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ABSTRACT 

High-speed synchronous systems require tightly controlled clock timing 

allowances for high performance operation.  A Delay-Locked Loop (DLL) is a 

commonly used circuit to de-skew any variations due to process, voltage, or temperature 

(PVT).  While a DLL will effectively align an input reference clock to an outgoing data 

clock, the DLL will not adjust the reference duty cycle if it is non-ideal.  For this purpose 

a Duty Cycle Corrector (DCC) can be used in tandem with the DLL.  Through the 

combined use of a DLL and a DCC, a high-speed system can be provided with a clock 

that has been both de-skewed across PVT and has a good duty cycle.   

Three DCC designs are compared: the Half-Cycle Delay Line (HCDL), Open 

Loop (OL), and the Integrated Half-Cycle Delay Line (IHCDL).  The HCDL DCC 

features a stable closed loop duty cycle detection and wide duty cycle range at the cost of 

larger layout area.  The OL DCC features less stable open loop detection with the benefit 

of minimal forward path delay again at the cost of larger layout area.  The IHCDL DCC 

is a hybrid design that, through the use of only a single delay line for both 0º and 180º 

phase generation, provides the advantages of the HCDL DCC with a substantial 

improvement to the required layout area.   

The design of a generic DLL and the IHCDL DCC are detailed in this thesis.  The 

performance of the IHCDL is verified through simulation.  Across a range of 3 – 10 ns 

the IHCDL DCC corrects duty cycle to within +/- 5% of 50%.  The additional lock time 

and power consumption of the IHCDL DCC (compared to the DLL only) are evaluated.  

Finally, the jitter induced by the IHCDL DCC across PVT and voltage supply variations 

is evaluated.  Suggestions are made for the improvement of duty cycle correction.     

 iii



   

ACKNOWLEDGEMENTS 
 

I would like to express my gratitude to Dr. Jake Baker for his instruction, 

guidance, and motivation through my time as a graduate student at Boise State 

University.  The skills and knowledge I have gained from him have been an immense 

help in my development both scholastically and professionally.   

I would also like to thank Micron Technology Inc. not only for funding my post-

graduation education, but also for providing me with a job where I get to work on DLL’s 

and DCC’s on a daily basis.   

Thanks also go to Eric Booth, Tyler Gomm, and Brandon Roth for their expert 

DLL knowledge and tolerance for my interminable questioning.  Brandon, especial 

thanks to you for nurturing me from a fledging college student into a (semi) productive 

engineer!    

Most of all I would like to extend my deepest thanks to my wife, Elena, whose 

love, patience, and encouragement have made all the difference in all aspects of my life.  

I would not be the man I am today without your support.  Last but certainly not least, 

thanks to my little man, Thomas, for getting by without me during the long nights of 

studying.   

 iv



   

TABLE OF CONTENTS 

ABSTRACT ………………………………………………………………………………………………...….…. iii 

ACKNOWLEDGEMENTS ………………………………………………………………………...…….…. iv 

LIST OF TABLES ……...…………………………………………………………………...………….…...... viii 

LIST OF FIGURES …………………………………………………………………………………..…...……. ix 

 

CHAPTER 1 – INTRODUCTION ..................................................................................... 1 

1.1 Motivation................................................................................................................. 1 

1.2 DLL Behavior ........................................................................................................... 3 

1.3 DCC Behavior........................................................................................................... 8 

 
CHAPTER 2 – DLL DESIGN.......................................................................................... 12 

2.1 Process and Simulation Models .............................................................................. 12 

2.2 Phase Splitter .......................................................................................................... 12 

2.3 Delay Element......................................................................................................... 14 

2.4 Phase Detector ........................................................................................................ 18 

2.5 Buffer Design.......................................................................................................... 22 

2.6 Initialization ............................................................................................................ 24 

2.7 Locking ................................................................................................................... 27 

2.8 Filtering................................................................................................................... 28 

2.9 Fine Delay Line (Dual Loop DLL)......................................................................... 31 

 
 

 

 v



   

CHAPTER 3 – DCC DESIGN ......................................................................................... 36 

3.1 Half-Cycle Delay Line DCC................................................................................... 36 

3.2 Open-Loop DCC..................................................................................................... 39 

3.3 Integrated Half-Cycle Delay Line DCC ................................................................. 42 

 
CHAPTER 4 – INTEGRATED HCDL DCC DESIGN ................................................... 48 

4.1 Exit Point Delay Line.............................................................................................. 48 

4.2 Dual Shift Register.................................................................................................. 49 

4.3 Exit Tree.................................................................................................................. 51 

4.4 Phase Combiner ...................................................................................................... 55 

4.5 Shift Divider............................................................................................................ 57 

4.6 Initialization and Locking ....................................................................................... 60 

 
CHAPTER 5 – INTEGRATED HCDL DCC PERFORMANCE .................................... 62 

5.1 Duty Cycle Correction ............................................................................................ 62 

5.2 Lock Time............................................................................................................... 65 

5.3 Duty Cycle Range ................................................................................................... 66 

5.4 Duty Cycle Jitter ..................................................................................................... 69 

5.5 Power ...................................................................................................................... 70 

5.6 Response to Voltage Supply Variation ................................................................... 70 

 
CHAPTER 6 – CONCLUSIONS ..................................................................................... 74 

6.1 Conclusions............................................................................................................. 74 

 
 
 

 vi



   

CHAPTER 7 – REFERENCES ........................................................................................ 75 

 
CHAPTER 8 – APPENDIX.............................................................................................. 77 

8.1 Additional Schematics ............................................................................................ 77 

 

 vii



   

LIST OF TABLES 

Table 5.1 Clock Period vs. Lock Time ............................................................................. 66 

Table 5.2 Duty Cycle Jitter vs. PVT (for tCK = 5ns) ......................................................... 69 

Table 5.3 Clock Period vs. Average Current  (Vdd = 1.5V) ............................................ 70 

 

 viii



   

LIST OF FIGURES 

 
Figure 1.1 Data Timing Chart for DDR DRAM................................................................. 1 

Figure 1.2 DLL Block Diagram.......................................................................................... 4 

Figure 1.3 DLL with N Lock Points ................................................................................... 5 

Figure 1.4 Phase Error in a Digital DLL............................................................................. 6 

Figure 1.5 Dual Loop DLL ................................................................................................. 7 

Figure 1.6 DCC Block Diagram ......................................................................................... 8 

Figure 1.7 Phase Combine Diagram ................................................................................. 10 

Figure 2.1 Enabled Phase Splitter Schematic ................................................................... 13 

Figure 2.2 Enabled Phase Splitter Simulation .................................................................. 14 

Figure 2.3 Delay Line and Shift Register Diagram .......................................................... 15 

Figure 2.4 Clock Entry Point and Shift Register Value Diagram..................................... 16 

Figure 2.5 Simplified Delay Line and Shift Register Diagram ........................................ 17 

Figure 2.6 Shift Register Schematic ................................................................................. 18 

Figure 2.7 Schematic of Coarse Phase Detector............................................................... 19 

Figure 2.8 Phase Timing ................................................................................................... 20 

Figure 2.9 Fine Phase Detector (Arbiter).......................................................................... 22 

Figure 2.10 Wide Swing Self Biased Operational Amplifier Schematic.......................... 23 

Figure 2.11 Transient (Top) and DC (Bottom) Input Buffer Simulations........................ 24 

Figure 2.12 Measure Controlled DLL Block Diagram..................................................... 25 

