HIGH-SPEED RADHARD MEGA-PIXEL CIS CAMERA FOR HIGH-ENERGY PHYSICS

By

Wenlan Wu

Master of Science - Electrical Engineering
University of Macau
2013

A dissertation submitted in partial fulfillment
of the requirements for the

Doctor of Philosophy - Electrical Engineering

Department of Electrical and Computer Engineering
Howard R. Hughes College of Engineering
The Graduate College

University of Nevada, Las Vegas
December 2019
Copyright 2019 by Wenlan Wu
All Rights Reserved
Dissertation Approval
The Graduate College
The University of Nevada, Las Vegas

This dissertation prepared by

Wenlan Wu

entitled

High-Speed Radhard Megapixel CIS Camera for High-Energy Physics

is approved in partial fulfillment of the requirements for the degree of

Doctor of Philosophy - Electrical Engineering
Department of Electrical and Computer Engineering

R.Jacob Baker, Ph.D.
Examination Committee Chair

Kathryn Hausbeck Korgan, Ph.D.
Graduate College Dean

Peter Stubberud, Ph.D.
Examination Committee Member

Sarah Harris, Ph.D.
Examination Committee Member

David Lee, Ph.D.
Graduate College Faculty Representative
Abstract

This dissertation describes the schematic design, physical layout implementation, system-level hardware with FPGA firmware design, and testing of a camera-on-a-chip with a novel high-speed CMOS image sensor (CIS) architecture developed for a mega-pixel array. The novel features of the design include an innovative quadruple column-parallel readout (QCPRO) scheme with rolling shutter that increases pixel rate, its ability to program the frame rate and to tolerate Total Ionizing Dose effects (TID). Two versions of the architecture, a small (128 × 1,024 pixels) and large (768 × 1,024 pixels) version were designed and fabricated with a custom layout that does not include library parts. The designs achieve a performance of 20 to 4,000 frames per second (fps) and they tolerate up to 125 krad of radiation exposure.

The high-speed CIS architecture proposes and implements a creative quadruple column-parallel readout (QCPRO) scheme to achieve a maximum pixel rate, 10.485 gigapixels/s. The QCPRO scheme consists of four readout blocks per column and to complete four rows of pixels readout process at one line time. Each column-level readout block includes an analog time-interleaving (ATI) sampling circuit, a switched-capacitor programmable gain amplifier (SC-PGA), a 10-bit successive-approximation register (SAR) ADC, two 10-bit memory banks. The column-parallel SAR ADC is area-efficient to be laid out in half of one pixel pitch, 10 µm. The analog ATI sampling circuit has two sample-and-hold circuits. Each sampling circuit can independently complete correlated double sampling (CDS) operation. Furthermore, to deliver over 10^{10} pixel data in one second, a high-speed differential Scalable Low-Voltage Signaling (SLVS) transmitter for every 16 columns is designed to have 1 Gbps/ch at 0.4 V. Two memory banks provide a ping-pong operation: one connecting to the ADC for storing digital data and the other to the SLVS for delivering data to the off-chip FPGA. Therefore, the proposed CIS architecture can achieve 10,000 frames per second for a 1,024 × 1,024 pixel array.

The floor plan of the proposed CIS architecture is symmetrical having one-half of pixel rows to read out on top, and the other half read out on the bottom of the pixel array. The rolling shutter feature with multi-lines readout in parallel and oversampling technique relaxes the image artifacts for capturing fast-moving objects. The CIS camera can provide complete digital input control and digital pixel data output. Many other components are designed and integrated into the proposed CMOS imager, including the Serial Peripheral Interface (SPI), bandgap reference, serializers, phase-locked loops (PLLs), and sequencers with configuration.
registers. Also, the proposed CIS can program the frame rate for wider applications by modifying three parameters: input clock frequency, the region of interest, and the counter size in the sequencer.

