly used in 3T pixels, as shown in Figure 2.4. The standard 3T pixel consists of three transistors:

a reset transistor, a source follower, and a row select switch. The 3T pixel employing either a PN or PIN

diode possessed a larger full-well capacitance, which is desirable, but higher dark current and noise, which

are both undesirable. The surface generation of carriers near the top of the chip introduced imperfections

in the crystal structure resulting in larger thermal generation of carriers and thus larger dark current.

Two main operating phases of the 3T pixel are described as follows [79, 80]:

• The reset phase. The PN/PIN photodiode is reset by turning on the reset transistor to connect the
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cathode node to the VDD. The reset phase charges the photodiode capacitor to reach a voltage of

VDD − VTH and is considered as the dark condition. In Figure 2.4, this corresponds to the case when

the red trace is flat. The reset transistor can be thought of as a resistor while the photodiode can be

thought of as a capacitor. During this reset phase, there will be an associated kT/C noise sampled on

the diode. Larger diode area reduces this noise by increasing the diodes’s capacitance. The cost for

this reduction in noise is less sensitivity to lower light levels.

• The charge accumulation phase. The reset transistor is shut off leaving the diode’s capacitance charged.

The incident photons striking the photodiode causes the photocurrent generation to discharge the

photodiode capacitor. In Figure 2.4, this is indicated by the red line indicating the voltage across

the diode is dropping linearly. After the exposure time (also called integration time), the row select

transistor is switched on and the voltage across the diode is buffered on the column line. One key point

is that a darker image results in a higher voltage on the column line while a brighter image results in

a lower voltage on the column line.

2.2.2 Pinned Photodiode

At the time of this writing, imaging sensors used for consumer products, such as smartphones or document

cameras, don’t use either a PN or PIN junction. Rather these devices use a “pinned” photodiode which is

discussed here.

A standard 4T pixel with a pinned PD (PPD) is shown in Figure 2.5. The PPD is constructed by adding

a thin and heavily doped p+ layer on the top of the n-type diffusion layer. The vertical p+np structure

has two PN junctions sharing the middle n-type layer: the p+/n junction and n/psub junction. The fermi

level of the n-type layer is pinned because it’s surrounded by p-type. By applying a sufficient voltage to the

middle n-type layer, these two depletion regions can be merged resulting in a fully depleted n layer of the

PPD. The specific voltage is called the pinning voltage.

The technique of using the pinning layer was initially created in CCD technology for increasing the

quantum efficiency and reducing dark current [81, 82]. Implementing the method to CMOS active pixels

helped PPDs achieve an extremely low dark current compared to PN junctions. The shallow pinning layer

buries the PN junction away from the photodiode surface and moves its depletion region down in the

semiconductor substrate. The heavily p-type doping provides high hole concentrations at the surface to

maintain the SiO2−Si surface in thermal equilibrium through suppressing the thermal generated electrons.

As a result, free electrons are absent at the SiO2 − Si surface resulting in a low dark current [82, 83].
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Figure 2.4: A traditional 3T pixel with a timing of reset pulses and pixel signal
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2.3 4T Active Pixel Architecture

A standard CMOS 4T pixel is shown in Figure 2.5. It consists of a pinned photodiode (PPD), a source

follower (SF), a transfer gate transistor (TX), a reset transistor (RST), and a row select transistor (RSel).

Unlike 3T pixels, the additional transistor (transfer gate transistor) is added to separate the photodiode and

the source follower. The floating diffusion is connected to the gate of the source follower and the parasitic

capacitance is used to achieve a charge-to-voltage conversion. Thus, the transfer gate succeeds to isolate

the photo-detection and charge-conversion processes. Both transfer gate and reset transistors are used to

reset the photodiode. The reset transistor is also responsible for resetting the floating diffusion (FD) before

starting to transfer charges from PPD to the FD node.

p+

n

P-sub

pwell

STI n+

Vpix

VDDRST

TX

PPD

RSelFD

Column 

Line

Figure 2.5: A standard 4T pixel

A common operating procedure for a standard 4T pixel is described as follows:

• Photodiode reset step. Unlike the 3T pixel structure, the photodiode’s cathode in a 4T pixel needs to

turn on two transistors (reset transistor and transfer gate) to be connected to a reset voltage, Vpix, for

making the photodiode fully depleted.

• Charge accumulation step. Switch off the transfer gate and reset transistor simultaneously to start the

charge accumulation. The photocurrent generated by photon absorption is integrated at the photo-

diode. The maximum number of charges represents the full well capacity (FWC) of the photodiode.

Larger photosensitive area means bigger photodiode capacitance, which could give larger FWC. The

integration process is kept on until the next time the transfer gate is switched on. The off-state trans-
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fer gate plays a significant role in the photodiode dark current. If the transfer gate is not completely

turned off, the depletion region under the gate could create a path for dark electrons to discharge the

storage capacitor at the floating diffusion. The efficient method is to use a negative voltage to turn off

the transfer gate completely [83].

• FD reset step. Turn on the row select switch to prepare for the correlated double sampling[79]. The

floating diffusion capacitor is reset by turning on the reset transistor again.

• Reset sampling step. Turn off the reset transistor. The current voltage at the floating diffusion is

the sum of the reset signal and noise signal. The first sampling process samples the voltage, VFD1 =

Vrst+Vnoise, into the column analog front-end circuit. The parasitic resistance and capacitance on the

column line limits the sampling speed.

• Charge transfer step. Turn on the transfer gate to transfer the charges from photodiode to floating

diffusion node. Incomplete transfer can leave some charges in the photodiode, which is defined as image

lag [84].

• Pixel sampling step. Turn off the transfer gate. The current voltage at the floating diffusion is the

pixel signal plus noise signal VFD2 = Vpd+Vnoise. The second sampling process samples and subtracts

the current signal from the first one. The voltage difference represents the pixel signal without noise,

Vrst−Vpd. The “black” pixel has a small difference value and the “white” pixel a large difference value.

2.4 Characterization of CMOS Image Sensors

Most common parameters for measuring pixel performance are described, including fill factor, quantum

efficiency (QE), full well capacity (FWC), conversion gain (CG), image lag, and dark current. Some other

parameters are used to evaluate the sensor, such as frame rate, resolution, bit depth, modulation transfer

function, and different types of noise.

2.4.1 Fill Factor

Fill factor determines the area in which a single pixel can capture light. It is the ratio of pixel detection

area to the entire pixel area. For CCD sensors, fill factor is not an issue because of CCD pixels having

nearly 100% fill factor [85]. However, the CMOS pixel integrates transistors, resulting in a smaller fill factor.

Fortunately, using micro-lens and back-side illumination techniques improve the effective fill factor of modern

CMOS pixels to nearly 100%. The fill factor can be expressed by

FF =
Apd
Apixel

∗ 100% (2.2)

where Apd and Apixel represents the photosensitive area in a pixel and the entire pixel area, respectively.
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2.4.2 Quantum Efficiency

Quantum efficiency (QE) is also known as the spectral response. It is a vital pixel parameter to evaluate

the quality of photodiodes. It is defined by the ratio of incident photons and charges converted by the

photodiode. The spectral response is used to reflect the capability of photocurrent generation in terms of

different wavelengths of light. Both doping concentration and geometric arrangement of the photodiode can

affect the quantum efficiency.

Overall quantum efficiency in a photodiode is given by

QE(λ) = Nsig(λ)/Nph(λ) (2.3)

where Nsig is the charge signal generated in the pixel, and Nph is the total number of incident photons per

pixel. Ideally, QE is 100%, meaning that in the pixel area, every photon can generate one electron-hole pair.

However, the number of photons absorbed by the photodiode is limited by the effective FF. The surface

might be reflecting some incident photons or some photons might be absorbed by metal layers above the

photodiode, which makes the photo-generated charges less than expected. The photodiode structure also

determines the charge collection efficiency. Thus, QE can be written by

QE(λ) = T (λ) ∗ FF ∗ η(λ) (2.4)

where T (λ) is the transmittance of light above a detector, FF is the pixel fill factor, and η(λ) is the charge

collection efficiency of the photodiode.

Therefore, a distinction can be made between the external and the internal QE. The external QE considers

only a portion of the total number of incident photons that hit the photosensitive area, which is quantized

by the FF. It also considers defects causing a loss of photons, e.g., reflection and absorption by metal lines

above the pixel. The internal QE is used to measure how well photons are absorbed and how efficiently the

generated electrons are collected [86, 87].

2.4.3 Full Well Capacity

Full well capacity (FWC) defines the maximum amount of charge that can be accumulated in the active area

of each photodiode. FWC is expressed by the number of electrons and can be computed by the maximum

amount of charges:

FWC =
Qmax
q

(2.5)

where Qmax is the maximum amount of charges held in the photosensitive area, and q is a single electron

charge.

The maximum number of accumulated charges in the PPD is given by [88, 89]:

Qmax = Cppd ∗ (Vpinning − Vblooming) (2.6)
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where Cppd is the photodiode capacitance, Vpinning is the pinning voltage at the PPD’s fully depleted state,

and Vblooming is the minimum voltage when charges exceed the FWC. In CMOS imaging sensors, two factors

can limit the swing of maximum output voltage: the saturation of the readout circuit and the pixel FWC.

Therefore, the FWC becomes one of the primary factors to affect the dynamic range of the imaging sensor

[90].

2.4.4 Image Lag and Transfer Efficiency

Image lag is caused by an insufficient charge transfer from PPD to FD in a 4T pixel. Ideally, all accumulated

charges in the photosensitive area can be transferred to floating diffusion and converted to an electric signal

before sampling to the column readout circuit. However, the charge transfer process is not perfect. For

example, in a 4T pixel, some electrons are left in the photodiode after turning on the transfer gate. The

incomplete transfer leaves some charge for the next frame, which deteriorates the quality of the next image

[91].

To avoid the effects of different light sources and PPD geometry, charge transfer efficiency is used for

better characterization of image lag. It is defined as the ratio of successfully transferred charges compared

to the total amount needed to be transferred in one cycle [90].

Several factors can cause image lag. These factors are transfer time, electric field, trapping effect, and

turn-on voltage of the transfer gate [84, 92].

2.4.5 Conversion Gain

Conversion gain (CG) presents the voltage difference converted by a single charge. The conversion gain defines

the efficiency of electron-to-voltage conversion in a pixel. In a 4T pixel, the charge-to-voltage conversion

happens at the floating diffusion node and the CG depends on the node capacitance at the floating diffusion.

It can be computed by

CG =
q

CFD
[uV/e−] (2.7)

where CFD is the effective FD capacitance and q is a single electron charge. The equation shows that the

conversion gain in a 4T pixel is independent of the photodiode capacitance. Furthermore, a larger CG

requires a smaller FD capacitance.

One method to measure CG is to get the photon-transfer-curve [83, 93, 94]. When the temporal noise

is dominated by photon shot noise, the noise characteristic is plotted on a log-log graph. It is portrayed

as a function of the number of photons, as shown in Figure 2.6. The square root of the average amount of

incident photons in a given pixel is equal to the RMS value of short noise [95].

logVshot,rms =
1

2
× logN (2.8)

where N is the average number of photons collected in a given pixel.
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Figure 2.6: RMS shot noise vs input photons on a log-log curve[95]

Assume the voltage at the floating diffusion node is VFD. It can be computed by multiplying the

conversion gain and the average number of input photons.

VFD = CG ·N (2.9)

Based on Equations 2.8 and 2.9, the CG equation can be rewritten as

CG =
V 2
shot,rms

VFD
(2.10)

2.4.6 Dark Current

When no external light is applied, a photodiode should not generate any current. However, in the depletion

region of a PN junction, electron-hole pairs can be thermally generated to cause a small current, which is

called dark current [90, 90, 96]. Dark current is dependent on the photodiode structure and temperature.

This undesired current is added to the photocurrent generated by photons’ absorption. A photodiode with

larger dark current gives a lower dynamic range, since the photodiode capacitor accumulates dark electrons.

As previous discussed, the pinned photodiode obtains a lower dark current compared to PN/PIN junctions.

Dark current is integrated as an undesirable dark charge at the in-pixel storage cell. It is usually measured

at room temperature. Furthermore, a non-uniformity issue is caused by the substantial variation of dark

current across the pixel array, which is called dark signal non-uniformity.
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2.4.7 Responsivity

Photodiode responsivity is defined as the ratio of the photo-current generated by the incident photons to

the incoming light power. It is in a unit of A/W and can be expressed by

R =
Iph
P

= QE · qλ
hc

(2.11)

where QE is quantum efficiency, λ is the light wavelength, h is the Plank constant, and c is the light speed

in a vacuum.

2.4.8 Dynamic Range

Dynamic range (DR) indicates how well an imaging sensor can capture images that have both bright spots

and dark shadows. It is defined as the ratio of saturation level divided by the noise level and measured in

decibels, as shown in Figure 2.7. The full-well capacity and the resolution of the readout circuit determine

the maximum detectable light. Noise resources such as dark current and shot noise limits the noise floor.

The DR can be calculated by

DR = 20log(
QFWC

Qnoise floor
) (2.12)

where QFWC is the largest detectable signal at the saturation level (or full-well capacity) of the photodiode

and Qnoise floor is the smallest detectable signal. Both variables are expressed in electrons.

Figure 2.7: The dynamic range waveform [1]
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2.4.9 Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) is the ratio between the input signal and the corresponding noise. Unlike the

dynamic range, SNR considers total noise sources, including read noise, photon shot noise, and 1/f noise. If

the read noise is dominant that includes the noise generated in the column-level readout process, the SNR

can be expressed by

SNR = 20log(
Nsig
nread

) [dB] (2.13)

Due to the photon collection process in the photodiode follows the Poisson distribution, the photon shot

noise can be modeled by the Poisson process and the electron RMS value of photon shot noise is the square

root of input signal [1]. Thus, if the photon shot noise is dominant, the SNR equation is expressed by

SNR = 20log
Nsig
nshot

= 20log
Nsig√
Nsig

= 10logNsig [dB] (2.14)

When the image sensor only considers shot noise, the SNR is increased with the number of photons collected

by the photodiode at 10 dB per decade. Its maximum value is limited by the pixel FWC.

However, when the imaging sensor operates at a low light environment, the dark current shot noise, read

noise, and dark signal non-uniformity become dominant, and the increase rate of SNR becomes 20 dB per

decade.

2.4.10 Shutter Mechanism

Two shutter mechanisms exist for CIS cameras: rolling shutter and global shutter. The rolling shutter (RS)

uses a block readout method, that is, it reads out one line or a group of lines of pixels, while it keeps other

lines on the exposure of light. Due to the sequential scanning method, CMOS image sensors with rolling

shutter do not need an in-pixel storage capacitor. Each line of pixels must be read out before the image sensor

steps into the next exposure period. Thus, different rows of pixels can be exposed for the same amount of

time, but they can not be exposed at the same time. Another primary drawback of applying rolling shutter

in CMOS image sensors is the image artifacts that remain when fast-moving objects are being photographed

[1].

In contrast, the global shutter (GS) takes a snapshot of the target object, so all pixels capture the light at

the same time. An extra storage element added in pixel is the key to hold the image signal before the readout

process begins. After reading out all pixels, the CMOS image sensor starts the next exposure. Therefore,

the global shutter mode enables CMOS image sensors to have continuous images in time, with no image

artifacts [1].

2.5 Noise Analysis in CMOS Image Sensors

Two categories of noise sources can be divided into CMOS image sensors: spatial noise and temporal noise.

Spatial noise includes dark signal non-uniformity, photo response non-uniformity, and fixed pattern noise.
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Temporal noise consists of photon shot noise, thermal noise, and electrical noise from readout circuitry.

2.5.1 Temporal Noise

Temporal noise is also called random noise. It does not depend on the pixel location. Under the same

environmental conditions, the temporal noise can result in variations in pixel output from frame to frame.

2.5.1.1 Reset Noise

Reset noise occurs when resetting the floating diffusion or a photodiode through a transistor. It is assumed

that the storage capacitance in the floating diffusion node or a photodiode is fixed. We can use an equivalent

model of a capacitor with one MOSFET switch to calculate the reset noise. Thus, the capacitor can be

charged through the switching-on resistance. Due to the resistor’s thermal noise is 4kTRon and the noise

bandwidth is 1
4RonC

, so the voltage RMS noise, which is called “kT/C” noise, can be expressed by

Vnoise,rms =

√
kT

C
(2.15)

In image sensors, measuring noise in electrons is useful. The electron RMS noise, which is also called

“kTC” noise, can be calculated by

ne,rms =
C · Vnoise,rms

q
=
C

q
·
√
kT

C
=

√
kTC

q
(2.16)

Table 2.2 lists kT/C noise and kTC noise of different capacitance at room temperature T = 300 K. A

larger capacitor has less reset voltage noise but has more reset electron noise. Thus, in different applications,

either the second column or the fourth column can be used as a good reference to help choose the sampling

capacitance in the circuit design.

Table 2.2: Reset noise of different capacitance at room temperature T = 300K

Capacitance
(fF)

rms noise voltage
(kT/C) in uV

peak-to-peak noise
6.6*Vnoise,rms

rms noise electrons
(kTC) in e−

1 2034.70 13429.01 12.72
10 643.43 4246.63 40.21
20 454.97 3002.82 56.87
40 321.71 2123.31 80.43
50 287.75 1899.15 89.92
60 262.68 1733.68 98.50
100 203.47 1342.90 127.17
120 185.74 1225.90 139.31
150 166.13 1096.47 155.75
240 131.34 866.84 197.01
1000 64.34 424.66 402.14
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2.5.1.2 Read Noise

The noise that arrives from the readout circuitry is defined as readout noise or read noise. It excludes the

noise generated from the photodiode. The following items [1] account for the most contributions:

1- Source follower noise: It includes 1/f noise and thermal noise of the in-pixel source follower. Because of

tiny pixels and a low noise readout chain, the electrical noise of the readout chain is typically dominated

by the source follower noise. To reduce 1/f noise, the ideal choice is to use a maximum gate dimension

for the source follower. The smaller size the source follower, the more significant its noise contribution.

2- kT/C noise in the sample and hold circuits (S/Hs): S/Hs are located on the front end of a readout

chain. As discussed in the section on reset noise, this noise can be reduced by using a larger sampling

capacitor. However, a larger capacitor means more layout area.

3- Amplifier noise: Column amplifiers are widely used to buffer the signal before feeding into the data

converter and also amplify the signal when it is needed in low light conditions. Amplifier noise includes

flicker noise and thermal noise.

4- ADC’s quantization noise: The column-level A/D converters aim to complete the digitization process.

The finite signal-to-noise ratio of ADCs introduces quantization noise.

2.5.1.3 Shot Noise

Shot noise comes from fluctuations in current caused by the discrete nature of charges, electrons or holes.

The random arrival of photons causes a photo current, which produces photon shot noise. The random

generation of electrons and holes within the depletion region of the photodiode causes dark current shot

noise.

Typically, the statistical distribution of shot noise can be described by a Poisson distribution, which

contains a standard deviation equal to the square root of the mean value (σ =
√
µ) [80, 90].

In a typical photodiode with a dark current density (Jdark) and a photo-sensitive area (A), the variance

of dark current shot noise in electrons can be calculated over an integration time, tint.

n2dark =
JdarkAtint

q
(2.17)

The variance of the photon shot noise in electrons can be calculated by

n2ps = QE · P0Atint (2.18)

where QE is the quantum efficiency, P0 is the photon flux (photons/cm2 · s).

Thus, the total RMS shot noise in electrons for the photodiode is expressed by

nshot =

√
n2dark + n2ps =

√
JdarkAtint

q
+QE · P0Atint (2.19)
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2.5.2 Spatial Noise

2.5.2.1 Fixed Pattern Noise

Fixed pattern noise (FPN), the first type of spatial noise, is a time-invariant noise. Under the uniform

illumination, device mismatches result in the variation of the pixel output, referred to as FPN. Two different

sources in CMOS image sensors can generate FPN.

The first source of FPN involves the variations between individual pixels. Ideally, each pixel is identical

in the pixel array. The threshold variation and source follower’s offset in each pixel result in pixel FPN. It

can be removed by column-level correlated double sampling technique [1].

The second source of FPN is the variation of column readout circuitry, including column amplifiers and

column ADCs. Column FPN is more noticeable and causes tripes in the produced image. To eliminate

column FPN, an average dark image or a different dark image can be used to calibrate column FPN by

subtracting a dark image from all captured images [1].

2.5.2.2 Photo Response Non-Uniformity

Photo response non-uniformity (PRNU) is a spatial noise that comes from a light source. PRNU might be

caused by a mismatch in optical properties between pixels or a mismatch in the charge-to-voltage conversion

capacitance.

A mismatch in optical properties is typically found on a larger spatial scale in the sensor and is often

determined by the combination of lens and sensor. For example, the angle of incidence of the light is different

in the center of the array and at the side of the array, which may cause less light to reach the pixels nearer to

the side. Less light reaching the pixel causes a gradient in the sensor response from the center to the edges

of the sensor.

Mismatches in the conversion capacitance are different, depending on the pixel structures. For a 3T pixel,

the mismatch occurs in the photodiodes. For a 4T pixel, the mismatch happens in floating diffusions. These

mismatches are wholly determined by the processing and are typically in the order of 1 − 2% RMS of the

capacitance, which results in a spatial noise contribution that is zero in darkness and scales with the signal

[1].

2.5.2.3 Dark Signal Non-Uniformity

Dark signal non-uniformity (DSNU) is produced by the image sensors in darkness. Typically, the dark signal

is dominated by the signal caused by photodiode dark current. The dark current differs from pixel to pixel

and depends on temperature and integration time [1, 81].
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2.6 Radiation Effects on CMOS Technology

This section describes the most common outcomes caused by radiation on devices and circuits in standard

CMOS technologies. It begins with a brief discussion of the effects of radiation from high-energy particles,

namely displacement damage (DD) and single events. There is also a description of the total ionizing dose

(TID) effect, which includes the formation of oxide-trapped charges and leakage paths in field oxides.

2.6.1 Single-Event Effects

High-energy particles penetrating semiconductor devices can cause single-event effects (SEEs), as shown in

Figure 2.8. Radiation resources such as solar wind, galactic cosmic rays, and radiation belts can introduce

SEEs. Digital circuits such as memories, processors, and FPGAs are most sensitive to SEEs. Advanced

CMOS technologies with smaller channel lengths have become even more sensitive because of the smaller

node capacitances and lower power supplies [97].

Particle 

Strike

Figure 2.8: A penetration of a high-energy particle through a MOSFET

As mentioned in Reference [98], the SEE mechanism is comprised of three fundamental processes:

1- Charge generation occurs when a high-energy particle passes through the semiconductor. EHPs are

created along with the particle moving path to produce free carriers.

2- Charge transport occurs when, by diffusion or by drift, the electric field moves charges from SEE-

induced EHPs, to adjacent devices such as PN junctions, while those EHPs can also recombine.

3- Transient disturbance or circuit response occurs when a strong electric field in the sensitive region

collects charges. These additional charges on the sensitive node can change the node voltage resulting

in voltage propagation through the circuit.
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SEEs can be classified into two categories [97]: destructive and non-destructive. Potentially destructive

SEEs include single event latch-up (SEL), single event snap-back (SESB), single event burnout (SEB),

single event gate rupture (SEGR), and single event dielectric rupture (SEDR). They can permanently affect

CMOS devices and circuits. Non-destructive SEEs include single event upset (SEU), multiple bit upset

(MBU), single event functional interrupt (SEFI), and single event transient (SET).

2.6.2 Displacement Damage

High-energy particles such as heavy ions, protons, as well as neutrons, can displace atoms from their positions

in a semiconductor’s lattice. The collisions generate vacancy-interstitial pair (VIP) defects, which are known

as displacement damage (DD), as shown in Figure 2.9.

Figure 2.9: The collision between a silicon atom and high-energy particle creates displacement
damage

DD-induced VIP defects in a crystal lattice could be either simple or complex[99]. A simple defect occurs

when only a few atoms in the lattice are displaced. Complex defects result from longer chains of disordered

atoms.

Figure 2.10 illustrates five different processes of DD-induced vacancies:

1- Electron-hole pairs (EHP) are generated in deep-level traps. Electrons in the valence band are promoted

to trap levels and then to the conduction band.

2- The recombination of EHPs also come from deep traps. The recombination process happens when an

EHP is spatially close to the site of defects.
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3- Some carriers can be trapped temporarily in some shallow-level traps. For CCD sensors, this process

could decrease the efficiency of transferring charges in the CCD pixel array.