Figure 2.13 Measure Initialization Schematic .................................................................. 26 

Figure 2.14 DLL Lock Flow Chart ................................................................................... 28 

Figure 2.15 Schematic of the Shift Filter.......................................................................... 30 

 ix



   

Figure 2.16 Simulation of Shift Filter Showing Slow and Fast Shift Modes ................... 31 

Figure 2.17 Fine Phase Mixer Configurations: (a) Default, (b) Max. Delay, and               

(c) Min. Delay........................................................................................................... 32 

Figure 2.18 Fine Phase Mixer and Shift Register ............................................................. 33 

Figure 2.19 Simulation of Fine Phase Mixer .................................................................... 34 

Figure 2.20 Simulation of Phase-Mixed Node for all Phase Mixer Stages ...................... 35 

Figure 3.1 HCDL DCC Block Diagram ........................................................................... 37 

Figure 3.2 HCDL DCC Timing Diagram ......................................................................... 37 

Figure 3.3 Open Loop DCC Block Diagram .................................................................... 40 

Figure 3.4 Timing Diagram for the Clock Divider ........................................................... 40 

Figure 3.5 Block Diagram of Clock Dividers and Duty Error Correction Block ............. 41 

Figure 3.6 Integrated DCC DLL Block Diagram ............................................................. 43 

Figure 3.7 How to Find the Next N Delay Line Diagram ................................................ 44 

Figure 3.8 Delay Line Diagrams after the DLL and DCC have Locked .......................... 45 

Figure 3.9 Delay Line Diagram Showing How the 0° and 180° Output are Generated... 46 

Figure 4.1 Clock Exit Point and Shift Register Value Diagram....................................... 48 

Figure 4.2 Dual Shift Register showing 180° Exit Point .................................................. 49 

Figure 4.3 Unit Delay Cell Schematic .............................................................................. 51 

Figure 4.4 Clock Exit Tree Diagram................................................................................. 52 

Figure 4.5 Schematic of (a) Typical NAND Gate and a (b) Balanced NAND Gate ........ 53 

Figure 4.6 Simulation of Balanced vs. Typical NAND Exit Tree .................................... 54 

Figure 4.7 Phase Combine Schematic .............................................................................. 56 

Figure 4.8 Phase Combine Simulation.............................................................................. 56 

 x



   

Figure 4.9 Shift Divider Schematic .................................................................................. 58 

Figure 4.10 Timing Diagram for the Shift Divider........................................................... 59 

Figure 4.11 Fine Shift Divider .......................................................................................... 59 

Figure 4.12 DLL and DCC Lock Flow Chart ................................................................... 60 

Figure 5.1 Phase Difference Between 0º Out and 180º Out during DCC Initialization   

(tCK = 5 ns) ................................................................................................................ 62 

Figure 5.2 Coarse and Fine Phase Difference between 0° Out and 180° Out .................. 63 

Figure 5.3 Output Duty Cycle vs. Clock Cycles for tCK from 3 ns to 10 ns ..................... 64 

Figure 5.4 Input vs. Output Duty Cycle with DCC Enabled and Disabled (tCK = 5 ns) ... 67 

Figure 5.5 Input vs. Output Duty Cycle Plot with Spec Limits........................................ 68 

Figure 5.6 Output Duty Cycle Response to an Instantaneous Change in Voltage ........... 71 

Figure 5.7 Output Duty Cycle Response to a Voltage Change from 1.5 V to 1.7 V           

to 1.5 V...................................................................................................................... 72 

Figure 5.8 Output Duty Cycle for +/-100mV Sinusoidal Voltage Supply ....................... 73 

Figure 8.1 Top Level DLL/DCC Schematic..................................................................... 77 

Figure 8.2 Schematic of DLL/DCC (without feedback)................................................... 77 

Figure 8.3 ClkIn Schematic .............................................................................................. 78 

Figure 8.4 Control Schematic ........................................................................................... 79 

Figure 8.5 Schematic of Delay Line ................................................................................. 80 

Figure 8.6 DCC Delay Element Schematic ...................................................................... 81 

Figure 8.7 Schematic of Shift Control .............................................................................. 82 

Figure 8.8 Schematic of Lock........................................................................................... 83 

 

 xi





    
1

CHAPTER 1 – INTRODUCTION 

 

1.1 Motivation 

A Double-Data-Rate Synchronous Dynamic Random Access Memory (DDR 

SDRAM) is an example of an application that uses a Delay-Locked Loop (DLL) to 

maximize the data valid window [1].  Figure 1.1 shows the timing diagram for a DDR 

SDRAM including the external clock (XCLK), the output data strobe (DQS), and output 

data (DQ).  The time, tDQV, is the time associated with data valid window.  The times, 

tDQSCK and tAC, are the clock to DQS and DQ skews, respectively.    

External 
Clock

(XCLK)

Data 
Strobe
(DQS)

Data
(DQ)

Bit 0 Bit 1 Bit 2 Bit 3

tDQV tDQSCK tAC  
Figure 1.1 Data Timing Chart for DDR DRAM 

A DLL is a circuit commonly used in synchronous circuits to align outgoing data 

with an external clock signal.  As circuit speeds increase with shrinking device 

dimensions, the clock frequencies increase, and the effects of clock skew and jitter on a 

system becomes an increasingly larger percentage of tDQV.  When the data valid window 
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shrinks, the integrity of the system is detrimentally affected and high performance suffers 

[2].   

A DLL aligns DQS and the DQ’s to an external clock provided by the memory 

controller.  Through the dynamic use of a variable delay line (VDL), the DLL effectively 

accommodates variations in process, voltage, and temperature (PVT) by adding or 

removing delay between XCLK and DQS.  If a fixed amount of delay were used—

instead of a DLL—to align the incoming clock and output data, then variations in PVT 

would significantly increase clock skew (tDQSCK).  This increase effectively shrinks the 

data valid window (tDQV) and makes the system more subject to timing errors.   

On a DDR SDRAM application, data is clocked out on both the rising and falling 

edges of clock.  Consequently, the incoming clock duty cycle can also affect the data 

valid window of the second bit of data (bit 1).  The clock high time is proportional to the 

bit 0 tDQV and similarly the clock low time is proportional to the bit 1 tDQV.  A clock 

signal with an ideal 50% duty cycle has equivalent clock high and clock low periods.  A 

poor duty cycle would be any clock signal with significant difference between the clock 

high and clock low times.  For example, a 25% duty cycle clock would mean that the 

clock is only high for 25% of the clock period and low for the other 75% of the period.  A 

memory controller that is providing an external clock with a poor duty cycle will 

automatically be affecting the data window negatively.  For example, an input duty cycle 

of 30% on XCLK will reduce tDQV for the bit 0.  Conversely, a 70% input duty cycle 

would hurt tDQV for bit 1.  To ensure that the DLL outputs a clock with a 50% duty cycle 

regardless of the input duty cycle, a Duty Cycle Corrector (DCC) circuit is commonly 

used in tandem with a DLL [3], [4], [5].   
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In high frequency clock systems attaining a perfect duty cycle to all devices can 

become expensive as costly high-quality components are required to preserve duty cycle 

throughout the system.  It is beneficial if the memory device can handle a non-ideal duty 

cycle and still output a 50% duty cycle.  This capability allows the system to maintain 

good performance while keeping costs down [2].   

