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Abstract 

 This Thesis is concerned with the design, layout, and testing of avalanche photodiodes 

(APDs). APDs are a type of photodetector and, thus, convert light signals into electrical signals 

(current or voltage). APDs can be fabricated using silicon (Si). In this Thesis, however, three 

integrated circuit (IC) chips containing various silicon-germanium (SiGe) APDs with different 

sizes, structures, and geometries were designed, laid out, and fabricated using the 

Austriamicrosystems (AMS) 0.35μm SiGe BiCMOS (S35) process. This was done in order to 

compare SiGe APDs to Si only APDs and investigate the hypothesis that SiGe APDs are capable 

of detecting longer wavelengths than Si only APDs. This is due to the smaller band gap energy 

associated with SiGe compared to that of Si. 

 The different SiGe APDs were tested and found to, indeed, have the capability of 

detecting slightly longer wavelengths than Si APDs. A 5μm x 5μm SiGe APD and 24μm x 24μm 

SiGe APD were found to have a spectral peak at 500nm and a cutoff wavelength (λc) of 1180nm 

compared to 480nm and 1100nm, respectively, for a 10μm x 10μm Si APD. The 24μm x 24μm 

SiGe APD was also found to have a responsivity of 0.34 A/W at 500nm and quantum efficiency 

(QE) of 85% at 450nm. 

 APDs differ from traditional photodiodes in that they possess an internal avalanche gain 

and, thus, produce a larger electrical signal than a traditional photodiode for the same amount of 

incident light. All photodiodes produce an undesired electrical signal, called dark current, even in 

a dark state with no light signal incident on the photodiode. Therefore, the gain and dark current 

associated with each of the fabricated APDs was also measured in order to determine the 

characteristics of the different SiGe APD variants. The 5μm x 5μm and 24μm x 24μm SiGe 

APDs have a zero bias (0V) dark current of 3pA and 5pA, respectively, compared to 3pA for the 
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10μm x 10μm Si APD. The 5μm x 5μm and 24μm x 24μm SiGe APDs and the 10μm x 10μm Si 

APD also have gains of 88,000 (98dB), 1390 (63dB), and 1000 (60dB), respectively. 
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Preface 

 This Thesis serves as a report documenting past, present, and future efforts of myself 

with the assistance of Dr. Baker, as well as his undergraduate and graduate research students at 

UNLV, in cooperation with Freedom Photonics in order to fulfill NASA funded research on a 

“Geiger Mode SiGe Receiver for Long-Range Optical Communications”. This research is 

expected to continue beyond my graduation, and, as such, this Thesis is intended to be reviewed 

and, more importantly, expanded on by Dr. Baker’s UNLV research team. Thus, an overview of 

the basic principles and foundations for which photodetectors are based on as well as a few of 

their numerous applications are presented in Chapter 1. 

 In order to effectively understand this presented summary of the research that has been 

undergone thus far, the reader is encouraged to review the material in Chapter 2 and Chapter 3. 

These chapters were written with the intention of allowing the reader to familiarize, or re-

familiarize, their self with some foundations of semiconductor physics in conjunction with solid-

state electronics. This includes the basics and formation of PN junction diodes as well as their 

implementation as photodiodes in addition to an overview of the modes of operation and 

characteristics of photodiodes. 

 Chapter 4 explains the foundations for which the presented research is based on. Chapter 

5 details the three chips that were designed and fabricated. Chapter 6 summarizes the testing 

results of the APDs on Chip 1. Finally, Chapter 7 is a conclusion of the research followed by a 

description of future work for this research. 
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Chapter 1: Introduction 

1.1 Basic Principle and Applications of Photodetectors 

 Photodetectors are widely used in numerous products and applications in order to convert 

light signals into electrical signals. Used extensively in light detection and ranging (LiDAR) 

applications, photodetectors are capable of detecting low levels of reflected light in order to 

measure distances of objects and potentially generate a three-dimensional scan of the 

surrounding area, which is extremely useful for self-driving vehicles as shown in Figure 1.1 

below. 

 

Figure 1.1 – 3-D LiDAR Mapping for Self-driving Vehicle [1] 

LiDAR systems produce a short duration pulse of light which is reflected off the nearest object in 

its path. Some of the reflected light is then detected by the photodetector in the LiDAR system, 

and the time of flight (TOF), the time between the produced pulse and the received light, is 

recorded. The TOF is then used to calculate the corresponding distance between the LiDAR 

device and the measured object using Equation 1 below, 



 

2 

                                    𝑑 = 𝑐 ×
∆𝑡

2
 

 

Equation 1 

where d is the distance of the object in meters, c is the speed of light in a vacuum (3.0 x 10
8
 m/s), 

and Δt is the TOF. Note the TOF is divided by two since the light pulse travels to the measured 

object and back to the LiDAR device as shown in Figure 1.2 below. 

 

Figure 1.2 – Photodetector in a LiDAR System [2] 

Numerous factors including the reflectivity of the measured object, the ambient light in the 

environment (namely sunlight), etc. affect the performance and accuracy of the LiDAR device. 

 Additional applications of photodetectors in which the number of incident photons is 

precisely determined include, but are certainly not limited to, image sensors, flow cytometry, 

radiation monitoring, spectroscopy, and optical communication [3]. Photodetectors are also 

utilized for security purposes as well as counting products on a conveyor belt by detecting the 

interruption of a light source (such as a laser beam) by an object. 

1.2 Motivation 

 Since photodetectors convert light signals into electrical signals, an ideal photodetector 

would not generate any electrical signal under a dark condition in which no light is incident on 

the photodetector. In reality, however, current practical photodetectors produce undesired 

electrical signals called dark current when under a dark state. Additionally, depending on the 
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materials used for their construction, photodetectors are capable of detecting certain ranges of 

wavelengths within the electromagnetic spectrum shown in Figure 1.3 below. 

 

Figure 1.3 – Electromagnetic Spectrum [4] 

 Current conventional photodetectors fabricated using Silicon (Si), one of the most widely 

used semiconductor materials used in chip fabrication due to its vast availability and low cost, 

are capable of detecting wavelengths of light from 320 nm (or 190 nm for UV-enhanced Si 

photodetectors) up to a λc of 1100 nm with decreased responsivity, as the detection peaks then 

drops sharply for higher wavelengths [5]. There is a desire, however, to tailor photodetectors to 

detect higher wavelengths of light, namely 1550nm which lies in the near-infrared (NIR) region. 

 It is hypothesized that photodetectors comprised of Silicon-Germanium (SiGe) are 

capable of detecting higher wavelengths due to the lower band gap energy of Germanium (Ge) 

compared to that of Si, explained further in Chapter 3. In an effort to decrease dark current and 

tailor photodetector detection to higher wavelengths, this Thesis investigates the characteristics 

and performance of SiGe photodetectors designed with various structures, geometries, sizes, and 

layers and fabricated in the Austriamicrosystems (AMS) SiGe 350nm (S35) process as opposed 

to Si only based processes such as the ON Semiconductor 500nm (C5) process.  
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Chapter 2: Foundations of Semiconductor Physics 

2.1 Semiconductor Basics 

 In solid state electronics, Si is one of the most commonly used semiconductor materials 

for chip fabrication due to its inexpensive nature and abundance in nature. Si has an atomic 

number of 14 which means that a single Si atom has 14 total electrons, two in the inner first 

shell, 8 in the second shell, and 4 in the outermost shell as seen in Figure 2.1 below. 

 

Figure 2.1 – Silicon Atom [6] 

A simplified view of a Si atom in which only the four valence electrons in the outermost shell of 

the Si atom are shown is commonly used since these are the electrons that form chemical bonds. 

 Another common semiconductor material, Ge, also has four valence electrons but has 

more free electrons and, thus, higher conductivity than Si for a given temperature due its lower 

band gap energy. When numerous Si atoms come together in a crystalline structure to form a 

solid, the valence electrons of neighboring Si atoms bond with one another, creating covalent 

bonds between the neighboring atoms as shown in Figure 2.2 below. 
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Figure 2.2 – Shared Covalent Bonds between Neighboring Silicon Atoms [7] 

 For intrinsic Si at zero Kelvin, all of the valence electrons of neighboring Si atoms are 

bonded to one another. However, as the temperature increases some electron can gain enough 

thermal energy in order to break free from their covalent bonds and get excited from the valence 

band up to the conduction band, leaving behind holes (or missing electrons) in their place in the 

valence band. This reduces the semiconductors resistance since there are more electrons in the 

conduction band capable of conducting electricity. The valence band and conduction band are 

separated by a band gap, as shown in Figure 2.3 below, which is the energy, in electron volts 

(eV), required for an electron to break free from the covalent bond and get excited from the 

valence band to the conduction band. 

 

Figure 2.3 – Valence and Conduction Bands separated by Band Gap [8] 
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 The band gap of intrinsic Si at room temperature is 1.12 eV [9]. Intrinsic semiconductors 

such as Si and Ge are Group IV elements since they have four valence electrons. An n-type 

semiconductor is formed by doping an intrinsic Group IV semiconductor with ND donor atoms of 

a Group V (pentavalent) element, such as Phosphorous (P), having five valence electrons. ND is 

simply the number of donor atoms the intrinsic semiconductor is doped with. Similarly, a p-type 

semiconductor is formed by doping an intrinsic Group IV semiconductor with NA acceptor atoms 

(where NA is the number of dopant acceptor atoms) of a Group III (trivalent) element, such as 

Boron (B), having three valence electrons. 

 Since an n-type semiconductor is doped with extra electrons, its majority charge carriers 

are electrons while holes are the minority charge carriers. Conversely, holes are the majority 

charge carriers and electrons the minority charge carriers for p-type semiconductors. Both n-type 

and p-type semiconductors, however, are still neutrally charged since the dopant impurity atoms, 

P for n-type and B for p-type, are initially electrically neutral. 

2.2 PN Junction Diode 

 A diode is created when a p-type and n-type semiconductor are joined, forming a PN 

junction. The symbol for a diode is shown below in Figure 2.4. 

 

Figure 2.4 – Diode Symbol 

The p-type acts as the anode (A) of the diode while the n-type acts as the cathode (K). In the 

region near the PN junction, some of the free majority carriers in the n-type (electrons) fill the 

holes in the p-type. The free carriers near the metallurgical junction combine and neutralize, 
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effectively vanishing. As a result, a thin region called the depletion region (since it is depleted of 

free carriers) is formed around the PN junction as shown in Figure 2.5 below. 

 

Figure 2.5 – PN Junction Depletion Region [10] 

Notice the portion of the depletion region in the n-type contains only positive charges due to the 

positively charged dopant P atoms while the portion of the depletion region in the p-type 

contains only negative charges due to the negatively charged dopant B atoms. Thus, the 

depletion region is also known as a space charge region since it is the only region in the 

semiconductor material that has electrical charge. 