4- The compensation process may be caused by deep- or shallow-level traps. The trap centers compensate

for acceptors or impurities in the semiconductor lattice. The equilibrium concentration of majority

carriers can be reduced by the compensation processes.

5- A tunneling process can also be the result of radiation-induced defects or traps. The reverse current

of junction diodes can be increased by carriers’ tunneling.

Figure 2.10: Five processes of DD-induced vacancies in the CMOS process [100]

2.6.3 Total Ionizing Dose Effects

This Section discusses the topic of total ionizing dose (TID) effects on CMOS devices, which is the main

concern in this dissertation. Sub-section 2.6.3.1 addresses radiation interaction with solids, and EHP gener-

ation in the MOSFET oxides. Recombination processes that occur immediately after EHP generation are

discussed in 2.6.3.2. Subsection 2.6.3.3 introduces electron tunneling through the oxide and 2.6.3.4 treats
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the transport process of TID-induced charges in SiO2. The formation of oxide trapped charges and interface

traps is addressed in 2.6.3.5 and 2.6.3.6, respectively. Figure 2.11 illustrates a summary of the TID formation

on the silicon dioxide interface. The final subsection 2.6.3.7 discusses the formation of leakage paths in field

oxides induced by TID effects.
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Figure 2.11: Five different formations of TID on the silicon dioxide interface [101, 102]

2.6.3.1 Generation of Electron-Hole Pairs

Electron-hole pairs are produced by the interaction of ionizing radiation and semiconductor solids. EHPs

are produced in proportion to how much energy the material received [103]. The primary process is called

Coulomb scattering. In this process, an electron at the outer shell is ejected from the atom causing a loss

of energy in incident particles [104]. As the particle passes through the material, EHPs are continuously

created.

EHPs can also be generated when photons interact with semiconductor solids, typically by Compton

scattering. Compton scattering occurs and produces energetic electrons and ionized atoms from the collision

between photons and atoms in the semiconductor solid. As previously discussed, the Coulomb scattering

process occurs by the interaction of energetic electrons and the solid. Thus, a typical TID testing approach

is to use a Co60 gamma ray to create EHPs [105].

Linear energy transfer (LET) describes the generation efficiency of electron-hole pairs. Particle energy,

particle mass and the material density can influence LET. The unit of LET can be MeV − cm2/g or

MeV − cm2/mg.
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The total ionizing dose (TID) rate is the energy induced by incident particles causing the production of

EHPs in the semiconductor material. The units for TID is radiation absorbed dose (rad) or gray (Gy). One

gray is equivalent to one hundred rads [105]. Additionally, the TID rate is also determined by the target

material.

2.6.3.2 Recombination

Some TID-induced EHPs can recombine immediately after generation. The initial recombination time is less

than a few picoseconds. The mobility of electrons is relatively high, comparing to holes. For example, the

electron mobility in silicon oxide is between 20 to 40 cm2/V · s. The potential of the transistor gate (electric

filed in oxide) and device temperature can influence the mobility of electrons. A positive gate voltage can

quickly sweep electrons from the oxide under the channel. However, a saturation velocity exists for electrons

at a higher electric field, 107cm/s [102].

Some holes are left without recombination [106–108]. The number of unrecombined holes is influenced

by particle energy and gate voltage. Figure 2.12 shows different radiation sources versus the fraction of

unrecombined holes.

Figure 2.12: Fractional unrecombined holes versus electric field in terms of different radiation
resources radiation [108]
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2.6.3.3 Tunneling

Tunneling is the movement of electrons from the silicon to SiO2 − Si interface [109–112]. The tunneling

electrons can neutralize the oxide-trapped carriers. The spatial distribution of trapped holes must be nec-

essary to be close to the SiO2 − Si interface to activate the tunneling process. The maximum distance is

approximately 5 nm [105].

2.6.3.4 Hole Transport to Silicon Oxide Interface

Holes that do not recombine can transport through the oxide toward the SiO2 − Si interface or the gate

oxide interface in MOS technologies depending on the electric field [113]. Two mechanisms can introduce this

transport process: Polaron hopping and multiple trapping [102, 106, 114]. The Polaron hopping mechanism

moves holes by hopping between localized shallow trap states in the oxide. Hole hopping can cause a lattice

and local electric field distortions. The multiple trapping mechanism moves holes through the conduction

band between trap levels. These two mechanisms for hole transport are illustrated in Figure 2.13.
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Figure 2.13: Two mechanisms of hole transport in silicon dioxide [106]

2.6.3.5 Oxide-Trapped Charge

After the hopping transport process, holes can be trapped in long-term trapping sites close to the silicon

dioxide interface, resulting in an oxide defect in SiO2, which is called an oxygen vacancy. This has been

verified by Electron Spin Resonance. The capture efficiency depends on the electric field, temperature, and

CMOS technology [102].

Oxygen vacancy defects in silicon dioxide, which induces hole trapping, are called an E′ centers. Figure

2.14 shows the formation. The weak Si − Si bond is broken by the trapped hole resulting in the creation

of an E′ center. The most common type of E′ centers is the E′1 center [115], which has been considered

responsible for the oxide-trapped charge in silicon dioxide. The positive structure is the E′1 center with a

positive charge.
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Figure 2.14: Mechanism of E′ center formation [106]

E′ centers that are close to the silicon oxide interface are called border traps. If the E′ center is close

enough (less than 3 nm), charges can be exchanged between border traps and silicon through electron

tunneling.

Threshold voltage of MOSFETs is shifted by oxide trapped carriers and the variation is proportional to

the square of the thickness of the silicon dioxide [116]. Since advanced CMOS technologies continue to shrink

the the thickness of the gate dioxide, the charges trapped in gate oxide are dramatically reduced. However,

the isolation field oxides are still thick in the range of 300− 450 nm. Thus, the significant issues caused by

TID in sub-micron CMOS technologies are the trapped charges and leakage currents in field oxides.

The TID annealing process includes two mechanisms: electron tunneling and hole neutralization. The

annealing process depends on three factors: time, temperature, and electric field [117].

Electron tunneling is the process by which electrons in the substrate tunnel into oxide and neutralize

holes. This mechanism is a long-term annealing process, which is highly dependent on electric field condition

and oxidation process.

Hole neutralization is the process in which oxide-trapped positive charges are neutralized by thermal emis-

sion of electrons from the valence band of the silicon dioxide. This neutralization mechanism is temperature

and electric-dependent.
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2.6.3.6 Interface Trapped Charge

Interface trapped charges are also known as interface traps or interface states. The generation of interface

states is another process that occurs at the silicon dioxide interface.

Interface traps result from a silicon structural imperfection in the silicon. In theory, each Si is bonded to

four Si atoms in a silicon lattice structure. At the surface, most Si atoms are bonded to oxygen, some bond

to hydrogen, and some are unbonded. Interface traps are trivalent Si atoms with an unpaired electron in

the fourth dangling orbital. Reference [118] developed a model to explain the formation of Pb center defects,

which have been considered responsible for generating the interface traps.

Depending on the trap location and external bias situation, interface traps at the oxide interface can

be acceptor-like, donor-like, or neutral. Thus, the interface traps can increase the leakage current, degrade

carrier mobility, and shift the threshold voltage [102, 117].

Figure 2.15 shows the influence of interface trapped charges in the IV curves of NMOS and PMOS

transistors.
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Figure 2.15: Interface trapped charges affect the subthreshold swing of NMOS and PMOS
[107]
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2.6.3.7 Field Oxide Effects

An increase of TID-induced off-state current in the field oxides (FOX) becomes a primary issue when the

threshold voltage shift is diminished by using advanced CMOS technologies with ranges of less than a flew

nanometers for gate oxide thickness. Generally, the thickness of isolation field oxides is 100 − 500 times as

high as that of the gate oxide. Reference [119] reported that CMOS technologies with a channel length less

than 130 nm have fewer problems with FOX leakage. However, the TID still causes an increase of off-state

current in the larger I/O transistors [120].

CMOS technologies have two common types of isolation oxides: local oxidation of silicon (LOCOS) and

shallow trench isolation (STI). Figure 2.16 shows the two leakage paths in STI oxides. The off-state leakage

from drain to source in an N-type transistor is the path marked “1”. The trapped charges at the silicon-oxide

interface form the path along the sidewalls of the STI. Figure 2.17 shows the effects of TID on IV curves of

an NMOS transistor in a 250 nm width and length. The subthreshold current becomes severe in a higher

TID dose making the transistor suffering a turn-off issue [121]. Fortunately, this intra-device leakage path

does not exist in PMOS devices since it located in an N-well region.

Nwell

P-substrate

NMOS

PMOS

STI
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2

2

2
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1

Figure 2.16: TID induces two leakage paths in MOSFETs

The other leakage paths caused by trapped charges at the bottom of STIs are NMOS-to-NMOS (or

device-to-device) and NMOS-to-PMOS (or device-to-N-well) paths. The leakage path from NMOS active

region to the PMOS N-well is marked “2” in Figures 2.16. Figure 2.18b illustrates the cross-sectional view of

this leakage path. The N-well of a PMOS is tied to the high voltage level. The source or drain of an NMOS

has a low voltage level. The trapped charges at the Si−SiO2 interface can result in a leakage path between

active regions of the NMOS to an adjacent N-well. The leakage path between the device to device is shown

in Figure 2.18a. The trapped charges form a leakage path between active regions of two adjacent NMOSs.
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Figure 2.17: Drain current curves for an N-channel transistor with a 250 nm width and length
[121]

Figure 2.18: Two leakages path between devices caused by TID [107]
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2.6.4 Radiation Effect on CMOS Sensors

The previous discussion focused mainly on the radiation effects on MOSFET devices and circuits. Three

primary TID effects on standard CMOS technologies are the shift of threshold voltage, leakage currents in

NMOSs, and N-channel inter-transistor [122]. Those radiation-induced issues also occur in peripheral circuits

in CMOS image sensors. Furthermore, as a highly integrated system, the CMOS image sensors operating in

a harsh environment must give the pixel array radiation hardness.

Generally, CISs have a higher radiation tolerance with respect to CCDs because CCDs have a radiation-

induced loss of charge transfer efficiency and sensitive pixel structure [123–125]. CMOS image sensors

have become preferable in radiation-tolerance imaging systems. Many studies have been conducted on the

radiation characterization of CISs [126–141] for specific applications in radiation harsh environments.

After reviewing these publications, it can be concluded that the primary degradation in photodiodes

caused by TID is the increase of dark current. Table 2.3 shows several on the analyses of the dark current

induced by TID in CMOS image sensors.

Table 2.3: Publications on the analysis of TID induced dark current

Reference Pixel Pitch Process
Maximum
Total Dose

Dark Current
at Maximum
Total Dose

Pixel Type

[126] 25 µm 0.7 µm 21 krad 45 nA/cm2 PD
[138] 50 µm 1.2 µm 10 krad 1.5 nA/cm2 PD
[139] 26.4 µm 1.2 µm 10 krad 6 nA/cm2 PD
[140] 25 µm 0.5 µm 22.5 Mrad 0.8 V/s PD
[141] 20 µm 0.5 µm 5.5 Mrad 60 nA/cm2 PD
[128] 16.2 µm 0.35 µm 30 Mrad ∼20 nA/cm2 PD at a 3T pixel
[129] 25 µm 0.5 µm 10 Mrad(Si) 1.4 nA/cm2 PD at a 3T pixel
[131] 10 µm 0.18 µm 100 krad 750 e−/s PPD at a 4T pixel

The following discussion focuses on dark current in a pinned photodiode (PPD) without ionizing radiation.

Three main elements constitute the PPD dark current: a surface leakage current, bulk leakage current, and

depletion region leakage current. The transfer gate MOSFET can also affect the PPD dark current through

the turn-off gate voltage, Voff,TG. When Voff,TG is not small enough to turn off the transfer gate, the

TG operates in a weak inversion or the subthreshold region. The TX depletion region can merge with the

PPD depletion region, resulting in a large contribution to the PPD dark current. Thus, to reduce the TG

contribution to PPD dark current, Voff,TG is better to give a negative value to completely turn off transfer

gate and put it in the accumulated region [137, 142].

Furthermore, the layout design of the pixel, electric field, temperature, and potential distribution within

the pixel also contribute to the PPD dark current [143, 144].

Several factors cause an increase of the PPD dark current along with increasing the total ionizing dose

level reported in [145–150]. The first factor is the thick SiO2 layer above the pinning layer, also called pre-

metal dielectric (PMD). More trapped holes induced by ionizing radiation can extend the depletion region of
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Figure 2.19: Cross-sectional view of a 4T pixel showing the factors of TID-induced dark current

the PPD to the top of the silicon dioxide interface by affecting the doping concentration of the pinning layer.

A large diffusion current on the top Si− SiO2 interface is also introduced by an increase in interface state

density, which becomes more massive than the diffusion current generated by neutral bulk by increasing

the total radiation dose level. As a result, the dark current becomes dependent on the area of the pinned

photodiode.

Meanwhile, both the size of transfer gate and its gate voltage at the “off” condition have a significant

influence on the TID-induced dark current in the photodiode. This is because the biasing region of the TG

has a chance to merge with the PPD depletion region, resulting in a leakage current[132].

The TID can also cause a formation of a lateral leakage path to raise the dark current[146]. A parasitic

transistor is introduced by the trapped charges in the sidewall STI oxide of the TG.

The STI oxide surrounding the PPD is another significant factor in the increase of TID-induced dark

current. More trapped charges or holes can expand the depletion region of the PPD, which contains more

generation centers used to increase the PPD dark current.

A cross-sectional view of TID-induced dark current in the 4T pixel is shown in Figure 2.19.

Concerning the mitigation of dark current induced by the TID, two main aspects could be used to make

the 4T pixel radiation hardness. The first aspect is to mitigate the effects from the transfer gate. An enclosed

TG layout can remove the lateral leakage path. A negative voltage can be used to turn off the transfer gate

and to make it an accumulation region. A post-irradiation soft reset of the PPD can suppress the dark signal

by using the reset transistor [147].

The second method to reduce the TID-induced dark current is to surround the STIs with a P-well

structure and to increase the space between the N-implant to the STI [151], as shown in Figure 2.20.
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Figure 2.20: Recessed distance between sidewall STIs and buried n-layer in the PPD

Moreover, different types of oxides can be used to surround the pinned photodiode with a slow buildup of

interface states. These methods can result in a higher immunity to the TID effects.

2.6.5 Radiation Hardening by Design against TID Effects

Radiation hardening techniques can be mainly divided into two categories. Radiation-hardening-by-process

(RHBP) uses a specialized process to fabricate integrated circuits, which is both expensive and an older

technology node. When prioritizing low fabrication cost, higher speed, and higher integration density,

radiation-hardening-by-design (RHBD) is a better solution to mitigate the TID effects on CMOS image

sensors.

Two primary defects caused by TID are the threshold voltage shift and leakage current. The trapped

or created holes in the gate oxide are the primary factor that influences the magnitude of the TID-induced

threshold voltage shift. The gate oxide thickness determines the number of holes caused by the TID. It has

been demonstrated that thinner gate oxide causes a smaller VTH shift for MOSFETs. This is because these

holes trapped in a less than 12 nm gate oxide have a higher probability of tunneling through the oxide before

converting to interface states.

For eliminating the TID-induced leakage current, the RHBD method is used to avoid the current path

between NMOS’s source and drain diffusion region. Several possible ringed NMOS layouts are shown in

Figure 2.21. Radiation-tolerant thin gate oxide surrounds either the source and drain, or both, and also

covers the active region under the gate without n+ doping. The enclosed layout transistor (ELT), also

called edge-less transistor, has proved to be a very effective method where one of the diffusion, source or

drain, is surrounded by the other. Furthermore, using a p+ guardring with minimum-width p+ diffusion is

an effective technique to remove the TID-induced leakage current paths between transistor to transistor or

between n-well to a transistor.

Hence, this dissertation combines the ELT NMOSs and guardrings in the 0.18 µm CIS process to overcome

the TID dose up to 300 krads.

For the radhard consideration in 4T pixels, placing a field plate above the overlapping area of the P-well
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Figure 2.21: Standard NMOS layout and four different enclosed NMOS layouts

and PPD depletion region, as shown in Figure 2.22, could be an effective approach. The field plate is the

polysilicon layer. When the voltage of the field plate is set to make the surface of the channel accumulated,

the interface becomes inactivated. Then, the TID-induced dark current at the peripheral area is strongly

suppressed, as mentioned in [141, 152]. Furthermore, increasing the distance between the STI and the edge

of the pinning layer is an effective RHBD method, as proved in [130].
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Figure 2.22: Cross-sectional view of an PPD with increased recessed distance and field plate

46



One of the major penalties of these RHBD techniques mentioned above is the increase in size of the

layout of all circuit components. The pixel pitch cannot be less than 10 µm in the 0.18 µm process. For the

high image format requirement, the area of the pixel array accounts for most of the sensor chip area. On the

other hand, the layout area is limited for peripheral circuits, which makes their design more challenging.

This dissertation has offered three recommendations for the proposed CIS architecture to raise its radi-

ation tolerance to a total dose level of 300 krads.

1- Employ the physical design techniques of enclosed N-channel transistors (3.3 V and 6.5 nm gate oxide

thickness) and P-type guardrings in pixels and column-level S/Hs.

2- Use P-type guardrings to surround 1.8 V N- and P-type transistors (4 nm gate oxide thickness) in

readout and clock circuitry.

3- Use 1.8 V combinational logic circuits in memory banks, row decoders, and other logic circuits.
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Chapter 3

High Frame Rate CIS with Radhard

Megapixels

This chapter discusses a high frame rate scheme for radhard megapixel CMOS imaging sensors. It focuses

on a 1024×1024 pixel CIS architecture with quadruple column-parallel pipelined readout blocks per column.

The proposed readout circuit includes four successive-approximation ADCs, eight 10-bit memory banks, and

high-speed I/Os with a double data rate (DDR) up to 1 Gbits/s for every 16 columns. The CIS makes use

of the new readout architecture operating at rolling shutter to achieve 10, 000 frames/s or 10.48 Gpixels/s.

This chapter also presents noise analysis of significant components in the readout chain. Moreover, the

radiation hardness consideration of the high-speed CIS is discussed for high energy physics applications,

particularly total ionizing dose (TID) tolerance.

3.1 A 10,000 frames/s CIS with Megapixels

This section focuses on the architecture of a 10, 000 frames/s CIS with an image resolution of 1024× 1024

pixels. The pixel is 20 µm× 20 µm in size and consists of four N-type MOFETs with enclosure layout.

The floor plan of the proposed image sensor core is illustrated in Figure 3.1. The image sensor core has

a symmetrical architecture. The sensor consists of the pixel array, column readout circuits on both the top

and bottom sides of the pixel array, a row decoder, two sequencers, memory banks (not shown), serializers,

and SLVS transmitters.

To be specific, the CMOS sensor has over one million pixels, 4096 column readout circuits, 128 serializers,

2 sequencers (top and bottom), and 128 SLVS transmitters. The image sensor provides complete digital input

control and series digital output. All pixel control signals are provided by the row decoder, which is fully

controlled by the bottom sequencer.

The architecture enables 2D windowing by programmable addressing in the Y-direction in steps of 4

pixels per step and in the X-direction in steps of 16 columns per step. The windowing feature is achieved by
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Figure 3.1: Imager floor plan
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SPI interface to set the starting and stopping points of the Y address. The window size in the X-direction

is achieved by selecting specific I/Os to the acquisition system. Furthermore, all required control, bias,

and clock signals are generated on-chip. The incoming clock signal is fed into the master PLLs on top and

bottom sides to generate a main clock signal for sequencers. The on-chip bandgap reference provides voltage

references. The on-chip sequencer is used to generate all control signals for the pixel array, ADCs, and

memory banks.

3.2 Quadruple Column-Parallel Readout Scheme

This section discusses the principle of the quadruple column-parallel readout (QCPRO) scheme. The pro-

posed readout scheme enables the sensor to read out one million pixels at a fast frame rate, as shown in

Figure 3.2. The scheme has four identical column readout blocks operating in parallel for each column.

Two are located at the top readout block and two at the bottom. Each readout block includes one analog

front-end (AFE) circuit, one ADC, and two memory banks based on D flip-flops. Two sequencers provide

reference voltages and control signals for 2×N of readout blocks for the top and bottom peripheral readout

circuits, respectively (N represents the total number of columns). More details on each sub-circuit in the

readout block are discussed in Chapter 4.

Rolling shutter mode is chosen for this CMOS image sensor to achieve a high frame rate. The image is

captured by scanning the rows vertically instead of by taking a snapshot of the entire pixel array. Although

it suffers from skew issue for capturing fast-moving objects, the negative effects could become negligible

if the criterion is met in the relationship between the speed of the sensor and the moving target. This is

discussed in Chapter 4.

The principle of the proposed QCPRO is described to explain how to achieve a 10, 000 frames/s rate

in a 1024 × 1024 active pixel array. The number of rows and columns are the same, 1024. The QCPRO

is capable of reading out four rows at one time, and the column-parallel architecture enables to process all

columns simultaneously. Therefore, the sensor can convert analog signals of 4096 pixels into digital codes

and deliver 4096 ×NADC digital bits to the FPGA (NADC is the resolution of the ADC). The entire pixel

array with 1024×1024 pixels only need 256 readout cycles to complete one full frame, which is 4 times faster

than that of single readout block per column.

The time of one frame, called frame time (tFT ), is computed by

tFT =
1

Frame Rate
=

1

10 kfps
= 100 µs (3.1)

The time to read 4 rows at one time is called line time (tLT ). So one frame time is equal to 256 line

times. The line time is computed by

tLT =
tFT
1024

× 4 =
100 µs

256
≈ 390 ns (3.2)
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Figure 3.2: (a) Proposed quadruple readout architecture, (b) single readout block diagram

Two ADCs with different resolutions, 10 bits and 12 bits, are used to analyze the proposed QCPRO

architecture. For 1024 columns, the total number of ADCs is 4096. Having multiple ADCs per column

allows the reduction of sampling rate (or conversion rate) required for each ADC, when compared to using

a single ADC per column or using a single ADC per sensor. Furthermore, a lower sampling rate generally

improves power efficiency and reduces the overall CIS power consumption.
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To achieve a rate of 10, 000 frames/s, one ADC conversion is assumed to complete in one line time.

Thus, the highest clock frequency in one cycle of the 10-bit or 12-bit SAR ADC is given by

10 bit⇒ fclk =
10

tLT
=

10

390 ns
≈ 25.64 MHz

12 bit⇒ fclk =
12

tLT
=

12

390 ns
≈ 30.77 MHz (3.3)

Each line time has two essential phases: sampling and converting. The above calculations use the whole

line time for data conversion, with no time left to deliver the pixel signal from in-pixel source-follower to

the ADC input. As a result, either slowing down the sensor speed or increasing the ADC speed is a possible

solution to provide some time for sampling.

The proposed readout circuit in Figure 3.2(b) provides a more efficient solution by using a time-interleaving

sampling circuit and two memory banks with a ping-pong operation. The normal operation of each readout

block is illustrated in Figure 3.3. Two sampling blocks (SH-A and SH-B) and two readout blocks (ReadoutA

and ReadoutB) are implemented in one readout circuit. One time slot means one line time with 390 ns.

The operation starts out with a latency of two time slots before it is ready to send out the digital data.

The ADC is constantly converting pixel data in each time slot. These two sample and hold circuits can

have independently correlated double sampling operations. When SH-A is connected to the column line for

sampling, SH-B is connected to the column ADC for digitizing the previously sampled data, and vice versa.

Therefore, this method succeeds to accomplish three operations, sampling, conversion, and readout in one

line time.

For high-speed CISs, another significant aspect is to consider how to deal with the fast data rate, partic-

ularly in a large image format. The proposed CIS architecture with 1024×1024 pixels and 10, 000 frames/s

results in an aggregate pixel rate of 10.48 Gigapix/s. It is less efficient to send the digital data out after

finishing the conversion of all pixels and storing all digital data.

Nonetheless, it could be much more efficient to deliver partial pixels or even a single row of pixels at a

time. For example, the aggregate data rate of the proposed CIS in each line time is 40.96 kbits for using

10-bit ADCs and 49.152 kbits for using 12-bit ADCs. Thus, the ping-pong memory-bank (PPMB) method

provided by the readout block is to use reasonable but sufficient amount of memories to store the 4 rows of

digital data.