In a Very Large Scale Integrated (VLSI) circuit design, it is advantageous to use a 

digital DLL design for its portability across process nodes.  While analog DLL’s 

generally provide better jitter performance and higher phase accuracy, digital DLL 

designs tend to have faster locking times, lower power dissipation, and less sensitivity to 

variations in PVT [3], [6].  For these reasons this thesis focuses exclusively on digital 

DLL and DCC designs.    

1.2 DLL Behavior 

Figure 1.2 shows a basic DLL block diagram.  The DLL itself consists of a 

variable delay line (VDL), a phase detector, a delay shift control circuit, and replica 

buffers, which model the input and output buffers.  The VDL is comprised of a string of 

delay elements that can either be increased or decreased in number.  The phase detector is 

the decision circuit that determines whether delay elements should be added or subtracted 

in the VDL.  The delay shift control circuit processes and filters the phase information 

and sends the proper shift signals to the VDL.  The replica buffers model the delay 

through the input and output buffers.  The replica buffers must accurately model the 

actual buffers for the DLL to precisely synchronize the external clock to the output 

synchronous clock across variations in PVT.   
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Variable Delay Line

Phase 
Detector Delay Shift Control

Input Buffer

Replica Output 
Buffer

Output Buffer

Replica Input 
Buffer

External 
Clock

Synchronous 
Clock

Forward Path

Feedback Path

tD1 tD2

tD1' tD2'

N * tCK – (tD1' + tD2')

DLL

 
Figure 1.2 DLL Block Diagram 

Figure 1.2 shows that the VDL will be adjusted to a value of N * tCK – (tD1’ + tD2’) 

where N is an integer number of clock cycles and tCK is clock period.  The values of tD1 

and tD2 are the delays associated with the input and output buffers, respectively.  

Similarly, tD1’ and tD2’ are the delays associated with the replica (or model) input and 

output buffers.  The delay in the forward path (tFP) and feedback (tFBP) path is shown by 

equations (1) and (2), respectively.   

tFP = tD1 + [N * tCK - (tD1’ + tD2’)] + tD2    (1) 

tFBP = [N * tCK - (tD1’ + tD2’)] + tD1’ + tD2’ = N * tCK   (2) 

Figure 1.3 shows an example of how the DLL can be locked at different N values.  

Regardless of the value of N, the rising edges of the external clock and synchronous 

clock have the same phase.  Essentially, N is a numerical representation of how many 

harmonics are present in the DLL feedback loop.  When the DLL is locked at a point 

where N = 1, for example, there is only one cycle delay between the external clock and 

synchronized clock.  When N = 2 there are two cycles delay between the external and 

synchronized clock and so on for N = 3, 4, 5, etc.   
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Ext Clock

Sync Clock 
(N=1)

Sync Clock 
(N=2)

Sync Clock 
(N=3)

1*tCK

3*tCK

2*tCK

 

Figure 1.3 DLL with N Lock Points 

It is important to note the difference between phase and delay.  Delay simply 

refers to the amount of time it takes for a signal to propagate through a circuit or series of 

circuits.  Generally, this value is tDelay.  Phase, φ, is an angular representation of tDelay 

between two clocked signals of the same period (tCK).  Phase (in degrees) and delay are 

related by the following equation [3]. 

 φ = 360º * tDelay * (1 / tCK)      (3) 

When two signals are said to be 180 degrees (180º) out of phase it is equivalent to saying 

that the later signal is delayed by tCK / 2.   

When the replica buffers model the actual buffers accurately tD1 equals tD1’ and tD2 

equals tD2’.  According to equation (1) the forward path delay is equal to N * tCK which 

precisely matches the feedback path delay as shown by equation (2).  Ideally, tD1 = tD1’ 

and tD2 = tD2’, but realistically the model buffers will not accurately model the actual 

buffers across PVT.  This mismatch in the modeling of the buffers will result in clock 

skew between the external and synchronous clock.  The best way to avoid this mismatch 

is accurate modeling and good layout practices. 
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Assuming that buffer modeling is only introducing negligible clock skew, the 

DLL will have a maximum phase error (in degrees) of  

φerror, max = 360º * td / tCK,      (4) 

where td is the minimum value of the DLL’s VDL step and tCK is the clock period.  

Equation (4) shows that the phase error increases as the clock period decreases [7].  So as 

clock speeds continue to increase so will the phase error.  Figure 1.4 shows a visual 

representation of the phase error with respect to clock frequency (1 / tCK).   

 

 

 

  

 
 
 
 
 
 

Figure 1.4 Phase Error in a Digital DLL 

Because the DLL can only insert or remove a fixed amount of delay, there is a 

quantization error between the output and reference clock of the DLL.  This error is not 

present in an analog DLL because a voltage controlled oscillator (VCO) controls td [7].  

In a digital DLL, td is a discrete value because it is comprised of logic gates.  This error 

creates the need for phase resolution improvement circuits in digital DLL’s.  Dual loop 

DLL’s with fine delay elements solve this problem and can effectively reduce the DLL’s 

minimum phase resolution [3].   

Figure 1.5 shows a block diagram of a dual loop DLL that uses coarse and fine 

VDL’s.  The coarse VDL is used to find the initial coarse lock within a tolerance of the 
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minimum coarse delay element.  Once the initial lock is found the control of the DLL is 

handed over to the fine delay loop, which has a much finer phase resolution.  By using 

this approach the digital DLL can have a minimum phase step comparable to an analog 

DLL [3].  An effective method for implementing a fine delay loop is through the use of 

phase mixing/interpolating [3], [8].  

Coarse Delay Line

Coarse
Phase 

Detector
Coarse Shift Control

Input Buffer

Replica Output 
Buffer

Output Buffer

Replica Input 
Buffer

External 
Clock

Synchronous 
Clock

Coarse Loop
Fine

Phase 
Detector

Fine Shift Control

Fine Delay Line

Fine Loop

 
Figure 1.5 Dual Loop DLL 

To reduce the noise sensitivity of the DLL, filtering of the phase information is 

essential to ensure that any shifts are intentional and not induced by voltage supply noise.  

This filtering can be done in the phase detector itself by dividing the detection rate, but 

the filter range can be limited in these cases [1].  Averaging filters utilizing a shift 

register have also been used to keep track of phase information [1].  While filtering does 

slow the response of the DLL phase tracking, it also helps minimize the output clock 

jitter by reducing the total amount of shifting.   
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1.3 DCC Behavior 

Ideally, a DCC receives an input clock with an arbitrary duty cycle and outputs a 

clock signal with the same high and low periods, which by definition is a signal with 50% 

duty cycle.  Figure 1.6 shows a basic block diagram of this black box behavior.   

Duty Cycle 
Corrector

DCCIn 50% Duty CycleNon-50% Duty Cycle
DCCOut

 
Figure 1.6 DCC Block Diagram 

A DCC design can be a stand-alone integrated circuit (IC) in the sense that it is a 

portable circuit that can be added or removed simply by placing it in the forward path of 

the DLL’s input or output.  Stand-alone IC designs have the advantage of convenience 

during the design stages but have the significant disadvantage of adding another phase 

loop into the synchronization scheme.  Not only will another phase loop potentially 

extend the lock time of the system, but the DCC phase loop could also make the DLL 

phase loop unstable [5].  Instability in either the DLL or DCC phase loop will decrease 

the output phase resolution and reduce the data valid window.   