 Due to the net negative charge in the p-type side of the depletion region and the net 

positive charge in the n-type side of the depletion region, an electric field is created in the 

depletion region pointing from n-type to p-type (K to A). This also produces a junction voltage, 

or junction potential, across the depletion region. Figure 2.6 below shows the how the energy 

bands bend around the fermi level at the PN junction. 
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Figure 2.6 – PN Junction Energy Bands [11] 

 When the depletion region is initially formed, it is very thin, so the electric field and 

junction potential are relatively weak. Thus, majority carriers near the PN junction on opposite 

sides are attracted to one other enough to overcome the weak junction potential and electric field, 

allowing them to combine and neutralize, effectively vanishing. This, however, increases the 

width (and with it the electric field and voltage potential) of the depletion layer preventing 

additional free carriers from crossing the PN junction and combining. Thus, equilibrium is 

achieved. Also associated with the depletion region is a depletion, or junction, capacitance that is 

inversely proportional to the width of the depletion region as shown in Equation 2 below, 

                                      𝐶 =
Ɛ𝐴

𝑑
 

 

Equation 2 

where C is the depletion capacitance and d is the width of the depletion region. 

 If a PN junction diode is not biased with an external voltage, then the diode is under zero 

bias and thus operates in photovoltaic mode which is the principle for solar cells. If the diode is 

forward biased in which a higher potential is connected to the diode’s anode and lower potential 
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connected to the diode’s cathode, the diode will not conduct current until the external voltage 

exceeds, or overcomes, the junction potential of the diode. We are concerned, however, with 

reverse bias of PN junction diodes operating in photoconductive mode. 

 For reverse bias, higher potential is connected to the diode’s cathode and lower potential 

connected to the diode’s anode. The positive potential attracts electrons out of the n-type (or can 

be thought of as pushing holes in from the positive terminal of the battery which then combine 

with electrons in the n-type and neutralize/vanish), and the negative potential attracts holes out of 

the p-side (or can be thought of as pushing electrons in from the negative terminal of the battery 

which then combine with holes in the p-type and neutralize/vanish). As a result, the depletion 

region widens, and, thus, the depletion capacitance decreases. Under reverse bias, the diode 

current is negligible as it is in the nanoampere (nA) range. 
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Chapter 3: Photodiodes 

3.1 Photodiode Basics 

 The PN junction diode is the basis for the simplest semiconductor photodetector, the 

photodiode. The symbol for a photodiode is shown below in Figure 3.1 below. Note its similarity 

to that of a regular diode except for the arrows indicating incident light. 

 

Figure 3.1 – Photodiode Symbol 

When light is shined on a Si photodiode, photons strike, or collide with, the Si material in the 

depletion region (where there is an electric field). If the energy of an incident photon is greater 

than or equal to the band gap energy of Si (E > Eg), then it will knock one of the valence 

electrons of the impacted Si atom out of its covalent bond with a neighboring Si atom, generating 

an electron-hole (e-h) pair and resulting in photogenerated current (photocurrent) as illustrated 

below in Figure 3.2. 

 

Figure 3.2 – Electron-Hole Pair Generation due to Incident Photons [12] 
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This phenomenon of absorbed light resulting in free electrons is known as the photoelectric 

effect. 

 Recall that wavelength and frequency are related by the speed of light as shown in 

Equation 3 below, 

                                      𝑐 = λ × ν Equation 3 

where λ is wavelength in meters, ν is frequency in Hertz (Hz), and c is the speed of light in a 

vacuum (3.0 x 10
8
 m/s). Thus, the energy of a photon is calculated using Equation 4 below, 

                                      𝐸 = ℎ𝜈 =
ℎ𝑐

𝜆
 

 

Equation 4 

where h = 6.626 x 10
-34

 J-s (Planck’s constant), ν is the frequency of the photon in Hz, and E is 

the photon energy in Joules (J). Recall 1 eV = 1.602 x 10
-19

 J or 1 J = 6.242 x 10
18

 eV. It can be 

seen that the maximum cutoff wavelength (λc) that can be detected by a semiconductor material 

is inversely proportional to the material’s band gap (Eg). Since wavelength and energy are 

inversely proportional, the wavelength of the incident light must be short enough in order to be 

detected by the photodiode since the energy of incident photons must be greater than or equal to 

the band gap energy of the semiconductor (Si for this discussion). This is shown by Equation 5 

below, 

                                   𝜆𝑐 =
ℎ𝑐

𝐸𝑔
=

1.24

𝐸𝑔
 𝑢𝑚 

 

Equation 5 

where Eg is the band gap of the semiconductor (in eV), and λc is the maximum cutoff wavelength 

in μm. 

 Recall that a photodiode is reverse-biased such that it operates in photoconductive mode. 

Photogenerated e-h pairs in the depletion region are affected by its electric field such that 

photogenerated electrons move toward the n-type (connected to higher potential) and their 
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respective holes toward the p-type (connected to lower potential). Since conventional current 

flow is defined as the opposite direction of electron flow, the direction of the hole movement (in 

the direction of the electric field) signifies the direction of photocurrent (reverse current). The 

magnitude of the photocurrent generated by a photodiode is proportional to the light level 

(intensity or brightness) as shown in the current-voltage (IV) plot in Figure 3.3 below. 

 

Figure 3.3 – Photodiode I-V Curve for Increasing Light Levels [13] 

The light level is essentially determined by the number of incident photons per second as shown 

in Equation 6 below, 

                                         𝑊 = 𝑁𝐸 = 𝑁ℎ𝜈 =
𝑁ℎ𝑐

𝜆
 

 

Equation 6 

where W is the light level, and N is the number of incident photons per second (pcs/s) [14]. 

3.2 Types of Photodiodes 

 In addition to the PN photodiode, similar devices such as PIN photodiodes and Schottky 

photodiodes exist and have slightly different properties, characteristics, operations, and 
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applications. The IR-enhanced PIN photodiode shown in Figure 3.4 below has drastically 

improved sensitivity in the NIR region for wavelengths from 900nm to 1100nm [15]. 

 

Figure 3.4 – Spectral Responsivity of IR-enhanced PIN photodiode [16] 

 An avalanche photodiode (APD) is a photodiode with a high internal (built-in first stage) 

gain that results in an amplified photocurrent, allowing for measurement of low-level light 

signals and higher signal-to-noise ratio (SNR) than PIN photodiodes [17]. For relatively low 

reverse bias voltages, an APD operates as a normal photodiode in photoconductive mode. As the 

applied reverse voltage increases, however, the APD enters linear mode in which avalanche 

multiplication results. Avalanche multiplication is due to the electric field becoming so strong in 

the high gain avalanche region, shown in Figure 3.5 below, that primary photogenerated carriers 

(e-h pairs) are accelerated with enough kinetic energy to knock loose secondary carriers from 

impacted Si atoms. The secondary carriers, in turn, knock loose more and more tertiary e-h pairs 

and so on resulting in an avalanche effect. 
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Figure 3.5 – Avalanche Multiplication in an APD [18] 

 As the reverse bias voltage is increased further to the breakdown voltage, an abrupt 

increase in current will occur, and the APD is said to operate in the Geiger mode allowing for the 

possibility of single photon detection. Figure 3.6 below shows an I-V plot detailing 

photoconductive, linear, and Geiger mode. 

 

Figure 3.6 – Photoconductive, Linear, and Geiger Mode on I-V Plot [19] 
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 It is worth commenting at this point that photodiodes operate under reverse bias since an 

apparent fractional change in current is noticeable for varying intensity of incident light. If the 

photodiode were operated under forward bias, the difference in current magnitudes is virtually 

unnoticeable. In addition, the depletion region is much thinner under forward bias, so there is a 

smaller electric field and less photoactive area to absorb incident light. 

 Whereas APDs are typically operated slightly below the breakdown voltage in linear 

mode, a single-photon avalanche diode (SPAD) is an APD designed to operate exclusively 

beyond the breakdown voltage in Geiger mode. Thus, a single charge carrier is capable of 

causing a self-sustaining avalanche. As some authors refer to SPADs as Geiger-mode APDs 

(GmAPD), we will simply, for convenience, use APD as a blanket term regardless of the mode 

of operation throughout the remainder of this paper. 

 A silicon photomultiplier (SiPM), also known as a multi-pixel photon counter (MPPC), is 

an array of multiple APD pixels connected in parallel and operating in Geiger mode. A SiPM is 

capable of detecting weaker light levels than a single APD due to its significantly higher gain 

and also has single-photon counting capability [20]. A SiPM outputs a pulse with amplitude 

corresponding to the number of pixels that detect a photon at a given time. Each pixel is only 

capable of producing a pulse with amplitude corresponding to one photon, so an output pulse 

corresponding to a pixel detecting one photon is identical to an output pulse corresponding to a 

pixel detecting more than one photon at time. Thus, it is necessary for a SiPM to have enough 

pixels to match the number of incident photons. 

3.3 Photodiode Parameters 

 An ideal photodiode would not generate any current under a dark state in which no light 

is incident on the photodiode. In practical photodiodes, however, a small undesirable current 
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called dark current exists even in a dark state. Dark pulses are pulses of current due to thermal 

generation of carriers in a SiPM or APD operated in Geiger mode. The number of dark pulses is 

referred to as the dark count while the number of dark pulses per second is defined as the dark 

count rate (DCR) with units of counts per second (cps). Since dark counts lead to detection 

errors, it is desired to minimize the number of dark counts in an APD. Dark counts increase with 

increasing reverse voltage and can be reduced by lowering the temperature. Figure 3.7 below 

shows the indistinguishable nature of dark counts from true output signal pulses in a SiPM. 

 

Figure 3.7 – Dark Pulses in a SiPM [21] 

 The gain, M, of an APD is expressed as the ratio of the number of carriers that are output 

after avalanche multiplication to the number of primary carriers. M is calculated as in Equation 7 

below, 

                                       𝑀 =
𝐼𝑝

𝐼𝑝0
 

 

Equation 7 

where Ip is the multiplied photocurrent resulting from a high reverse voltage, and Ip0 is the 

photocurrent (that doesn’t experience multiplication) resulting from a low reverse bias voltage. 

Quantum efficiency (QE) is defined, for a SiPM, as the probability that carriers will be generated 

by light incident on a pixel and is dependent on the wavelength of the incident light. For a SiPM, 
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responsivity, or photosensitivity, (S; unit: A/W) is the ratio of output photocurrent (ISiPM) to the 

incident light level (unit: W) and is expressed by Equation 8 below. 

                                       𝑆 =
𝐼𝑆𝑖𝑃𝑀

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝐿𝑖𝑔ℎ𝑡 𝐿𝑒𝑣𝑒𝑙
 

 

Equation 8 

Photosensitivity is proportional to gain and, therefore, increases with reverse voltage. The 

spectral responsivity (S vs. λ) and responsivity as a function of reverse bias voltage (S vs. V) for 

a Hamamatsu Si SiPM with a pixel pitch of 25μm is shown in Figure 3.8 below. 

   

Figure 3.8 – S vs. λ (left) and S vs. Reverse Voltage (right) for a Hamamatsu Si SiPM [22] 

For a SiPM, photon detection efficiency (PDE), expressed by Equation 9 below, is a ratio of the 

number of detected photons to the number of incident photons during photon counting. 