Two memory banks, MB-A and MB-B, are in one PPMB block. When MB-A is storing the data for

the ADC, MB-B will be connected to a high-speed I/O to send the data off-chip and vice versa. As a result,

the proposed sensor can achieve a faster speed with less on-chip digital memories, because it only needs to

store and deliver four rows of digital data for one line time.
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Figure 3.3: Time-interleaving sampling and ping-pong memory banks in proposed QCPRO

The next consideration is the number of I/Os and how fast they need to be when the sensor operates

at the maximum frame rate. The maximum data rate is equal to the product of the number of I/Os and

operating speed. The maximum date rate is required to be larger than the multiplication of total number of

ADCs, the resolution and conversion rate of single ADC.

# of I/Os× fIO ≥ # of ADCs×NADC × conversion rate (3.4)

where fIO is the speed of the I/O channel and NADC is the ADC resolution.

The I/O speed must match the receiver speed on the testing acquisition board. As shown in the equation

below, the digital dynamic power consumption is directly proportional of the I/O speed, the load capacitance,

and the square of the power supply. For a better power efficiency, the low-power SLVS transmitter is chosen

to operate at 1 Gbits/s and a 0.4 V power supply.

P = Cload × V 2
DD × fIO (3.5)
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Then, the maximum number of columns connected to the same I/O is computed by

10 bit⇒ 1 Gbits/s

2 ∗ 10 bits/390 ns
≈ 19 columns

12 bit⇒ 1 Gbits/s

2 ∗ 12 bits/390 ns
≈ 16 columns (3.6)

The proposed CIS architecture chooses 16 columns connected to one I/O. Since the CIS is symmetrical,

thus, total number of I/Os in the CMOS image sensor is 2× 1024
16 = 128.

The maximum clock frequency of the I/O is

10 bit⇒ fIO,Max = 0.5× 20 bits

390 ns
× 16 ≈ 410.25 MHz

12 bit⇒ fIO,Max = 0.5× 24 bits

390 ns
× 16 ≈ 492.3 MHz

(3.7)

Consequently, a 500 MHz on-chip phase-locked loop (PLL) can be used to support the clock frequency

requirement.

3.3 Operation of Proposed Readout Scheme

The detailed operation of the QCPRO block is described in this section. As shown in Figure 3.4, the QCPRO

processes four rows of pixels in one line time. As mentioned in the previous section, each column has four

ADCs (ADC1, ADC2, ADC3, and ADC4), two samples and holds (SH-A and SH-B) per ADC, and two

memory banks (MB-A and MB-B) per ADC.

When starting to read the first 4-row pixels, four SH-As sample the reset and pixel signals for corre-

sponding pixels in one line time. Then, the second 4-row pixels are sampled by four SH-Bs. Meanwhile,

each SH-A is connected to the corresponding ADC for digitization. The digital bits are stored in MB-As.

In the third line time, three operations process simultaneously: the sampling of the third 4-row pixels, the

conversion of the pixel data on SH-Bs, and the transfer of the digital data saved in MB-As to the SLVS

transmitter. Therefore, after a latency of two line times, the regular readout operation of the sensor begins

in the third line time.

Two addressing pointers from the bottom sequencer, P1 and P2, are used in this sensor to control the

exposure time. Point P1 is responsible for resetting row by row. Pointer P2 is responsible for selecting

the row which can start the readout procedure. The number of rows between two points is customized to

determine the exposure time. Therefore, the exposure time of the CMOS image sensor can be calculated by

Texposure time =
n

256× Frame Rate (3.8)

where n is the rows between two points divided by 4. The maximum exposure time happens when P1 points

to the last row and P2 points to the first row, which is 1
Frame Rate = 100 µs.
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Figure 3.4: Readout operation of one column with 4 ADCs

3.4 Noise Analysis of Proposed Readout Chain

Noise components in the proposed readout chain are depicted in Figure 3.5. Since noise sources like reset

noise and pixel-to-pixel FPN can be canceled by column-level correlated double sampling, the remaining

noises are the source follower noise, the kT/C noise in the sample-and-hold circuits, the amplification noise,

and the ADC noise. The column-to-column FPN, which is caused by the mismatch of column amplifiers and

column-level ADCs, can be reduced or removed by subtracting a dark frame from the current frame. The

dark frame stores all dark pixels off chip as a reference. A system-level imaging processing technique can be

used for column-to-column FPN cancellation.

3.4.1 Noise in Source Follower

The noise of the source follower consists of the thermal noise and flicker noise from the source follower

MOSFET and the current sink. Figure 3.6 shows the in-pixel source follower used in the proposed readout

chain and its equivalent noise model. The thermal noise power spectral density (PSD) of a MOSFET in the

saturation region is expressed as
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I2n,d
∆f

= 4kTγ · gm, [A2/Hz]

or
V 2
n,d

∆f
=

4kTγ

gm
, [V 2/Hz]

γ = 2/3 for long channel length MOSFETs

γ = 2− 3 for short channel length MOSFETs

(3.9)

where k is the Boltzmann constant, gm is the MOSFET transconductance, T is the temperature in Kelvin,

and ∆f is the bandwidth.

The flicker noise PSD of a MOSFET is expressed as

I2n,f
∆f

=
Kf · g2m
WLCoxf

or
V 2
n,f

∆f
=

Kf

WLCoxf

(3.10)
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where Kf is the flicker noise coefficient.

The total noise PSD of a MOSFET is

I2n,t
∆f

= 4kTγ · gm +
Kf · g2m
WLCoxf

or
V 2
n,t

∆f
=

4kTγ

gm
+

Kf

WLCoxf

(3.11)

The following calculations assume that the MOSFETs are long channel and operate at saturation region.

When calculating the output noise PSD of the source follower, some noise sources in Figure 3.6 can be

neglected. These noise sources are the thermal noise sources of M2 and M3 and the flicker noise of M3.

Thus, the output current noise PSD at the X node is expressed as

I2n,SFo
∆f

=
I2n,M1

∆f
+
I2n,M4

∆f
= (

I2n1,d
∆f

+
I2n1,f
∆f

) + (
I2n4,d
∆f

+
I2n4,f
∆f

)

= (
8kT · gm1

3
+

Kf · g2m1

W1L1Coxf
) + (

8kT · gm4

3
+

Kf · g2m4

W4L4Coxf
)

=
8kT

3
(gm1 + gm4) + nf · (

g2m1

W1L1
+

g2m4

W4L4
) · 1

f

(3.12)

where nf =
Kf

Cox
is the flicker noise parameter.

The output resistance at the X node is

Rout = (
1

gm1 + gmb1
+Rcol)||gm3ro3ro4 (3.13)

where Rcol includes the M2 switching resistance and parasitic resistance on the column line.

Based on the column line resistance and parasitic capacitance, the equation for a simple RC low-pass

filter can be used to compute the equivalent noise bandwidth (ENB). The parasitic capacitance at X node is

assumed to be Ccol, including the CGS capacitance of all row select switches and parasitic coupling capaci-

tance. Thus, the ENB is 1
4×RoutCcol

for the first order low-pass filter model. Table 3.1 depicts the relationship

between the ENB value and the order of low-pass filters.

Table 3.1: ENB vs the order of low-pass filters

Filter Order ENB
1 1.57× f3dB
2 1.11× f3dB
3 1.05× f3dB
4 1.025× f3dB
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Assuming the low frequency and high frequency are fL and fH , respectively, the total output noise power

of the source follower is calculated by

V 2
n,SFo =

V 2
n,d

∆f
× ENB +

∫ fH

fL

V 2
n,f

∆f
df

=
I2n,SFo

∆f
×R2

out × ENB +

∫ fH

fL

Kf

Coxf
(
g2m1

W1L1
+

g2m4

W4L4
)×R2

outdf

=
2kTRout

3Ccol
(gm1 + gm4) + nf ·R2

out(
g2m1

W1L1
+

g2m4

W4L4
) · lnfH

fL

(3.14)

where ENB is equal to FH − FL. Typically, the FL is 10Hz.

Therefore, the output RMS noise voltage,Vrms,SFo, is

Vrms,SFo ==

√
2kTRout

3Ccol
(gm1 + gm4) + nf ·R2

out(
g2m1

W1L1
+

g2m4

W4L4
) · lnfH

fL
(3.15)

As long as the gain of the source follower, AV,SF , is known, the input-referred noise power, V 2
n,SFi, and

RMS noise voltage,Vrms,SFi, can be determined by

V 2
n,SFi = V 2

n,SFo ×
1

A2
V,SF

= {2kTRout
3Ccol

(gm1 + gm4) + nf ·R2
out(

g2m1

W1L1
+

g2m4

W4L4
) · lnfH

fL
} × 1

A2
V,SF

Vrms,SFi =
1

AV,SF
·

√
2kTRout

3Ccol
(gm1 + gm4) + nf ·R2

out(
g2m1

W1L1
+

g2m4

W4L4
) · lnfH

fL

(3.16)
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3.4.2 Noise in Column S/H

The purpose of column S/H is to sample pixel output prior to data conversion. However, sampling noise

is introduced by the sampling operation. The sampling noise comes from the thermal noise of MOSFET

switches during the switch-on period or sampling period. Although the sampling capacitors are noiseless, the

output noise power is inversely proportional to the size of the sampling capacitor. This is generally referred

to as “kT/C” noise given by

V 2
n,SH =

kT

CS
(3.17)

Both Table 2.2 and the above equation depict that an increase of sampling capacitance decreases the

kT/C noise. Since the S/H circuit is a low-pass filter with gain equal to one, the input referred voltage noise

PSD is equal to the output voltage noise PSD.

Based on the reference [153, 154], 1/f noise power for CDS is given by

V 2
nf,SH =

∫ ∞
0

Sn(x)1/f
4sin2x

1 + ( x
ωcT0/2

)2
dx ∼= 2Nf{γ + ln(ωcT0)} (3.18)

where Sn(x)1/f = Nf/f is the power spectral density of the input 1/f noise source, Nf is the coefficients of

1/f noise, ωc is the cutoff angular frequency of the first-order low pass filter, T0 is the sampling period, and

γ is Euler–Mascheroni constant (= 0.577215...).

The total noise power of the S/H block referred to floating diffusion node is

V 2
n,SHi =

V 2
n,S/H + V 2

nf,SH

A2
V,SF

=
kT
CS

+ 2Nf{γ + ln(ωcT0)}
(gm1Rout)2

(3.19)

The sampling noise in column S/H is similar to the reset noise in pixels discussed in the previous section.

Before sending the pixel data to ADCs, these two noise sources exist in the sampling capacitors. Fortunately,

the 4T PPD pixel architecture allows a truly correlated double sampling (CDS) technique to eliminate both

reset and sampling noise before data conversion.
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3.4.3 Noise in the SC Amplifier

The analog front-end (AFE) in the QCPRO block includes three circuits: two S/H circuits and programmable

gain amplifier (PGA). As the essential circuit, the PGA is used as a buffer or sampler located between the

S/H circuit and the following ADC. A switched-capacitor PGA is used in the proposed QCPRO block. It

operates in two phases. Phase-I resets the buffer’s output by a fixed reference voltage, VRefAmp, and cuts

off the connection to the S/H for completing the CDS process. Phase-II delivers the pixel differential value

to the ADC for data conversion.

Figure 3.7 illustrates the noise model of the SC amplifier with one S/H circuit at two phases. Assume

the input-referred noise PSD of the operational amplifier is V 2
n,op. For the simplicity of the noise calculation,

the voltage gain of SC-PGA is set to be one, Av = 1. Thus, the output noise PSD of the SC amplifier at

Phase-I is expressed by

V 2
n,φ1

∆f
= (

V 2
n,op

∆f
+
V 2
n,s3

∆f
)× |Av|2 +

V 2
n,s4

∆f
=
V 2
n,op

∆f
+ 4kTRon3 + 4kTRon4 (3.20)

The output noise PSD of the SC amplifier at Phase-II is expressed by

V 2
n,φ2

∆f
= (

V 2
n,op

∆f
+
V 2
n,s2

∆f
)× |Av|2 +

V 2
n,s4

∆f
=
V 2
n,op

∆f
+ 4kTRon2 + 4kTRon4 (3.21)

The total output noise PSD is given by

V 2
n,OPo

∆f
=
V 2
n,φ1

∆f
+
V 2
n,φ2

∆f

= 2×
V 2
n,op

∆f
+ 4kTRon3 + 4kTRon2 + 4kTRon4 × 2

(3.22)

The equivalent noise bandwidth is limited by the output node resistance and capacitance. The total

output noise power is given by

V 2
n,OPo =

V 2
n,opo

∆f
×∆fBW

= {(2×
V 2
n,op

∆f
+ 4kTRon3 + 4kTRon2)× |Av|2 + 4kTRon4 × 2} × 1

4RtotCADC

(3.23)

where Rtot is the total resistance at the output node of the SC buffer and CADC is the total sampling

capacitance of the following ADC.
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Considering noise contributions of the SC buffer, the total input-referred noise power at floating diffusion

node is

V 2
n,OPi =

V 2
n,opo

A2
V,SF ·A2

V,SH ·A2
V,OP

≈ 1

A2
V,SF ·RtotCADC

· {0.5×
V 2
n,op

∆f
+ kT (Ron3 +Ron2) +

2kTRon4
A2
V,OP

} (3.24)

The Equation 3.24 illustrates that a larger voltage gain of the SC-PGA could degrade the input referred

noise contributed by PGA and ADC.
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Figure 3.7: Simplified SC buffer (a) block diagram, (b) Phase-I and (c) Phase-II noise model
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3.4.4 Column ADC Noise

Column ADC noise comes from many sources, including inherent ADC noise, internal amplifier or comparator

noise, internal or external voltage reference noise, non-ideal power supplies, internal or external clock jitter,

and poor layout design. Each ADC contributes both thermal noise and quantization noise. Noise from other

parts or adjacent circuits could be coupled into the sensitive subcircuits in the ADC. Poor layout could

couple noise from other parts or adjacent circuits into the sensitive analog sub-circuits the ADC. The clock

signal contributes jitter or phase noise that translates into non-uniform sampling and poor timing control,

which is more critical for high-speed ADCs. Other sources can add thermal noise or 1/f noise that will

appear in the ADC’s output code.

Inherent ADC noise has two primary sources, quantization noise and thermal noise. The two sources are

uncorrelated. The total root-mean-square value of ADC noise can be expressed as

Vn,total =
√
V 2
n,quantization + V 2

n,thermal
(3.25)

ADC quantization noise comes from mapping an infinite number of analog voltages to a finite number of

digital codes, so that each digital output corresponds to several analog input voltages. Thus, the maximum

error that arises in an ideal ADC when converting an analog signal is ± 1
2LSB, as shown in Figure 3.8. The

peak-to-peak value of an uncorrelated sawtooth waveform is one LSB and can represent the quantization

error for any analog input signal. Therefore, the quantization noise power is obtained by computing the

variance of a uniform distribution, which is given by

V 2
n,quantization = σ2

quantization =
∆2

12
(3.26)

where ∆ is one LSB of the ADC.

The rms value of quantization noise is expressed by

Vn,quantization =
∆√
12

=
VFS

2N√
12

(3.27)

where VFS is the full scale of input signal and N is the resolution of the ADC.

The maximum signal-to-noise ratio (SNR) for an N-bit ADC can be expressed as

SNRmax = 20 · log10
VFS,rms

Vn,quantization
= 20 · log10

VFS

2
√
2

VFS
2N√
12

= 20 · log10(2N−1 ·
√

6) = 6.02×N + 1.76dB

(3.28)
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Figure 3.8: Ideal N-bit ADC quantization noise

In this equation, the RMS quantization noise is measured over the full Nyquist bandwidth from DC to

fs/2. The total ADC noise for a low-resolution ADC with less than 16-bit level typically depends more

on quantization noise, because the contribution from the quantization noise is more substantial than the

contribution from thermal noise.

When measuring an ADC noise performance, a Fast Fourier Transform (FFT) spectrum graph is com-

monly used to obtain total harmonic distortion (THD), noise floor, spurious-free dynamic range (SFDR),

signal-to-noise ratio and distortion (SINAD), and the effective number of bits (ENOB). Consequently, the

final ENOB is the figure of merit used to consider the effects of all noise sources on the ADC. The total

noise power and RMS value can be expressed by

V 2
n,total =

VFS

2ENOB

12

Vn,total =
( VFS

2ENOB )0.5
√

12
(3.29)
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The noise calculations for the proposed QCPRO block help determine the total noise power referred to

floating diffusion, which is expressed by

V 2
n,tot = V 2

n,SFi + V 2
n,SHi + V 2

n,OPi + V 2
n,ADCi

= { 2kT

3gm1RoutCcol
(1 +

gm4

gm1
) +

Kf

RoutCcolCoxf
(

1

W1L1
+

1

W4L4
· g

2
m4

g2m1

)}+
kT
CS

+ 2Nf{γ + ln(ωcT0)}
A2
V,SF

+
1

A2
V,SF ·RtotCADC

· {0.5×
V 2
n,op

∆f
+ kT (Ron3 +Ron2) +

2kTRon4
A2
V,OP

}+
VFS

12 · 2ENOB
· 1

A2
V,SFA

2
V,OP

(3.30)

The RMS noise voltage is the square root of the total noise power. Therefore, the lowest number of

detectable electrons is computed by

Qe− =

√
V 2
n,tot

CG
=

√
V 2
n,SFi + V 2

n,SHi + V 2
n,OPi + V 2

n,ADCi ×
CFD
q

(3.31)

where CFD includes all capacitance at the floating diffusion node and q is the single electron charge.
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3.5 Radhard 4T Pixel

This dissertation mainly focuses on the mitigation of total ionizing dose (TID) effects on the pixel array.

As discussed in the previous chapter, one of significant TID effects is oxide-trapped carriers. Two primary

issues in active pixels are the TID-induced degradation of the in-pixel MOSFETs and photodiodes.

For the improvement of radiation tolerance of 4T pixels, the enclosure layout technique (ELT) is applied

to the reset transistor, in-pixel amplifier, and row select transistor. The ELT technique helps mitigate

threshold voltage shifts, radiation-induced narrow channel effects, sidewall leakages, and junction leakages.

The integration of P+ guard-rings is also used to reduce the inter-device leakage current. Thus, in-pixel

MOSFETs could be tolerant of TID beyond the 10 kGy (equal to 1 Mrads) range [155].

This dissertation is mainly concerned with the dark current of the PPD induced by TID effects. For low

and moderate TID levels (below 50− 500 krads (Si)), the dominant contribution to the dark current comes

from the gate oxide and TG channel STI sidewalls[142]. In addition, the TID-induced dark current and TG

subthreshold leakage result in the drop of PPD full-well capacity. Therefore, applying the enclosed layout

TG could help mitigate those effects.

The CMOS technology used for the results discussed in the dissertation has two types of transistors:

thick-oxide transistor in 3.3 V and thin-oxide one in 1.8 V . The thick-oxide NMOS used in pixels is chosen

to have a wide voltage swing. The thin-oxide MOSFETs are used in row decoder, sequencers, column readout

blocks, PLLs and SLVS I/Os for better trade-offs between integration, power consumption, and speed. Level

shifters are added between the row decoder and the pixel array.

Figure 3.9 illustrates a radhard pixel cell with four annular transistors. To simplify the drawing, this

cross-sectional view assumes all components are aligned. The final schematic and layout of the proposed

radhard pixel is discussed in detail in Chapter 4.
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Chapter 4

CIS Prototype

This chapter discusses the prototype implementation of the proposed high-speed megapixel CMOS image

sensor in a 0.18 µm CIS process with 6-metal layers and 1-poly layer. The 4T radhard pixel is introduced in

the first section. The sequencer block with the Serial Peripheral Interface (SPI) slave module is discussed in

Section 4.2. The row control block is discussed in Section 4.3. The quadruple parallel readout architecture

is described in Section 4.4, including analog front-end (AFE), ADC, and memory banks. The AFE block is

discussed in two separate parts: analog time-interleaving correlated-double sampling (ATI-CDS) in subsec-

tion 4.4.1 and switched-capacitor programmable gain amplifier (SC-PGA) in subsection 4.4.2. Section 4.5

describes the phase-locked loop (PLL) and the scalable low-voltage signaling (SLVS) transmitter. The final

section illustrates the chip layout and photograph and summarizes the sensor specifications.

4.1 Pixel Design

The proposed CIS architecture is implemented in two image formats: one has 128 × 1024 pixels and the

other 768 × 1024 pixels. The same pixel architecture is applied in both pixel arrays. The schematic and

layout of a single pixel cell are shown in Figure 4.1a and 4.1b. Each pixel size is 20 µm× 20 µm. The total

area for the small and large image format is 2.56× 20.28 mm2 and 15.36× 20.28 mm2, respectively. All four

in-pixel transistors are N-channel and radiation hardened by enclosure layout technique (ELT) as discussed

in previous two chapters. Furthermore, each NMOS is surrounded by the P+ guardring for eliminating the

inter-device leakage path. Consequently, the radiation tolerance of the active pixel is improved by sacrificing

the photodetective area.

As shown in Figure 4.1b, the pixel locates three transistors, including the source follower, the reset

transistor, and the row select switch, on the top area of the pixel layout. The two pixels’ layouts are placed

back-to-back to maximize the photodetective area. As the image sensor operates in rolling shutter mode

and the proposed readout architecture enables to read out four rows of pixels in parallel, one select signal

is used by every four rows of pixels. The RST and TG signals are buffered to connect each row of pixels
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(a)

(b)

Figure 4.1: Schematic and layout view of the proposed radhard 4T pixel
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instead of four rows, to reduce the parasitic effect caused by the increasing number of pixel columns. Those

control signals are routed horizontally, and the four column lines are routed vertically.

A four-pixel cell in the same column is designed as an unit to build up the pixel array, as shown in Figure

4.2. The top two metal layers are used for power routing above the enclosed MOSFETs. Also, the floating

diffusion connection is protected by the third metal layer from light incidents to generate a dark current.

In a large 4T pixel, ranging between 10 µm to 200 µm, the image lag and transfer efficiency become

the key challenges. The charge transfer speed from PPD to FD is also one of the potential causes of image

lag. Moreover, the short exposure time causes the image lag more severe in high-speed CISs. To eliminate

the image lag issue, a 4T pixel with double TGs is proposed, as depicted in Figures 4.1b and 4.2. The TG

transistors and FDs are connected to form a single unit.

Figure 4.2: Schematic and layout view of four proposed pixels in the same column
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Furthermore, the proposed sensor is required to work under low light conditions. A high conversion

gain is an important parameter to improve the dynamic range by lowering the readout noise to achieve

excellent low light performance. Because of conversion gain, discussed in Chapter 2, it is crucial to take

into account the parasitic capacitance at the floating diffusion. Minimizing the parasitic capacitance at the

floating diffusion is an effective way to increase conversion gain. Therefore, the active area of reset and TG

transistor connecting to FD are placed in the middle of each ELT, which has a smaller area compared to the

outside.

Figure 4.3 illustrates all of the parasitic capacitance connected to the floating diffusion node. These

include the gate overlapping capacitance of the reset transistor (Crov) and TG transistor (Ctov), the FD

junction capacitance, CJ , and the coupling capacitance related to the metal wires, CM . So the total capac-

itance at the floating diffusion [156] is defined as

CFD = Crov + Ctov + CJ + CM (4.1)
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N

P+

P

N+ N+ N+

P

PPD Transfer gate Reset gate Source follower

Floating 

diffusion

LDD
CJ

CrowCtow

CM

Figure 4.3: Total parasitic capacitance at FD

When the charges transfer to floating diffusion, the input capacitance of the SF should also be included,

which is

CSFin = CGD + (1−ASF ) · CGS = CGO ∗W + (1−ASF ) · 2/3 ·WL ∗ Cox (4.2)

The SF gain can be obtained from the simulation in Figure 4.4, ASF ≈ 0.92. Therefore, based on previous

discussions, the calculation of pixel conversion gain is shown in Table 4.1.

A programmable DAC block with on-chip reference is used to control the current source in each column

line, ranging from 5 µA to 80 µA. The DC sweep analysis of the SF is shown in Figure 4.5.