The radiation hardening feature is achieved by using the combination of enclosed geometry technique and P-type guardrings in the 0.18 μm CMOS technology. The peripheral circuits use P-type guardrings to cut the TID-induced leakage path between device to device. Each pixel cell is radiation tolerant by using enclosed layout transistors. The pinned photodiode is also used to get low dark current, and correlated double sampling to suppress pixel-level fixed-pattern noise and reset noise. The final pixel cell is laid out in $20 \times 20 \mu m^2$. The total area of the pixel array is $2.56 \times 20.28 \ mm^2$ for low-resolution imager prototype and $15.36 \times 20.28 \ mm^2$ for high-resolution imager prototype.

The entire CIS camera system is developed by the implementation of the hardware and FPGA firmware of the small-format prototype with $128 \times 1,024$ pixels and 754 pads in a $4.24 \times 25.125 \ mm^2$ die area. Different testing methods are also briefly described for different test purposes. Measurement results validate the functionalities of the readout path, sequencer, on-chip PLLs, and the SLVS transmitters. The programmable frame rate feature is also demonstrated by checking the digital control outputs from the sequencer at different frame rates. Furthermore, TID radiation tests proved the pixels can work under 125 krads radiation exposure.
This dissertation is the outcome of my six-year study, research experience at University of Nevada, Las Vegas and Alphacore, Inc.. I would like to take this opportunity to express my gratitude to all the people who have helped me during my Ph.D. study.

First and foremost, I would like to express my sincere gratitude to my advisor, Dr. Russel Jacob Baker, for his patient guidance, endless support, continuous encouragement and constructive suggestions in every aspect throughout these years. I am highly inspired by his wisdom, enthusiasm, and rigorous attitude to work, research, and life. He guided me toward a qualified researcher and a better person. Many thanks for everything he did for me. It is a memorable and honored to be a student under his supervision.

I would like to thank Dr. Sarah Harris, Dr. Peter Stubberud, and Dr. David Lee for serving on my Ph.D. thesis examination committee. Their valuable suggestions and comments are helpful to improve my thesis.

I would like to specially thank Dr. Esko Mikkola for his elaborate suggestions in the radhard chip designs, firmly supporting my research and giving me the great opportunity to work at Alphacore, Inc. I would also like to thank Dr. Bertan Bakkaloglu, Dr. Mika Laiho, Dr. Lloyd Linder, and Dr. Marek Turowski for providing me professional advises and suggestions.

Special thanks to people I work with at UNLV and at Alphacore, Inc., and helped me in different aspects in my six-year study and research. They are (Last name list in alphabetical order) Shadden Abdalla, Phaneendra Bikkina, Laurent Blanquart, Dr. Doohwang Chang, Dr. Grzegorz Chmaj, Matthew Engelman, Fred Garcia, Bryan Kerstetter, Dr. Xiangli Li, Dr. Yiyao Li, Andrew Levy, Dr. Yu Long, Sai Medapuram, Kostas Moutafis, Tang Miao, Golf Nantanapramoth, Dr. Ben Niu, Ted Olivarez, Kimberlee Olson, Dr. Chandarasekaran Ramamurthy, Jennifer Reff, Aangsuman Roy, Dr. Esen Salcin, Claire Tsagkari, Dr. Lixian Tian, Dr. Jun Wu, Liming Xiu, Dr. Chunyu Zhang, Dr. Kehan Zhu, Tong Zhao.

Last but not least, I am deeply grateful to my grandparents, my wife, my parents, my uncle, my brothers and siblings for their unconditional love and support. Their comforts and encouragements give me a hope facing difficulties and failures.
To beloved Wei and my family
Table of Contents

Abstract iii

Acknowledgements v

Table of Contents vii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Overview of Imaging Sensors 1
1.2 High-speed High-resolution CMOS Image Sensor 7
1.3 Radhard CMOS Image Sensor 12
1.4 Motivations .. 15
1.5 Dissertation Organization 16

2 Overview of CMOS Image Sensors and Radiation Effects 17

2.1 Light-to-Electric Conversion 17
2.2 Photodetectors .. 19
2.2.1 Photodiode ... 19
2.2.2 Pinned Photodiode 21
2.3 4T Active Pixel Architecture 23
2.4 Characterization of CMOS Image Sensors 24
2.4.1 Fill Factor .. 24
2.4.2 Quantum Efficiency 25
2.4.3 Full Well Capacity 25
2.4.4 Image Lag and Transfer Efficiency 26
2.4.5 Conversion Gain 26
2.4.6 Dark Current 27
2.4.7 Responsivity ... 28
2.4.8 Dynamic Range ... 28
2.4.9 Signal-to-Noise Ratio 29
2.4.10 Shutter Mechanism 29