                             𝑃𝐷𝐸 =
# 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

# 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝ℎ𝑜𝑡𝑜𝑛𝑠
 

 

Equation 9 

PDE can also be expressed as the product of fill factor (Fg), QE, and avalanche probability (Pa) 

as shown in Equation 10 below, 

                                  𝑃𝐷𝐸 = 𝐹𝑔 × 𝑄𝐸 × 𝑃𝑎 Equation 10 
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where Fg is the ratio of photosensitive (light detectable) area to the total area of the APD or 

SiPM, and Pa is the probability that avalanche multiplication will occur due to carriers generated 

in a pixel [23]. Figure 3.9 below shows PDE as a function of wavelength (PDE vs. λ) and PDE as 

a function of reverse voltage (PDE vs. V) for a Hamamatsu Si SiPM with a pixel pitch of 25μm. 

  

Figure 3.9 – PDE vs. λ (left) and PDE vs. Reverse Voltage (right) for a Hamamatsu Si SiPM 

[24] 

 In order to detect a single photon, an APD is operated in Geiger mode at a reverse voltage 

above its breakdown voltage. As a result, a saturation output called Geiger discharge, 

independent of the light level, is produced and continues as long as the high electric field is 

maintained. Therefore, an external circuit such as a quenching resistor (RQ) (passive quenching), 

shown in Figure 3.10 below, connected in series with the APD must be used in order to lower the 

operating, or bias, voltage back down below the breakdown voltage and cease the Geiger 

discharge. 
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Figure 3.10 – Passive Quenching Resistor in Series with Geiger-mode APD Pixel [25] 

When the output current due to Geiger discharge flows through the resistor, a voltage drop 

occurs and stops the avalanche multiplication, allowing for detection of the next photon as 

shown in Figure 3.11 below. 

 

Figure 3.11 – Passive Quenching Operation on Geiger-mode APD I-V Curve [26] 



 

20 

 A phenomenon termed crosstalk can cause detection errors in a SiPM by a primary 

electrical discharge, resulting from a pixel detecting a photon, leaking into a neighboring 

adjacent pixel. Crosstalk is the result of secondary photons being generated by an incident 

photon through the avalanche multiplication process of the pixel and the secondary photons 

being detected by other pixels in the SiPM. Crosstalk is almost independent of temperature but 

increases with reverse voltage. In addition, undesirable afterpulses may occur as a delayed 

pseudo signal resulting from the true signal output pulse. Afterpulses are due to generated 

carriers being trapped by defects in the crystal lattice then released after some delay time. 

Afterpulses are another cause of detection errors and increase with decreasing temperature due to 

a higher probability of generated carriers being trapped by crystal defects. 
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Chapter 4: Thesis Research 

4.1 Research Foundations 

 Figure 4.1 below shows the layout and corresponding cross-sectional view of a 10μm x 

10μm Si APD designed in Electric and fabricated in ON Semiconductor’s C5 (500nm = 0.5μm  = 

0.5 Micron) process. 

 

Figure 4.1 – Layout of 10μ Si APD 

Note the diode formed between the P+ and N-Well in the cross section. Also, notice the presence 

of a full guard ring for preventing premature edge breakdown [27]. The presented research 

consists of characterization of the performance and properties of APDs fabricated using SiGe 

due to the lower band gap of SiGe compared to Si, allowing for detection of higher wavelengths. 

Using Equation 5 from Chapter 3, pg. 11, the maximum λc for Si, which has a band gap energy 
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of 1.12eV, is 1100 nm. Ge, however, has a lower band gap of 0.67 eV which yields a higher λc of 

1850 nm. The concentration of Ge in SiGe is typically 12% which results in a band gap of 1.00 

eV, yielding a λc of 1240nm. These results are summarized in Table 4.1 below. 

Composition Band Gap (Eg) Maximum Cutoff Wavelength (λc) 

Si 1.12 eV 1100 nm 

Ge 0.67 eV 1850 nm 

SiGe (12% Ge concentration) 1.00 eV 1240 nm 

Table 4.1 – Maximum Cutoff Wavelength vs. Band Gap Energy for Si, Ge, and SiGe 

 Since SiGe optical devices exhibit extended infrared (IR) response compared to Si, 

various APD test structures were laid out in the AMS S35 process which allows for both high-

speed optical devices and electronic circuits on the same chip. The APD variants were fabricated 

and tested in order to investigate the effect on the APDs performance, characteristics, and 

properties for different sizes, structures, layers, geometries, etc. Furthermore, one main goal of 

this research is to determine what layers the SiGe contribution comes from. The cross-sectional 

view for high speed (3.3V) and high voltage (5V) HBT modules in the S35 process is shown 

below in Figure 4.2. 
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Figure 4.2 – Cross Section for High Speed and High Voltage HBT Modules in S35 Process 

[28] 

The S35 layers referenced throughout the remainder of this paper are presented in Table 4.2 

below [29]. 

Layer Layer Description 

BNTUB (WB) n-tub layer for bipolar transistors 

BNTUB2 (WB2) n-tub layer for high voltage BJT’s (encloses BNTUB) 

NTUB (NW) n-tub layer 

NBUR (BN) n+ buried layer 

DIFF (OD) diffusion layer 

COLL (IS) sinker implant layer 

BPOLY (BP) base poly layer 

EPOLY (PE) emitter poly layer 

EMITT (EC) emitter opening layer 

NPLUS (NP) n+ implant layer 

PPLUS (PP) p+ implant layer 

CONT (CO) contact layer (connects MET1 to DIFF/BPOLY/EPOLY) 

MET1 (M1) metal1 layer 

Table 4.2 – Relevant S35 Layers 

4.2 Elementary APD 

 Figure 4.3 below shows the Cadence layouts and cross-sectional views of a SiGe NPN 

high voltage (5V) HBT in the S35 process as well as the SiGe NPN modified to create a two 

terminal device, an APD. This was done by deleting the emitter poly layer (EPOLY) in order to 

allow light to strike the SiGe. By deleting EPOLY, the emitter of the NPN is removed and results 

in a PN structure (APD) where P is the base (anode) and N is the collector (cathode). 
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Figure 4.3 – Cross Section and Layout for SiGe NPN High Voltage (5V) HBT (left) and 

Modified NPN (APD) (right) [30] 

The metal1 (MET1) and contact (CONT), which connects MET1 to EPOLY, layers around the 

emitter opening layer (EMITT) were also deleted. Also note that a P-substrate connection (guard 

ring) was added to the modified SiGe NPN (APD). The P-substrate connection consists of the P+ 

implant layer (PPLUS), the diffusion layer (DIFF), MET1, and CONT (which connects MET1 to 

DIFF). 
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 The dimensions of EMITT are 0.4μm x 0.8μm (minimum size) and signifies the active 

area of the APD. Additional base (anode) and collector (cathode) contacts (CONT) were added 

in MET1 rings around the active area (EMITT) of the APD to ensure proper connection. P-

substrate (guard ring) contacts were also added, yielding the basis of the APDs presented 

throughout the remainder of this paper. This base case APD is classified as the Minimum Partial 

Guard Ring (Min-P) APD and is shown in Figure 5.2 in Chapter 5, pg. 28. Modifying the Min-P 

APD such that the P-substrate rings around the entire APD results in the Minimum Full Guard 

Ring (Min-F) APD, shown in Figure 5.3 in Chapter 5, pg. 28. 
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Chapter 5: Chip Design, Layout, and Fabrication 

5.1 Description of Chips 

 Three IC chips containing numerous APD variants were designed and laid out by the 

researchers and submitted to MOSIS for fabrication. Chip 1 was received and tested, Chip 2 is 

expected to be received in November 2018, and Chip 3 is expected to be received in January 

2019. Though it was necessary to violate certain DRC rules for various APD designs, all APDs 

were designed with minimal DRC errors and laid out to be as small as possible for each 

respective variant in order to conserve space. 

5.2 Chip 1 

 Chip 1 has 53 pads containing 6 APD test structures, a single SiPM pixel, and a 16 x 16 

SiPM array. The APD variants are partial and full guard rings structures with EMITT layer 

dimensions of 0.4μm x 0.8μm (minimum), 5μm x 5μm, and 24μm x 24μm (maximum). The 

SiPM pixel is comprised of the 24μm full guard ring structure with a 350kΩ serpentine resistor 

in series with its cathode. The SiPM array is comprised of 256 SiPM pixels connected in parallel 

and arranged in a 16x16 array. Figure 5.1 below shows the design of the chip in Cadence. 
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Figure 5.1 – Cadence Layout of Chip 1 

Note the use of interior pads in order to maximize space. The pin table for Chip 1 is shown in 

Table 5.1 below. A “P” signifies partial guard ring while “F” signifies full guard ring. 

APD Anode (A) Cathode (K) Guard Ring (G) 

Min-P 34 33 42 

Min-F 36 35 43 

5μ-P 38 37 44 

5μ-F 40 39 46 

24μ-P 2 3 49 

24μ-F 4 5 50 

SiPM Pixel 47 48 46 

SiPM Array 22 21 19 

Table 5.1 – Chip 1 Pin Table 
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The layouts of each APD are shown in Figures 5.2 through 5.9 below. 

 

Figure 5.2 – Cadence Layout of Min-P 

 

Figure 5.3 – Cadence Layout of Min-F 
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Figure 5.4 – Cadence Layout of 5μ-P 

 

Figure 5.5 – Cadence Layout of 5μ-F 
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Figure 5.6 – Cadence Layout of 24μ-P 

 

Figure 5.7 – Cadence Layout of 24μ-F 
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Figure 5.8 – Cadence Layout of SiPM Pixel (24μ-F w/ 350kΩ serpentine resistor) 

 

Figure 5.9 – Cadence Layout of SiPM Array (16x16 Array of SiPM pixels) 
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 Figure 5.10 below shows the layouts and corresponding cross-sectional views of the 5μ-P 

and 5μ-F APDs for comparison to the 10μ Si APD in Figure 4.1 in Chapter 4, pg. 21. Note the 

presence of the graded SiGe in the active area of the APD. 

  

Figure 5.10 – Cadence Layout and Cross Section of 5μ-P (left) and 5μ-F (right) 

 Figure 5.11 below shows the fabricated chip. 

 

Figure 5.11 – Fabricated Chip 1 
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The fabricated chip die was wire bonded to SOIC-28 packages, using the K & S 4526 Wire 

Bonder in the lab at UNLV shown in Figure 5.12 below, according to the two bonding diagrams 

shown in Figure 5.13 below. 

 

Figure 5.12 – K & S 4526 Wire Bonder [31] 

          

Figure 5.13 – SOIC-28 Bonding Diagram Version 1 (left) and Version 2 (right) for Chip 1 
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Tables 5.2 and 5.3 below show the bonding tables for Chip 1. 