The noise analysis summaries for 15 µA and 80 µA are shown in Figure 4.6 and 4.7. The RMS noise

referred to floating diffusion is 313.279 µV and 542.712 µV , respectively.
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Figure 4.4: AC analysis of the SF with different current source

Figure 4.5: DC analysis of the SF with different current source
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Figure 4.6: Noise summary analysis of the SF at 15 µA current source

Figure 4.7: Noise summary analysis of the SF at 80 µA current source
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Table 4.1: Floating diffusion parasitic capacitance for the proposed radhard 4T pixel

Descriptions PARAMETERS Value
lateral diffusion Ldiff (µm) 0.25

Area junction capacitance CJA (fF/µm2) 0.78
gate overlap capacitance

(W/L>>1)
CGO (fF/µm) 0.23

middle active area of two ELT TGs area of TG middle (µm2) 0.5508
middle acitve perimeter of two ELT TGs perimeter of TG middle (µm) 3.896

middle active area of ELT RST area of RST middle (µm2) 0.6258
middle active perimeter of RST

ELT
perimeter of RST middle (µm) 2.88

parasitic capacitance related
to metal wires

CM (fF ) 1.7237

FD junction cap CJ (fF ) 0.9177
overlapping cap Cov at RST Ctov (fF ) 0.6624
overlapping cap Cov at TG Crov (fF ) 0.8961

Gate-oxide capacitance Cox (fF/µm2) 5
SF input capacitance (W/L : 4.97µm/0.535µm) CSF (fF ) 1.8522

Total FD parasitic capacitance CFD (fF ) 6.0521
Conversion gain CG (µV/e−) 26.4
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4.2 SPI ASIC Module

Serial Peripheral Interface (SPI) is used to communicate between onboard FPGAs and CMOS image sensor

chip. The block diagram of the digital module is shown in Figure 4.8. The module is made up of a serial

peripheral interface (SPI) slave block and the register bank module. The SPI bus consists of 5 signals, Master

Out Slave In (mosi), Master In Slave Out (miso), the SPI clock (sck), Slave Select (ss), and reset signal

(rst n).

rst_n

mosi

ss

sck

miso

SPI slave

Sub-bank #1

Sub-bank #2

Sub-bank #3

Sub-bank #4

Sub-bank #5

Sub-bank #6

Sub-bank #7

Sub-bank #8

read write

Digital Block

Register banks

Figure 4.8: Top block diagram of digital module

The onboard FPGAs or micro-controllers perform write and read operations on the register bank modules

through SPI interface. The SPI slave module on the CIS chip can receive clock and reset signals from the

external (sck) and (rst n) pins respectively. The SPI slave module receives data from the onboard SPI

master module on the mosi pin. The SPI slave module also sends to the SPI master on the miso pin. When

the master of the SPI bus wants to initiate a transfer, the ss signal is pulled low. Once the ss signal is low,

the SPI slave module will “listen” on the bus. The master is then free to start sending the data.

The register bank module is made up of eight sub-banks. Each sub-bank is made up of 32 registers and

each register has 12 bits. There is a total number of 384 bits in each sub-bank. Each read or write operation

must be performed on an entire sub-bank. Therefore, in every read or write transaction from the SPI master
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Table 4.2: List of all pins communicating between SPI master and slave modules

PIN Name Function
sck clock signal provided by the SPI master to SPI slave
rst n reset signal from SPI master and active low
ss select signal for the SPI slave and active low
mosi data from SPI master to SPI slave
miso data from SPI slave to SPI master

to the on-chip slave module, an integral multiple of 384 bits of data must be transferred.

The size of a single subbank = 32 registers× 12 bits/register = 384 bits (4.3)

The register configuration files are stored in the host computer. The Universal Asynchronous Re-

ceiver/Transmitter (UART) communication is used between the host computer and the on-board FPGA.

The transmitted data is organized into a packet. Each packet with 16 bits contains an 8-bit data frame. The

SPI slave receives or sends 8 bits of data for every 16 sck clock cycles on mosi or miso pins respectively.

Therefore, 48 packets worth of 8-bit data or one byte data is exchanged during a reading or writing operation.

The number of packages =
384 bits

8 bits/package
= 48 packages (4.4)

Figure 4.9 shows the six states in the SPI slave state machine: Reset, Init, Rcmd, Wcmd, Wadd, and

Radd. Rcmd and Radd states are associated with a read operation. Wcmd and Wadd states are related to

a writing operation. The Reset state is active when any phase of reading or write operation is complete.

The Init state is the initial state for the SPI slave module. There is no condition moving from Reset state

to Init state.

In the beginning, a reset operation is to initialize the SPI slave, as shown in Figure 4.10. The rst n signal

goes low to reset the SPI slave module. Then, select signal, ss, is active to enable sending the command

to SPI slave. After a specific delay time, a clock signal, sck, synchronizes the communication between SPI

master and slave. In every 16 clock cycles, SPI master sends one-byte data to SPI slave, aligned at negative

edges of first eight cycles. Without any condition, the Reset state will automatically transfer to Init state,

and there is no useful data in a reset state, the 16-bit code can be varied from 2′h00 to 2′hFF .

4.2.1 Write Mode

The write mode has two phases: one sends the control information (command phase), and the other sends

the data to the sub-banks (data phase). Figure 4.11 shows the control information in the command phase

with one byte (8 bits). Two MSBs are used to illustrate the status of the state machine in the SPI slave

module. The fourth bit is the enable bit for the write operation. The last three LSBs are the sub-bank

address bits.
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Figure 4.10: Initialization of the SPI bus

4.2.2 Read Mode

The read mode also has two phases: one sends the control information (command phase), and the other sends

the data from the onchip sub-banks to SPI master (data phase). Figure 4.12 shows the control information

in the command phase with one byte (8 bits). It is similar to the write mode, except that there is no enable

bit. The first two MSBs are still used to illustrate the status of the state machine in the SPI slave module,

and the last three LSBs are the sub-bank address bits.
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Figure 4.11: One byte command codes for SPI writing operation

7 6 5 4 3 2 1 0

State Machine

(2 bit)

Sub-bank 

Address bits

(3 bit)

Figure 4.12: One byte command codes for SPI reading operation

4.3 Row Control Block

The row control block, which consists of 256 row decoder blocks and 1024 level shift blocks, is designed for

the rolling shutter operation and windowing. Two pointers for windowing select the starting and stopping

row address. With the help of the sequencer, different configurations can be efficiently applied to the sensor

to operate at different frame rates and change the region of interest.

4.3.1 Row Decoder and Driver

The function of the row control block is to access the pixel array row by row, and then complete three

processes: resetting the floating diffusion and photodiode, turning on the transfer gate, and selecting the

entire row of pixels. The top block diagram of the row control block is shown in Figure 4.13. Two 10-bit

binary codes are used as row addresses of two pointers of the row decoder. Because the dissertation proposed

a quadruple readout scheme, four rows at a time can be read out so that only 8-bit binary code is needed.

The highest 2 bits enable the row decoder cell to adapt to a higher resolution, so a resolution of 4096 rows

by 1024 columns is very possible in the future.

Two pointers, DinP1 and DinP2, select rows and have these control signals: reset, select, and transfer-

gate control. TXP1, RSTP1, and SelP1 are used for DinP1. TXP2, RSTP2, and SelP2 are used for

DinP2. Two global signals, Global RST , and Global TX, are prepared at the initial state to reset all floating

diffusion and photodiodes in the pixel array. Instead of using two standard overlapping clock signals, two

control signals, ClkMaster and ClkSlave, are clock signals used in shift registers. All these signals are fed

into a buffer cell before driving row decoder cells.
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Single row decoder is shown in Figure 4.14. For two pointers implementation, each cell has two-row

addresses, A < 9 : 0 > for start pointer and B < 9 : 0 > for stop pointer. The 10-bit decoder consists of

three NAND gates and one NOR gates. The output of the start decoder or stop decoder is fed into the start

shift register or stop shift register, respectively. Consequently, the vertical readout window can be sized by

setting the start pointer and stop pointer, which independently roll down row by row.

Figure 4.13: Top block diagram of row control block

Three control signals are needed for each row of pixels, and every four rows operate at the same line time,

so their control signals are connected. Figure 4.15 illustrates the block diagram of the row driver cell. Each

cell has three drivers for controls signals used in each pixel: Reset to control the reset transistor, Select

signal to control the row select transistor, TX signal to turn the transfer gate on or off.
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Figure 4.14: Block diagram of one row decoder

Figure 4.15: Block diagram of row driver cell
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The row drivers of TX and reset signals comprise two 2-input NAND gates, one 3-input AND gate, one

level shifter, and four output buffers. The row driver of select signal comprise two 2-input NAND gate,

one 2-input AND gate, one level shifter, and four output buffers. These three row drivers have two pointer

signals and two sets of control signals from the row decoder. However, the only difference is that the select

driver does not have the Global ∗ signals, GlobalRST and GlobalTX. The Global ∗ is active low; when

GlobalRST or GlobalTX is enabled, the output of RST < 3 : 0 > or TX < 3 : 0 > will be active for all

pixels simultaneously. Since row drivers are located between the row decoder and the pixel array, two power

domains, 1.8V and 3.3V, are employed. Hence, thin-oxide transistors can be used in logic gates, and level

shifters are designed by thick-oxide transistors to shift the voltage signal up to 3.3V .

Figure 4.16 is a schematic of the level shifter used in the row driver. It consists of two thick-oxide

PMOSs and two thick-oxide NMOSs. When the input (in) of the level shifter is at a high logic level, 1.8V,

and the complementary input signal (in) stays at a low logic level, the output node (out) is charged to a

high potential, vlevel, which is adjustable from 2.5V to 4.5V . When the input (in) is at the low logic level,

and the complementary input signal will be at the high logic level, the output node (out) is discharged to a

low potential.

Figure 4.16: Schematic of the level shifter design

Transient analysis of the level shifter was performed with 2 pF load capacitor as shown in Figure 4.17.

The simulation result shows that the propagation delay is 0.84 ns. The rising and falling time is 2.7 ns and

580 ps, respectively. Hence, the level shift is good enough for the prototype sensor pixel operation.

The layout of the level shifter is illustrated in Figure 4.18. The enclosure-layout technique and P-type

guardring are used to protect the transistors from TID effects.
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4.3.2 Rolling Shutter

The rolling shutter (RS) mode in this dissertation is designed to scan every four rows of pixels from top to

bottom. The entire sensor array is converted four rows at a time since each column has four ADCs working

in parallel. So, every four rows will start and end their exposure offset slightly in time from the preceding

four rows. If the CMOS image sensor works at the maximum frame rate of 10, 000 fps, the readout time of

a single line in a 1024 × 1024 pixel array, and consequently the offset between adjacent four rows exposure

time is

Frame Time = tFT =
1

Frame Rate
= 100 µs

Line T ime = tLT = adjacent time offset =
tFT

1024 rows
× 4 = 390.625 ns (4.5)

The mechanism of rolling shutter mode is illustrated in Figure 4.19. Four rows of pixels are integrated

at the same exposure time and simultaneously selected to be read out and converted to digital codes with

the help of four column-parallel A/D converters. Hence, in each pixel of every four rows, control signals of

those three transistors (reset, transfer and row select) have the same timing.

Figure 4.20 illustrates the control timing in each pixel. As discussed in the previous section, two pointers

exist in row decoder block to choose the starting and stopping rows. For each pixel, the first pointer activates

RST and TX signals together to turn on reset and transfer gate transistors for resetting the photodiode.

When the second pointer arrives, the RST signal goes high, but TX stays low in order to reset floating

Figure 4.17: Transient analysis of the level shifter with a 2 pF load capacitor
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Figure 4.18: Level shifter layout with radhard NMOSs
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diffusion. Then, by turning on row select transistor, the in-pixel source follower will transfer the reset

voltage from floating diffusion to one column line. PixSample in the readout circuit is turned on twice to

achieve correlated double sampling. Between these two sampling phases, TX is active to turn on the transfer

gate transistor for transferring the charge from the photodiode to the floating diffusion node.

TX

RST

RSEL

PixSample

Photodiode 
reset

Floating 
diffusion reset

Exposure Time

Sample 
Reset

Sample 
Pixel

Pointer 1 Pointer 2

Figure 4.20: Timing of control signals in each pixel of every four rows

For the whole pixel array, the control timing in terms of two pointers is illustrated in Figure 4.21. The

rolling shutter process starts as the first pointer, P1, becomes active at the start row, which is the first

4-row in the example. Two signals, RST , and TX, reset the photodiode to prepare a light capture. The

shift register in the row decoder makes the P1 roll down one row at a time. When the second pointer, P2,

becomes active at the same start row, the selected four rows will have a floating diffusion reset, a charge

transfer process, and a readout operation. The time interval between the actions of P1 and P2 is equal to

the exposure time for every 4 rows of pixels. The row decoder rolls down the P2 one row at a time to make

sure every 4 rows have the identical exposure time. When the first pointer or the second pointer reaches the

stop row, it re-starts from the start row to begin another rolling process.

The simulation using the Cadence schematic model in 0.18 µm process demonstrated the functionality

of the rolling shutter mode, as shown in Figures 4.22 and 4.23.

The main drawback of a rolling-shutter CMOS imager is that the start and stop of the exposure time are

slightly shifted row by row. The mechanism causes the deformation of fast-moving objects, which is called

spatial distortion. This distortion can be more apparent in cases where larger objects are moving at a rate
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Two pointers control signals in the entire pixel array
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Figure 4.21: Timing of two pointers’ control signals in the entire pixel array
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Figure 4.22: Simulation of control signals from row decoder at 800 ns line time

83



 /Select<0>
 /Select<8>

V
 (

V
)

-0.2

1.4

3.4

 /TX<8>
 /TX<0>

V
 (

V
)

-0.2

1.4

3.4

 /TX<4>

V
 (

V
)

-0.2

1.4

3.4

 /Reset<0>
 /Reset<8>

V
 (

V
)

-0.2

1.4

3.4

 /PixSample1A

V
 (

V
)

-0.2

1.4

3.4

 /Select<4>

V
 (

V
)

-0.2

1.4

3.4

 /Reset<4>

V
 (

V
)

-0.2

1.4

3.4

 /PixSample2A

V
 (

V
)

-0.2

1.4

3.4

Name

 (us)
0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

Transient Analysis `tran': time = (0 s -> 5 us) 1

FD reset: 25ns

ResetReadout: 91ns FDReadout:450ns

TX transfer: 184ns

First Row

Second Row

Third Row

FD reset: 25ns

ResetReadout: 91ns FDReadout:450ns

TX transfer: 184ns

FD reset: 25ns

ResetReadout: 91ns FDReadout:450ns

TX transfer: 184ns

Figure 4.23: Simulation of control signals for pixels at 800 ns line time

that the image readout cannot match. However, if the object is relatively small and moves at a rate that

can be over-sampled by a fast frame rate, the spatial distortion can be negligible.

Imaging moving objects requires consideration for the object’s size and velocity in order to sample and

avoid blur properly. If a blur of no more than 10% is acceptable, the required exposure time for imaging

sensors can be calculated as

T ≤ ∆L

10× v (4.6)

where T is the required exposure time to avoid blur, ∆L is the object’s length, and v is the object’s velocity.

A straightforward way to determine if the object will cause rolling shutter spatial distortion is to use the

logic: if exposure time is smaller than object height ( or # of rows) * line time, then the imager with rolling

shutter will expect spatial distortion.

To illustrate this rule, consider the example of using the proposed image sensor with 10, 000 fps and

operating at rolling shutter in a slide scanner. The sensor size of the proposed CIS is 768 × 1024, and

the line time is 400 ns. Assume a tissue with 8 mm height and at 150 mm/s scanning velocity. The

required exposure time to avoid a 10% blur must be smaller than 5.3 ms. The frame time of the sensor is

256× 400 ns = 102.4 µs. Due to 102.4 µs is much smaller than 5.3 ms, therefore, the rolling shutter spatial

distortions are not expected.
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4.3.3 2D Windowing

Windowing is a technique that enables CMOS imagers to directly read out a selected group of pixels. It is

used to restrict the image acquisition to a region of interest rather than the full image. It can increase the

readout speed by selecting pixels of interest and shorten the readout time in one smaller frame. Therefore,

the proposed CMOS image sensor could achieve a higher frame rate by choosing a smaller window of interest,

instead of using the full resolution.

As shown in Figure 4.24, a fully configurable window can be selected for readout by using X and Y

scanner to change X and Y dimension. The parameters to configure this window are:

1. Y start: The starting line of the readout window.

2. Y end: The end line of the readout window.

3. X start/X end: It is the start or end position of the X readout.
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Figure 4.24: Selected window of interest for readout

The proposed CMOS image sensor employs a novel two-dimension(2D) windowing feature to digitally

zoom in on a rectangular region of the sensor array without a horizontal X-scanner. For the vertical dimen-

sion, the proposed readout circuitry discussed in Section 4.4, enabling the sensor to read four rows of pixels

out at one time, makes the difference between the start and stop address as an integral multiple of four.

V ertWinStart < 9 : 0 > and V ertWinStop < 9 : 0 > in the row decoder define the Y start and Y stop,

respectively.
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Without a horizontal X-scanner, on-chip X windowing is impossible. The off-chip method is the only

way to change the X dimension. Two methods could be applied in the sensor. In the first, software method

can select how many columns of data constitute an image. The second method is to select how many I/Os

connect to the onboard microcontroller or FPGAs. The first method does not improve speed. The second,

however, by deciding how many fast data FPGAs need to transfer to the PC, could enables a faster speed.

Also, because each I/O on the top and bottom of imager provides series data from 16 columns, the difference

between the starting and stopping address is an integral multiple of 16.

4.4 Column Readout Design

4.4.1 Analog Time-Interleaving Correlated-Double Sampling

Correlated double sampling (CDS) is a noise reduction technique used in CMOS image sensors. In CMOS

active pixel sensors, reset noise (kT/C noise), flicker noise, and fixed pattern noise from the pixel level can

be reduced by the CDS technique through subtracting the reset and pixel signals for each pixel cell.

Typically, each column in every image sensor has CDS circuitry that consists of several sampling switches,

two capacitors, CS and CR, and a fully differential amplifier as shown in Figure 4.25. Two sample and

hold circuits sample reset and pixel signals sequentially. Then, at φY phase, the amplifier input becomes

VPIX − VRST . Until the subtraction signal is transferred to the subsequent data converter, the next phase

of sampling has to wait.

There are two phases, sampling and transferring, existing before the column-ADC can start the data

conversion. During the sampling phase, pixel and reset voltage signals are sampled separately onto column-

sampling capacitors. During the transferring phase, the voltage difference is fed into column-ADCs to

complete the digitization.

The timing consideration of these two phases is different. The sampling phase needs to consider two

sampling operations including the setting time in column lines, charge transfer time in the pixel and reset

time for the floating diffusion node, as shown in Figure 4.25. The transferring phase is limited by the

bandwidth of the operational amplifier. To increase the frame rate, the better efficient method is to start

the sampling phase of next readout row when the transferring phase of the current readout row is running.

Otherwise, the sampling phase of the next readout row has to wait for completing the transferring phase of

the current readout row. Therefore, a robust analog time-interleaving CDS (ATI-CDS) is proposed in this

dissertation.

The proposed time-interleaving CDS block, illustrated in Figure 4.26, consists of four sampling capacitors,

five switches, one unity gain buffer, and one reference voltage, VRefAmp. Instead of using two S/Hs to store

pixel and reset voltages separately, the proposed CDS technique is achieved by taking advantage of one S/H

and a floating-node capacitor.
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Figure 4.27: Operation of proposed CDS technique

Before discussing ATI-CDS, it is important to focus on the proposed CDS idea. Four steps are involved,

as shown in Figure 4.27. Assume a rolling-shutter mode controls the pixel array. The first step is to sample

VRST . After resetting the floating diffusion of a specific row of 4T pixels and turning on that row of Rsel

switches, PixSam and AmpSam switches are turned on at the same time. Meanwhile, the switch AmpReset

is turned on to connect reference voltage, VRefAmp, on the input node of the unity gain buffer. So, the output

voltage, Vout1, is equal to VRefAmp. Those two sampling capacitors, C1, and C2, have different bottom-plate

connections. After a while, the top plate of C1 and C2 settles to VRST . The second step is to turn on the

transfer gate to move the charges in the photodiode to the floating diffusion. Before starting the charge

transfer, all other switches must be turned off to keep the sampled signals on the capacitors unchanged.

Then, the Vpixel sampling starts by turning on PixSam switch and keeps AmpSam and AmpReset off. The

top plate voltage, V 1, becomes equal to Vpixel. Because the bottom plate of C2 is floating, the voltage, V 2,

changes to VRefAmp − VRST + Vpixel. As a result, the difference value between reset and pixel voltages is

achieved. The last step is to transfer the voltage difference to the buffer’s output. After turning the PixSam

switch off, turn on the AmpSam switch to make Vout4 = VRefAmp − VRST + Vpixel.

An ideal LTspice model of proposed CDS was built to verify the functionality as shown in Figure 4.28.

A pulse voltage source represents the signal on the column line. The reset voltage is set to be 3V , and the

pixel value is 2.5V . The reference voltage is 1.4V , so that the output voltage of the amplifier is supposed to

be 1.4V + 2.5V − 3V = 0.9V . The simulation results in Figure 4.29 show that Vout is 1.3999984V turning

on the AmpSam switch for the first time. The second time that VAmpSam rises, the output voltage becomes

900mV . The voltage difference is the same as the subtraction between reset and pixel voltages. Therefore,

the proposed CDS technique can be achieved.
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Figure 4.28: LTspice model of proposed CDS technique

Figure 4.29: Simulation result of the CDS LTspice model

Figure 4.30 illustrates six phases of the proposed ATI-CDS. Assume each column readout block has a

single ATI-CDS circuit. In its architecture an ATI-CDS circuit has two identical S/Hs, each one consisting

of two capacitors and two switches. The two S/Hs share the input node connected to the column line and

output node connected to the input of the unity gain buffer.

More details of each phase are listed below:

1. phase(a): Sample N-th VRST on the top plates of C1 and C2 by turning on PixSam1 and AmpSam1.

Meanwhile, turn off PixSam2 and AmpSam2.
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Figure 4.30: Operations of proposed ATI-CDS technique
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2. phase(b): Transfer (N-1)-th VPIX on the bottom plate of C4 to the output of the buffer by turning

on AmpSam2 and turning off the other switches. At the same time, turn on TX on the N-th row to

transfer the photodiode charges to the floating diffusion.

3. phase(c): Sample N-th VPIX on top plate of C1 capacitor by turning PixSam1. AmpReset is turned

on, ready for the next phase.

4. phase(d): Sample (N+1)-th VRST on top plates of C3 and C4 by turning on PixSam2 and AmpSam2.

Meanwhile, PixSam2 and AmpSam2 are off.

5. phasse(e): Transfer N-th VPIX on the bottom plate of C2 to the output of the buffer by turning on

AmpSam1 and turning off the other switches. At the same time, turn on TX on the (N+1)-TH row to

transfer the photodiode charges to the floating diffusion.

6. phase(f): Sample (N+1)-th VPIX on top plate of C3 by turning PixSam2. The AmpReset switch is

on, ready for the next phase.
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Figure 4.31: A comparison of the proposed CDS technique with- and without time-interleaving

To better understanding why the ATI-CDS has superior speed, the ATI-CDS technique was compared

to proposed CDS without time interleaving, as shown in Figure 4.31. Among the eight time slots, ATI-CDS

could transfer 3-pixel values to the output of the buffer, which provides one more sample and only takes

two-thirds of the time compared to proposed CDS without time interleaving.

In addition, ATI-CDS allows the difference between the reset voltage and the pixel voltage to be sampled

in column readout circuitry in parallel, which removes kT/C noise on the floating diffusion node, and

suppresses the source follower 1/f noise.

91



4.4.2 Switched-Capacitor Programmable Gain Amplifier

In the analog front-end block, the programmable gain amplifier aims to maximize sensor array signal levels

to the subsequent ADC’s dynamic range. This dissertation proposed a switched-capacitor programmable

gain amplifier (SC-PGA) with four gain settings available through three registers in the sequencer block.

This amplifier allows four different gains ( 1×, 2×, 4×, or 8×).

A conceptual view of switched-capacitor amplifiers is shown in Figure 4.32(a). Two phases commonly

take place in switched-capacitor amplifiers: sampling and amplification. A clock signal is required in the

circuit to activate each phase.

Figure 4.32(b) illustrates the implementation of the proposed SC-PGA. The sampling block uses the

ATI-CDS technique discussed in Section 4.4.1. The amplification block is a non-inverting switched-capacitor

amplifier with different gain settings.

In the discussion of the sampling phase in the previous section, the amplification phase was implemented

by a unity-gain buffer. This section analyzes the amplification phase using the proposed SC-PGA. To simplify

the analysis, the proposed analog CDS technique is applied in the sampling phase, rather than ATI-CDS, as

shown in Figure 4.33.