2.5 Noise Analysis in CMOS Image Sensors 29
2.5.1 Temporal Noise ... 30
2.5.2 Spatial Noise .. 32

2.6 Radiation Effects on CMOS Technology 33
2.6.1 Single-Event Effects 33
2.6.2 Displacement Damage 34
2.6.3 Total Ionizing Dose Effects 35
2.6.4 Radiation Effect on CMOS Sensors 43
2.6.5 Radiation Hardening by Design against TID Effects 45

3 High Frame Rate CIS with Radhard Megapixels 48
3.1 A 10,000 frames/s CIS with Megapixels 48
3.2 Quadruple Column-Parallel Readout Scheme 50
3.3 Operation of Proposed Readout Scheme 54
3.4 Noise Analysis of Proposed Readout Chain 55
3.4.1 Noise in Source Follower 55
3.4.2 Noise in Column S/H 59
3.4.3 Noise in the SC Amplifier 60
3.4.4 Column ADC Noise 62
3.5 Radhard 4T Pixel .. 65

4 CIS Prototype .. 66
4.1 Pixel Design ... 66
4.2 SPI ASIC Module .. 73
4.2.1 Write Mode .. 74
4.2.2 Read Mode ... 75
4.3 Row Control Block ... 76
4.3.1 Row Decoder and Driver 76
4.3.2 Rolling Shutter .. 80
4.3.3 2D Windowing .. 85
4.4 Column Readout Design 86
4.4.1 Analog Time-Interleaving Correlated-Double Sampling ... 86
4.4.2 Switched-Capacitor Programmable Gain Amplifier 92
List of Tables

1.1 Comparisons between CCD and CMOS ... 4

2.1 List of bandgap in different materials[78] 18
2.2 Reset noise of different capacitance at room temperature $T = 300K$ 30
2.3 Publications on the analysis of TID induced dark current 43

3.1 ENB vs the order of low-pass filters .. 57

4.1 Floating diffusion parasitic capacitance for the proposed radhard 4T pixel 72
4.2 List of all pins communicating between SPI master and slave modules 74
4.3 Gain Settings for proposed SC-PGA .. 95
4.4 Different metal layer sheet resistance and width design rule 104
4.5 Different metal layer coupling, area and perimeter capacitance 105
4.6 Oxide thickness and oxide capacitance for thin- and thick-oxide CMOSs in the used CIS process .. 105
4.7 Required settling time for a ADC with different resolutions 112
4.8 Bandwidth amplification and one-stage gain for cascade comparators in different stages .. 114
4.9 A performance summary of the PLL .. 117
4.10 Proposed CIS architecture specifications .. 119
4.11 Specification comparisons of different CISs 119

5.1 Major ICs used in the 2Slice Camera System 126
5.2 Eight different outputs by the debug multiplexer 131
List of Figures

1.1 Typical CMOS camera prototype ... 1
1.2 CCD vs CMOS sensors’ publications with top citation from 1973 to 1999 2
1.3 CCD vs CMOS sensors’ publications with top citation from 1999 to 2017 3
1.4 CCD vs CIS architecture ... 5
1.5 CIS camera market sales’ trend[19] ... 6
1.6 (a) FSI sensor, (b) BSI sensor, (c) 3D-stacked BSI sensor 7
1.7 High-speed CMOS image sensors ... 9
1.8 High-resolution CMOS image sensors 10
1.9 ADCs [6–8, 11, 22–27, 30–39, 47, 50] in high-speed CMOS image sensors 11
1.10 ADCs [15–18, 40–43, 46, 53–77] in high-resolution CMOS image sensors 11
1.11 Representations of energy transfer through (a) ionizing, (b) non-ionizing mechanisms ... 12
1.12 Displacement damage causes lattice defect 13
1.13 Classification of radiation effects ... 13