 

APD 

Anode (A) Cathode (K) Guard Ring (G) 

Chip 

Pin # 

Package 

Pin # 

Chip 

Pin # 

Package 

Pin # 

Chip 

Pin # 

Package 

Pin # 

Min-F 36 19 35 18 43 20 

24μ-F 4 24 5 25 50 23 

SiPM Array 22 12 21 11 19 9 

Table 5.2 – SOIC-28 Package Bonding Table Version 1 for Chip 1 

 

APD 

Anode (A) Cathode (K) Guard Ring (G) 

Chip 

Pin # 

Package 

Pin # 

Chip 

Pin # 

Package 

Pin # 

Chip 

Pin # 

Package 

Pin # 

Min-P 34 17 33 16 42 15 

Min-F 36 19 35 18 43 13 

5μ-P 38 21 37 20 44 12 

5μ-F 40 23 39 22 46 11 

24μ-P 2 25 3 26 49 5 

SiPM Pixel 47 9 48 6 50 10 

Table 5.3 – SOIC-28 Package Bonding Table Version 2 for Chip 1 

The SOIC-28 package was then soldered to its respective printed circuit board (PCB) as shown 

in Figure 5.14 below. 

       

Figure 5.14 – SOIC-28 Soldered to PCB Version 1 (left) and Version 2 (right) for Chip 1 

The PCBs were designed using FreePCB as shown in Figure 5.15 below. 
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Figure 5.15 – PCB Design Version 1 (left) and Version 2 (right) for Chip 1 

The fabricated chip die was also wire bonded to a TO-8 package according to the bonding 

diagram shown in Figure 5.16 below as well as those in Appendix 5a. 

  

Figure 5.16 – TO-8 Package Bonding Diagram Version 1 for Chip 1 

Note each TO-8 is bonded in the same manner as shown in Figure 5.17 below. 
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Figure 5.17 – TO-8 Package (left) and Wire Bonded Chip 1 in TO-8 Package (right) 

Table 5.4 below shows the bond plan table (TO-8 package pins) for Chip 1. 

Chip Pin # Pin Description APD Bond Plan # 

34 Anode (A)  

Min-P 

 

1 33 Cathode (K) 

42 Guard Ring (G) 

36 A  

Min-F 

 

2 

 
35 K 

43 G 

38 A  

5μ-P 

 

3 

 
37 K 

44 G 

40 A  

5μ-F 

 

3 39 K 

46 G 

2 A  

24μ-P 

 

2 3 K 

49 G 

4 A  

24μ-F 

 

1 5 K 

50 G 

47 A 

SiPM Pixel 4 48 K 

46 G 

22 A  

SiPM Array 

 

4 21 K 

19 G 

Table 5.4 – TO-8 Package Bond Plans 1, 2, 3, and 4 for Chip 1 
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5.3 Chip 2 

 Chip 2, shown in Figure 5.18 below, contains 24 APD test structures and 66 pads. 

 

Figure 5.18 – Cadence Layout of Chip 2 

The APD’s on Chip 2 are classified into three sizes with EMITT layer dimensions of 5μm x 

5μm, 24μm x 24μm, and 50μm x 50μm, and all have full guard rings unless specifically 

mentioned. For each size (5μ, 24μ, and 50μ), the APD variants are documented below, and their 

corresponding layouts are presented in Appendix 5b. 

Elementary – These structures are the APD design in Figure 4.3 (right) from Chapter 4, pg. 24, 

with no rings around the active area but additional contacts to ensure proper connection. 
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Standard – These structures are full guard ring structures, the basis for the following test 

structures. 5μ and 24μ are equivalent to 5μ-F and 24μ-F on Chip 1. 

No EMITT - These structures are simply the Standard structures with the EMITT layer 

removed in order to determine if the SiGe contribution is due solely to EMITT. Figure 5.19 

below shows the layout and corresponding cross-sectional view of the 5μ No EMITT APD. 

 

Figure 5.19 – Cadence Layout and Cross Section of No EMITT 

BPOLY/PPLUS – These structures are the No EMITT structures but with the BPOLY layer 

replaced with PPLUS in order to determine if the SiGe contribution is, in fact, NOT due solely to 

EMITT but rather from the BPOLY layer. PPLUS maintains the same dimensions as the BPOLY 

layer it replaces, but this requires the dimensions of the active area DIFF layer to increase in 

order to satisfy design rules. Figure 5.20 below shows the layout and corresponding cross-

sectional view of the 5μ BPOLY/PPLUS APD. 
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Figure 5.20 – Cadence Layout and Cross Section of BPOLY/PPLUS 

BPOLY/PPLUS Smaller – These structures are the BPOLY/PPLUS structures, but the active 

area DIFF layer maintains the same dimensions as in the No EMITT and Standard structures to 

maintain consistent active area. As a result, however, PPLUS is required to have smaller 

dimensions than the BPOLY layer it replaces in order to satisfy design rules. 

No Sub - These structures are simply the Standard structures with the substrate guard ring 

removed in order to investigate its effect on the APDs performance. 

Circle – These structures are simply the circular versions of the Standard structures with their 

sizes characterized by the diameter of the EMITT layer circle. This was done to eliminate high 

electric field at sharp corners of the APD which lead to a high DCR [32]. 

Circle No Sub - These structures are simply the Circle structures with the substrate guard ring 

removed in order to investigate its effect on the APDs performance. 
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 The fabricated chip die will be wire bonded to TO-8 packages according to the bond plan 

and pin table for Chip 2 shown in Appendix 5c. The nine bonding diagrams for Chip 2 are shown 

in Appendix 5d. Note each TO-8 is bonded in the same manner. 

5.4 Chip 3 

 Chip 3, shown in Figure 5.21 below, contains 67 pads and 22 APD test structures. 

 

Figure 5.21 – Cadence Layout of Chip 3 

The APD’s on Chip 3 are classified into three sizes with EMITT layer dimensions of 5μm x 

5μm, 24μm x 24μm, and 50μm x 50μm, and all have full guard rings unless specifically 
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mentioned. For each size (5μ, 24μ, and 50μ), the APD variants are documented below, and their 

corresponding layouts are presented in Appendix 5e. 

noBNTUB2 – These structures are the Standard structures but with BNTUB2 deleted in order 

to investigate the impact of BNTUB2, which is used for high voltage (5V) HBTs, compared to 

only BNTUB, used for low voltage (3.3V) high speed HBT’s. The researchers are interested to 

see if BNTUB2 is a buried “deep” N-well or if it is simply used for BJTs rather than MOSFETs 

which are suspected to utilize NTUB and NBUR. Figure 5.22 below shows the cross-sectional 

view of a SiGe NPN low voltage (3.3V) high speed HBT, which does not contain BNTUB2, in 

the S35 process to be compared to Figure 4.3 (left) in Chapter 4, pg. 24. As both cross sections in 

Figures 4.3 (left) and 5.22 contain a N+ buried layer, it is suspected that both BNTUB and 

BNTUB2 yield a N+ buried layer despite the absence of the NBUR layer. 

 

Figure 5.22 – Cross Section for SiGe NPN Low Voltage (3.3V) High Speed HBT [33] 



 

42 

TUBBUR – These structures have BNTUB and BNTUB2 replaced by NTUB and NBUR and 

are to be compared to Standard and noBNTUB2 in order to determine the effect of BNTUB, 

BNTUB2, NTUB, and NBUR as explained in the description of noBNTUB2 above. 

TUB – These structures have BNTUB and BNTUB2 replaced by only NTUB and are to be 

compared to Standard and noBNTUB2 in order to determine the effect of BNTUB, BNTUB2, 

NTUB, and NBUR as explained in the description of noBNTUB2 above. 

 The following APD variants were laid out for sizes of 24μ and 50μ. 

Cyl – These structures contain four cylindrical photodiodes connected in parallel similar to 

Figure 5.23 shown below. 

 

Figure 5.23 – Four Cylindrical Photodiodes Connected in Parallel [34] 

Striped BNTUB2 – These structures are comparable to Standard but with BNTUB2 laid out in 

strips in order to create an APD with striped n-wells. 

Striped Half BNTUB2 – These structures are the same as Striped BNTUB2 but with the 

BNTUB2 strips laid out with a 50% concentration such that the strips of BNTUB2 are half the 

total area of the homogeneous BNTUB2 in the Standard structures. 
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Striped TUBBUR – These structures are comparable to TUBBUR but with TUB & BUR both 

laid out in strips as shown in Figure 5.24 below in order to create an APD with striped n-wells to 

be compared to Striped BNTUB2. The following structures are simply variations of these 

structures, or can be thought of as variations of the TUBBUR structures with TUB and BUR 

independently laid out in strips. 

 

Figure 5.24 – APD Layout with Striped N-Wells [35] 

Striped BUR hTUB – These structures are the same as Striped TUBBUR but with only BUR 

striped and TUB left homogenous as in TUBBUR. 

Striped BUR Half TUB – These structures are the same as Striped BUR hTUB but with TUB 

strips laid out with a 50% concentration such that the strips of TUB are half the total area of the 

homogeneous TUB in the Striped BUR hTUB structures. 
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 The following APD variant was laid out only for a size of 24μ. 

24μ Striped Half TUB hBUR – These structures are the same as Striped BUR Half TUB but 

with BUR homogeneous, so the only difference between these structures and the TUBBUR 

structures is that TUB strips are laid out with a 50% concentration such that the strips of TUB are 

half the total area of the homogeneous TUB in the TUBBUR structures. 

 The fabricated chip die will be wire bonded to TO-8 packages according to the bond plan 

and pin table for Chip 3 shown in Appendix 5f. The eleven bonding diagrams for Chip 3 are 

shown in Appendix 5g. Note each TO-8 is bonded in the same manner, just as in Chip 2.  
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Chapter 6: Chip Testing Explanation and Procedure 

6.1 Testing Explanation 

 Chip 1 is the only chip that has been tested as Chip 2 and Chip 3 have yet to be received 

from MOSIS. I-V characteristic curves, responsivity, and QE for the APDs on Chip 1 were tested 

at Freedom Photonics using SOIC-28 packages. I-V curves for the APDs on Chip 1 were also 

tested by the researchers at UNLV in order to compare results to those obtained at Freedom 

Photonics and determine the reliability of the testing equipment and procedure set up by the 

researchers at UNLV. In addition, at the request of Freedom Photonics, DCR and light count rate 

(LCR) tests were performed by the researchers at UNLV. Though Chip 1 was tested at UNLV in 

both SOIC-28 and TO-8 packages, only TO-8 package testing results for Chip 1 in TO-8 

packages are presented as the testing results for Chip 1 in SOIC-28 packages are similar yet less 

consistent compared to those of the TO-8 packages. 

6.2 Description of Testing Equipment 

 The testing equipment utilized is presented in Figures 6.1 through 6.12 below. 