Analyzing the feedback amplifier in Figure 4.33, which is a series-shunt feedback, with open-loop gain,

AOL, and a feedback network (β network), which includes four capacitors (CF , CG0, CG1, CG2) and five

switches. The closed-loop gain of the amplifier is

ACL =
Vout
Vx

=
AOL

1 +AOL · β

β =
Vf
Vout

=
G2 · ZCG2

+G1 · ZCG1
+G0 · ZCG0

+G0 · ZCF

G2 · ZCG2
+G1 · ZCG1

+G0 · ZCG0
+ ZCF

(4.7)

Notice that as open-loop gain, AOL, approaches infinity, the closed-loop gain approximates to

ACL ≈
1

β
=

G2 · ZCG2
+G1 · ZCG1

+G0 · ZCG0
+ ZCF

G2 · ZCG2
+G1 · ZCG1

+G0 · ZCG0
+G0 · ZCF

(4.8)

The impedance of those different capacitors in β network are given as

ZCG0
= ZCF

ZCG2
= 4 · ZCG0

ZCG1
= 2 · ZCG0

(4.9)
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Figure 4.32: (a) General view of switched-capacitor amplifier; (b) SC implementation of PGA
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plifier, (b) switched-capacitor implementation
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Figure 4.34 depicts four gain settings controlled by four switches. When G2G1G0 = 000, the closed-

loop gain becomes one, leading the voltage on the X node, VX , buffered to the amplifier’s output. When

G2G1G0 = 001, the closed-loop gain becomes two and leads two times of the voltage on the X node, 2×VX ,

buffered to the amplifier’s output. When G2G1G0 = 011, the closed-loop gain becomes four and leads four

times of the voltage on the X node, 4 × VX , buffered to the amplifier’s output. When G2G1G0 = 111, the

closed-loop gain becomes eight and leads eight times of the voltage on the X node, 8× VX , buffered to the

amplifier’s output. The gain configuration is summarized in the Table 4.3.
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Figure 4.34: Proposed PGA operating at (a) Gain =1, (b) Gain =2, (c) Gain =4, (d) Gain =8

Table 4.3: Gain Settings for proposed SC-PGA

Settings Gain Amplifier’s output
G2G1G0 = 000 1x Vout = VX
G2G1G0 = 001 2x Vout = 2 ∗ VX
G2G1G0 = 011 4x Vout = 4 ∗ VX
G2G1G0 = 111 8x Vout = 8 ∗ VX
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Several factors determine the operational amplifier in the proposed SC-PGA to have a wide input and

output voltage range: (1) the opamp is used as a buffer to provide different voltage gains; (2) the maximum

voltage difference of pixel and reset signal is 1 V ; (3) the reference voltage VRefAmp was set to 1.4 V ; (4) the

output voltage fed into the subsequent ADC needs to match the ADC’s input range from 0.4 V to 1.4 V .

Therefore, the input common-mode range (ICMR) and the output range of the operational amplifier were

designed to be variable from 0.4 V to 1.4 V .
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VOUT
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VB3

VB4

VB1

VDD

GND

BIAS

CIRCUIT

VB1

VB3
VB4

VB2

Figure 4.35: Block diagram of the operational amplifier used by the proposed SC-PGA

The operational amplifier input topology shown in Figure 4.35 has two differential input stages (NMOS-

and PMOS- input pairs in parallel) in single power supply (1.8 V ), taking advantages of both to achieve a

wide input range. When input common-mode voltage (VCM ) is close to the negative rail, the PMOS-input

pair is entirely on, and the NMOS-input pair is entirely off. Otherwise, when VCM is close to the positive

rail, the NMOS pair is in use, and the PMOS pair is off.

The performance of the single-supply operation amplifier with a 4 pF loading capacitor will be discussed

next including noise, stability, input common-mode range, common-mode rejection ratio, power supply

rejection ratio and slew rate requirement. Figure 4.36 shows the stability analysis with an unity-gain buffer

configuration. The loop gain of the topology is equal to the opamp’s open-loop gain. When the frequency

is lower than f3dB = 4.06 kHz, it has 71.76 4dB voltage gain. The gain-bandwidth product is approximate

15.13 MHz. Because it is a single stage amplifier, the opamp is stable, and it has an 87.46-degree phase

margin.
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Figure 4.36: (a) Opamp stability testbench (b) simulation result

The input common-mode range was shown in Figure 4.37. To test ICMR, a unity feedback configuration

is used, and positive input was swept from 0 V to 1.8 V . By observing the range in which gain is one, the

input common-mode voltage can be varied from 326 mV to 1.589 V . Because the opamp was used as a

buffer, the output swing is equal to the input swing. While the closed-loop gain was set to be higher than

one, the input swing will be divided by the gain factor.
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Figure 4.37: (a) Opamp ICMR testbench (b) simulation result
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The common-mode rejection ratio (CMRR) of the opamp was also obtained through the circuit config-

uration, as shown in Figure 4.38. Two circuits were used to get open-loop gain and common-mode gain,

respectively. The simulated CMRR is about 71.1 dB.
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Figure 4.38: (a) Opamp CMRR testbench (b) simulation result

The power supply rejection ratio (PSRR) describes how well the amplifier can tolerate the noise coming

from power supply and ground. Higher PSRR means better noise rejection. Both positive and negative

PSRR in the proposed opamp are higher than 58.5 dB.
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Figure 4.39: (a) Opamp positive PSRR testbench (b) simulation result

Figure 4.41 shows the opamp’s step response with changing bias current (20µ A, 40µ A, 60µ A). High

bias current makes the opamp rise and fall more quickly, but it uses more power. The input pulse in the

testbench was toggled from 0.4 V to 1.4 V with a 600 ns period.
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Figure 4.40: (a) Opamp negative PSRR testbench (b) simulation result

For a sinusoidal signal, the slew rate (SR) capability must satisfy the condition:

SR ≥ 2π · f · Vpeak (4.10)

Consider the system timing requirement, only 200ns is left for the amplification time by using the opamp.

Hence, the maximum SR required to buffer 1 V pulse is approximate 7.82 V/µs. For all three biasing currents,

the SR satisfies the requirement.

The noise performance of the opamp is shown in Figure 4.42. The RMS value of the total input referred

noise is 37.57 uV .
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Figure 4.41: (a) Opamp slew rate testbench and (b)(c)(d) simulation results with different
bias current
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Figure 4.42: (a) Opamp noise plot and (b) noise report summary
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4.4.3 Quadruple Column-Parallel Readout Architecture

To increase the speed of the readout flow, the dissertation proposes a quadruple column-parallel readout

architecture, as shown in Figure 4.43. It leads four column lines reading out four rows of pixel data in

parallel. Two readout blocks are on the top side of the image sensing area and two more on the bottom.

This increases the readout speed to four times the rate of using one readout line per column.
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Figure 4.43: Quadruple column-parallel readout architecture

The number of rows with the pixel pitch in the pixel array determines the length of column lines. For a

big pixel array, more rows demand a longer column line, resulting in a longer readout line. Meanwhile, more

rows require an increasing number of select and sample switches to connect to each column line, enlarging

parasitic capacitance. The parasitic consideration in column line is similar to a bit line of random access

memory (RAM)[157]. Instead of having a memory cell intersecting row and column lines, each node has an

active pixel cell. Therefore, high resolution leads to more parasitic capacitance and resistance in a column

line.
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The parasitic capacitance of each column line has two components. One is the parasitic of the capacitance

of the column line to the substrate. It can be calculated using

CCol2Sub = Area× C� (4.11)

where Area is equal to length× width and C� is the parasitic capacitance per um2.

The second component is the junction capacitance on the column line from each switch source or drain

implant that can be obtained by

CSW = (number of rows)× (number of switches in a row)

× (capacitance of single MOS switch′s source/drain)
(4.12)

where parasitic capacitance brought by each MOS switch is assumed to be equal to half of gate oxide

capacitance, COX .

The parasitic resistance of the column line to the substrate can be calculated using

RCol =
Length

Width
×R� (4.13)

where R� is the sheet resistance of the column line in Ω/square.

A simple RC circuit can be used to estimate the time delay through column line to sampling capacitors,

which in the worst case is

td,worst = 0.7 ·RCol · CCol = 0.7 ·RCol · (CCol2Sub + CSW ) (4.14)

And the rising time of the output signal is

tr,worst = 2.2 ·RCol · CCol = 2.2 ·RCol · (CCol2Sub + CSW ) (4.15)

The previous discussions indicate that three aspects must be considered in parasitic calculations to

improve the rising and delay time in each readout line: column line length, width, and switch size. Under

the same area condition, shorter length and larger width of a column line could have less parasitic resistance.

However, the length is determined by the number of rows in the pixel array. For a fixed pixel array, the length

of each column line is fixed as well. A larger width could limit the active pixel area because it needs to cross

from top to bottom of the whole pixel array. Besides, the larger width brings more parasitic capacitance to

the column line. Furthermore, the junction capacitance is usually much larger. Therefore, it is more efficient

to find a solution to reduce the parasitic capacitance introduced by the transistor switches connected to

column lines.

By introducing four readout lines in each column, the proposed readout architecture is able to divide

junction capacitance in each column by four.

Several calculations help estimate the settling time for each column. At first, which metal for routing

the column line must obtain the sheet resistance. The dissertation used a 0.18 µm CMOS imaging sensor
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Figure 4.44: One column line with time delay consideration

(CIS) process, which has 1 poly layer and 6 metal layers. Table 4.4 and 4.5 list the sheet resistance and

parasitic capacitance. Metal 2-5 layers have the same design rule and sheet resistance, roughly equal coupling

capacitance. Either one metal layer or a stack of metal layers can be used to route the column line. Stacked

layers could give less parasitic resistance. However, this is determined by the physical layout design. This

dissertation used even-numbered metal layers for horizontal routing and odd-numbered metal layers for
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vertical routing. The poly and the first metal layer are usually used for connections inside transistors.

Hence, metal layer 3 and 5 could be used for column lines connected to row select and sampling switches.

For simplification, assume metal layer 3 is used for column lines. The width is set to be two times of

minimum width, 0.56 µm, keeping both sheet resistance and parasitic capacitance small. Assume both above

and under the column line have no other parallel metal layers so that the coupling and perimeter capacitance

can be neglected. Table 4.6 can be used to calculate the periodic capacitance on the column line from each

MOSFET’s source or drain implant. Thick-oxide MOSFETs are considered in the design because it could

provide larger swing and smaller gate oxide capacitance. However, thick-oxide MOSFETs need bigger layout

area.

Take a megapixel array with 1,000 rows as an example. Each pixel has an area of 20 µm × 20µm, and

each column has one readout line. The parasitic resistance of one readout line routed by Metal 3 from top

to bottom can be calculated by

RCol =
Length

Width
×R� =

1000 · 20 µm

0.56 µm
× 74 mΩ/� ≈ 2.643 kΩ (4.16)

With W = 1 µm,L = 350 nm of thick-oxide NMOS as row select and sampling switch, the parasitic

capacitance of the column line can be calculated by

CCol = CCol2Sub + CSW ≈ CSW = 1000 · C
′

OX ·W × L

= 1000 · 5.31 fF/µm2 · 1 µm · 0.35 µm = 1.8585 pF (4.17)

The estimated delay time and rising time in the worst case of a column line is calculated by

td = 0.7 ·RCol · CCol = 0.7× 2.643 k ∗ 1.8585 pF = 3.438 ns (4.18)

tr = 2.2 ·RCol · CCol = 2.2/0.7× td = 10.8 ns (4.19)

Table 4.4: Different metal layer sheet resistance and width design rule

Name Sheet Resistance (mΩ/�) Minimum width (µm) Minimum space (µm)
Metal1 77(95@W = 0.23um) 0.23 0.23
Metal2 74(85@W = 0.28um) 0.28 0.28
Metal3 74(85@W = 0.28um) 0.28 0.28
Metal4 74(85@W = 0.28um) 0.28 0.28
Metal5 74(85@W = 0.28um) 0.28 0.28
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Table 4.5: Different metal layer coupling, area and perimeter capacitance

Name
Coupling capacitance

(aF/µm)
Area capacitance

(aF/µm2)
Perimeter capacitance

(aF/µm)

Metal1 113
M1-Poly: 45.7

M1-Active: 35.2
M1-Poly: 9.5

M1-Active: 8.6
Metal2 101 M2-M1: 39.2 M2-M1: 9.6
Metal3 102 M3-M2: 39.2 M3-M2: 9.6
Metal4 102 M4-M3: 39.2 M4-M3: 9.6
Metal5 103 M5-M4: 39.2 M5-M3: 9.6

Table 4.6: Oxide thickness and oxide capacitance for thin- and thick-oxide CMOSs in the used
CIS process

Name Value
TOX(1.8V NMOS) 4.1 nm
TOX(1.8V PMOS) 3.9 nm

C
′

OX(1.8V NMOS) 8.4 fF/µm2

C
′

OX(1.8V PMOS) 8.85 fF/µm2

TOX(3.3V NMOS) 6.5 nm
TOX(3.3V PMOS) 6.3 nm

C
′

OX(3.3V NMOS) 5.31 fF/µm2

C
′

OX(3.3V PMOS) 5.47 fF/µm2

In sum, the architecture with one readout line per column needs td + tr = 14.238 ns for settling each

signal pulse. Using the proposed architecture, the settling time could be reduced to 1
4 × (td + tr) = 3.582 ns.

Therefore, each column line with ATI-CDS needs only two-thirds of settling time requirement compared to

single CDS. The quadruple parallel architecture speeds up the total readout time by 4. Combining the two

techniques could increase the readout speed by 600%.

A voltage drop is another essential concern caused by a parasitic resistance in a column line. A stack-

metal solution is used to reduce the voltage drop in the layout design of the pixel array. To keep the 20µm

pixel pitch unchanged, the column lines need to be above photodiodes. Wide metal layers reduce the active

area of photodiodes, so that a minimum width is set to all metals used for column lines in this CMOS image

sensor. However, the column resistance could be a problem. For example, if only metal 3 is used with

0.28µm, the total resistance in a column with 1024 rows is

RCol =
L

W
×R� =

1024× 20µm

0.28µm
∗ 85mΩ ≈ 6.217 kΩ (4.20)

So, for a given column bias current, 20uA, the voltage drop in the column line is 124.34mV .
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The proposed stack-metal layout approach is depicted in Figure 4.45. The column line uses 256 stack-

metal blocks, and each block has 40µm-long Metal 3, 35µm-long Metal 2, 12µm-long Metal 4 and Metal 5.

They are connected in each block and have the same width, 0.28µm. A simple schematic model is shown in

Figure 4.46.

ΦRS

ΦTG

ΦSEL

Column 

Line

FD

ΦRS

ΦTG

ΦSEL

FD

1st Row

256th Row

RCol

CCol

Metal 2

Metal 3

Metal 4

Metal 5

35um

40um 40um

35um

12um 12um

12um12um

12um

12um

12um

12um

35um

40um 40um

35um

12um

12um

12um

12um

12um

12um

12um

12um

1024 x 20 um = 20480 um

Figure 4.45: A stack-metal method applied to each column line with 256 rows
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Figure 4.46: Equivalent resistor model in one column using proposed stack-metal method

The equivalent resistance of one stack-metal block is

ROneMetalBlock = RM2 || {2× [( 1
2RM3) || (RM4 || RM5)]}

= ( 35µm
0.28µm × 85mΩ) || {2× [( 1

2 ×
40µm
0.28µm × 85mΩ) || ( 1

2 ×
12µm
0.28µm × 85mΩ)]}

= 10.625Ω || [2× (6.071Ω || 1.821Ω)]

≈ 2.216Ω

(4.21)

The total resistance in one column line is

RCol = ROneMetalBlock × 512 = 1.134kΩ (4.22)

Hence, for a given column bias current, 20uA, the voltage drop is reduced to 22.68mV, less than one-fifth

of the column line routed by only metal 3.
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4.4.4 Analog-to-Digital Converter

The A/D converter in CMOS image sensors plays a vital role in digitizing the captured image. Its resolution

affects the image quality; its sampling rate affects the frame rate; its power consumption and area affect

the imager’s power and layout, respectively. Most CMOS image sensors have ADC resolutions of 10 to 12

bits. In addition, the proposed CMOS imager has four ADCs per column, and the total number of ADCs

could be over 4,000 for a megapixel resolution. The total power consumption of these ADCs is a significant

concern, as it can have a large effect on the battery life, and also influence the die temperature. This could

degrade image quality due to the higher leakage and noise. Hence, the successive-approximation register

(SAR) ADC was selected to provide medium-to-high resolution and consume as little power as several tens

of fJ/conv − level.

Two pseudo-differential unipolar SAR ADCs have been designed with the same topology in this disser-

tation but have different resolution: one has 10-bit, and the other has 12-bit. The differential analog input

voltage (V IN+ − V IN−) is over a span of 0.4 V to 1.4 V . In this range, a single-ended unipolar input

signal, driven on the IN+ pin (or IN− pin), is measured concerning high reference level, driven on the IN−

pin (or IN+ pin). Either input pin is allowed to swing from 0.4 V to 1.4 V . When one input pin swings,

however, the other one is restricted to the high reference voltage 1.4 V . Pseudo-differential inputs, as shown

in Figure 4.47, are ideal for applications that require DC common-mode voltage rejection, for single-ended

input signals and for applications that do not want the complexity of differential drivers. Pseudo-differential

inputs simplify the ADC driver requirement, reduce complexity, and lower power dissipation in the signal

chain.
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Figure 4.47: Pseudo-differential unipolar ADC

Since each column has two identical ADCs on both top- and bottom-side of the pixel array and each pixel

has 20 µm, the layout pitch of ADCs must be less than 10 µm. The chip fabrication constraint limits the

maximum length of the ADC layout. Figure 4.48 depicts the layout of proposed 10-bit ADC, which includes

bootstrapped switch circuits, capacitive DAC, dynamic comparator, and two 10-bit memory banks. Figure

4.49 shows the proposed 12-bit ADC having the same topology.
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Figure 4.48: Layout view of proposed 10-bit pseudo-differential unipolar ADC
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Figure 4.49: Layout view of proposed 12-bit pseudo-differential unipolar ADC

The proposed SAR ADC architecture is shown in Figure 4.50. It consists of a capacitive DAC array with

bootstrapped switches and three off-chip references to complete sampling operation, a dynamic comparator,

SAR logic block and two memory banks using shift registers. Each conversion cycle has two phases: a

sampling phase and a conversion phase. During the sampling phase, the capacitive DAC is worked as a

sample-and-hold circuit by using the bootstrapped switches and the entire capacitor array in which all

bottom plates are connected to ground. During the conversion phase, all column-level ADCs are operating

in parallel and controlled by the same SAR logic in the sequencer. One of memory banks are used to store

the digital bits and the other memory bank is connected to the serializer in each line time.
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Figure 4.50: Block diagram of proposed SAR ADC
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4.4.4.1 Capacitive DAC

The minimum total capacitance of each side array is limited by the kT/C noise associated with the array

charging and discharging. Since the quantization noise power is LSB2

12 and the RMS thermal noise value is

required to be small than half of LSB, the total capacitance requires

Ctotal >
12× kT

(LSB/2)2
(4.23)

where k is Boltzmann’s constant, 1.38×10−23 J/K; T is the temperature; LSB is the ADC’s least significant

bit, LSB = VREF

2N
. In this project, the proposed SAR ADC has 1 V reference voltage. Hence, the total

capacitance at room temperature (300 K) needs to be larger than 833 fF for 10 bits resolution or 3.33 pF

for 12 bits resolution.

Mismatch in the capacitor array is the next consideration. Each capacitor in a switched-capacitor DAC

can be expressed as below considering capacitor mismatch and parasitic.

Ci = 2i−1Cu + Cpar,i + Σ2i−1

1 δj (i = 1, ..., N) (4.24)

where Cpar,i is the parasitic capacitance related to the i-th capacitor and δj the mismatch equivalent capac-

itance affecting the unit capacitor. The capacitor mismatch can be modeled as a Gaussian distribution with

a mean value equal to the unit capacitor, so the standard deviation is

σC =
Cukc√
2Acap

(4.25)

where Cu, kc and Acap is the unit capacitance, the Pelgrom mismatch coefficient, and the area of the unit

capacitor, respectively. Hence, a larger size capacitor could have less mismatch. The parasitic capacitances

depend on layout inaccuracies, capacitor geometry, and wiring.

However, for the 10 µm layout pitch, each ADC could have less than 5 µm width for each capacitor

since each switch-capacitive DAC array (SC-DAC) has two identical capacitor array. Also, the length of a

unit capacitor is one of the significant factors to determine the DAC layout length. As one of the significant

components in a SAR ADC, the unit capacitor accounts mostly for the ADC layout. Consequently, to satisfy

the layout pitch, a capacitor with 22.096 fF and 3 × 3 um2 in 0.18 µm CIS process was chosen as a unit

capacitor.

The size of the unit capacitor is not the only factor affecting the final layout size of the capacitive

DAC. The total number of capacitors becomes the other factor. Many studies have been made in past 10

years have tried different capacitor topologies and different switching approaches reducing the layout size

of the capacitive DAC array. For a n-bit traditional switched-capacitor DAC [158] with binary-weighted

capacitor array and conventional switching procedure, the number of unit capacitors in a capacitor array

is 2n. The monotonic switching method [159] and merged-capacitor switching method [160] reduce the

number needed by half by using top-plate sampling to complete the first comparison without any capacitor
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switching. Tri-level switching scheme [161] or monotonic multi-switching scheme [162] further reduce the

number of capacitors in the array by 75%.

The principal scheme to reduce the layout size of the capacitive DAC is to build a split-capacitor topology

with one or several attenuation capacitors. An attenuation capacitor, in series with the LSB-capacitor array,

is required to equal to one-unit capacitor. For example, a N -bit single-ended charge-redistribution SAR ADC

has one attenuation capacitor splitting the MSB-capacitor and LSB-capacitor array. Assume the attenuation

capacitor is in the middle, so in the LSB-capacitor array and the MSB-capacitor array is 2M and 2M − 1,

respectively. So the attention capacitance is expressed as

Cattenuation =
Ctotal,LSB

Ctotal,LSB − 1
(4.26)

Hence, the total number of unit capacitors in the entire array is

Ctotal = Cattenuation + Ctotal,LSB + Ctotal,MSB

= 2M + 2M − 1 +
2M

2M − 1
= 2M+1 +

1

2M − 1

(4.27)

So, a 10-bit single-ended SAR ADC needs 63 unit capacitors and an attenuation capacitor with 32
31 unit

capacitance, which is about 6.25% of total capacitances in a conventional one.

However, it is difficult to develop an attenuation capacitor with a fractional value and match perfectly to

the entire capacitor array. This results in a capacitor mismatch issue. Although [163] proposed a method to

achieve an integer attenuation capacitor, the split-capacitor topology is more sensitive to mismatch compared

to traditional one without the attenuation capacitor. The parasitic capacitance connected to the top-plate

node of the MSB-capacitor array and the LSB-capacitor array, in particular, parallel with the attenuation

capacitor, could cause linearity degradation and gain error. Furthermore, in practice, the split-capacitor

DAC architecture would need to increase the unit capacitance to meet the noise requirements. Therefore,

the split-capacitor scheme is not very beneficial.

A robust topology was used with three reference voltages (Vref , Vref/4, Vref/16) to divide the entire

capacitor array into three segments, and their top plates are connected. This scheme avoids the linearity

issue caused by the top-plate parasitic capacitance, and it also reduces the total capacitance, which still

meets the noise requirement.

Because the SAR ADC has a pseudo-differential input structure, a single-ended switching scheme is

applied in the proposed capacitive DAC. It not only saves switching power but also reduces the number of

transistors and area in each SAR logic block. Top-plate sampling is used but needs switching operations

to make comparisons. The single-ended switching procedure does not need the downward transition, so it

speeds up the DAC settling process. All these control signals are shared with the entire one-side ADC array.

Hence, ADCs will simultaneously start to sample, make conversions, and store digital bits.
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An offset compensation scheme for dark pixels was added in the proposed SAR ADC. An extra SetOffset

control signal is used to achieve an offset shifting function. In the sampling mode, SetOffset stays low to

be inactive. Before starting the conversion process, SetOffset goes high to shift the pixel signal sampled to

the DAC by the amount of Voffset × Coffset

Ctotal+Coffset
.

When the offset capacitor, Coffset = 34 ·Cu, the total capacitance of the proposed DAC array is 295 ·Cu.

Sweep Voffset from 0 V to 1 V and obtain the maximum digital output can be 550 (12′b0010 0010 0110).

The waveform of digital codes is shown in Figure 4.51.

Figure 4.51: Waveform of digital codes by sweeping offset from 0V to 1V and having 295 unit
capacitors

When the offset capacitor, Coffset = 17 ·Cu, the total capacitance of the proposed DAC array is 278 ·Cu.

Sweep Voffset from 0 V to 1.8 V and the maximum digital output can be 500 (12′b0001 1111 0100). The

waveform of digital codes is shown in Figure 4.52.