2.1 Energy of a photon vs visible light wavelength 18
2.2 Cross-sectional layout view of a standard PN diode 19
2.3 Cross-sectional view of a PIN photodiode 20
2.4 A traditional 3T pixel with a timing of reset pulses and pixel signal 22
2.5 A standard 4T pixel .. 23
2.6 RMS shot noise vs input photons on a log-log curve[95] 27
2.7 The dynamic range waveform [1] .. 28
2.8 A penetration of a high-energy particle through a MOSFET 33
2.9 The collision between a silicon atom and high-energy particle creates displacement damage ... 34
2.10 Five processes of DD-induced vacancies in the CMOS process [100] 35
2.11 Five different formations of TID on the silicon dioxide interface [101, 102] 36
2.12 Fractional unrecombined holes versus electric field in terms of different radiation resources radiation [108] ... 37
2.13 Two mechanisms of hole transport in silicon dioxide [106] 38
2.14 Mechanism of E' center formation [106] .. 39
2.15 Interface trapped charges affect the subthreshold swing of NMOS and PMOS [107] ... 40
2.16 TID induces two leakage paths in MOSFETs 41
2.17 Drain current curves for an N-channel transistor with a 250 nm width and length [121] ... 42
2.18 Two leakages path between devices caused by TID [107] 42
2.19 Cross-sectional view of a 4T pixel showing the factors of TID-induced dark current 44
2.20 Recessed distance between sidewall STIs and buried n-layer in the PPD 45
2.21 Standard NMOS layout and four different enclosed NMOS layouts 46
2.22 Cross-sectional view of an PPD with increased recessed distance and field plate 46

3.1 Imager floor plan .. 49
3.2 (a) Proposed quadruple readout architecture, (b) single readout block diagram 51
3.3 Time-interleaving sampling and ping-pong memory banks in proposed QCPO 53
3.4 Readout operation of one column with 4 ADCs 55
3.5 Noise components in one column readout chain 56
3.6 Source follower and equivalent noise model 56
3.7 Simplified SC buffer (a) block diagram, (b) Phase-I and (c) Phase-II noise model 61
3.8 Ideal N-bit ADC quantization noise .. 63
3.9 Cross-section view of the radhard pixel cell 65