Opposite to a stand-alone design, an integrated DCC design will be more 

laborious in the design stages; however there are some other considerable benefits to 

using an integrated design.  The major benefit is layout area savings.  By not having to 

simply place a pre-existing DCC block into a layout, an integrated design can share 

attributes with the DLL to save layout space.  Another benefit is the potential to eliminate 

the dual phase loops common with discrete DCC’s.  A DLL phase loop will be more 

stable if the DLL and DCC are both using the same loop for phase detection.   
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The method of duty cycle correction in a DCC is critical to an effective design 

and pivots around how the 50% correction is implemented.  Determining where the 50% 

phase point lies can be challenging, but this determination is essential for the accuracy of 

the DCC.  The DCC must perform two functions: define the 50% phase boundary and 

adjust the duty cycle based on this information.   

DCC’s can be implemented in either an open or closed loop configuration.  A 

closed loop DCC will have feedback phase information to help determine a lock.  This is 

good for the accuracy of the DCC but can have a destabilizing effect on the DLL, which 

is also in a closed loop configuration.  For example, if the DCC makes an adjustment, it 

can take the DLL out of lock and force the DLL to reacquire a lock.  Small adjustments 

in either the DLL or DCC can require additional time to settle out which can extend the 

lock time [5].  Open loop configurations will not affect the DLL phase loop as 

significantly, but these configurations do not have any feedback and, thus, may have a 

higher tendency for error accumulation during the duty cycle correction.  In either an 

open or closed loop design, care must be taken to ensure that interaction between the 

DLL and DCC be kept to a minimum to minimize clock jitter.   

A DCC adjusts the falling edge of the input clock signal until it is exactly halfway 

between the surrounding rising edges of the clock signal.  Usually, the falling edge signal 

(180º Out in Figure 1.7) is separated from the rising edge signal (0º Out), and the two 

signals are multiplexed using a phase combiner.  Figure 1.7 shows a simple block 

diagram of this operation.  Notice that only the rising edges of 0º Out and 180º Out are 

responsible for creating a transition on the output of the phase combiner, which 

corresponds to the rising and falling edge of the output waveform, respectively.  
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Phase 
Combiner

   0° Out

180° Out

50% Duty Cycle

 
Figure 1.7 Phase Combine Diagram 

While a functional DCC will correct any duty cycle problems, there are three 

main drawbacks to inserting a DCC into a synchronous system.  The first is an increase in 

the forward path delay of the system.  Additional forward path delay will increase the 

system wake up time and increase susceptibility to voltage supply noise-induced jitter 

[3].  Any DCC will add some amount of forward path delay whether from the phase 

combiner or DCC devices placed in the forward path.  The second drawback for the 

addition of a DCC is an increase in power consumption.  A DCC is an additional circuit 

that features a full clock frequency toggling VDL along with the associated control logic, 

all of which consume considerable amounts of power.  The final drawback is layout area.  

As more gates are placed naturally more layout area is consumed.   

The placement of the duty cycle corrector is another critical design consideration.  

While the DCC will be placed in series with the DLL, it can be placed either at the input 

or the output of the DLL.  A number of problems exist if the DCC is placed at the output.  

The first problem is the assumption that the external clock signal has a duty cycle that is 

close enough to 50% to allow the clock to pass through all of the internal DLL logic and 

make it to the DCC [3].  Good design practice will help to ensure that signals with poor 

duty cycle will pass through the entire forward path.  Another problem is that all of the 

duty cycle correction must be performed in one stage [3].  This requires that the DCC 

have a wide duty cycle correction range, which can be accommodated by choice in DCC 
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topology.  Placing the DCC at the input of the DLL will provide a 50% clock signal to 

the DLL, but if the DLL degrades duty cycle then a non-ideal duty cycle will be sent to 

the output without correction.  To avoid this problem, the DCC design considered in this 

thesis will place the DCC on the output of the DLL to take advantage of duty cycle 

correction as late as possible in the forward path.   
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CHAPTER 2 – DLL DESIGN 

 

2.1 Process and Simulation Models 

The process used for this DLL design is a 1.5 V, 0.08 μm process (a 0.0575 

shrink factor) from Micron Technology, Inc. which has been specifically designed for 

DRAM production.  The typical process parameters, such as oxide thickness, are 

proprietary and cannot be further disclosed.  All simulations were performed using either 

NANOSIM or HSPICE.  Schematic capture was done using Cadence’s DFII software.  

Consistent with most deep-submicron designs, simulations must be relied upon rather 

than hand calculations for device evaluation.   

2.2 Phase Splitter 

DLL clock signals are frequently distributed, decoded, and buffered to numerous 

other timing critical circuits.  To minimize clock skew it is essential to propagate these 

clock signals and their inverse phases in such a fashion that the rising and falling edges 

arrive at a given circuit simultaneously.  A flip-flop is one example of a circuit that can 

benefit from having two clock phases (inverted and non-inverted) provided to it.  When a 

flip-flop receives the two clock phases at different times a “dead phase” is created that 

increases the amount of data processing time in the latch [9].  For this reason, a phase 

splitter circuit was designed to provide identical propagation delays for both an inverting 

and non-inverting clock phase.   

Figure 2.1 shows the schematic of the phase splitter.  The phase splitter consists 

of an enable NAND gate, two inverters (gates 1 and 2) in the inverting path, and three 
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inverters (gates 3, 4, and 5) in the non-inverting path.  Because the enable NAND gate 

inverts the input, an inverted clock must be provided to the circuit.  The goal of the phase 

splitter is to satisfy the following equation: 

t1 + t2 = t3 + t4 + t5     (5) 

t1, t2, t3, t4, and t5 correspond to the propagation delay of inverters 1, 2, 3, 4, and 5, 

respectively.  

t1 = t3 + t5      (6) 

t2 = t4        (7) 

 
Figure 2.1 Enabled Phase Splitter Schematic 

Furthermore, if the inverters are designed such that equations (6) and (7) are true then the 

delay through both paths will be identical [9].   

In order to find device sizes that satisfy equations (5) through (7) a Monte Carlo 

simulation was run to determine the following parameters: n (the base nmos device 

width), β135 (the p-n ratio for inverters 1, 3, and 5), β24 (the p-n ratio for inverter 2 and 4), 

and f (the fan-out factor between inverter pairs 1 and 2 and 4 and 5).  The resulting 

simulation output provided correct device sizes to guarantee that the phase splitter will 

generate identical propagation delays for both phases [9].   
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Figure 2.2 shows the simulation results when the optimized parameters were used.  

Notice that there is a 169 ps propagation delay for the rising edge output and a 165 ps 

delay for the falling edge output.  Also note that the crossing point of rclk and fclk is 

approximately Vdd/2, suggesting that their transition times are equivalent in either 

direction. 

 
Figure 2.2 Enabled Phase Splitter Simulation 

2.3 Delay Element  

The VDL portion of the DLL is created with a string of inverting CMOS logic 

gates.  Entry or exit points into this string of gates are called taps (or tap points).  These 

delay line cells are tapped every other gate to ensure that each successive tap is not an 

inversion of an adjacent tap [3].  In early DLL designs simple inverters were used in the 

delay line.  More recent designs have taken advantage of the NAND gates as the CMOS 

gate used in the delay line [1].   

A NAND gate delay line has a number of beneficial properties.  First, during 

power-up every delay stage can be set to a known digital level.  This approach avoids any 
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ambiguity during the device startup-period.  Second, NAND gates have a longer 

propagation delay than simple inverters, which allows for a longer delay line for an 

equivalent number of delay cells.  Finally, the high-to-low or low-to-high propagation 

time may be skewed in a NAND gate but, because there are two consecutive NAND 

gates per delay cell, both edges of the clock signal will be delayed identically [1].  