Another concern is to consider the amount of time needed to settle the input structure of the proposed

SAR ADC during the acquisition phase. If the acquisition time is not long enough, the signal value will be

lower than expected, and the signal-to-noise ratio in the phase will be smaller. Furthermore, the conversion

rate of a SAR ADC is also affected by the acquisition time. The conversion rate is equal to the reciprocal of

the addition of acquisition time and conversion time.

In the sampling phase, the analog input signal charges the entire capacitor array (Ctotal) through the

switch resistance (RSW ) to a level proportional to the analog input. The combination of the switch resistance,

the source resistance (or the previous stage output resistance), and the sampling capacitor determine the rate

of charge on the sampling capacitor. A rising time characteristic in a single pole response can be illustrated

in the sampling process.
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Figure 4.52: Waveform of digital codes by sweeping offset from 0V to 1.8V and having 278
unit capacitors

Table 4.7 shows a different time constant multiplier is needed to settle to within one-half LSB to a given

resolution. For a 12-bit example, the time constant multiplier is required to be 9 or k = 9. The on-resistance

of the sampling NMOS is, Ron =
L

W
× R� = 1.1 kΩ. The total capacitance of one side is Ctotal = 6.1 pF .

So the time constant of the ADC is τADC = Ron ·Ctotal = 6.71 ns. The minimum time constant to meet the

half-LSB settling requirement is k × τADC = 60.39 ns.

Table 4.7: Required settling time for a ADC with different resolutions

number of bits 0.5LSB
Time Constant (k)

multiplier for 1/2 LSB
settling accuracy

Time Constant (k)
multiplier for 1/4 LSB

settling accuracy
8 0.1953125% 6.2 6.9
9 0.0976563% 6.9 7.6
10 0.0488281% 7.6 8.3
11 0.0244141% 8.3 9.0
12 0.0122070% 9.0 9.7
14 0.0030518% 10.4 11.1
16 0.0007629% 11.8 12.5

In one column time or line time, tLT , the ADC completes one conversion. So the throughput rate is

equal to 1
tLT

. In other words, the addition of acquisition time and conversion time is equal to one column

time, which is ∼ 390.625 ns for the proposed CMOS image sensor operating at full speed, 10, 000 fps. Since

the acquisition time was decided, the conversion time for 12 cycles or 10 cycles depends on the speed of the

comparator.
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4.4.4.2 Comparator

This section focuses on the comparator design. To begin the comparator requirements will be discussed. As

shown in Figure 4.50, DAC’s outputs feed into the comparator. The comparator’s output will be latched to

memory banks. Hence, the input difference of the comparator swings from 0.4 V to 1.4 V , and the output

swings from 0 V to 1.8 V .

For the 12-bit SAR ADC, ideally, the LSB input value can be detected by the comparator, which is equal

to 1 V
212 = 244 µV . Therefore, to obtain the half-LSB precision, the minimum voltage gain of the comparator

can be expressed

AV,min =
1.8V

0.5 · 244µV
= 14, 754 V/V (4.28)

For the proposed SAR ADC, the acquisition process has to reset the total capacitors by the VRef,Amp

and sample the differential value in the DAC array so the minimum acquisition time is doubling the settling

time constant, 2× 60.39 ns. The maximum conversion time for the CMOS imager operating in full speed is

equal to tLT −tacq,min, which has 12 conversion steps for the 12-bit ADC or 10 conversion steps for the 10-bit

ADC. Assume f3dB is the comparator bandwidth. The settling time constant is equal to 1
2πf3dB

. Allowing

five times of τ for comparator output to settle in each comparison, therefore, the comparator bandwidth can

be calculated by

f3dB =
N × 5

2π(tLT − tacq,min)
(4.29)

where N is the column ADC resolution, tLT and tacq,min represent the line time and minimum acquisition

time, respectively. Since the line time is 390.625 ns at the 10, 000 fps frame rate and the acquisition time

is 2 ∗ 60.39 ns for 12-b resolution, the comparator bandwidth is expressed as

f3dB =
60

390.625 ns− 2 ∗ 60.39 ns
≈ 35.4 MHz for 12 bits

f3dB =
50

390.625 ns− 2 ∗ 60.39 ns
≈ 29.5 MHz for 10 bits

(4.30)

Assume the acquisition time of the 10-bit ADC is the same as the 12-bit ADC.

Due to the ADC layout limitation, the size transistors in one stage is constrained with a small transcon-

ductance. Furthermore, the power consumption is also limited, since 4096 comparators operate at the same

time in a megapixel CMOS imager. Hence, it is challenging to use a single-stage comparator to reach the

gain and bandwidth requirements for the 10-bit or 12-bit ADC.

The dissertation uses a cascade comparator topology including four pre-amplifier stages plus one high-

sensitivity latch stage as shown in Figure 4.53. For an N-stage cascade comparator, its frequency response

is expressed by

AT (jω) = [Av(jω)]N =
[Av(0)]N

[1 + j ωωo
]N

(4.31)
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where Av(0), AT (jω), ωo represents the open-loop DC gain of one stage, the gain of the cascade comparator,

and the 3dB frequency of one stage, respectively. Define ωoN is the 3dB frequency of the N-stage cascade

comparator, and ωu is the unity gain bandwidth in one stage.

Latch

VINP

VINN

VOUTP

VOUTN

AZ1

AZ1

AZ2

AZ2

AZ3

AZ3

AZ4

AZ4

AZ5

AZ5

resetresetresetreset

Ci1

Ci1

Ci2

Ci2

Ci3

Ci3

Ci4

Ci4

Ci5

Ci5

Figure 4.53: Block diagram of proposed 5-stage dynamic comparator with autozeroing

So, the gain magnitude of the N-stage cascade comparator at the ωoN frequency is

|AT (jωoN )| = [Av(0)]N√
2

(4.32)

And for a specified |AT (0)|, the ωoN frequency is

ωoN = ωo
√

21/N − 1 =
ωu
|Av(0)|

√
21/N − 1 =

ωu
|AT (0)|1/N

√
21/N − 1 (4.33)

Thus, the bandwidth amplification can be calculated by

ωoN
ωo1

= |AT (0)|(N−1)/N
√

21/N − 1 (4.34)

where ωo1 is defined as one stage bandwidth. Table 4.8 summarizes the bandwidth amplification and single-

stage gain reduction features for cascade comparators.

Table 4.8: Bandwidth amplification and one-stage gain for cascade comparators in different
stages

# of
stages
N

BW
amplification

ωoN/ωo

gain for one stage
|Av(0)| in (V/V)

gain for one stage
|Av(0)| in (dB)

1 1 14800 83.41
2 78.30 121.66 41.70
3 307.32 24.55 27.80
4 583.67 11.03 20.85
5 836.30 6.82 16.68
6 1045.25 4.95 13.90
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A conversion sample using this 5-stage comparator is depicted in Figure 4.54. Because the maximum

dimension of the chip limited by the CMOS PDK is 27 mm, using the 12-b ADC in each QCPRO must reduce

the row number of the pixel array. Thus, the 10-b ADC is selected for the high-speed readout architecture

and keeping the pixel array with 1024 rows. As shown in Figure 4.55, the ADC has 9.51 b ENOB at a

1.25 MHz sampling frequency.

Figure 4.54: ADC transient simulation result for one sample conversion

Figure 4.55: The 10b ADC FFT simulation to get SINAD/ENOB/SFDR/THD
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4.5 PLL and SLVS drivers

On-chip phase-locked loops provide a stable clock signal for sequencer, memory banks, serializers, and other

timing control circuits. The PLL block, used as a frequency multiplier, consists of five different sub-circuits:

phase frequency detector, loop filter, voltage-controlled oscillator, feedback factor, and an output shaper.

The PLL provides a 4× faster clock by multiplying the input reference clock from the on-board crystal

oscillator. It was also designed with a digital reset and power down control signals. Step response of the

PLL is shown in Figure 4.56. The primary performance is summarized in Table 4.9. The layout view of the

PLL is depicted in Figure 4.57.
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Figure 4.56: PLL step response from 800 MHz to 200 MHz

The SLVS block with a serilizer circuit converts the digital data from memory banks into standard serial

SLVS data running at maximum 1 Gbps. The sensor with 128×1024 pixels and 768×1024 pixels has 18 and

98 SLVS differential pairs (2 pins for each SLVS channel), respectively. Two clock channels are added for

data synchronization purpose. That means a total of 36 pins in the small sensor and 196 pins in the large

sensor are used for the SLVS outputs.

Each SLVS channel is responsible for transferring 10-bit data words from sensor to receiver in the FPGA.

The SLVS transmitters is allowed to connect to LVDS recievers for data transmission. In one line time,

each SLVS channel transmits 2 ∗ 10 ∗ 16 = 320 bits. In one frame time, each SLVS channel transmits

320 ∗ 256 = 81.92 kbits of digital data in total.
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Table 4.9: A performance summary of the PLL

Input Freq.
(MHz)

Output Freq.
(MHz)

Lock time Phase noise
RMS jitter

(ps)
Peak-to-peak

Jitter(ps)

50 200 2.3us
-144.16dBc/Hz

@10MHz
0.339 2.09502

75 300 1.5us
-141.688dBc/Hz

@10MHz
0.304 1.87872

100 400 1.2us
-144.4679dBc/Hz

@10MHz
0.178 1.10004

125 500 980ns
-145.7717dBc/Hz

@10MHz
0.134 0.82812

150 600 880ns
-145.8564dBc/Hz

@10MHz
0.119 0.73542

200 800 420ns
-144.3804dBc/Hz

@10MHz
0.113 0.69834

Assume the Bit error ratio is 10−3

Figure 4.57: Layout view of the PLL used in the proposed CIS

The output clock channel transports a dual data rate (DDR) clock, synchronous to the digital data on

the other SLVS channels. The clock is a DDR clock, which means the frequency is half of the output data

rate. When the maximum data rate is set 1 Gbps, the SLVS output clock is 500 MHz. Since the sensor is

a symmetric architecture, half of SLVS channels are located on the top- and bottom-side of the sensor. One

clock at either side is used by the reciever on the FPGA to deserialize the data.
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The SLVS block could provide a voltage swing of 200 mV on a 100 Ω load and a common-mode voltage

of 200 mV . So, the differential voltage is, therefore, 400 mV as depicted in Figure 4.58. The output current

is 2 mA with power consumption at the load of 0.4 mW . The layout of a 12-bit header, a serializer block,

I/O pads, and SLVS drivers is shown in Figure 4.59.

Figure 4.58: Single-end, differential, common-mode outputs of one SLVS block

Figure 4.59: Single SLVS PAD includes a fixed header, serializer and SLVS driver
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4.6 Final Layout and Chip Photograph

Two prototypes of the proposed CIS architecture have been fabricated in CIS 0.18 µm process. Their

specifications are summarized in in Table 4.10. By comparison with On Semiconductor LUPA3000 product

[10], the proposed CIS provides a higher pixel rate and frame rate as shown in Table 4.11.

Table 4.10: Proposed CIS architecture specifications

Process 0.18µm CIS (1P6M)
Pixel Size 20µm× 20µm
Pixel Type 4T radhard Pixel with low image lag

Array dimension
768(H)× 1024(V )
128(H)× 1024(V )

Output format Differential serial digital

Power Supply
3.3V: Pixel array
1.8V: Periphery circuit

Power Consumption -
Master Clock 250 MHz
Package Chip-on-Board

Die size
17.04 mm× 25.125 mm
4.24 mm× 25.125 mm

Camera Board size 5 inch× 2.5 inch
Main FPGA Board size 5 inch× 6 inch

Table 4.11: Specification comparisons of different CISs

CIS
Parameters

Unit
OnSemi

LUPA3000
768 x 1024

CIS
128 x 1024

CIS
Pixel array pixels 2.90E+06 786432 131072
Frame rate fps 485 1.00E+04 1.00E+04

# of LVDS/SLVS - 32 96 16
each LVDS/SLVS

speed
bits/s 4.12E+08 1.00E+09 1.00E+09

# of ADCs - 64 3072 512
ADC speed samples/s 2.58E+07 3.13E+06 3.13E+06

ADC resolution bit 8 10 10
Data Rate bits/s 1.32E+10 9.60E+10 1.60E+10
Pixel rate pix/s 1.41E+09 7.86E+09 1.31E+09

The top layout views were shown in Figure 4.60 and 4.61. The large format CIS has 12 slices, and the

small format CIS has only two slices, left- and right side-slice of the latter one. The pixel array is located

in the middle. The row decoder and driver are located at the left side of the pixel array, and each slice has

the same readout circuitry located on the top and bottom of the pixel array. Each column has four readout

lines, two on the left and two on the right. The proposed readout block is located on both top and bottom

side. The small format CIS has 754 PADs, and the large format CIS has 1114 PADs. The micro-photograph

of these two chips on the same wafer are shown in Figure 4.62.
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Figure 4.60: (a) Block diagram and (b) top layout view of the 128× 1024 imaging chip
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Figure 4.61: (a) Block diagram and (b) top layout view of the 768× 1024 imaging chip

Small-format 

CIS Chip

Large-format 

CIS Chip

8-inch (200 mm) Wafer

Figure 4.62: Die photos for two camera prototypes on a 8-inch wafer
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Chapter 5

CIS Chip Measurement

This chapter focuses on the chip measurement of the small-format CIS. The first section 5.1 of this chapter

briefly describes the hardware design and PCB implementation of the small-format CIS prototype. Next,

Section 5.2 discusses the chip test, including the on-chip master PLL testing in Sub-section 5.2.1, the se-

quencer test in Sub-section 5.2.2, the fixed-pattern data test in Sub-section 5.2.3, the programmable frame

rate test in Sub-section 5.2.4, and the TID radiation test in the final sub-section.

5.1 Hardware Design and PCB Implementation

In order to test the small-format CIS chip with 128×1024 pixels, a total of seven boards — one main FPGA

board and six daughterboards — have been designed and fabricated. The main FPGA board and five of

the daughterboards are used to place the FPGA chip and the other peripheral ICs in order to provide clock

and power supplies for the FPGA. In addition, the peripheral ICs that provide the power supplies, reference

signals, and clock signals for the sensor chip are placed around the mezzanine connectors in order to keep

the signal traces as short as possible. The final daughterboard is used to place the sensor chip. Figure

5.1 depicts the main FPGA board which houses the FPGA chip, the camera link connectors to connect

the frame grabber, the mezzanine connectors to connect the sensor board, six sockets to connect the other

daughterboards to the housing of the DDR3 memory chip, camera link transmitters, power management ICs

and oscillator ICs. The daughterboards are shown in Figure 5.2.

The sensor daughterboard is shown in Figure 5.3. Four SMA connectors are used by the on-chip PLLs

for testing the output clock. Four testing headers, containing 20 pins each, are connected to digital control

signals coming out of the top and bottom sequencers. Due to the fact that the sensor board has 754 pads,

there is no standard package to fit in the sensor chip. The chip-on-board (COB) packaging technology is

used to wire-bond the sensor chip to the daughterboard and most of the bypass capacitors are placed on

the underside of the board. The mezzanine connectors (board-to-board connectors) are used to connect the

sensor daughterboard to the main FPGA board. Two mezzanine connector plugs with 120 pins are placed
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Figure 5.1: The 3D view of the main testing board with FPGA

on the sensor daughterboard, while two mezzanine connector receptacles with 120 pins are placed on the

main FPGA board. Figure 5.4 illustrates the pin assignment of the mezzanine connector plugs.

Table 5.1 lists the major ICs in the PCB boards that test the CIS chip. The peripheral ICs used by

the CIS chip are placed around the mezzanine connectors on the main FPGA board. Both the main FPGA

board and the sensor daughterboard were designed in ten layers, with several power and ground planes,

while the other daughterboards were designed in four layers. The 16 channels of differential SLVS signals

were routed carefully in order to keep their impedance match and placed between the power and ground

planes. Several power domains, including 3.3 V , 1.8 V digital, 1.8 V analog, 1.8 V for the PLL, and 0.4 V

for SLVS I/Os, make designing the PCB more difficult.

5.2 CIS Chip Test

The sensor testing system is illustrated in Figure 5.5. An external frame grabber (iPORT CL-Ten designed

by Pleora Technologies Inc.) is used to transmit raw image data simultaneously from two camera link

connectors on the main FPGA board to the PC through a high-performance GigE Vision 2.0 over a 10-

Gigabit Ethernet (10 GigE) link. As the imaging data is converted to Ethernet packets, the frame grabber

enables the aggregation of the system cable and analysis equipment outside of harsh radiation environments.

The camera system’s firmware can be programmed into the FPGA through the USB-Blaster II ca-

ble by the PC. Two LVDS pairs in the camera link interface are used for Universal Asynchronous Re-

ceiver/Transmitter (UART) communication to and from the FPGA and the frame grabber. Pleora Tech-

nologies Inc. has developed a software application programming interface (API) that can send and receive

series data from the FPGA.
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(a) Camera link transmitter 

board

(b) Boards with power manager ICs and 

oscillator ICs

Figure 5.2: The 3D view of daughterboards with power manager and oscillator ICs for the
FPGA

The chip testbench setup is shown in Figure 5.6. A block diagram of the proposed camera testing system

is illustrated in Figure 5.7. The Serial Peripheral Interface (SPI) protocol is used by the PLL (Si5326), DACs

(Max5318 and AD5624), and the CIS chip. Three different SPI masters are designed in the FPGA firmware,

with each one having an independent first-input first-output (FIFO) block that can store the configuration

files. All of the configuration files are transmitted through the UART from the PC host.

In order to run the camera system, we must follow a three-step process. The first step is to enable the

LDOs to provide the primary power supplies for all the ICs on the boards and to reset every register in the

camera system. The second step is to configure all SPI masters in the FPGA’s firmware to prepare the clock

signal, the reference signals, and settings of the sensor chip. Finally, the third step is to enable the clock

selection block on the sensor chip to run the finite state machine in the on-chip SPI slave for the normal

operation of the CIS chip. In every line time, each SLVS channel then transmits 332 digital bits — 320 bits

of serial data with a 12-bit digital header — to the FPGA, with the data frequency being equal to four times

that of the clock input provided by the Si5326 IC. One frame consists of 256 line-times, and the sensor chip

constantly transmits serial data to the FPGA until the state machine clock is stopped, or the reset signal is
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(a) Top-view

(b) Bottom-view

Figure 5.3: The 3D view of the small-format CIS COB

activated. Although the camera link interface has three different configurations(base, medium, and full) and

the maximum possible throughput is 680 MB/s, this is still insufficient for transmitting 16 SLVS channels,

each with a full speed of 1 Gbps. Therefore, the serial image data has to be converted to parallel data, which

is stored in a DDR3 memory chip. A data recovery block is necessary to detect the 12-bit digital header in

each line time and to store the subsequent effective 320b image data. The image data can then be read out

from the DDR3 memory and can be encoded and transmitted by the DS90CR287MTD ICs based on camera

link protocol. Finally, the complete image can be plotted by the eBUS player in the PC.
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Figure 5.4: The schematic of the mezzanine connector plugs

Table 5.1: Major ICs used in the 2Slice Camera System

Item Quantity
Integrated

Circuit
Function Description

1 3 MAX5318
DACs to provide analog reference voltages

used by column-parallel ADCs
2 1 FPGA 5CEFA9 Intel Cyclone V FPGA
3 6 LT3045 LDOs to provide low-noise power supplies
4 1 IS43TR16128B DDR3 Memory with 2Gbs128M x 16
5 1 LM27761 Negative charge pump to provide -1.5V
6 2 AD5624 12B DAC external reference
7 1 ADR4530ARZ low drift voltage reference
8 1 Si5326 Clock generator to provide clock input for the sensor
9 3 LTC2052 Opamp quad zero drift as buffers
10 1 LTC2368-24 24B ADC for calibrating DAC reference voltage

11 3 DS90CR287MTD
LVDS 28-Bit Channel Link Transmitter

for Camera Link Interface

12 1 EPCQ128
quad-serial configuration (EPCQ) devices.

EPCQ is an in-system programmable NOR flash memory
13 1 ASDMB-12MHz Standard Clock Oscillators 12.000MHZ 50ppm
14 1 SG-210SGB Crystal Oscillator to provide 19.2MHz
15 2 LT3022 LDO to provide 1.1V and 2.5V for the FPGA
16 2 LTM4623 Step-Down DC/DC µModule Regulator
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Figure 5.5: Block diagram of camera testing system
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Figure 5.6: CIS testbench setup
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5.2.1 PLL Test

Two master PLLs, working as a frequency multiplier, have independently differential SLVS outputs. Two

pairs of SMA connectors are used by clock outputs on the board as shown in Figure 5.3. The timing of the

entire sensor is clocked by master PLLs. The top master PLL (on the right side of the figure) provides the

clock signal for the top sequencer block and readout chain, while the bottom master PLL (on the left side

of the figure) provides the clock signal for the bottom sequencer, the row decoders and the bottom readout

chain. Both of these PLLs have differential outputs for testing their functionality.

For sensor testing, the primary step is to validate the functionality of the master PLLs. Figure 5.8

illustrates the testing structure. The ADN4651/ADN4652 evaluation board with dual LVDS channels is

used to connect the PLL outputs to an oscilloscope.

The input reference clock is provided by the Si5326 IC from Silicon Lab, Inc. on the main FPGA board.

Varying the input clock from 20 MHz to 125 MHz, the master PLL can provide a four-times faster clock

output. The testing results that were captured by an oscilloscope have demonstrated its functionality, as

shown in Figures 5.9-5.12. Furthermore, the SLVS transmitter is also validated in a frequency range from

80 MHz to 500 MHz by the PLL testing results.

PLL SLVS
CLKOUT

Camera Chip ADN4651/ADN4652

EVB

Oscilloscope

CLKREF

Figure 5.8: PLL test connection

Input clock frequency  = 20 MHz

Output clock frequency = 80 MHz

Input clock frequency  = 30 MHz

Output clock frequency = 120 MHz

Differential output

Single-ended output

Differential output

Single-ended output

Figure 5.9: PLL output frequency 80 MHz and 120 MHz
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Input clock frequency  = 40 MHz

Output clock frequency = 160 MHz

Input clock frequency  = 50 MHz

Output clock frequency = 200 MHz

Differential output

Single-ended output

Differential output

Single-ended output

Figure 5.10: PLL output frequency 160 MHz and 200 MHz

Input clock frequency  = 70 MHz

Output clock frequency = 280 MHz

Input clock frequency  = 80 MHz

Output clock frequency = 320 MHz

Differential output

Single-ended output

Differential output

Single-ended output

Figure 5.11: PLL output frequency 280 MHz and 320 MHz

Input clock frequency  = 100 MHz

Output clock frequency = 400 MHz

Differential output

Single-ended output

Differential output

Single-ended output

Input clock frequency  = 125 MHz

Output clock frequency = 500 MHz

Figure 5.12: PLL output frequency 400 MHz and 500 MHz
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5.2.2 Sequencer Test

The sequencer is an essential component for the CIS prototype. It can configure the frame time, line time,

and the starting and stopping row to be read out. It also defines the rising and falling edges of control signals

used by column-parallel ADCs, PLLs, row decoders and SLVS transmitters. This means that validation of

the sequencer is the next step after obtaining the correct clock signal.

An 8-to-1 debug multiplexer with 12-bit inputs is added on the CIS chip to test the functionality of the

sequencer, which means each selection can output 12 different control signals that are used inside the CIS

chip. Table 5.2 lists eight selections of control signals that can check sequencer functionality. When the

selection signal is equal to 3′b100, control signals of the row decoders - such as pixel reset, transfer gate, the

beginning of the frame, etc. - can be detected at the outputs. For checking the start and stop row of the

pixel windowing, the selection signal can be set to 3′b110 and 3′b111. The registers used to configure the

programmable DACs in order to provide different bias current for comparators, PGAs, or current sources

in column lines can be detected by setting the selection signal to 3′b011. Other selections show the control

signals of column readout circuitry.

Figures 5.13 and 5.14 shows the simulation results versus the testing results.