4.1 Schematic and layout view of the proposed radhard 4T pixel 67
4.2 Schematic and layout view of four proposed pixels in the same column 68
4.3 Total parasitic capacitance at FD .. 69
4.4 AC analysis of the SF with different current source 70
4.5 DC analysis of the SF with different current source 70
4.6 Noise summary analysis of the SF at 15 μA current source 71
4.7 Noise summary analysis of the SF at 80 μA current source 71
4.8 Top block diagram of digital module ... 73
4.9 SPI slave module state machine ... 75
4.10 Initialization of the SPI bus ... 75
4.11 One byte command codes for SPI writing operation 76
4.12 One byte command codes for SPI reading operation 76
4.13 Top block diagram of row control block 77
4.14 Block diagram of one row decoder 78
4.15 Block diagram of row driver cell 78
4.16 Schematic of the level shifter design 78
4.17 Transient analysis of the level shifter with a 2 pF load capacitor 80
4.18 Level shifter layout with radhard NMOSs 81
4.19 Rolling shutter mechanism 81
4.20 Timing of control signals in each pixel of every four rows 82
4.21 Timing of two pointers’ control signals in the entire pixel array 83
4.22 Simulation of control signals from row decoder at 800 ns line time 83
4.23 Simulation of control signals for pixels at 800 ns line time 84
4.24 Selected window of interest for readout 85
4.25 (a) Traditional CDS with 4T APS and (b) timing diagram 87
4.26 Proposed analog time-interleaving CDS circuit 87
4.27 Operation of proposed CDS technique 88
4.28 LTspice model of proposed CDS technique 89
4.29 Simulation result of the CDS LTspice model 89
4.30 Operations of proposed ATI-CDS technique 90
4.31 A comparison of the proposed CDS technique with- and without time-interleaving 91
4.32 (a) General view of switched-capacitor amplifier; (b) SC implementation of PGA with ATI-CDS 93
4.33 Proposed SC-PGA block with analog CDS technique: (a) ideal closed-loop amplifier, (b) switched-capacitor implementation 94
4.34 Proposed PGA operating at (a) Gain =1, (b) Gain =2, (c) Gain =4, (d) Gain =8 95
4.35 Block diagram of the operational amplifier used by the proposed SC-PGA 96
4.36 (a) Opamp stability testbench (b) simulation result 97
4.37 (a) Opamp ICMR testbench (b) simulation result 97
4.38 (a) Opamp CMRR testbench (b) simulation result 98
4.39 (a) Opamp positive PSRR testbench (b) simulation result 98
4.40 (a) Opamp negative PSRR testbench (b) simulation result 99
4.41 (a) Opamp slew rate testbench and (b) (c) (d) simulation results with different bias current .. 100
4.42 (a) Opamp noise plot and (b) noise report summary 100
4.43 Quadruple column-parallel readout architecture 101
4.44 One column line with time delay consideration 103
4.45 A stack-metal method applied to each column line with 256 rows 106
4.46 Equivalent resistor model in one column using proposed stack-metal method 106
4.47 Pseudo-differential unipolar ADC .. 107
4.48 Layout view of proposed 10-bit pseudo-differential unipolar ADC 108
4.49 Layout view of proposed 12-bit pseudo-differential unipolar ADC 108
4.50 Block diagram of proposed SAR ADC .. 108
4.51 Waveform of digital codes by sweeping offset from 0V to 1V and having 295 unit capacitors .. 111
4.52 Waveform of digital codes by sweeping offset from 0V to 1.8V and having 278 unit capacitors .. 112
4.53 Block diagram of proposed 5-stage dynamic comparator with autozeroing 114
4.54 ADC transient simulation result for one sample conversion 115
4.55 The 10b ADC FFT simulation to get SINAD/ENOB/SFDR/THD 115
4.56 PLL step response from 800 MHz to 200 MHz .. 116
4.57 Layout view of the PLL used in the proposed CIS ... 117
4.58 Single-end, differential, common-mode outputs of one SLVS block 118
4.59 Single SLVS PAD includes a fixed header, serializer and SLVS driver 118
4.60 (a) Block diagram and (b) top layout view of the 128 × 1024 imaging chip 120
4.61 (a) Block diagram and (b) top layout view of the 768 × 1024 imaging chip 121
4.62 Die photos for two camera prototypes on a 8-inch wafer 121

5.1 The 3D view of the main testing board with FPGA .. 123
5.2 The 3D view of daughterboards with power manager and oscillator ICs for the FPGA .. 124
5.3 The 3D view of the small-format CIS COB ... 125
5.4 The schematic of the mezzanine connector plugs ... 126
5.5 Block diagram of camera testing system .. 127
5.6 CIS testbench setup ... 127
5.7 Block diagram of camera testing system .. 128
5.8 PLL test connection ... 129
5.9 PLL output frequency 80 MHz and 120 MHz .. 129
5.10 PLL output frequency 160 MHz and 200 MHz .. 130
5.11 PLL output frequency 280 MHz and 320 MHz .. 130
5.12 PLL output frequency 400 MHz and 500 MHz .. 130
5.13 Measurement results of multiplexer outputs for row decoders matched simulation results ... 132
5.14 Measurement results of multiplexer outputs for ADCs matched simulation results 133
5.15 The fixed 12b digital header in every SLVS channel .. 134
5.16 One SLVS channel with 12’h50F header and 10’h3F0 fixed pattern data 135
5.17 One SLVS channel with two different fixed pattern data in two line times 135
5.18 Fixed pattern data A simulation and measurement 136
5.19 Fixed pattern data B simulation and measurement 136
5.20 Control signals when CIS operates at 800 fps .. 139
5.21 CIS operates at 800 fps ... 140
5.22 CIS operates at 1600 fps ... 141
5.23 Control signals when CIS operates at 1000 fps ... 142
5.24 CIS operates at 1000 fps ... 143
5.25 CIS operates at 4000 fps ... 144
5.26 CIS operates at 20 fps .. 145
5.27 TID test setup ... 146
5.28 TID test results .. 147