Consequently, skew will not be accumulated with additional delay cells because each 

delay cell has an identical delay to that of all the other delay cells.   

Figure 2.3 shows a diagram of the delay line and shift register initially used on 

this DLL.  Notice that the basic unit delay cell and delay stages are selected.  A delay 

stage consists of a delay cell, a shift register bit, and an entry NAND gate.  The input 

clock to the delay line, ClkIn, is provided to every entry NAND gate, but only the entry 

tap will allow ClkIn to enter the delay line.  The entry point is determined by the shift 

register via the phase detect and shift control circuitry.  Once ClkIn has propagated down 

the calculated length of the delay line it is output as ClkOut.  Ideally, the amount of delay 

selected in the delay line will be such that the external and output data clocks are in phase 

[3].   
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Figure 2.3 Delay Line and Shift Register Diagram 
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The main purpose of the shift register, as seen in Figure 2.3, is to keep track of the 

depth in the delay line.  The shift register is also used to add or remove delay cells based 

on phase information that is decoded by the shift control circuitry.  A shift register bit is 

essentially a flip-flop that either stores a ‘0’ or a ‘1’ based on the surrounding bits.  The 

outputs of the shift register, Q and QF, are used to select the entry tap.   

Figure 2.4 shows how the value stored in the shift register selects the entry tap 

point.  A ‘0’ stored in a shift register bit will prevent that entry-NAND gate from passing 

ClkIn and will allow the previous delay cell to pass the clock coming down the delay 

line.  When a ‘1’ is stored, the entry-NAND allows ClkIn to enter the delay line and the 

previous delay cell is prevented from passing the clock downstream.  The entry delay 

stage is the one that has a ‘1’ stored adjacent to a downstream ‘0’.  The ‘1’ to ‘0’ 

transition in the shift register sets a unique entry point to the delay line which can be 

adjusted by the shift control logic to find the proper lock point [1].   
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Figure 2.4 Clock Entry Point and Shift Register Value Diagram 

Figure 2.5 shows a simplified delay line and shift register diagram.  This diagram 

will be used to describe future topologies, so it is useful to introduce here.  The numbers 

represent the value stored by each shift register bit in the VDL.  Each number has a single 

delay cell associated with it.  The vertical line on the right side indicates where the buffer 
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delay cells start.  The buffer delay line marks the minimum depth that the DLL can lock 

to allow for dynamic variations in voltage and clock period.  Again the ‘1’ to ‘0’ 

transition marks the lock point, which is also indicated by a red ‘X’.   

0 00 000001 1 1 1 1 0 0 0 01 1 1 1 11 1 1 1 11 1 1

N Locked Delay Line Lock Point

 
Figure 2.5 Simplified Delay Line and Shift Register Diagram 

The schematic of the shift register used in this DLL is shown in Figure 2.6.  The 

shift register is an edge-triggered master-slave flip-flop that is clocked by the coarse shift 

clock (CSclk).  There are three inputs to the shift register: one input to pass information 

from the upstream bit upon a shift right command (QL); another input to pass information 

from the downstream bit upon a shift left command (QR); and a third input (MI) to set 

the shift register to the proper value upon the DLL initialization.  The QF from the 

downstream bit is also sent into the slave latch so that if a ‘1’ is present downstream it 

will be propagated to all upstream bits.  
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Figure 2.6 Shift Register Schematic 

2.4 Phase Detector 

The phase detector is the decision circuit for the DLL.  The phase detector is used 

to determine if the reference (external) clock is in phase with the feedback (output) clock 

[10].  The phase detector in this design can determine whether the feedback is too early, 

too late, or in phase with the reference clock.  Because there is a certain amount of “dead 

phase,” called hysteresis, inserted between the delayed version of the feedback signal, the 

phase detector is able to determine whether the DLL is in a locked, or phase equal, state.   

Figure 2.7 shows the schematic of the coarse phase detector.  Notice that the 

reference and feedback clocks are phase split.  The reference clock (RefPD) after being 

split becomes RefClk, which is used to clock to the comparison flip-flops.  The feedback 

clock (FbPD) after being split becomes DllFbD.  DllFbD is then delayed through two 

coarse delay cells to create DllFbDD.  DllFbD and DllFbDD are the inputs to the 

comparison flip-flops.  The output of the comparison flip-flops, after being phase split 

again, creates the Ph1 and Ph2 signals, which represent the state of the phase during the 
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rising edge of RefClk.  Ph1 and Ph2 are decoded to activate the SL, SR, PhEq, Ph180, 

and NotPhEq signals, which relate the phase information to the shift control logic.  The 

PDHoldF signal exists to disable the coarse phase detector circuit upon a DLL reset or a 

coarse phase disable condition.   

The feedback clock will have delay added to it in discrete steps equal to the unit 

delay cell until it is locked with the reference clock.  Because the delay line consists of a 

string of unit delay cells, when locked the feedback clock should fall within range of one 

unit delay cell.  Since the hysteresis is twice this range, the phase detector has the 

capability to determine when the reference and feedback clocks are in phase [11].  

 
Figure 2.7 Schematic of Coarse Phase Detector 

Figure 2.8 shows the phase timing diagram.  RefClk clocks the flip-flops whose 

inputs are DllFbD and DllFbDD.  The phase relationship among these three signals 

determines what command the phase detector outputs to the shift control logic. When 
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RefClk transitions between the two DllFb signals, then the DLL is locked.  The phase 

detector also determines which direction the DLL should shift if it is not locked.  Using 

Figure 2.8, for example, if RefClk transitions before DllFbD and DllFbDD transition, 

then delay must be removed from the delay line to make it in phase so a SR (shift right) 

command is sent to the shift control logic.  Conversely, when RefClk comes after both 

DllFb’s transition, then delay must be added to the delay line so a SL (shift left) 

command is issued.  Ph180 is the opposite state of PhEQ as the rising edge of RefClk 

transitions between the falling edges of the DllFb clocks.  In this state the DLL is exactly 

180 degrees out of phase.   

DllFbD

DllFbDD

RefClk

SR PhEQ SL Ph180 SR
Too Slow

Remove Delay
Just Right

No Change
Too Fast

Add Delay
180 Degree’s Off

Add Delay
Too Slow

Remove Delay  
Figure 2.8 Phase Timing 

The biggest advantage of the coarse phase detector is the ability to resolve a phase 

equal state, but the problem is that the phase equal state has a range of two coarse unit 

delay cells.  This range limits how accurately the DLL can find a lock.  For example, if 

the coarse unit delay cell had a delay of 100 ps because of the coarse phase detector 

hysteresis, the reference and feedback clock could be in a PhEQ state and still be 200 ps 

out of phase.  In other words, the coarse phase detector does not resolve to a very fine 
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resolution.  To improve phase resolution a dual loop DLL is used in this design.  The first 

loop is the coarse loop, which uses the coarse phase detector and the coarse delay line to 

lock the DLL.  Once within the minimum resolution of the coarse loop, the second loop, 

a fine phase loop, is enabled.  The fine phase loop uses a fine phase detector and a fine 

delay line to improve the minimum phase resolution [3].   

For fine phase detection a circuit is needed that can resolve a very tight phase 

difference.  An arbiter can be used to accomplish this [12].  Using a set-reset latch to 

make the decision, the arbiter can determine whether the reference or feedback clock 

arrives first.  Figure 2.9 shows the schematic of the fine phase detector used in this DLL 

design and how the arbiter function is adopted as a phase detector. 