Table 5.2: Eight different outputs by the debug multiplexer

Sel<2:0> Debug MUX OUT Function
3’b000 SetBit<11:0> ADC control signals
3’b001 LatchBit<11:0> ADC control signals

3’b010
AmpReset,AmpSample1,AmpSample2,
Clear, Latch, SampleReset, SampleVideo,
EnReadMemA, EnReadMemB, Restore, Comp, Amp

Column peripheral
circuits

3’b011 Sel IADC,Sel IColBias, Sel IPGA
Current sources in the

column lines and
programmable DAC

3’b100
ClkMaster,ClkSlave, SelP1, SelP2, TXP1,
TXP2, RSTP1, RSTP2, DinP1, DinP2,
v sync, h sync

Row decoders

3’b101
AZ5,AZ4, AZ3, AZ2, AZ1,
PixSample2,PixSample1, SetOffset, LatchOffset,
GlobalTX, EnablePE1, EnablePE2

Comparator and SLVS

3’b110 VertWinStart Row start address
3’b111 VertWinStop Row stop address
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Time (us)
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ClkSlave

SelP1

SelP2
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TXP2

RSTP1

v_sync

RSTP2

DinP1

DinP2

h_sync

(a) simulation result

(b) measurement result

Figure 5.13: Measurement results of multiplexer outputs for row decoders matched simulation
results
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(a) simulation result

(b) measurement result

AmpReset

AmpSample1

AmpSample2

Clear

Latch

SampleReset

SampleVideo

EnReadMemB

EnReadMemA

Restore

Comp

Amp

Time (us)

Figure 5.14: Measurement results of multiplexer outputs for ADCs matched simulation results
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5.2.3 Fixed Pattern Test

The CIS prototype is designed to have the capability to be written by fixed-pattern data into memory banks.

In every line time, one SLVS I/O transmits a 12b fixed header, 12′h50F , and a 10b digital data with a total

of 32 times. As shown in Figure 5.15, the header has been correctly detected and aligned with the clock

output at 20 MHz. A fixed-pattern dataset, 10′h3F0, was written into the CIS and is shown in Figure 5.16.

Another example has two different fixed-pattern dataset, 10′h2AA and 10′h10A. The fixed-pattern dataset,

10′h10A, is written to all Membank-A, which can be delivered when EnReadMemA signal is low. The fixed-

pattern dataset, 10′h2AA, is written to all Membank-B, which can be delivered when EnReadMemB signal

is low. As shown in Figures 5.17 - 5.19, the measurement results were matched to the Cadence simulation

results.

Figure 5.15: The fixed 12b digital header in every SLVS channel
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Figure 5.16: One SLVS channel with 12′h50F header and 10′h3F0 fixed pattern data

Fixed-pattern dataset

10'h10A

Fixed-pattern dataset 

10'h2AA

Figure 5.17: One SLVS channel with two different fixed pattern data in two line times
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Fixed-pattern dataset = 10'b 01 0000 1010

LSB MSB

0101000010

(b) Fixed-pattern dataset A measurement result

SLVS_N

SLVS_P

EnReadMemA

EnReadMemB

1111 00001010 01010000100101000010

(a) Fixed-pattern dataset A simulation result

Time (us)

Deliver Membank-A data to SLVS outputs

Write data to Membank-B

Figure 5.18: Fixed pattern data A simulation and measurement

Fixed-pattern dataset = 10'b 10 1010 1010

LSB MSB

0101010101

(b) Fixed pattern data B measurement result(a) Fixed pattern data B simulation result

Time (us)

SLVS_N

SLVS_P

EnReadMemA

EnReadMemB

11110000101001010101010101010101

Deliver Membank-B data to SLVS outputs

Write data to Membank-A

Figure 5.19: Fixed pattern data B simulation and measurement
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5.2.4 Frame Rate Test

The CIS prototype can program the frame rate through three parameters: the frame window size (or region

of interest), the input reference clock, and the size of the counter in the sequencer. The frame window, or

region of interest, is controlled by setting the start and stop addresses of the pixel array. A smaller frame

window has fewer pixels but reduces the frame time for achieving a higher frame rate. The input reference

clock can control the frequency of the counter which is used in the sequencer. The sequencer counter is used

to determine when the rising and falling edges of control signals are used in the row decoders and readout

circuitry. A higher frequency of the input clock can speed up the control timing.

When the input clock is fixed at a certain frequency, the size of the counter can then be used to program

the frame rate. The counter is located in each sequencer and the size of the counter decides the line time.

A single line time is equal to the maximum number of the counter multiplied by the input clock period.

The sequencer has register banks, which can be programmed and written through SPI interface. Every 12b

register stores the actual rising or falling edges of controls signals, and whenever the counter counts are equal

to the register number, the corresponding control signal will go up or down. In other words, a look-up-table

is used to save the rising and falling information of the control signals.

Figure 5.20 depicts the control signals and SLVS data when the CIS operates at 800 fps. The input

clock frequency is 20 MHz and the counter size is 100. Therefore, a single line time can be calculated by

TLT =
1

20MHz
· 100 = 5 µs (5.1)

where TLT is the line time.

The window size is 128 × 1024, which means that the start row address is 12′h000 and the stop row

address is 12′h0FF . Considering the proposed CIS enables to read four rows of pixels at one line time, one

frame time and frame rate can be calculated by

TFT = TLT ×
1024

4
= 1.28 ms

frame rate =
1

TFT
= 781 fps ≈ 800 fps

(5.2)

where TFT is the frame time. Figure 5.21 shows one frame when CIS operates at 800 fps.

In order to increase the frame rate, rewriting the on-chip SPI slave configuration file to change the stop

row address is convenient as there is no need to modify the clock frequency and the size of the counter. For

example, Figure 5.22 illustrates the control signals and SLVS data when the CIS operates at 1600 fps by

setting the stop row address to 12′h03F .

The input clock frequency can also be increased in order to increase the frame rate. Figures 5.23 and

5.24 depict the control signals and SLVS data when the CIS operates at 1, 000 fps by increasing the input

clock frequency to 25 MHz. The line time is changed to 4 µs and the frame time becomes 1.024 ms with a

100 counter size and a full resolution, 128× 1024.
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The highest frame rate has been tested in full resolution is 4, 000 fps which can be achieved by increasing

the input clock frequency to 100 MHz, as shown in Figure 5.25.

The proposed CIS not only leads to a faster frame rate, it can also be configured to obtain a low frame

rate. By using the lowest input clock and maximum counter size, the CIS prototype can operate at 20 fps.

Figure 5.26 shows the control signals and SLVS data when the CIS operates at 20 fps with a counter size

of 4, 095.
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Line time

(a) Control signals provided by sequencer block for row 

decoders and one SLVS data @ LineTime = 5us

Line time

(b) Other control signals provided by sequencer block for 

ADCs and one SLVS data @ LineTime = 5us

Figure 5.20: Control signals when CIS operates at 800 fps
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Frame time = 256 * line time

Pointer-2
Pointer-1

Control signals and one SLVS data in one frame time of 1.28 ms 

(frame rate = 800 fps)

Figure 5.21: CIS operates at 800 fps
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Frame time = 128 * line time

(b) Control signals and one SLVS data in one frame time of 640 us 

(frame rate = 1600 fps)

Pointer-2

Pointer-1

Line time

(a) Control signals provided by sequencer block for row 

decoders and one SLVS data @ LineTime = 5us

Figure 5.22: CIS operates at 1600 fps
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Line time

Line time

(b) Other control signals provided by sequencer block for 

ADCs and one SLVS data @ LineTime = 4us

(a) Other control signals provided by sequencer block for 

ADCs and one SLVS data @ LineTime = 4us

Figure 5.23: Control signals when CIS operates at 1000 fps
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Frame time = 256 * line time

Pointer-2

Pointer-1

Control signals and one SLVS data in one frame time of 1.024 ms 

(frame rate = 1000 fps)

Figure 5.24: CIS operates at 1000 fps
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Frame time = 256 * line time

(b) Control signals and one SLVS data in one frame time of 256 us 

(frame rate = 4000 fps)

Pointer-2

Pointer-1

Line time

(a) Control signals provided by sequencer block for row 

decoders and one SLVS data @ LineTime = 1us

Figure 5.25: CIS operates at 4000 fps
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Frame time = 256 * line time

(b) Control signals and one SLVS data in one frame time of 52.4 ms 

(frame rate  ≈ 20 fps)

Pointer-2

Pointer-1

Line time

(a) Control signals provided by sequencer block for row 

decoders and one SLVS data @ LineTime = 204us

Figure 5.26: CIS operates at 20 fps
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5.2.5 TID Test

The CIS sensor was designed to be more tolerant of TID-induced damages. Each 4T pixel has enclosed-

layout transistors and P-type guardrings for radiation tolerance. The sequencer block and register banks

were placed in an isolated N-well. The readout circuitry uses thin-oxide transistors. The TID test is used

to check the radiation tolerance of the pixel array.

Two TID radiation tests are illustrated in this section, which have been conducted by using Co60 gamma

ray as the source. The dose rate is 259 rad(SiO2) per minute. The radiation test setup is shown in

Figure 5.27. The small-format CIS chip (Device Under Test) was irradiated to a maximum total ionizing

dose level of 125 krad(SiO2) with incremental readings at 1 krad(SiO2), 2 krad(SiO2), 4 krad(SiO2),

6 krad(SiO2), 8 krad(SiO2), 10 krad(SiO2), 15 krad(SiO2), 20 krad(SiO2), 30 krad(SiO2), 50 krad(SiO2),

75 krad(SiO2), 100 krad(SiO2) and 125 krad(SiO2). Electrical testing occurred within five to ten minutes

following the end of each irradiation segment. The pixel array of the DUT was biased by 3.3 V power supply

when putting DUT into the radiation chamber.

(a) bench setup (b) radiation chamber (c) DUT location

Figure 5.27: TID test setup

The first test checks whether the TID induces a leakage current around the reset transistor. The reset

transistor aims to reset the in-pixel storage node (floating diffusion). The TID-induced leakage current can

pull the floating diffusion node up in order to reset the voltage, so that the pixel becomes dark even when

shooting light on pixels. The method is tested by turning on all transfer gates and shooting light on the

pixel array in order to discharge the parasitic capacitors in all diffusion nodes. During a long integration

time or exposure time, the floating diffusion can have the lowest voltage level. After irradiation, if there is

a TID-induced leakage current in each reset transistor, the total number of 128 × 1024 reset transistors in

the whole pixel array could draw a large current from the power supply which can be detected in the power

supply instrument. In addition, the current source in each column line is programmed to be zero to avoid

the TID effects from row select transistors.
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The second test checks whether the TID effect make the row select switch hard to turn off. In the rolling

shutter mode, the proposed CIS prototype selects four rows of pixels at a time to start the pixel readout

operation. If the row select switches are affected by the TID, they are either turned on at the wrong time,

or worse, remain on constantly. The testing method involves turning on the reset transistors permanently

and turning off the transfer gates and row select switches. Under conditions of no light, the pixel array

should consume a constant power supply. After irradiation, if there is a TID-induced leakage current in each

row select transistor, the total number of 128× 4 = 512 column lines in the whole pixel array could show a

current flowing. Also, the current source in each column line is programmed to be 20 µA.

The test results are shown in Figure 5.28. The current drawn from the 3.3 V power supply in both tests

has almost remained unchanged in the TID dose, varying from 1 krad(SiO2) to 125 krad(SiO2). During

every electrical testing, the globalTX signal - which turns on all transfer gates in the pixel array - could

be detected in the debug multiplexer output, which means the sequencer was working properly under the

radiation environment. Furthermore, after finishing the radiation test, the DUT can operate normally to

detect the correct fixed-pattern test in the lab during the 24-hour annealing period.
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Figure 5.28: TID test results
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation proposed the design of a novel high-speed CMOS image sensor architecture for a radhard

mega-pixel array. Without using the 3D-stack method or other costly techniques, the camera-on-a-chip

(COC) architecture developed an innovative quadruple column-parallel readout (QCPRO) scheme to use a

standard 0.18 µm CMOS process to achieve over 10, 000 fps frame rate in one million pixel array. For medical

and scientific applications, the proposed CIS also developed a radhard pixel cell by using the physical design

techniques of enclosed geometry and P-type guardrings. The additional programmable feature of the frame

rate further extends the applications of the proposed CIS camera. Furthermore, the dissertation described

the development of the entire CMOS camera system and measurement methods to test the system.

Two CIS prototypes with a 20 µm-pitch radhard 4T pixel architecture were designed, laid out, and

fabricated using a 180 nm CIS process. They use the same proposed high-speed architecture and enable to

provide complete digital input control and digital pixel data. The sensor architecture is symmetrical and

is divided into two functionally independent blocks with two identical sets of pins for the top and bottom

halves. The power and control signals were duplicated for both top and bottom readout circuitry. Several

techniques, such as time interleaving, quadruple parallel reading, and digital ping-pong data storing, were

used to maximize the CMOS imager’s frame rate. Moreover, the proposed CIS camera used radiation-

hardening-by-design (RHBD) techniques to improve its TID tolerance.

Separate power supplies were used for each block inside the chip, and power supplies with three different

primary voltage values were used in the sensor. The 3.3 V power supply is used by the thick-oxide MOSFETs

in the pixel array and row buffers. The 1.8 V power supply is used by the peripheral circuits including

sequencer block, row decoders, readout chain, and PLLs. In contrast, the 0.4 V power supply is only used

by the SLVS drivers. All subcircuit blocks including sequencer, row decoders, amplifiers, PLLs, and SLVS

I/Os were designed, simulated, laid out, and most importantly validated by the silicon testing results. The

column readout circuitry is well designed in a pixel pitch that achieves a fast-parallel readout process. The
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scheme was clarified by the noise analysis of the proposed readout chain.

Spatial distortion is a significant concern since the CIS is operated at the rolling shutter. Fortunately,

the CIS architecture mitigates distortion by reading out four rows of pixels at each line time. Also, the

distortion is less likely when relatively small objects are moving at a rate that is being over-sampled by a

high frame rate.

Customized camera hardware system with commercial off-the-shelf (COTS) FPGA, AD/DA convert-

ers, power manager and oscillator ICs were designed, while seven different PCB boards were developed and

fabricated. The complex firmware design was developed with radhard test consideration. Different communi-

cation protocols were involved in the firmware development process, including camera link, SPI, and UART.

The small-format CIS prototype was validated by the results of the measurements. The CIS prototype with

128× 1024 pixels has been shown to have a programmable frame rate from 20 fps to 4, 000 fps for a broad

range of applications including high frame rate and long exposure time. The functionalities of the sequencer

and PLLs were validated by operating the clock frequency ranging from 20 MHz to 125 MHz. Furthermore,

the TID radiation test with biased condition illustrated the CIS working properly up to 125 krad(SiO2) total

dose level.
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6.2 Future Work

High-speed CISs with radiation hardness are becoming necessary in various scientific applications. In order

to better characterize the small-format CIS chip, an optimized testing boards will be fabricated and fewer

bondwires will be connected to the CIS daughterboard in order to keep the COB service from shorting

issues in adjacent pads. The pixel testing structure will be activated to characterize the pixel performance.

Meanwhile, an interposer board will be designed to connect the CIS daughter board to the Xilinx Spartan-6

FPGA SP605 evaluation board through an FMC-LPC expansion connector. The data recovery and de-

serializer blocks will be developed in Xilinx FPGA and the captured images will be displayed on the screen

through a DIV or VGA connector. The standard EMVA 1288 will be used to measure and present the

specifications for the proposed camera system.

Furthermore, the proposed CIS architecture has plenty of room for optimization. The innovations can

be made in different aspects:

• Initially, the number of pads need to be reduced. These two CIS prototypes have 754 and 1,114

pads, respectively. No standard package would currently meet this requirement. Although the COB

technique can bond wires to connect to the bare sensor die on FR4 substrate, a great deal of pad

number and small pad pitch make the PCB assembly service costly and challenging. Therefore, the

next spin will begin by focusing on choosing a standard package such as PGA with less than 400 pins

to limit the padring.

• The ADC number is another important concern. Four ADCs per column required a 10 µm layout pitch

to make the ADC suitable for the proposed high-speed CIS architecture. However, this layout pitch

also limits the performance of a single ADC. One solution is to add more parallel analog front-end

blocks to achieve multiple sampling operations. Another solution is to implement several redundant

cycles in the SAR ADCs to increase the SNR without increasing the layout area. The third one is

to use a different type of ADC, such as the single-slope or multi-slope ADC architecture, for a better

trade-off between the number of ADCs and their conversion speed.

• Finally, the radhard pixel can be optimized for improving radiation tolerance. For example, the

peripheral of the PPD can be covered by the field-gate, which was proven to be useful for reducing the

TID effect in photodiodes. In addition, the 4T pixel can be replaced by 5T pixel to implement global

shutter and rolling shutter operations in the same CIS chip for more applications.

150



Bibliography

[1] J. Nakamura, Image sensors and signal processing for digital still cameras. CRC press, 2016.

[2] M. Technology, “The evolution of digital imaging: From ccd to cmos - a micron white paper,” 2006.

[3] A. W. Harzing, “Publish or perish.” available from https://harzing.com/resources/publish-or-perish.

[4] E. R. Fossum, “Active pixel sensors - are ccd’s dinosaurs,” 1993.

[5] E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Transactions on Electron

Devices, vol. 44, pp. 1689–1698, Oct. 1997.

[6] Y. Oike, K. Akiyama, L. D. Hung, W. Niitsuma, A. Kato, M. Sato, Y. Kato, W. Nakamura, H. Shi-

roshita, Y. Sakano, Y. Kitano, T. Nakamura, T. Toyama, H. Iwamoto, and T. Ezaki, “8.3 m-pixel

480-fps global-shutter cmos image sensor with gain-adaptive column adcs and chip-on-chip stacked

integration,” IEEE Journal of Solid-State Circuits, vol. 52, pp. 985–993, April 2017.

[7] T. Takahashi, Y. Kaji, Y. Tsukuda, S. Futami, K. Hanzawa, T. Yamauchi, P. W. Wong, F. Brady,

P. Holden, T. Ayers, K. Mizuta, S. Ohki, K. Tatani, T. Nagano, H. Wakabayashi, and Y. Nitta, “A

4.1mpix 280fps stacked CMOS image sensor with array-parallel ADC architecture for region control,”

in Proc. Symp. VLSI Circuits, pp. C244–C245, June 2017.

[8] T. Arai, T. Yasue, K. Kitamura, H. Shimamoto, T. Kosugi, S. Jun, S. Aoyama, M. C. Hsu, Y. Ya-

mashita, H. Sumi, and S. Kawahito, “A 1.1um 33mpixel 240fps 3D-stacked CMOS image sensor

with 3-stage cyclic-based analog-to-digital converters,” in Proc. IEEE Int. Solid-State Circuits Conf.

(ISSCC), pp. 126–128, Jan. 2016.

[9] K. Akiyama, Y. Oike, Y. Kitano, J. Fjimagari, W. Satoru, Y. Sakano, T. Toyama, H. Iwamoto,

T. Ezaki, T. Nakamura, T. Imaizumi, and N. Yasuhiro, “A front-illuminated stacked global-shutter

cmos image sensor with multiple chip-on-chip integration,” in Proc. IEEE Int. 3D Systems Integration

Conf. (3DIC), pp. 1–3, Nov. 2016.

[10] OnSemiconductor, “Lupa3000,3megapixel high speed cmos image sensor,” tech. rep., OnSemiconduc-

tor, 2016.

151



[11] S. Okura, O. Nishikido, Y. Sadanaga, Y. Kosaka, N. Araki, K. Ueda, and F. Morishita, “A 3.7 m-pixel

1300-fps cmos image sensor with 5.0 g-pixel/s high-speed readout circuit.,” J. Solid-State Circuits,

vol. 50, no. 4, pp. 1016–1024, 2015.

[12] D. Kim, J. Bae, and M. Song, “A high speed cmos image sensor with a novel digital correlated double

sampling and a differential difference amplifier,” Sensors, vol. 15, no. 3, pp. 5081–5095, 2015.

[13] Y. Zhou, Z. Cao, Y. Han, Q. Li, C. Shi, R. Dou, Q. Qin, J. Liu, and N. Wu, “A low power global

shutter pixel with extended fd voltage swing range for large format high speed cmos image sensor,”

Science China Information Sciences, vol. 58, no. 4, pp. 1–10, 2015.

[14] S. Machida, S. Shishido, T. Tokuhara, M. Yanagida, T. Yamada, M. Izuchi, Y. Sato, Y. Miyake,

M. Nakata, M. Murakami, M. Harada, and Y. Inoue, “A 2.1-mpixel organic film-stacked rgb-IR image

sensor with electrically controllable IR sensitivity,” IEEE Journal of Solid-State Circuits, vol. 53,

pp. 229–235, Jan. 2018.

[15] A. Suzuki, N. Shimamura, T. Kainuma, N. Kawazu, C. Okada, T. Oka, K. Koiso, A. Masagaki, Y. Ya-

gasaki, S. Gonoi, T. Ichikawa, M. Mizuno, T. Sugioka, T. Morikawa, Y. Inada, and H. Wakabayashi,

“A 1/1.7-inch 20mpixel back-illuminated stacked CMOS image sensor for new imaging applications,”

in Proc. IEEE Int. Solid-State Circuits Conf. - (ISSCC) Digest of Technical Papers, pp. 1–3, Feb.

2015.

[16] R. Funatsu, S. Huang, T. Yamashita, K. Stevulak, J. Rysinski, D. Estrada, S. Yan, T. Soeno, T. Naka-

mura, T. Hayashida, H. Shimamoto, and B. Mansoorian, “133mpixel 60fps CMOS image sensor with

32-column shared high-speed column-parallel SAR adcs,” in Proc. IEEE Int. Solid-State Circuits Conf.

- (ISSCC) Digest of Technical Papers, pp. 1–3, Feb. 2015.

[17] C. S. Hong, K. Palle, T. Bao, V. Wang, Y. Fong, W. Choi, K.-B. Cho, and R. Panicacci, “High-speed,

high sensitivity 25 mega pixel cmos image sensor with column parallel 12 bit hybrid adc architecture,”

2015 International Image Sensor Workshop, 2015.

[18] T. Geurts, T. Cools, C. Esquenet, R. Sankhe, A. Prathipati, M. R. E. Syam, A. B. Dayalu, V. P. R.

Gaddam, and O. Semiconductor, “A 25 mpixel, 80 fps, cmos imager with an in-pixel-cds global shutter

pixel,” in Int. Image Sensor Workshop (IISW), 2015.

[19] I. Insights, “Cmos image sensors sales stay on record-breaking pace,” resreport, IC Insights, Inc., 05

2018.

[20] Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo,

Y. Kondo, and S. Sugawa, “A global-shutter CMOS image sensor with readout speed of 1-Tpixel/s

burst and 780-mpixel/s continuous,” IEEE Journal of Solid-State Circuits, vol. 48, pp. 329–338, Jan.

2013.

152



[21] B. Cremers, M. Innocent, C. Luypaert, J. Compiet, I. C. Mudegowdar, C. Esquenet, G. Chapinal,

W. Vroom, T. Blanchaert, T. Cools, et al., “A 5 megapixel, 1000 fps cmos image sensor with high

dynamic range and 14-bit a/d converters,” in 2013 Int. Image Sensor Workshop, 2013.

[22] R. Xu, B. Liu, and J. Yuan, “A 1500 fps highly sensitive 256 , times,256 CMOS imaging sensor with

in-pixel calibration,” IEEE Journal of Solid-State Circuits, vol. 47, pp. 1408–1418, June 2012.

[23] T. Watabe, K. Kitamura, T. Sawamoto, T. Kosugi, T. Akahori, T. Iida, K. Isobe, T. Watanabe,

H. Shimamoto, H. Ohtake, et al., “A 33mpixel 120fps cmos image sensor using 12b column-parallel

pipelined cyclic adcs,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012

IEEE International, pp. 388–390, IEEE, 2012.

[24] J. Bogaerts, “High speed 36 gbps 12 mpixel global pipelined shutter cmos image sensor withcds,” in

Proc. 2011 International Image Sensor Workshop, pp. 335–338, 2011.

[25] Y. Chae, J. Cheon, S. Lim, M. Kwon, K. Yoo, W. Jung, D.-H. Lee, S. Ham, and G. Han, “A 2.1

m pixels, 120 frame/s cmos image sensor with column-parallel delta-sigma adc architecture,” IEEE

Journal of Solid-State Circuits, vol. 46, no. 1, pp. 236–247, 2011.

[26] T. Toyama, K. Mishina, H. Tsuchiya, T. Ichikawa, H. Iwaki, Y. Gendai, H. Murakami, K. Takamiya,

H. Shiroshita, Y. Muramatsu, et al., “A 17.7 mpixel 120fps cmos image sensor with 34.8 gb/s readout,”

in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International,

pp. 420–422, IEEE, 2011.

[27] S. Lim, J. Lee, D. Kim, and G. Han, “A high-speed cmos image sensor with column-parallel two-step

single-slope adcs,” IEEE Transactions on Electron Devices, vol. 56, pp. 393–398, Mar. 2009.