[71] H. Wakabayashi, K. Yamaguchi, M. Okano, S. Kuramochi, O. Kumagai, S. Sakane, M. Ito, M. Hatano,
M. Kikuchi, Y. Yamagata, et al., “A 1/2.3-inch 10.3 mpixel 50frame/s back-illuminated cmos image
sensor,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE Interna-

B. Almond, Y. Mo, J. Gleason, T. Chow, and I. Takayanagi, “8.9-megapixel video image sensor with
2009.

8.1mpixel CMOS image sensor for digital cameras,” in Proc. IEEE Int. Solid-State Circuits Conf..

[74] S. Yoshihara, Y. Nitta, M. Kikuchi, K. Koseki, Y. Ito, Y. Inada, S. Kuramochi, H. Wakabayashi,
M. Okano, H. Kuriyama, J. Inutsuka, A. Tajima, T. Nakajima, Y. Kudoh, F. Koga, Y. Kasagi,
S. Watanabe, and T. Nomoto, “A 1/1.8-inch 6.4 mpixel 60 frames/s CMOS image sensor with seamless

Fossum, “A 1.25-inch 60-frames/s 8.3-m-pixel digital-output CMOS image sensor,” IEEE Journal of

[76] M. Mori, M. Katsuno, S. Kasuga, T. Murata, and T. Yamaguchi, “1/4-inch 2-mpixel MOS image
2004.

[77] B. Mansoorian, H.-Y. Yee, S. Huang, and E. Fossum, “A 250 mW, 60 frames/s 1280×720 pixel 9 b

4-December-2018].

[79] O. Yadid-Pecht and R. Etienne-Cummings, CMOS imagers: from phototransduction to image process-

Curriculum Vitae

Wenlan Wu, Ph.D.

Homepage: https://www.asicedu.com
E-mail address: wuwenlanxy@gmail.com

EDUCATION

• B.S., Microelectronics, Xi’an University of Post & Telecommunications, 2010.

• M.S., Electrical Engineering, University of Macau, 2013.
 Concentrations: Analog & Mixed-signal Integrated Circuit Design
 Dissertation: Monotonic Multi-Switching Method for Ultra-Low-Voltage Energy Efficient SAR ADCs
 Dissertation Advisors: Seng-Pan U, Ph.D., Sin Sai Weng, Ph.D.

• Ph.D., Electrical Engineering, University of Nevada, Las Vegas, 2019.
 Concentrations: CMOS image sensor design, Analog & Mixed-signal Integrated Circuit Design
 Dissertation: High-Speed Radhard Mega-Pixel CIS Camera For High-Energy Physics
 Dissertation Advisors: Russel Jacob Baker, Ph.D.

EMPLOYMENT

• State Key Laboratory of Analog and Mixed-Signal VLSI at University of Macau, 2010–2013.

• Alphacore, Inc., Tempe, AZ, 2016–present.
PUBLICATIONS

Journal Articles

Conference Articles

• A 0.6V 8b 100MS/s SAR ADC with minimized DAC capacitance and switching energy in 65nm CMOS, *2013 IEEE International Symposium on Circuits and Systems (ISCAS)*, 2013.

TEACHING EXPERIENCE

Teaching Assistant, University at Nevada, Las Vegas, 2013-2016

Courses: Analog Circuit Design Lab, Digital Circuit Design Lab

PROFESSIONAL MEMBERSHIP

Tau Beta Pi - The Engineering Honor Society

RELEVANT SKILLS

• Skillful of various EDA tools: Cadence (Virtuoso, Assura, PVS, Spectre/SpectreRF), LTspice, Hspice, Electric, Mentor Graphics (Pyxis, Calibre, Eldo), Altium, and KiCad

• Programming ability in Matlab, Verilog-A, Python, and LaTex

• Extensive knowledge of different operating system (UNIX, Linux, Windows)

• Fluent in English and Chinese

Last updated: December 9, 2019