Similar to the coarse phase detector, RefPD and FbPD are phase split before being 

sent to the arbiter to ensure that each receives identical delay before the phase detection.  

After the arbiter has chosen which signal arrived first, the two flip-flops capture the state 

of the arbiter and hold the value for a full clock cycle so that the phase information can be 

sent to the shift control logic.  In addition, to provide margin for setup time violations, the 

clock going to the output flip-flops (RefClkD) is delayed by approximately eight gates.  

The flip-flops are necessary to hold the state of the arbiter because the arbiter makes a 

decision on every transition of clock.  Clocking the flip-flops off of the rising edge of the 

reference clock makes the fine phase detector send out phase data that was captured only 

on the rising edge of clock.   
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Figure 2.9 Fine Phase Detector (Arbiter) 

The advantage of the coarse phase detector is that it can determine when the DLL 

is locked as well as when it needs to add or remove delay.  From a circuit logic 

perspective, it is useful to have a signal that asserts when the DLL is locked and de-

asserts when the DLL is not locked.  Even though the fine phase detector can only decide 

whether the DLL needs to add or remove delay, it can make this decision at a much 

tighter phase resolution which improves the overall clock jitter.  When the DLL is using 

the fine phase loop, determining the locked state of the DLL is not trivial.  Typically, an 

averaging filter can be used to determine a lock by observing when the DLL has stopped 

shifting consistently in the same direction.  Once in the fine loop, the lock determination 

becomes a function of the shift control logic.   

2.5 Buffer Design 

DLL buffers are used to strengthen and improve the voltage swing of the external 

clock and the outgoing data strobe.  The configuration of buffers can vary widely from 

design to design.  For the sake of simplicity, this design uses the same buffer for the 

input, output, input replica, and output replica models.  For further simplicity, a self-
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biased wide swing amplifier is used as seen in Figure 2.10.  This buffer will not require 

the use of a voltage reference for operation and will output at full logic levels [12].   

 
Figure 2.10 Wide Swing Self Biased Operational Amplifier Schematic 

Using the same buffer for the replica and the forward path buffer will result in 

ideal modeling.  For this design the input clock and output DQ buffers are the same for 

the sake of simplicity.  As this design is focused on duty cycle correction more realistic 

modeling was not necessary.   

Figure 2.11 shows two simulations performed on this input buffer to show its 

effectiveness.  The top half of Figure 2.11 shows a transient simulation of the self-biased 

wide-swing buffer accepting a full logic level input clock at a clock period of 3 ns and 

outputting a full logic level after a propagation delay of 200 ps and 170 ps for the rising 

and falling transitions, respectively.  The bottom half of Figure 2.11 shows the DC 

behavior of the buffer when the negative terminal (ClkF) is swept across 0 V to 1.8 V for 

discrete values on the positive terminal (Clk) incrementing in 200 mV steps.  There is 

some distortion for very high or very low values of Clk but, since this buffer will be 

operated in a differential fashion, this distortion will not be a problem.  The simulations 

show that this buffer will perform adequately for this design.   
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Figure 2.11 Transient (Top) and DC (Bottom) Input Buffer Simulations 

2.6 Initialization 

The process to determine the proper depth in the delay line such that the external 

and output clocks are in phase is referred to as the initialization of the DLL.  In a register-

controlled DLL initialization, delay cells are added consecutively while a phase 

comparison is done until the reference and feedback clocks are in phase [1].  This process 

can take upwards of 100 cycles after the resetting of the DLL [10], [13].  Another 

initialization method, called measure control or just measure initialization, performs a 

one-time measurement to find the lock point, sets the delay line at the depth, and then 

resumes register-controlled operation [11].  Measure initialization only takes a few cycles 

to complete (perhaps 10-20 cycles) and any errors in the measurement are corrected 

shortly after the register-controlled operation has resumed.  Measure initialization is the 

method employed in this DLL design.   
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Figure 2.12 shows a block diagram of the measure controlled DLL.  A time-to-

digital (TDC) and a digital-to-time (DTC) converter are needed to perform the 

measurement [11].  Upon initialization, the start signal travels down the measure delay 

line (TDC) until the Stop signal fires and stores this depth in the measure delay line.  

Since Start and Stop have the same source (In), the difference between these two signals 

is tCK – (tD1’ + tD2’).  The stored tap value is converted to the VDL (DTC) and the measure 

initialization is complete.  Now the VDL has the same amount of delay as given by 

Equation (2) with an N = 1.   
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Stop
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OutIn

 
Figure 2.12 Measure Controlled DLL Block Diagram 

For certain delay line configurations, it is possible to have the variable and 

measure delay lines be one and the same.  For this to occur, the register-controlled 

function must be temporarily suspended during the measure initialization.  This will be 

discussed in more detail in Chapter 4, DCC Design.   

Figure 2.13 shows the schematic of the measure initialization circuitry.  The Start 

signal from Figure 2.12 is implemented with the MeasDlyClkF signal.  Likewise, the 

Stop signal is the MeasSclkF signal.  Because FbPD is the feedback clock, it has 

propagated through the replica buffers.  For this reason, FbPD is used to clock the Start 

flip-flop.  This guarantees that MeasDlyClkF has propagated through the replica buffers.  
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The Stop flip-flop is initially enabled by MeasSclkF, but is thereafter clocked by RefPD, 

which is a reference clock that comes directly from the input clock buffer.   

In similar fashion to the phase detectors, RefPD and FbPD are used as clocks and 

are phase split before being used on the Start and Stop flip-flops.  Optional delay gates 

are provided for tuning the Start and Stop timing.  Upon a DLL reset, after the phase 

detection is enabled, a counter is used to delay the start of measure initialization.  This is 

done to allow all of the clocks in the system to settle so that the measurement can be as 

accurate as possible.  The same counter is used to suspend the register-controlled 

operation and to fire the Start and Stop signals.    

 
Figure 2.13 Measure Initialization Schematic 
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2.7 Locking 

After initialization, the DLL is not always in phase.  Once register-controlled 

operation has resumed the phase detector will decide if delay needs to be added, 

subtracted, or if no phase adjustment is necessary (PhEQ).  For circuitry that depends on 

the DLL being in a locked state it is advantageous to ensure that the phase equal state 

does not just occur for a single cycle [14].  For this purpose a simple filter, consisting of a 

string of two cascaded flip-flops clocked by a reference clock, verifies that the coarse 

phase detect circuit outputs PhEQ on two consecutive cycles.  This filter can be adjusted 

to detect one, two, or three consecutive PhEQ commands from the phase detector.   

Figure 2.14 shows a flow chart of the locking process in this DLL.  Upon a DLL 

reset, measure initialization is enacted which gets the phase close to the lock point.  At 

this point, the phase detector compares the phase of the reference (RefPD) and feedback 

(FbPD) clocks.  If FbPD comes in too fast relative to RefPD than delay must be added 

into the delay line.  Conversely, if FbPD comes in too late then delay must be removed 

from the delay line.  If RefPD falls within the hysteresis of the FbPD clocks then the 

phase detector reports a PhEQ.  If the phase detector reports two consecutive PhEQ 

commands then the DLL is considered locked.   
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Figure 2.14 DLL Lock Flow Chart 

Other functions can be enabled based on the locking of the DLL.  In this design, 

once the DLL is locked, the DCC is enabled and allowed to initialize (this will be 

discussed in more depth in Chapter 4).  Also, once the DLL is locked, the fine phase loop 

is enabled (and the coarse disabled) to further improve the phase resolution.  The locking 

of the DLL must be gated by the coarse phase detect because the hysteresis of the coarse 

phase detect allows a phase equal state to be determined.  Finding the phase equal state 

using the fine phase detector is substantially more complicated than just filtering the 

PhEQ signal as in the coarse phase detect case.   