[28] G. Meynants, G. Lepage, J. Bogaerts, G. Vanhorebeek, and X. Wang, “Limitations to the frame rate

of high speed image sensors,” in Proc. Int. Image Sensor Workshop, pp. 153–156, 2009.

[29] B. Cremers, M. Agarwal, T. Walschap, R. Singh, and T. Geurts, “A high speed pipelined snapshot

cmos image sensor with 6.4 gpixel/s data rate,” in Proc. 2009 International Image Sensor Workshop

P, vol. 9, 2009.

[30] M. Furuta, Y. Nishikawa, T. Inoue, and S. Kawahito, “A high-speed, high-sensitivity digital cmos

image sensor with a global shutter and 12-bit column-parallel cyclic a/d converters,” IEEE Journal of

Solid-State Circuits, vol. 42, pp. 766–774, Apr. 2007.

[31] Y. Nishikawa, S. Kawahito, M. Furuta, and T. Tamura, “A high-speed cmos image sensor with on-chip

parallel image compression circuits,” in Proc. IEEE Custom Integrated Circuits Conf, pp. 833–836,

Sept. 2007.

153



[32] A. I. Krymski and N. Tu, “A 9-V/lux-s 5000-frames/s 512 x 512 cmos sensor,” IEEE Transactions on

Electron Devices, vol. 50, pp. 136–143, Jan. 2003.

[33] S. Lauxtermann, G. Israel, P. Seitz, H. Bloss, J. Ernst, H. Firla, and S. Gick, “A mega-pixel high

speed cmos imager with sustainable gigapixel/sec readout rate,” in IEEE Workshop on Charge-Coupled

Devices and Advanced Image Sensors, 2001.

[34] S. Kleinfelder, S. Lim, X. Liu, and A. El Gamal, “A 10000 frames/s cmos digital pixel sensor,” IEEE

Journal of Solid-State Circuits, vol. 36, no. 12, pp. 2049–2059, 2001.

[35] N. Stevanovic, M. Hillebrand, B. J. Hosticka, and A. Teuner, “A cmos image sensor for high-speed

imaging,” in Proc. IEEE Int. Solid-State Circuits Conf.. Digest of Technical Papers, pp. 104–105, Feb.

2000.

[36] A. Krymski, D. V. Blerkom, A. Andersson, N. Bock, B. Mansoorian, and E. R. Fossum, “A high speed,

500 frames/s, 1024×1024 CMOS active pixel sensor,” in Proc. Symp. VLSI Circuits. Digest of Papers

(IEEE Cat. No.99CH36326), pp. 137–138, June 1999.

[37] N. Stevanovic, M. Hillebrand, B. J. Hosticka, U. Iurgel, and A. Teuner, “A high speed camera system

based on an image sensor in standard CMOS technology,” in Proc. IEEE Int. Symp. Circuits and

Systems ISCAS ’99, vol. 5, pp. 148–151 vol.5, 1999.

[38] G. Yang, O. Yadid-Pecht, C. Wrigley, and B. Pain, “A snap-shot cmos active pixel imager for low-noise,

high-speed imaging,” in Electron Devices Meeting, 1998. IEDM’98. Technical Digest., International,

pp. 45–48, IEEE, 1998.

[39] C. H. Aw and B. Wooley, “A 128/spl times/128-pixel standard-cmos image sensor with electronic

shutter,” IEEE Journal of Solid-State Circuits, vol. 31, no. 12, pp. 1922–1930, 1996.

[40] S.-F. Yeh, K.-Y. Chou, H.-Y. Tu, C. Y.-P. Chao, and F.-L. Hsueh, “A 0.66 e rms- temporal-readout-

noise 3-d-stacked cmos image sensor with conditional correlated multiple sampling technique,” IEEE

Journal of Solid-State Circuits, vol. 53, no. 2, pp. 527–537, 2018.

[41] T. Takahashi, Y. Kaji, Y. Tsukuda, S. Futami, K. Hanzawa, T. Yamauchi, P. W. Wong, F. T. Brady,

P. Holden, T. Ayers, et al., “A stacked cmos image sensor with array-parallel adc architecture,” IEEE

Journal of Solid-State Circuits, vol. 53, no. 4, pp. 1061–1070, 2018.

[42] O. Kumagai, A. Niwa, K. Hanzawa, H. Kato, S. Futami, T. Ohyama, T. Imoto, M. Nakamizo, H. Mu-

rakami, T. Nishino, et al., “A 1/4-inch 3.9 mpixel low-power event-driven back-illuminated stacked

cmos image sensor,” in Solid-State Circuits Conference-(ISSCC), 2018 IEEE International, pp. 86–88,

IEEE, 2018.

154



[43] P.-S. Chou, C.-H. Chang, M. M. Mhala, C. C.-M. Liu, C. Y.-P. Chao, C.-Y. Huang, H. Tu, T. Wu,

S.-F. Yeh, S. Takahashi, et al., “A 1.1 µm-pitch 13.5 mpixel 3d-stacked cmos image sensor featuring

230fps full-high-definition and 514fps high-definition videos by reading 2 or 3 rows simultaneously using

a column-switching matrix,” in Solid-State Circuits Conference-(ISSCC), 2018 IEEE International,

pp. 88–90, IEEE, 2018.

[44] S.-H. Kim, H. Shin, Y. Jeong, J.-H. Lee, J. Choi, and J.-H. Chun, “A 12-gb/s stacked dual-channel

interface for cmos image sensor systems,” Sensors, vol. 18, no. 8, p. 2709, 2018.

[45] Y. Kim, W. Choi, D. Park, H. Jeoung, B. Kim, Y. Oh, S. Oh, B. Park, E. Kim, Y. Lee, et al., “A

1/2.8-inch 24mpixel cmos image sensor with 0.9 µm unit pixels separated by full-depth deep-trench

isolation,” in Solid-State Circuits Conference-(ISSCC), 2018 IEEE International, pp. 84–86, IEEE,

2018.

[46] T. Haruta, T. Nakajima, J. Hashizume, T. Umebayashi, H. Takahashi, K. Taniguchi, M. Kuroda,

H. Sumihiro, K. Enoki, T. Yamasaki, et al., “4.6 a 1/2.3 inch 20mpixel 3-layer stacked cmos image

sensor with dram,” in Solid-State Circuits Conference (ISSCC), 2017 IEEE International, pp. 76–77,

IEEE, 2017.

[47] M. Sakakibara, K. Ogawa, S. Sakai, Y. Tochigi, K. Honda, H. Kikuchi, T. Wada, Y. Kamikubo,

T. Miura, M. Nakamizo, et al., “A 6.9-µm pixel-pitch back-illuminated global shutter cmos image

sensor with pixel-parallel 14-bit subthreshold adc,” IEEE Journal of Solid-State Circuits, no. 99, pp. 1–

9, 2018.

[48] T. G. Etoh, V. T. S. Dao, K. Shimonomura, E. Charbon, C. Zhang, Y. Kamakura, and T. Matsuoka,

“Toward 1gfps: Evolution of ultra-high-speed image sensors -isis, bsi, multi-collection gates, and 3D-

stacking-,” in Proc. IEEE Int. Electron Devices Meeting, pp. 10.3.1–10.3.4, Dec. 2014.

[49] Y. Zhou, Z. Cao, Q. Qin, Q. Li, C. Shi, and N. Wu, “A high speed 1000 fps cmos image sensor with

low noise global shutter pixels,” Science China Information Sciences, vol. 57, no. 4, pp. 1–8, 2014.

[50] A. I. Krymski, N. E. Bock, N. Tu, D. V. Blerkom, and E. R. Fossum, “A high-speed, 240-frames/s,

4.1-mpixel CMOS sensor,” IEEE Transactions on Electron Devices, vol. 50, pp. 130–135, Jan. 2003.

[51] A. El Gamal, D. X. Yang, and B. A. Fowler, “Pixel-level processing: why, what, and how?,” in

Sensors, Cameras, and Applications for Digital Photography, vol. 3650, pp. 2–14, International Society

for Optics and Photonics, 1999.

[52] Y. Kagawa, N. Fujii, K. Aoyagi, Y. Kobayashi, S. Nishi, N. Todaka, S. Takeshita, J. Taura, H. Taka-

hashi, Y. Nishimura, et al., “Novel stacked cmos image sensor with advanced cu2cu hybrid bonding,”

in Electron Devices Meeting (IEDM), 2016 IEEE International, pp. 8–4, IEEE, 2016.

155



[53] K. Nishimura, S. Shishido, Y. Miyake, M. Yanagida, Y. Satou, M. Shouho, H. Kanehara, R. Sakaida,

Y. Sato, J. Hirase, et al., “An 8k4k-resolution 60fps 450ke–saturation-signal organic-photoconductive-

film global-shutter cmos image sensor with in-pixel noise canceller,” in Solid-State Circuits Conference-

(ISSCC), 2018 IEEE International, pp. 82–84, IEEE, 2018.

[54] S.-I. Hwang, J.-H. Chung, H.-J. Kim, I.-H. Jang, M.-J. Seo, S.-H. Cho, H. Kang, M. Kwon, and S.-T.

Ryu, “A 2.7-m pixels 64-mw cmos image sensor with multicolumn-parallel noise-shaping sar adcs,”

IEEE Transactions on Electron Devices, vol. 65, no. 3, pp. 1119–1126, 2018.

[55] M. Kobayashi, Y. Onuki, K. Kawabata, H. Sekine, T. Tsuboi, Y. Matsuno, H. Takahashi, T. Koizumi,

K. Sakurai, H. Yuzurihara, et al., “4.5 a 1.8 e rms- temporal noise over 110db dynamic range 3.4

µm pixel pitch global shutter cmos image sensor with dual-gain amplifiers, ss-adc and multiple-

accumulation shutter,” in Solid-State Circuits Conference (ISSCC), 2017 IEEE International, pp. 74–

75, IEEE, 2017.

[56] K. Yasutomi, M. Seo, M. Kamoto, N. Teranishi, and S. Kawahito, “A 0.61 e-noise global shutter cmos

image sensor with two-stage charge transfer pixels,” in VLSI Circuits, 2017 Symposium on, pp. C248–

C249, IEEE, 2017.

[57] C. Ma, Y. Liu, Y. Li, Q. Zhou, X. Wang, and Y. Chang, “A 4-m pixel high dynamic range, low-noise

cmos image sensor with low-power counting adc,” IEEE Transactions on Electron Devices, vol. 64,

no. 8, pp. 3199–3205, 2017.

[58] K. Kawabata, M. Kobayashi, Y. Onuki, H. Sekine, T. Tsuboi, Y. Matsuno, H. Takahashi, S. Inoue,

and T. Ichikawa, “A 1.8 e- temporal noise over 90db dynamic range 4k2k super 35mm format seamless

global shutter cmos image sensor with multiple accumulation shutter technology,” in Electron Devices

Meeting (IEDM), 2016 IEEE International, pp. 8–6, IEEE, 2016.

[59] H. Totsuka, T. Tsuboi, T. Muto, D. Yoshida, Y. Matsuno, M. Ohmura, H. Takahashi, K. Saku-

rai, T. Ichikawa, H. Yuzurihara, et al., “An aps-h-size 250mpixel cmos image sensor using column

single-slope adcs with dual-gain amplifiers,” in Solid-State Circuits Conference (ISSCC), 2016 IEEE

International, pp. 116–117, IEEE, 2016.

[60] T. Kondo, N. Takazawa, Y. Takemoto, M. Tsukimura, H. Saito, H. Kato, J. Aoki, K. Kobayashi,

S. Suzuki, Y. Gomi, et al., “3-d-stacked 16-mpixel global shutter cmos image sensor using reliable

in-pixel four million microbump interconnections with 7.6-um pitch,” IEEE Transactions on Electron

Devices, vol. 63, no. 1, pp. 128–137, 2016.

[61] J. Bogaerts, R. Lafaille, M. Borremans, J. Guo, B. Ceulemans, G. Meynants, N. Sarhangnejad, G. Ar-

sinte, V. Statescu, and S. van der Groen, “105× 65mm2 391mpixel cmos image sensor with¿ 78db

156



dynamic range for airborne mapping applications,” in Solid-State Circuits Conference (ISSCC), 2016

IEEE International, pp. 114–115, IEEE, 2016.

[62] C. C.-M. Liu, M. M. Mhala, C.-H. Chang, H. Tu, P.-S. Chou, C. Chao, and F.-L. Hsueh, “A 1.5 v

33mpixel 3d-stacked cmos image sensor with negative substrate bias,” in Solid-State Circuits Confer-

ence (ISSCC), 2016 IEEE International, pp. 124–125, IEEE, 2016.

[63] S. Shishido, Y. Miyake, Y. Sato, T. Tamaki, N. Shimasaki, Y. Sato, M. Murakami, and Y. Inoue,

“210ke- saturation signal 3µm-pixel variable-sensitivity global-shutter organic photoconductive image

sensor for motion capture,” in Solid-State Circuits Conference (ISSCC), 2016 IEEE International,

pp. 112–113, IEEE, 2016.

[64] S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Ka-

sai, K. Fukumoto, T. Wakano, K. Inoue, H. Takahashi, T. Nagano, Y. Nitta, T. Hirayama, and

N. Fukushima, “A 1/4-inch 8mpixel back-illuminated stacked CMOS image sensor,” in Proc. IEEE

Int. Solid-State Circuits Conf. Digest of Technical Papers, pp. 484–485, Feb. 2013.

[65] H. Honda, S. Osawa, M. Shoda, E. Pages, T. Sato, N. Karasawa, B. Leichner, J. Schoper, E. S.

Gattuso, D. Pates, J. Brooks, S. Johnson, and I. Takayanagi, “A 1-inch optical format, 14.2m-pixel,

80fps CMOS image sensor with a pipelined pixel reset and readout operation,” in Proc. Symp. VLSI

Circuits, pp. C4–C5, June 2013.

[66] K. Kitamura, T. Watabe, T. Sawamoto, T. Kosugi, T. Akahori, T. Iida, K. Isobe, T. Watanabe, H. Shi-

mamoto, H. Ohtake, S. Aoyama, S. Kawahito, and N. Egami, “A 33-megapixel 120-Frames-per-second

2.5-Watt CMOS image sensor with column-parallel two-stage cyclic analog-to-digital converters,” IEEE

Transactions on Electron Devices, vol. 59, pp. 3426–3433, Dec. 2012.

[67] T. Toyama, K. Mishina, H. Tsuchiya, T. Ichikawa, H. Iwaki, Y. Gendai, H. Murakami, K. Takamiya,

H. Shiroshita, Y. Muramatsu, and T. Furusawa, “A 17.7mpixel 120fps CMOS image sensor with

34.8Gb/s readout,” in Proc. IEEE Int. Solid-State Circuits Conf, pp. 420–422, Feb. 2011.

[68] S. Lim, J. Cheon, Y. Chae, W. Jung, D. H. Lee, M. Kwon, K. Yoo, S. Ham, and G. Han, “A 240-

frames/s 2.1-mpixel cmos image sensor with column-shared cyclic adcs,” IEEE Journal of Solid-State

Circuits, vol. 46, pp. 2073–2083, Sept. 2011.

[69] C. Esquenet, J. Compiet, T. Blanchaert, T. Geurts, and J. Decupere, “A 26.2 mpixel, 74fps, global

shutter cmos imager with 20gb/s interface for multi object monitoring,” in Proc. 2011 International

Image Sensor Workshop, pp. 332–334, 2011.

[70] Y. Chae, J. Cheon, S. Lim, D. Lee, M. Kwon, K. Yoo, W. Jung, D. H. Lee, S. Ham, and G. Han,

“A 2.1mpixel 120frame/s CMOS image sensor with column-parallel ∆ Σ ADC architecture,” in Proc.

IEEE Int. Solid-State Circuits Conf. - (ISSCC), pp. 394–395, Feb. 2010.

157



[71] H. Wakabayashi, K. Yamaguchi, M. Okano, S. Kuramochi, O. Kumagai, S. Sakane, M. Ito, M. Hatano,

M. Kikuchi, Y. Yamagata, et al., “A 1/2.3-inch 10.3 mpixel 50frame/s back-illuminated cmos image

sensor,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE Interna-

tional, pp. 410–411, IEEE, 2010.

[72] S. Matsuo, T. J. Bales, M. Shoda, S. Osawa, K. Kawamura, A. Andersson, M. Haque, H. Honda,

B. Almond, Y. Mo, J. Gleason, T. Chow, and I. Takayanagi, “8.9-megapixel video image sensor with

14-b column-parallel sa-ADC,” IEEE Transactions on Electron Devices, vol. 56, pp. 2380–2389, Nov.

2009.

[73] K. B. Cho, C. Lee, S. Eikedal, A. Baum, J. Jiang, C. Xu, X. Fan, and R. Kauffman, “A 1/2.5 inch

8.1mpixel CMOS image sensor for digital cameras,” in Proc. IEEE Int. Solid-State Circuits Conf..

Digest of Technical Papers, pp. 508–618, Feb. 2007.

[74] S. Yoshihara, Y. Nitta, M. Kikuchi, K. Koseki, Y. Ito, Y. Inada, S. Kuramochi, H. Wakabayashi,

M. Okano, H. Kuriyama, J. Inutsuka, A. Tajima, T. Nakajima, Y. Kudoh, F. Koga, Y. Kasagi,

S. Watanabe, and T. Nomoto, “A 1/1.8-inch 6.4 mpixel 60 frames/s CMOS image sensor with seamless

mode change,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2998–3006, Dec. 2006.

[75] I. Takayanagi, M. Shirakawa, K. Mitani, M. Sugawara, S. Iversen, J. Moholt, J. Nakamura, and E. R.

Fossum, “A 1.25-inch 60-frames/s 8.3-m-pixel digital-output CMOS image sensor,” IEEE Journal of

Solid-State Circuits, vol. 40, pp. 2305–2314, Nov. 2005.

[76] M. Mori, M. Katsuno, S. Kasuga, T. Murata, and T. Yamaguchi, “1/4-inch 2-mpixel MOS image

sensor with 1.75 transistors/pixel,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 2426–2430, Dec.

2004.

[77] B. Mansoorian, H.-Y. Yee, S. Huang, and E. Fossum, “A 250 mW, 60 frames/s 1280×720 pixel 9 b

CMOS digital image sensor,” in Proc. IEEE Int. Solid-State Circuits Conf.. Digest of Technical Papers.

ISSCC. First Edition (Cat. No.99CH36278), pp. 312–313, Feb. 1999.

[78] Wikipedia contributors, “Band gap — Wikipedia, the free encyclopedia,” 2018. [Online; accessed

4-December-2018].

[79] O. Yadid-Pecht and R. Etienne-Cummings, CMOS imagers: from phototransduction to image process-

ing. Springer Science & Business Media, 2007.

[80] A. Theuwissen, “CMOS image sensors: State-of-the-art and future perspectives,” in Proc. ESSDERC

2007 - 37th European Solid State Device Research Conf, pp. 21–27, Sept. 2007.

[81] A. Boukhayma, Ultra Low Noise CMOS Image Sensors. PhD thesis, Ecole polytechnique fédérale de

Lausanne (EPFL), 2016.

158



[82] E. R. Fossum, D. B. Hondongwa, et al., “A review of the pinned photodiode for ccd and cmos image

sensors,” IEEE J. Electron Devices Soc., vol. 2, no. 3, pp. 33–43, 2014.

[83] X. Li, MOSFET Modulated Dual Conversion Gain CMOS Image Sensors. PhD thesis, Biose State

University, 2008.

[84] E. R. Fossum et al., “Charge transfer noise and lag in cmos active pixel sensors,” in Proc. 2003 IEEE

Workshop on CCDs and Advanced Image Sensors, Elmau, Bavaria, Germany, pp. 11–13, Citeseer,

2003.

[85] N. B. Zurich, “Ccd versus cmos–has ccd imaging come to an end?,” 2001.

[86] J. S. Lee, R. I. Hornsey, and D. Renshaw, “Analysis of cmos photodiodes. i. quantum efficiency,” IEEE

Transactions on Electron Devices, vol. 50, no. 5, pp. 1233–1238, 2003.

[87] J. S. Lee, R. I. Hornsey, and D. Renshaw, “Analysis of cmos photodiodes. ii. lateral photoresponse,”

IEEE Transactions on electron Devices, vol. 50, no. 5, pp. 1239–1245, 2003.

[88] A. Pelamatti, V. Goiffon, M. Estribeau, P. Cervantes, and P. Magnan, “Estimation and modeling of

the full well capacity in pinned photodiode cmos image sensors,” IEEE Electron Device Letters, vol. 34,

no. 7, pp. 900–902, 2013.

[89] S. Yu, Z. Ping, X. Jiangtao, G. Zhiyuan, and X. Chao, “Full well capacity and quantum efficiency

optimization for small size backside illuminated cmos image pixels with a new photodiode structure,”

Journal of Semiconductors, vol. 33, no. 12, p. 124006, 2012.

[90] R. I. Hornsey, “noise in image sensors.” course notes, 2010.

[91] H. Liqiang, Y. Suying, X. Jiangtao, X. Chao, and G. Zhiyuan, “Analysis of incomplete charge transfer

effects in a cmos image sensor,” Journal of Semiconductors, vol. 34, no. 5, p. 054009, 2013.

[92] L.-E. Bonjour, N. Blanc, and M. Kayal, “Experimental analysis of lag sources in pinned photodiodes,”

IEEE electron device letters, vol. 33, no. 12, pp. 1735–1737, 2012.

[93] J. R. Janesick, Photon transfer. SPIE press San Jose, 2007.

[94] A. Boukhayma, A. Peizerat, and C. Enz, “Temporal readout noise analysis and reduction techniques

for low-light cmos image sensors,” IEEE Transactions on Electron Devices, vol. 63, no. 1, pp. 72–78,

2016.

[95] D. Gardner, “Characterizing digital cameras with the photon transfer curve,” Summit imaging (undated

document supplied by Jake Beverage), 2012.

[96] D. McGrath, S. Tobin, V. Goiffon, P. Magnan, and A. Le Roch, “Dark current limiting mechanisms

in cmos image sensors,” Electronic Imaging, vol. 2018, no. 11, pp. 354–1, 2018.

159



[97] L. Mutuel, “Single event effects mitigation techniques report,” Federal Aviation Administration,

William J. Hughes Technical Center, Aviation Research Division, Atlantic City International Airport,

Final report DOT/FAA/TC-15/62, 2016.

[98] D. Munteanu and J.-L. Autran, “Modeling and simulation of single-event effects in digital devices and

ics,” IEEE Transactions on Nuclear science, vol. 55, no. 4, pp. 1854–1878, 2008.

[99] E. C. Auden, Heavy ion-induced single particle displacement damage in silicon. Vanderbilt University,

2013.

[100] J. R. Srour and J. M. McGarrity, “Radiation effects on microelectronics in space,” Proceedings of the

IEEE, vol. 76, no. 11, pp. 1443–1469, 1988.

[101] F. B. McLean and T. R. Oldham, “Basic mechanisms of radiation effects in electronic materials and

devices,” tech. rep., HARRY DIAMOND LABS ADELPHI MD, 1987.

[102] T. R. Oldham, “Basic mechanisms of tid and ddd response in mos and bipolar microelectronics,”

NSREC Short Course, 2011.

[103] T. Oldham, “Analysis of damage in mos devices for several radiation environments,” IEEE Transactions

on Nuclear Science, vol. 31, no. 6, pp. 1236–1241, 1984.

[104] J. R. Schwank, M. R. Shaneyfelt, D. M. Fleetwood, J. A. Felix, P. E. Dodd, P. Paillet, and V. Ferlet-

Cavrois, “Radiation effects in mos oxides,” IEEE Transactions on Nuclear Science, vol. 55, no. 4,

pp. 1833–1853, 2008.

[105] R. Lacoe et al., “Cmos scaling design principles and hardening-by-design methodologies,” in IEEE

NSREC Short Course, 2003.

[106] T. R. Oldham, Ionizing radiation effects in MOS oxides. World Scientific, 1999.

[107] H. Barnaby, “Total-ionizing-dose effects in modern cmos technologies,” IEEE Transactions on Nuclear

Science, vol. 53, no. 6, pp. 3103–3121, 2006.

[108] M. Shaneyfelt, D. Fleetwood, J. Schwank, and K. Hughes, “Charge yield for cobalt-60 and 10-kev x-ray

irradiations of mos devices,” IEEE transactions on nuclear science, vol. 38, no. 6, pp. 1187–1194, 1991.

[109] S. Manzini and A. Modelli, “Tunneling discharge of trapped holes in silicon dioxide,” in Insulating

Films on Semiconductors, pp. 112–115, Elsevier, 1983.
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