 

Figure 6.1 – Full Test Equipment Set Up 
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Figure 6.2 – Keithley 2450 SourceMeter 

 

Figure 6.3 – GW Instek GPS-3303 Programmable Power Supply 

 

Figure 6.4 – Tektronix PS 5010 Programmable Power Supply 

 

Figure 6.5 – GW Instek AFG-2225 Arbitrary Function Generator 
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Figure 6.6 – Stanford Research Systems SR430 Multi-Channel Scaler 

 

Figure 6.7 – Lecroy WaveMaster 8300A 3 GHz Oscilloscope 

 

Figure 6.8 – Mini-Circuits ZFL-500LN-BNC+ Small Signal, Low Noise Amplifier (LNA) 

with a gain of 24dB 

 

Figure 6.9 – Thorlabs PM100USB Power and Energy Meter Interface 
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Figure 6.10 – LulzBot Mini 3D Printer (left) Zoomed in on Printed Component (right) 

 

Figure 6.11 – Dark Box 

 

Figure 6.12 – Thorlabs Ground Glass Diffuser, 12.7mm, 220 GRIT 

 An LED driver PCB was also designed using EAGLE in order to supply a fixed amount 

of current (determined by resistor values) to a diffused LED with a certain wavelength such that 

the APD’s could be tested for fixed wavelengths and light intensities. The PCB schematic is 
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shown in Figure 6.13, the PCB design and fabricated PCB are shown in Figure 6.14, and the 

populated PCB (containing a diffused LED, a 1N4148 diode, and a LM334 adjustable current 

source) is shown in Figure 6.15, all below. 

 

Figure 6.13 – PCB Schematic using EAGLE 

  

Figure 6.14 – LED Driver PCB Design using EAGLE (left) and Fabricated PCB (right) 

 

Figure 6.15 – Populated LED Driver PCB 
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 Copper tubes and 3D printed connector components were also utilized for reliable 

connection between the LED driver PCB and TO-8 package. The design of the 3D printed 

connector, component 1, and the fabricated component 1 are shown in Figures 6.16 and 6.17, 

respectively, below. 

     

Figure 6.16 – Design of 3D Printed Connector, Component 1 

 

Figure 6.17 – Fabricated Component 1 

The bottom opening of component 2a was modified to be a 1.5mm hole in component 2b which 

was modified to have the 1.5mm hole offset by 1mm in component 2c. The designs of the 3D 

printed connectors, component 2a, component 2b, and component 2c are shown in Figure 6.18 

below, and the fabricated components are shown in Figure 6.19 below. 
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Figure 6.18 – Designs of 3D Printed Connectors (from left to right): Components 2a, 2b, 

and 2c (side view), Component 2a (bottom view), Component 2b (bottom view), and 

Component 2c (bottom view) 

  

Figure 6.19 – Fabricated Components (from left to right): Components 2a, 2b, and 2c (side 

view), Component 2a (bottom view), Component 2b (bottom view), and Component 2c 

(bottom view) 

The copper tubes utilized are shown in Figure 6.20 below. 

 

Figure 6.20 – Copper Tubes: Side View (left) and Top View (right) 
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6.3 Description of Testing Procedure 

6.3a I-V Curves 

 I-V curves were performed for the APDs using the Keithley 2450 SourceMeter in order 

to determine current magnitudes for a voltage sweep from 0V to 13V. As a current limit of 1mA 

(and later 200μA) was used to prevent damaging the APDs, some I-V curves do not reach the 

upper voltage limit of 13V. The 2450 SourceMeter was connected via BNC cable to the cathode 

of the APD while the anode and guard ring were grounded. I-V curves were performed for a dark 

state using the dark box as well as an arbitrary light condition using the ambient room light. 

6.3b DCR 

 Tests of DCR were performed for voltages ranging from the breakdown voltage of the 

APD to 16V. In order to observe the amplitude of dark pulses, the output of the LNA was 

originally connected to the Lecroy 8300A Oscilloscope. As a result, it was determined to set the 

discriminator level on the SR430 to 200mV as shown in Figure 6.21 below. Also notice in Figure 

6.21 below that the screen of the SR430 only displays from bin 64 at 10.24μs to bin 191 at 

30.56μs and sums the “Total” counts over 10,000 records. The SR430 can only perform the math 

functions used to calculate the “Total” counts on the data displayed on the screen between bin 64 

and bin 191. Thus, the assumption was made that the counts displayed on the screen of the 

SR430 in the 20.32μs from bin 64 to bin 191 accurately represents the count trend for 1 second. 
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Figure 6.21 – SR430 Screen Displaying 200mV Discriminator Level, Bin 64 at 10.24μs, and 

Bin 191 at 30.56μs 

 The tested APD was then connected in the dark box as shown in Figures 6.22 and 6.23 

below. 

 

Figure 6.22 – LTSpice Schematic of APD Connection for DCR Tests 
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Figure 6.23 – Dark Box Connection of an APD in an SOIC-28 Package for DCR Tests 

A BNC cable was connected from the 2450 SourceMeter to the cathode of the APD through a 

150kΩ resistor. Another BNC cable was connected from the anode of the APD to the input of the 

Mini-Circuits LNA. The LNA was powered with 15V from the 5010 Power Supply, and its 

output was connected to the SR430 Signal In. A 50Ω resistor was also connected from the anode 

of the APD to ground, and the guard ring was connected to ground. The 2225 function generator 

was set to a 50% duty cycle square wave with a frequency of 1KHz, amplitude of 2.5Vpp, and 

offset of 1.25VDC and was connected to the Trigger In of the SR430. The voltage of the 2450 

SourceMeter was increased in varying increments up to 16V starting from the breakdown 

voltage of the APD, where dark counts began to be present on the SR430. The “Total” counts 

value on the SR430, shown in Figure 6.24 below, was recorded for each voltage step. 
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Figure 6.24 – SR430 Screen Displaying Total Counts 

The “Total” counts value was then used to calculate DCR using Equation 11 below, 

                                  𝐷𝐶𝑅 = 𝑇𝑜𝑡𝑎𝑙 ×
49,212.6

10,000
= 𝑇𝑜𝑡𝑎𝑙 × 4.92126 

 

Equation 11 

where 10,000 is the number of records in the scan over which “Total” is summed, and 49,212.6 

is the number of 20.32μs periods in a second, calculated using Equation 12 below, due to the 

screen of the SR430 being set to display from 10.24μs to 30.56μs. 

                                         
1 𝑠𝑒𝑐𝑜𝑛𝑑

(30.56 − 10.24)μs
= 49,212.6 

 

Equation 12 

In order to confirm the accuracy of this method, a similar calculation was done using the bin 

width, bins per record, and records per scan as shown in Figure 6.25 below. 
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Figure 6.25 – SR430 Screen Displaying Bin Width, Bits per Record, and Records per Scan 

6.3c LCR 

 For the TO-8 packages, LCR tests were also performed using various diffused LEDs of 

different wavelengths and powered by the LED driver PCB connected to the TO-8 package 

through two copper tubes. The copper tubes were connected by two component 1 connectors in 

Figure 6.17, pg. 50, with the Thorlabs Diffuser in Figure 6.12, pg. 48, between them (to evenly 

distribute the LED light for better uniformity) as shown in Figure 6.26 below. 
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Figure 6.26 – Connection of LED Driver to TO-8 Package through Two Copper Tubes, 

Two Component 1 Connectors, and a Diffuser for LCR Tests 

The TO-8 package was connected as shown in Figure 6.27 below with dead bug techniques using 

a copper clad board. The TO-8 package was connected exactly the same as it was in the dark box 

according to Figure 6.22, pg. 53. 

 

Figure 6.27 – Dead Bugged TO-8 Package 
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 The LED driver PCB was connected to 10V from the 3303 Power Supply, and the 

resistor values on the LED driver PCB were calculated using Equation 13 and Equation 14 below 

from the LM334 datasheet such that R1 and R2 were set to 27Ω and 267Ω, respectively, in order 

to supply the LED with a current of 5mA [36]. 

                                       𝐼𝑆𝐸𝑇 ≈
0.134 𝑉

𝑅1
 

 

Equation 13 

                                      𝑅2 = 10 × 𝑅1 Equation 14 

An LTSpice schematic shown in Figure 6.28 below was also drafted and simulated to ensure the 

accuracy of the resistor calculations for a current of 5mA. 

 

Figure 6.28 – LTSpice Schematic of LED Driver PCB 
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Note the intensity of the incident light due to the LED can be increased by supplying the LED 

with more current. The LCR tests were then performed exactly like the DCR tests described 

previously. 

6.3d Power Uniformity 

 In order to test responsivity and QE of an APD, the power resulting from light incident 

on the tested APD must be known. Thus, the researchers first needed to determine the uniformity 

of the power supplied by a LED used as the source of incident light such that the power of the 

incident light striking a single APD on the chip could be accurately determined. For uniform 

power supplied by the LED, the power of the incident light striking a single APD on the chip 

could be accurately determined by multiplying the total power measured in the area of the entire 

chip by the ratio of the area of the tested APD to the area of the entire chip. Thus, the LED driver 

PCB was connected as it was for the light count tests. However, instead of the lower copper tube 

connected to a TO-8 package, it was connected to the Thorlabs Power Meter. This was done 

using the 3D printed connector components 2a, 2b, and 2c shown in Figure 6.19, pg. 51, as 

shown in Figure 6.29 below. The three different 3D printed connector component variations 

were used in order to measure the power at various areas and determine the uniformity of the 

power due to the LED. 
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Figure 6.29 – Copper Tube Connected to Power Meter using Component 2a (shown), 2b, 

and 2c 

 The power measured at various areas was consistent, suggesting uniformity of the power 

supplied by the LED. By looking at the beam produced by the LED, however, it was evident that 

the light was clearly not uniform. Furthermore, multiple issues and concerns arose surrounding 

the comparison of the power measured in the area of the sensor in the Power Meter to the power 

of the light incident on the chip in a TO-8 package. As a result, it was apparent that further 

calibration and power uniformity tests using more reliable testing equipment is required in order 

to accurately measure responsivity and QE of an APD.  
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Chapter 7: Testing Results 

7.1 I-V Curve Test Results 

 The I-V curve for the SiPM pixel in an arbitrary light state using the ambient room light 

is shown in Figure 7.1 below. 

 

Figure 7.1 – I-V Curve of SiPM Pixel 

The I-V curve data on the Keithley 2450 SourceMeter was exported to Microsoft Excel in order 

to examine the data and generate customized graphs with both dark and light states on the same 

plot. The raw data is available upon request. The SiPM pixel has lower current than the other 

APDs due to the 350kΩ resistor in series with its anode, allowing to clearly see the increase in 

current amplitude from dark to light state on the same plot. Thus, the I-V curve of the SiPM 

Pixel in a dark state as well as an arbitrary light sate, labeled Total Current, using the ambient 

room light is shown in Figure 7.2 below for comparison to Figure 3.3 in Chapter 3, pg. 12. 
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Figure 7.2 – I-V Curve of SiPM Pixel Plotted in Microsoft Excel 

The same plot with current and gain on the y-axes expressed in logarithmic form for better 

distinction between Dark and Total Current is shown in Figure 7.3 below. 

 

Figure 7.3 – I-V Curve of SiPM Pixel with Y-axes in Logarithmic Form 
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Note the Photo Current is equal to the Dark Current subtracted from the Total Current, and the 

Gain is plotted by dividing the Total Current at each voltage increment by the Total Current at 

0V such that there is a gain of 1 at 0V. Figure 7.4 below shows the I-V curve zoomed in around 

the tested APDs breakdown voltage. 