2.8 Filtering 

To decrease the DLL’s sensitivity to transient noise, it is beneficial to use a digital 

filter to filter the phase adjustments generated by the phase detector [1], [15], [16].  The 

filter has no effect on operation during initialization, but afterwards it will slow the 

response of the DLL to changes in PVT [3].  Also, in some instances when the DLL is 

close to locking, the DLL can oscillate across the phase equal boundary indefinitely.  A 
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shift filter can be used to filter out this behavior so that no shifts are performed when the 

phase detect is oscillating.  Because a digital filter prevents the DLL from shifting as 

frequently, power dissipation and clock jitter are both reduced. 

The filter used in this design is a basic phase accumulator [17].  Via a string of 

flip-flops either shift-left (SL) or shift-right (SR) commands from the phase detector are 

filtered.  In order to issue a shift in either direction eight consecutive SL or SR commands 

must be issued.  When in fast shift mode, however, only four consecutive SL or SR 

commands are needed to issue a shift.  The shift filter can be used for either coarse or fine 

shifts.   

It is beneficial to have a faster shift mode because it allows for a faster phase 

response.  The fast shift mode can be useful immediately after the measurement has 

completed to help find a lock sooner.  Once a lock has been determined, the filter can be 

placed into slow shift mode to slow the phase response, which helps to improve clock 

jitter. Another useful application comes when the DCC is introduced into this design, 

which is discussed in Chapter 4.   

Figure 2.15 shows the schematic of the shift filter used in this design.  There are 

eight flip-flops connected in a series for both the SL and SR direction.  The RefD 

reference clock is phase split and used to clock the flip-flops in the SL and SR chains.  

The signals rawSL and rawSR are the inputs to the flip-flop chains and can either be fine 

or coarse phase signals based on whether the fine loop has been enabled as indicated by 

EnFPDF.  In fast shift mode, rawSL or rawSR must be high for three consecutive cycles.  

If three consecutive shifts are not issued then a shift is not issued and the filter continues 

to clock.  Slow shift mode operates identically to fast shift mode except that eight 
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consecutive shifts are needed to issue a shift.  The shift filter is only reset when a shift is 

issued regardless of the direction.  This slows the frequency of the DLL’s shifting 

because the minimum number of cycles between shifts is eight for slow shift mode and 

four for fast shift mode.   

 
Figure 2.15 Schematic of the Shift Filter 

Figure 2.16 shows a simulation of the shift filter for a 5 ns clock period.  Notice 

that a continuous string of rawSL commands are being issued to the shift filter.  When 

FastShift is high the filter is in fast shift mode and there are 20 ns or four cycles between 

shifts.  When FastShift is low the filter is in slow shift mode and there are 40 ns or eight 

cycles between shifts.   
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Figure 2.16 Simulation of Shift Filter Showing Slow and Fast Shift Modes 

2.9 Fine Delay Line (Dual Loop DLL) 

Because the resolution of a digital DLL is limited by its coarse unit delay cell 

value, it is practical to use a dual loop DLL and a fine delay line to improve the minimum 

phase resolution [3].  A dual loop DLL block diagram is shown in Figure 1.5.  To 

implement the fine delay line for this DLL a phase mixer or phase interpolator is used.  A 

phase mixer consists of a number of tri-state inverters connected in parallel, which are 

enabled according to the position in the fine shift register [8].   

Figure 2.17 shows the configuration of the phase mixer.  Twelve tri-state inverters 

are connected in parallel, but only six are enabled and actively driving the output inverter 

at any one time.  The phase mixer works by blending two phase signals: φ1 and φ2.  If 

more tri-state inverters are driving φ1 than φ2 then the output will be weighted towards φ2.  

Conversely, if more tri-state inverters are driving φ1 output will be closer in phase to φ1.  

If an equal number of inverters drives both φ1 and φ2 then the output should fall exactly 

halfway between φ1 and φ2.   
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Figure 2.17(a) shows the default configuration where the output phase is balanced 

between φ1 and φ2.  Figure 2.17(b) shows the configuration where the output is weighted 

completely towards φ2.  This results in the maximum amount of delay from the fine delay 

line.  Figure 2.17(c) shows the configuration where the output is weighted completely 

towards φ1.  This configuration produces the smallest amount of possible delay through 

the phase mixer.   
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1
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Figure 2.17 Fine Phase Mixer Configurations: (a) Default, (b) Max. Delay, and (c) Min. Delay 

Figure 2.18 shows the schematic of the fine phase mixer and fine shift register.  

The outputs of the shift register bits are the enable signals for the tri-state inverters.  The 

shift register starts with a 000111111000 stored in the 12 shift register bits.  A fine shift 

left (FSL) command will shift all of the 1’s in the shift register to the left.  Likewise, a 

fine shift right (FSR) will shift the 1’s to the right one register to the right.  When the 

shift register contains an 111111000000 or a 000000111111, the fine delay line is reset 

and a coarse shift command is sent to the coarse shift control logic.   
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Figure 2.18 Fine Phase Mixer and Shift Register 

φ1 and φ2 (Ph1 and Ph2 in the schematic) are generated by sending the input, 

FineClkIn, through a unit coarse delay cell.  For this reason, the difference between the 

minimum and maximum phase mixer delay is equal to exactly one unit coarse delay cell.  

Because of this the phase distance from the reset stage to either max φ1 or max φ2 state 

should be equal to half of a single unit delay cell.  This acts to reduce delay mismatches 

between the coarse and fine shifts [8].   

Figure 2.19 shows the simulation result of the fine phase mixer.  The difference 

between the minimum and maximum delay is about 140 ps, which is close to the unit 

delay cell value of approximately 100 ps.  Notice that the phase difference from the reset 

state to the maximum delay is about 50 ps and the reset to minimum delay is about 90 ps.  

The maximum fine step, which is the maximum amount that the fine delay line can shift 

the output phase by in a single delay stage, is about 32 ps.  Because this is the largest 

possible instantaneous phase shift, this is the theoretical resolution limit of the DLL.  
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Notice also that the rising and falling edges track well with each other which indicates 

that the fine phase mixer does not introduce any duty cycle skew.  
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Figure 2.19 Simulation of Fine Phase Mixer 

The imbalance between the maximum fine delay and minimum fine delay is a 

result of non-linear transitioning on the phase-mixed node.  When the state of the fine 

phase mixer is close to the reset state there is more contention on the phase-mixed node.  

This contention between the φ1 and φ2 nodes causes the transition time to be skewed 

toward the φ1 phase.  Figure 2.20 plots the phase-mixed node vs. time, which shows how 

this is possible.  If the trip point of the output inverter is approximately one quarter of the 

voltage supply then the phase separation of the phase-mixed node is not balanced and 

resembles imbalance between the minimum and maximum fine delay stages.   
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Approximate 
Inverter Trip 

Point 

Figure 2.20 Simulation of Phase-Mixed Node for all Phase Mixer Stages 

The design of a linear phase mixer is a challenging prospect in and of itself.  