 

Figure 7.4 – I-V Curve of SiPM Pixel Zoomed in around Breakdown Voltage 

 These three I-V curves for the remaining structures on Chip 1 (Min-P, Min-F, 5μ-P, 5μ-F, 

24μ-P, and 24μ-F) are shown in Appendix 7a. Note in the zoomed in plots that the Dark Current 

may overtake the Total Current, resulting in the Photo Current peaking then decreasing and even 

going slightly negative in some cases. This point should be noted as the breakdown voltage 

where the Total Current begins to abruptly increase, signifying the APD entering Geiger mode. I-

V curve measurements were repeated multiple times with both TO-8 and SOIC-28 packages, 

yielding consistent results. In Geiger mode, gain is arbitrary as the Total Current begins to tend 

to infinity. Note that if the gain was determined using the Photo Current, as is commonly done, 

the gain would drop off as the APD enters Geiger mode. Thus, to accommodate both methods, 
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Table 7.1 below shows the maximum linear gain for each APD at the breakdown voltage where 

the Photo Current reaches its peak. 

APD Breakdown Voltage (V) Peak Photo Current (μA) Maximum Linear Gain 

Min-P 11 149 271 

Min-F 10.9 129 2,110 

5μ-P 11.45 725 22,900 

5μ-F 11.45 715 23,400 

24μ-P 11.4 516 7,190 

24μ-F 11.525 641 4,570 

SiPM Pixel 13 2.43 22.9 

Table 7.1 – Breakdown Voltage, Peak Photo Current, and Maximum Linear Gain of Chip 

1 APDs 

Note that the 350kΩ resistor associated with the SiPM pixel limits its Photo Current resulting in 

a significantly lower gain than the 24μ-F APD. 

7.1a Freedom Photonics I-V Curve Test Results 

 The I-V curves for the 5μ-F and 24μ-F APDs were tested at Freedom Photonics for a 

dark state as well as response to 560nm light from zero bias (0V) to 11V and are shown in 

Figures 7.5 and 7.6, respectively, below. 

 

Figure 7.5 – I-V Curve of 5μ-F APD Tested at Freedom Photonics 
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Figure 7.6 – I-V Curve of 24μ-F APD Tested at Freedom Photonics 

The dark current results are fairly higher than those measured at UNLV as shown in Table 7.2 

below. 

 

Voltage 

(V) 

UNLV 5μ-F 

Dark Current 

(nA) 

Freedom Photonics 

5μ-F 

 Dark Current (nA) 

UNLV 24μ-F 

Dark Current 

(nA) 

Freedom Photonics 

24μ-F 

 Dark Current (nA) 

0 0.0049 0.003 0.0127 0.005 

1 0.0076 0.025 0.0309 0.045 

2 0.0065 0.085 0.02041 0.12 

3 0.0074 0.23 0.02096 0.35 

4 0.0083 0.55 0.02527 0.88 

5 0.0149 1.22 0.04879 1.5 

6 0.0428 1.3 0.07505 1.8 

7 0.1337 2 0.2697 5.6 

8 0.4049 2.7 0.6934 9.5 

9 1.15 5.8 2.01 28 

10 3.14 10.3 5.6 47 

11 9.07 25 16.3 114 

Table 7.2 – Dark Current as a Function of Bias Voltage for 5μ-F and 24μ-F APDs Tested at 

UNLV and Freedom Photonics 

Figure 7.7 below shows the difference in photocurrents for the 5μ-F and 24μ-F APDs is roughly 

proportional to the area, which is 23.04 times larger for the 24μ-F APD. 
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Figure 7.7 – Difference in Photocurrents for 5μ-F and 24μ-F APDs 

 The I-V curves of the 5μ-F and 24μ-F APDs from 11.2V to 11.33V are shown in Figures 

7.8 and 7.9, respectively, below, displaying the Dark Current, Total Current, and Photo Current 

using 560nm light as well as the different regions of operation including photoconductive, linear, 

and Geiger mode. 

 

Figure 7.8 – I-V Curve of 5μ-F APD Tested at Freedom Photonics 
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Figure 7.9 – I-V Curve of 24μ-F APD Tested at Freedom Photonics 

As 560nm light was used as opposed to the ambient room light for the APDs tested at UNLV, 

the only comparison that will be made is that of breakdown voltage, defined by where the APD 

enters Geiger mode. Table 7.3 below shows a comparison of breakdown voltage values obtained 

at UNLV (in Table 7.1, pg. 64) to those obtained at Freedom Photonics for the 5μ-F and 24μ-F 

APDs. 

APD Breakdown Voltage (V) 

UNLV 5μ-F 11.45 

Freedom Photonics 5μ-F 11.29 

UNLV 24μ-F 11.525 

Freedom Photonics 24μ-F 11.3 

Table 7.3 – Comparison of Breakdown Voltage of 5μ-F and 24μ-F APDs obtained at UNLV 

vs. Freedom Photonics 

The gain of the 5μ-F and 24μ-F APDs from 11.2V to 11.33V are shown in Figures 7.10 and 7.11, 

respectively, below. 
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Figure 7.10 – Gain vs. Bias Voltage for 5μ-F APD Tested at Freedom Photonics 

 

Figure 7.11 – Gain vs. Bias Voltage for 24μ-F APD Tested at Freedom Photonics 

A comparison of the maximum linear gain for the APDs tested at UNLV to those tested at 

Freedom Photonics is shown in Table 7.4 below. 
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APD Maximum Linear Gain 

UNLV 5μ-F 23,400 

Freedom Photonics 5μ-F 88,000 

UNLV 24μ-F 4,570 

Freedom Photonics 24μ-F 1,390 

Table 7.4 – Comparison of Maximum Linear Gain of 5μ-F and 24μ-F APDs obtained at 

UNLV vs. Freedom Photonics 

 The difference in measurements between the APDs tested at UNLV and those tested at 

Freedom Photonics could be due to many factors including temperature and equipment 

differences. Additionally, the APDs tested at Freedom Photonics were packaged using SOIC-28s 

while those tested at UNLV were packaged using TO-8s. 

7.2 DCR and LCR Test Results 

 Figure 7.12 below shows the resulting DCR and LCR, using a 643nm (red) diffused 

LED, for the 5μ-F APD. 

 

Figure 7.12 – DCR and LCR (643nm) vs. Bias Voltage for 5μ-F APD 

DCR and LCR were measured from the breakdown voltage of the APD, defined as the voltage 

where dark counts began to be present, up to 16V. Table 7.5 below shows the breakdown voltage 
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for each APD as well as the DCR at 13V, in which each APD is clearly in Geiger mode for 

single photon detection. 

APD Breakdown Voltage (V) DCR @ 13V 

Min-P 11.54 1,474,635.874 

Min-F 11.45 2,031,397.703 

5μ-P 11.75 3,698,961.733 

5μ-F 11.65 4,605,167.47 

24μ-P 11.73 5,228,326.939 

24μ-F 11.82 4,285,885.964 

Table 7.5 – Breakdown Voltage Determined from DCR Tests and DCR at 13V for Chip 1 

APDs 

Note that 13V in Table 7.5 above was simply used for comparison between APDs at an arbitrary 

voltage in which each APD is in Geiger mode. A lower voltage could have been used for 

comparison resulting in lower DCRs. At 13V, 24μ-P has the highest DCR and Min-P has the 

lowest. Figure 7.13 below shows the photon counts due solely to incident photons from the 

643nm LED such that the DCR was subtracted from the 643 nm LCR which initially includes 

dark counts. 

 

Figure 7.13 – Photon Counts vs. Bias Voltage for 5μ-F APD 

Note that the maximum photon count for the 5μ-F APD appears at 15.5 V. Recall, however, that 

the photon counts do not reflect the number of incident photons. Instead, the photon counts 
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reflect the total number of photogenerated carriers due to incident photons after avalanche 

multiplication. These two plots for the remaining structures on Chip 1 (Min-P, Min-F, 5μ-P, 24μ-

P, and 24μ-F) are shown in Appendix 7b. Table 7.6 below shows the maximum Photon Count 

for each APD up to 16V.  

APD Voltage (V) Maximum Photon Count 

Min-P 12.75 170,674.2181 

Min-F 12 21,313.97706 

5μ-P 16 1,241,766.772 

5μ-F 15.5 644,709.6663 

24μ-P 15 430,221.4705 

24μ-F 16 946,732.3138 

Table 7.6 – Maximum Photon Count and Corresponding Bias Voltage for Chip 1 APDs 

Note that at some voltages, DCR is larger than LCR for some APDs, likely due to measurement 

error such as varying temperature, resulting in negative photon count in some instances which 

should be neglected. Note the count tests were only conducted up to 16V at which the maximum 

photon count occurs for some APDs, so the maximum photon count may increase with further 

reverse bias voltage, especially for the 5μ-P and 24μ-F APDs which have the largest maximum 

photon counts. It can be seen that Min-F has the lowest maximum photon count by a significant 

amount. 

7.3 Spectral Response (Responsivity and QE) Test Results 

 The spectral response (responsivity and QE) for the 5μ-F and 24μ-F SiGe APDs on Chip 

1 as well as the 10μ Si APD in Figure 4.1 in Chapter 4, pg. 21, were tested at Freedom Photonics 

using an optical test setup including a monochromator and a dark box. Figure 7.14 below shows 

the normalized spectral response for the 5μ-F SiGe APD measured at zero bias and using 10nm 

increments. 
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Figure 7.14 – Normalized Spectral Response for 5μ-F APD at Zero Bias 

Note that the responsivity and QE peak at approximately 500nm then decrease exponentially 

with increasing wavelength. The aberrations in the spectral responses of the tested APDs are not 

due to noise but rather due to reflections since the APD does not have an anti-reflective (AR) 

coating. Figure 7.15 below shows the normalized spectral response for the 5μ-F APD measured 

in avalanche mode at 11.25V, 11.26V, and 11.27V using 40nm increments. 

 

Figure 7.15 – Normalized Spectral Response for 5μ-F APD in Avalanche Mode at 11.25V, 

11.26V, and 11.27V 
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Note that the spectral response is constant for varying reverse bias voltage. Figure 7.16 below 

shows the normalized responsivity at zero bias for the 10μ Si APD for comparison to the 5μ-F 

SiGe APD. 

 

Figure 7.16 – Comparison of Normalized Responsivity for 10μ Si vs. 5μ-F SiGe APDs at 

Zero Bias 

Notice the peak responsivity for the 10μ Si APD is at 480 nm and 500 nm for the 5μ-F SiGe 

APD. Furthermore, the 5μ-F SiGe APD exhibits consistently enhanced response from 530 nm to 

1,000 nm compared to the 10μ Si APD, confirming the initial hypothesis detailed in Table 4.1 in 

Chapter 4, pg. 22. The attenuated response at wavelengths longer than 1000 nm is likely due to 

the graded SiGe P+ layer shown in Figure 5.10 in Chapter 5, pg. 32, being only approximately 

200 nm thick, thus limiting the enhanced response of SiGe over Si at NIR wavelength. This 

shortcoming can be remedied by a thicker SiGe layer added through post-processing. Beyond 

1000 nm the response of both types of APDs are at the noise floor of the instrument. However, 

an additional test was done to show that the SiGe APDs still have usable response up to 1200 

nm. The 5μ-F SiGe APD was extensively tested between 1000 nm to 1200 nm to determine the 
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true detection limits in the NIR region. Figure 7.17 below shows the spectral response with 

current as a function of reverse bias voltage for the 5μ-F APD operating in photoconductive 

mode from 0V to 11V for varying wavelengths of 1000nm, 1050nm, 1100nm, 1150nm, and 

1200nm compared to the dark current. 

 

Figure 7.17 – Spectral Response (Current vs. Bias Voltage) of 5μ-F APD in 

Photoconductive Mode (0V to 11V) for Dark State and Wavelengths of 1000nm, 1050nm, 

1100nm, 1150nm, and 1250nm 

Notice that detection out to 1200 nm is possible at zero bias since the dark current contribution is 

minimal. At higher bias voltages nearing 11V, however, distinction between dark current and 

total current for a wavelength beyond 1100 nm becomes unlikely especially when considering 

other factors such as noise. Figure 7.18 below illustrates the same principle as above for reverse 

bias voltages in the avalanche region of the 5μ-F APD showing that avalanche mode operation is 

only useful for wavelengths up to 1100 nm as the dark current multiplication exceeds that of 

photocurrent for wavelengths beyond 1100 nm. 



 

75 

 

Figure 7.18 – Spectral Response (Current vs. Bias Voltage) of 5μ-F APD in Avalanche 

Mode (11.15V to 11.31V) for Dark State and Wavelengths of 1000nm, 1050nm, 1100nm, 

1150nm, and 1250nm 

 Figure 7.19 below provides an alternative way at looking at this data by observing the 

ratio of photocurrent to dark current as a function of wavelength and reverse bias voltage such 

that detection of a wavelength is not possible for a ratio below 1 since the dark current exceeds 

the photocurrent. 
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Figure 7.19 – Spectral Response (Ratio of Photocurrent to Dark Current vs. Reverse Bias 

Voltage) of 5μ-F APD in Photoconductive Mode (0V to 11V) or Wavelengths of 1000nm, 

1050nm, 1100nm, 1150nm, and 1250nm 

Notice that detection of wavelengths up to 1200 nm is possible for a reverse bias below 3V. 

Furthermore, observing the lower edge of the avalanche region beyond 11V, it is apparent that 

the ratio of photocurrent to dark current begins to increase for wavelengths up to 1050 nm due to 

the avalanche gain. Longer wavelengths such as 1150 nm and 1200, however, appear not to 

benefit from this gain as their photocurrent to dark current ratios decrease at the onset of 

avalanche multiplication. 

7.3a Extending Spectral Response (Double Anode) 

 In order to further extend the spectral response of SiGe APDs without any process 

modifications, the graded SiGe P+ (anode) can be connected to the substrate in a “double” anode 

configuration as shown in Figure 7.20 below such that the substrate induced photocurrent is 

added to the total current. 

 

Figure 7.20 – Cross Section of APD Connected in Double Anode Configuration 



 

77 

As a result, the cathode becomes surrounded by the anode on all sides and significantly improves 

the NIR response. This is shown in Figure 7.21 below displaying the normalized spectral 

response of the 24μ-F SiGe APD for zero bias due to the contribution from the SiGe P+ anode as 

well as the substrate. 

 

Figure 7.21 – Normalized Spectral Response for 24μ-F APD at Zero Bias Connected in 

Double Anode Configuration 

Notice the high responsivity from approximately 550 nm to 1050 nm, with peak responsivity at 

830 nm after which the response sharply drops off toward a final λc of 1180 nm. This allows for 

a broad range of applications. 

 The double anode connection, however, has the caveat that no electronics can be 

implemented on the same chip die since noise from electronics, particularly fast digital edges, on 

the same chip will couple into the substrate near the APD and be indistinguishable from 

photocurrent. Additionally, the double anode connection is not able to be connected to a 

transimpedance amplifier (TIA), so a different topology such as a current sense amplifier would 
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have to be used to measure the photocurrent. Regardless, a two-chip solution is appropriate for 

many applications particularly due to the low cost of the photodetector chip as no additional 

wafer processing is required with the double anode connection. 

 Figure 7.22 below shows responsivity and QE of the 10u Si APD connected in the double 

anode configuration, exhibiting a spectral response extended further into the NIR region 

compared to the normalized spectral response in Figure 7.16, pg. 73, in which the substrate 

current was not collected. 

 

Figure 7.22 – Normalized Spectral Response for 10μ Si APD at Zero Bias Connected in 

Double Anode Configuration 

Notice the peak responsivity occurs at 720 nm with the response falling sharply beyond 1000 nm 

with a λc around 1100 nm. Figure 7.23 below shows the previous two normalized spectral 

response figures plotted together for comparison of the 10μ Si and 24μ-F SiGe APDs, both 

connected in the double anode configuration. 
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Figure 7.23 – Comparison of Normalized Spectral Responsivity for 10μ Si and 24μ-F SiGe 

APDs at Zero Bias Connected in Double Anode Configuration 

As expected, while the spectral response has been extended for both APDs by connecting them 

in the double anode configuration, the 24μ-F SiGe APD exhibits enhanced NIR response 

compared to the 10μ Si APD. The 24μ-F SiGe APD has a peak responsivity at 830 nm and λc of 

approximately 1180 nm compared to 720 nm and 1100 nm, respectively, for the 10μ Si APD. 

 It is hypothesized that the reason for the SiGe APD’s enhanced NIR performance is not 

due to the shallow SiGe layer (around 200 nm) but rather due to the deep buried N-well layer. 

The buried N-well for the SiGe process is at a depth of 6 μm while the N-well in the Si process is 

at 3.5 μm. This may account for the shifted peak from 730 nm to 820 nm and the enhanced NIR 

response in SiGe. 

 Though the previous normalized spectral response plots demonstrate a valid shape of the 

spectral responses, they do not display responsivity with proper units of A/W. In order to get a 

true indication of responsivity, a calibrated 850 nm laser was coupled to the tested APDs with a 
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fiber probe and a dark box was utilized to keep out all ambient light and ensure a highly accurate 

responsivity measurement. The spot size of the single mode fiber probe used was 10 μm and able 

to fit within the total photoactive area for the 24μ APDs. The smaller SiGe APDs as well as the 

10μ Si APD, however, were too small for the spot size and were not tested for responsivity. 

Figure 7.24 below shows the spectral response with responsivity in A/W for the 24μ-F SiGe 

APD with standard as well as double anode connection. 

 

Figure 7.24 – Comparison of Spectral Response (with Responsivity in A/W) for 24μ-F vs. 

Double Anode Connected 24μ-F APDs at Zero Bias 

Notice the standard connected APD has a peak responsivity of 0.34 A/W at 500 nm and a high 

QE peak of 85% at 450 nm. The double anode connected APD has a slightly lower peak 

responsivity of 0.27 A/W at 830 nm but a significantly lower QE peak of 39% also at 830 nm. 

This allows for much flexibility with these SiGe APDs as one could choose either a blue 

sensitive or NIR sensitive response simply by changing the connection of one pin. Table 7.7 

below summarizes the spectral response results of the APDs tested at Freedom Photonics. 
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Type of APD SiGe SiGe Si 

Dimensions 24μ x 24μ 5μ x 5μ 10μ x 10μ 

Area 576 μ
2
 25 μ

2 
100 μ

2 

Dark Current 5 pA 3 pA 3 pA 

Max APD Gain 1390 (63dB) 88,000 (99 dB) 1000 (60 dB) 

Spectral Peak 500 nm (single anode) 

830 nm (dual anode) 

500 nm 480 nm (single anode) 

660 nm (dual anode) 

Cutoff Wavelength 1180 nm 1180 nm 1100 nm 
 

Responsivity 
0.34 A/W @ 500 nm 

(single anode) 

0.27 A/W @ 830 nm 

(dual anode) 

Not Tested Not Tested 

 

QE 
85% @ 450 nm 

(single anode) 

39% @ 830 nm 

(dual anode) 

Not Tested Not Tested 

Table 7.7 – Summary of Spectral Responses for 5μ-F SiGe, 24μ-F SiGe, and 10μ Si APDs 

Tested at Freedom Photonics 
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Chapter 8: Conclusion 

 Extensive research, design, data collection, and analysis requiring meticulous 

documentation and organization was performed in order to accurately and effectively 

characterize several APDs and ensure success in characterizing more APDs in the future. The 

current information surrounding the APDs tested thus far including the analysis of their I-V 

curves, gain, DCRs, responsivities, and QEs as well as scrutiny of the current test setups and 

procedures at both UNLV and Freedom Photonics provides significant insight for the next stages 

regarding this research. 

 Much future work remains in order to develop APDs for use in numerous applications 

including, but not limited to, a monolithic integrated photon-counting receiver for use by NASA. 

Overall, the tested SiGe APDs exhibit improved characteristics compared to Si APDs and 

possess versatile qualities associated with their different modes of operation and vast range of 

gains, allowing for much potential in countless applications. The spectral response of these SiGe 

APDs, however, is desired to be extended further which will likely require process modifications 

including additional selective growth of SiGeSn on top of the finished CMOS wafer [37]. 

Furthermore, readout circuitry including a TIA and time-to-digital converter (TDC) will need to 

be designed on a readout integrated circuit (ROIC) for practical use of a final APD design. 

 The APD variants on Chip 2 and Chip 3 as well as the SiPM pixel and SiPM array on 

Chip 1 will need to characterized, and all APDs require further characterization in regard to 

response time, capacitance characteristics, dark count temperature dependence, etc. which will 

greatly benefit from the use of software for APD modeling. The APD variants on Chip 2 and 

Chip 3 will also be specifically tested in order to accurately determine how much of the NIR 
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enhancement is due to the SiGe material system, while holding other parameters constant. The 

use of anti-reflective (AR) coating on the APDs will also be investigated. 

 In order to more efficiently test the large number of APD structures on Chip 2 and Chip 

3, the test setup at UNLV should be improved by use of a monochromator and spectrometer. A 

general purpose interface bus (GPIB) should also be utilized in order to connect the testing 

equipment for more automated testing and recording of data. Lastly, the power uniformity tests 

and LED calibration will be continued in order to allow testing of responsivity, quantum 

efficiency, and, likely more importantly, PDE at UNLV. 
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Appendix 

Chapter 5 Appendix 

Appendix 5a: Chip 1 TO-8 Bonding Diagrams 

 

Figure A.5a.1 – Version 1 



 

85 

 

Figure A.5a.2 – Version 2 

 

Figure A.5a.3 – Version 3 



 

86 

 

Figure A.5a.4 – Version 4 

Appendix 5b: Chip 2 APD Layouts 

 

Figure A.5b.1 – 5μ Elementary 
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Figure A.5b.2 – 24μ Elementary 

 

Figure A.5b.3 – 50μ Elementary 
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Figure A.5b.4 – 5μ Standard 

 

Figure A.5b.5 – 24μ Standard 
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Figure A.5b.6 – 50μ Standard 

 

Figure A.5b.7 – 5μ No EMITT 
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Figure A.5b.8 – 24μ No EMITT 

 

Figure A.5b.9 – 50μ No EMITT 
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Figure A.5b.10 – 5μ BPOLY/PPLUS 

 

Figure A.5b.11 – 24μ BPOLY/PPLUS 
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Figure A.5b.12 – 50μ BPOLY/PPLUS 

 

Figure A.5b.13 – 5μ BPOLY/PPLUS Smaller 
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Figure A.5b.14 – 24μ BPOLY/PPLUS Smaller 

 

Figure A.5b.15 – 50μ BPOLY/PPLUS Smaller 
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Figure A.5b.16 – 5μ No Sub 

 

Figure A.5b.17 – 24μ No Sub 
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Figure A.5b.18 – 50μ No Sub 

 

Figure A.5b.19 – 5μ Circle 
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Figure A.5b.20 – 24μ Circle 

 

Figure A.5b.21 – 50μ Circle 
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Figure A.5b.22 – 5μ Circle No Sub 

 

Figure A.5b.23 – 24μ Circle No Sub 



 

98 

 

Figure A.5b.24 – 50μ Circle No Sub 

Appendix 5c: Chip 2 Bond Plan and Pin Table 

Chip Pin # Pin Description APD Bond Plan # 

1 Anode (A)  

5μ Elementary 

 

5 2 Cathode (K) 

3 Guard Ring (G) 

4 A  

24μ Elementary 

 

8 5 K 

6 G 

7 A  

50μ Elementary 

 

6 8 K 

9 G 

10 A  

5μ Standard 

 

1 11 K 

12 G 

13 A  

5μ BPOLY/PPLUS Smaller 

 

4 14 K 

15 G 

16 A   

9 17 K 
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18 G 5μ BPOLY/PPLUS 

19 A  

5μ No EMITT 

 

2 20 K 

21 G 

22 A  

5μ No Sub 
 

1 
23 K 

24 A  

5μ Circle 

 

6 25 K 

26 G 

27 A  

5μ Circle No Sub 
 

5 
28 K 

29 A  

24μ Standard 

 

3 30 K 

31 G 

32 A  

24μ BPOLY/PPLUS Smaller 

 

8 33 K 

34 G 

35 A  

24μ BPOLY/PPLUS 

 

2 36 K 

37 G 

38 A  

24μ No EMITT 

 

1 39 K 

40 G 

41 A  

24μ No Sub 
 

4 
42 K 

43 A  

24μ Circle 

 

9 44 K 

45 G 

46 A  

24μ Circle No Sub 
 

2 
47 K 

48 A  

50μ Standard 

 

5 49 K 

50 G 

51 A  

50μ BPOLY/PPLUS Smaller 

 

3 52 K 

53 G 

54 A  

50μ BPOLY/PPLUS 

 

7 55 K 

56 G 

57 A  

50μ No EMITT 

 

4 58 K 

59 G 

60 A  

50μ No Sub 
 

6 
61 K 



 

100 

62 A  

50μ Circle 

 

7 63 K 

64 G 

65 A  

50μ Circle No Sub 
 

3 
66 K 

Table 5c.1 – TO-8 Package Pin Table and Bond Plans 1 through 9 for Chip 2 

Appendix 5d: Chip 2 TO-8 Bonding Diagrams 

 

Figure A.5d.1 – Version 1 
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Figure A.5d.2 – Version 2 

 

Figure A.5d.3 – Version 3 
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Figure A.5d.4 – Version 4 

 

Figure A.5d.5 – Version 5 
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Figure A.5d.6 – Version 6 

 

Figure A.5d.7 – Version 7 
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Figure A.5d.8 – Version 8 

 

Figure A.5d.9 – Version 9 
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Appendix 5e: Chip 3 APD Layouts 

 

Figure A.5e.1 – 5μ noBNTUB2 

 

Figure A.5e.2 – 24μ noBNTUB2 
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Figure A.5e.3 – 50μ noBNTUB2 

 

Figure A.5e.4 – 5μ TUBBUR 
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Figure A.5e.5 – 24μ TUBBUR 

 

Figure A.5e.6 – 50μ TUBBUR 
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Figure A.5e.7 – 5μ TUB 

 

Figure A.5e.8 – 24μ TUB 
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Figure A.5e.9 – 50μ TUB 

 

Figure A.5e.10 – 24μ Cyl 
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Figure A.5e.11 – 50μ Cyl 

 

Figure A.5e.12 – 24μ Striped BNTUB2 
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Figure A.5e.13 – 50μ Striped BNTUB2 

 

Figure A.5e.14 – 24μ Striped Half BNTUB2 
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Figure A.5e.15 – 50μ Striped Half BNTUB2 

 

Figure A.5e.16 – 24μ Striped TUBBUR 
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Figure A.5e.17 – 50μ Striped TUBBUR 

 

Figure A.5e.18 – 24μ Striped BUR hTUB 
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Figure A.5e.19 – 50μ Striped BUR hTUB 

 

Figure A.5e.20 – 24μ Striped BUR Half TUB 
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Figure A.5e.21 – 50μ Striped BUR Half TUB 

 

Figure A.5e.22 – 24μ Striped Half TUB hBUR 
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Appendix 5f: Chip 3 Bond Plan and Pin Table 

Chip Pin # Pin Description APD Bond Plan # 

1 Anode (A)  

5μ TUBBUR 

 

2 Cathode (K) 3 

3 Guard Ring (G)  

4 A  

5μ TUB 

 

5 K 4 

6 G  

7 A  

5μ noBNTUB2 

 

8 K 5 

9 G  

10 A  

24μ Cyl 

 

11 K 2 

12 G  

13 A  

24μ TUBBUR 

 

14 K 1 

15 G  

16 A  

24μ TUB 

 

17 K 3 

18 G  

19 A  

24μ noBNTUB2 

 

20 K 4 

21 G  

22 A  

24μ Striped BNTUB2 

 

23 K 6 

24 G  

25 A  

24μ Striped BUR hTUB 

 

26 K 2 

27 G  

28 A  

24μ Striped BUR Half TUB 

 

29 K 1 

30 G  

31 A  

24μ Striped TUBBUR 

 

32 K 11 

33 G  

34 A  

24μ Striped Half BNTUB2 

 

35 K 9 

36 G  

37 A  

24μ Striped Half TUB hBUR 

 

38 K 7 

39 G  

40    
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41 A  

50μ Cyl 

 

42 K 11 

43 G  

44 A  

50μ TUBBUR 

 

45 K 8 

46 G  

47 A  

50μ TUB 

 

48 K 7 

49 G  

50 A  

50μ noBNTUB2 

 

51 K 9 

52 G  

53 A  

50μ Striped BNTUB2 

 

54 K 10 

55 G  

56 A  

50μ Striped BUR hTUB 

 

57 K 5 

58 G  

59 A  

50μ Striped BUR Half TUB 

 

60 K 8 

61 G  

62 A  

50μ Striped TUBBUR 

 

63 K 6 

64 G  

65 A  

50μ Striped Half BNTUB2 

 

66 K 10 

67 G  

Table 5f.1 – TO-8 Package Pin Table and Bond Plans 1 through 11 for Chip 3 

Appendix 5g: Chip 3 TO-8 Bonding Diagrams 
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Figure A.5g.1 – Version 1 

 

Figure A.5g.2 – Version 2 
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Figure A.5g.3 – Version 3 

 

Figure A.5g.4 – Version 4 
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Figure A.5g.5 – Version 5 

 

Figure A.5g.6 – Version 6 
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Figure A.5g.7 – Version 7 

 

Figure A.5g.8 – Version 8 
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Figure A.5g.9 – Version 9 

 

Figure A.5g.10 – Version 10 
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Figure A.5g.11 – Version 11 

Chapter 7 Appendix 

Appendix 7a: Chip 1 I-V Curves 
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Figure A.7a.1 – I-V Curve of Min-P APD 

 

Figure A.7a.2 – I-V Curve of Min-P APD with Y-axes in Logarithmic Form 
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Figure A.7a.3 – I-V Curve of Min-P Zoomed in around Breakdown Voltage 

 

Figure A.7a.4 – I-V Curve of Min-F APD 
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Figure A.7a.5 – I-V Curve of Min-F APD with Y-axes in Logarithmic Form 

 

Figure A.7a.6 – I-V Curve of Min-F Zoomed in around Breakdown Voltage 
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Figure A.7a.7 – I-V Curve of 5μ-P APD 

 

Figure A.7a.8 – I-V Curve of 5μ-P APD with Y-axes in Logarithmic Form 
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Figure A.7a.9 – I-V Curve of 5μ-P Zoomed in around Breakdown Voltage 

 

Figure A.7a.10 – I-V Curve of 5μ-F APD 
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Figure A.7a.11 – I-V Curve of 5μ-F APD with Y-axes in Logarithmic Form 

 

Figure A.7a.12 – I-V Curve of 5μ-F Zoomed in around Breakdown Voltage 
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Figure A.7a.13 – I-V Curve of 24μ-P APD 

 

Figure A.7a.14 – I-V Curve of 24μ-P APD with Y-axes in Logarithmic Form 
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Figure A.7a.15 – I-V Curve of 24μ-P Zoomed in around Breakdown Voltage 

 

Figure A.7a.16 – I-V Curve of 24μ-F APD 
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Figure A.7a.17 – I-V Curve of 24μ-F APD with Y-axes in Logarithmic Form 

 

Figure A.7a.18 – I-V Curve of 24μ-F Zoomed in around Breakdown Voltage 
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Figure A.7a.19 – I-V Curve of SiPM Pixel 

 

Figure A.7a.20 – I-V Curve of SiPM Pixel with Y-axes in Logarithmic Form 
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Figure A.7a.21 – I-V Curve of SiPM Pixel Zoomed in around Breakdown Voltage 

Appendix 7b: Chip 1 Dark and Light Count Graphs 
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Figure A.7b.1 – DCR and LCR (643nm) vs. Bias Voltage for Min-P APD 

 

Figure A.7b.2 – Photon Counts vs. Bias Voltage for Min-P APD 
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Figure A.7b.3 – DCR and LCR (643nm) vs. Bias Voltage for Min-F APD 

 

Figure A.7b.4 – Photon Counts vs. Bias Voltage for Min-F APD 
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Figure A.7b.5 – DCR and LCR (643nm) vs. Bias Voltage for 5μ-P APD 

 

Figure A.7b.6 – Photon Counts vs. Bias Voltage for 5μ-P APD 
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Figure A.7b.7 – DCR and LCR (643nm) vs. Bias Voltage for 5μ-F APD 

 

Figure A.7b.8 – Photon Counts vs. Bias Voltage for 5μ-F APD 
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Figure A.7b.9 – DCR and LCR (643nm) vs. Bias Voltage for 24μ-P APD 

 

Figure A.7b.10 – Photon Counts vs. Bias Voltage for 24μ-P APD 
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Figure A.7b.11 – DCR and LCR (643nm) vs. Bias Voltage for 24μ-F APD 

 

Figure A.7b.12 – Photon Counts vs. Bias Voltage for 24μ-F APD  
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