Because of time constraints further optimization of this circuit was not done for this 

design.  Nonetheless, the fine phase mixer still functions sufficiently as a fine VDL.  The 

biggest advantage of the fine phase mixer is the reduction of the minimum phase 

resolution from a coarse unit delay cell of approximately 100 ps to a fine delay step 

which is about 30 ps.   
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CHAPTER 3 – DCC DESIGN 

 

3.1 Half-Cycle Delay Line DCC 

One method for a DCC to determine the 50% duty cycle is through the use of a 

Half-Cycle Delay Line (HCDL).  A HCDL can be created by connecting two identical 

VDL’s in series and adjusting their delays until the total delay through both is equal to 

the clock period.  The delay through one of these VDL’s is half of the clock period.  This 

HCDL produces a clock signal whose rising edge is 180 degrees out of phase with the 

input regardless of the input duty cycle [4], [6], [18]. 

Figure 3.1 shows a block diagram of a HCDL DCC.  A phase detector is used to 

increase the delay in both HCDL’s until the delay through both is equal to the clock 

period.  When this occurs, the output of the first HCDL, 180º Out, is exactly 180 degrees 

out of phase with the input clock, DccIn.  DccIn and the 180º Out are then phase 

combined to create a single-ended output clock, DccOut, whose duty cycle is 50%.  
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Figure 3.1 HCDL DCC Block Diagram 

An example of the HCDL DCC Timing can be seen in Figure 3.2.  In this 

example, the input duty cycle is significantly less than 50%, but after the HCDL delays 

DccIn by half of the clock period, the rising edge of 180º Out is exactly 180 degrees out 

of phase with DccIn.  The phase combiner uses only the rising edges of DccIn and 180º 

Out to transition the output.  Since the phase combiner does not use the falling edge 

transitions, the duty cycle of DccIn is inconsequential to the output duty cycle.   

DCCIn (0º Out)

180º Out

DCCOut
 

Figure 3.2 HCDL DCC Timing Diagram 

There are a number of advantages to the HCDL DCC.  The most significant 

advantage is a wide input duty cycle range.  Because the determination of the 180-degree 

phase is done independently of the input duty cycle, the output duty cycle is limited only 

by the minimum clock period limitation of the DCC.  Another advantage is the closed 
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loop configuration.  There is a closed phase loop between DccIn and the two HCDL’s, 

which results in a stable phase loop.  Finally, the HCDL DCC is a stand-alone integrated 

circuit (IC) design, so it can easily be added or removed to a DLL design.   

Unfortunately, while the advantages of the HCDL DCC are appreciable so are the 

disadvantages.  The largest drawback to the HCDL DCC is the layout area requirement.  

Because the two HCDL’s must have enough delay to measure tCK, a significant number 

of delay cells are needed.  In addition to the delay cells, a shift register must also be 

included, which contains even more transistors than the delay cells.  Layout area for 

control and phase detect logic is also needed.  Another disadvantage of the HCDL DCC 

is its impact to the forward path delay.  Because the falling edge must pass through a 

HCDL it will be delayed half a clock period before arriving at the phase combine circuit.  

This delay can affect DLL wakeup times.  Power consumption is also a considerable 

disadvantage of this DCC design.  Numerous HCDL delay cells have to toggle as well as 

the DCC control and phase detect logic.  All of these operations increase power 

consumption.   

In summary, the HCDL DCC is a viable candidate for a DCC design because it 

has great input duty cycle range, utilizes a closed phase loop, and is a stand-alone IC.  

The HCDL DCC is not an ideal candidate for a DCC design because of the layout area 

requirements, forward path delay impact, and power consumption.  Since these 

drawbacks are too significant for this to be a practical DCC design, other DCC options 

will be considered.   
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3.2 Open-Loop DCC 

An open loop (OL) DCC utilizes two full-length delay lines for the 0º and 180º 

phases [19].  The DLL uses the 0º VDL to align the external and output clocks.  A duty 

cycle error correction circuit determines how much duty cycle correction is needed and 

adjusts the 180º VDL independently of the 0º VDL to correct the duty cycle.  A phase 

combine circuit is used to combine the 0º and 180º phases and output a single-ended 

clock with a corrected duty cycle. 

Figure 3.3 shows the block diagram of the OL DCC.  A differential clock buffer 

provides Ref and RefF to the 0º and 180º VDL’s, respectively.  Both VDL’s are 

initialized to the same point, and once a lock has been attained, the Duty Error Correction 

Block is enabled.  The Duty Error Correction Block adjusts the 180º VDL based on a 

duty cycle offset calculated from Ref and RefF.  The outputs of the VDL’s are phase 

combined to create a single-ended output clock for the output buffer.  The phase 

combiner could be omitted if the output buffer were also differential.   
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Figure 3.3 Open Loop DCC Block Diagram 

Because there is not a closed phase loop in the OL DCC, it is critical for an 

accurate calculation of the duty cycle.  To help accomplish this Ref and RefF are divided 

to create the A, B, and C signals.  A and B are simply divided versions of Ref and RefF.  

C is an inverted version of A.  The clock high time, tH, is equal to the difference between 

the rising edges of A and B and the clock low time, tL, equals the difference between B 

and C.  Figure 3.4 summarizes this timing.   
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Created by 
the Clock 
Divider

 
Figure 3.4 Timing Diagram for the Clock Divider 
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Figure 3.5 shows a block diagram of the clock dividers and the Duty Error 

Correction Block.  The Duty Error Correction Block is essentially two DLL’s consisting 

of a VDL to match tH or tL, a phase detector, and some shift control logic that sends 

information to the Duty Error Calculator.  The Duty Error Calculator monitors the 

difference between tH and tL and adjusts the 180º VDL accordingly [20].   
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Figure 3.5 Block Diagram of Clock Dividers and Duty Error Correction Block 

While not an intuitive way to correct duty cycle offset, the OL DCC does a 

sufficient job of correcting duty cycle.  The 180º VDL allows for a wide duty cycle 

tuning range.  Due to the open loop configuration of the OL DCC it is important to make 

sure that the Duty Error Calculator computes the duty cycle offset properly.  The Duty 

Error Correction Block is the most critical element to this DCC design.   

A significant advantage to this design is the impact on the forward path delay.  

Since the DCC needs few gates to insert duty cycle correction, there is essentially no 

impact to the forward path.  Another advantage is the integrated nature of the DCC.  The 

DLL function is not affected whatsoever by changes in the DCC.  Another advantage of 

this design is the large duty cycle range allowed by using the full length 180º VDL.   
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A major drawback of the OL DCC is the fact that it is an open loop system.  This 

means that it is possible for error accumulation to occur.  Since there is not a closed loop, 

the DCC will not be able to determine how far off the duty cycle might be.  Another 

considerable disadvantage is the effort required to design the Duty Error Correction 

Block.  The accuracy of the OL DCC is dependent on the proper implementation of this 

circuitry.  This design could be very time consuming.  Finally, power is another 

drawback to this DCC.  The Duty Error Block and Calculator are constantly checking the 

input for changes in duty cycle.  Fortunately, the clock division helps to halve the clock 

frequency in the DCC so this helps to alleviate the power dissipation. 

In summation, the OL DCC is an integrated DCC design that has a wide duty 

correction range and minimal forward path impact.  These benefits come at the cost of a 

more complex design and higher power dissipation.  The most unattractive feature of this 

DCC design is the fact that the duty cycle correction is an open loop and has the potential 

for error accumulation.  Consequently, another DCC design will be considered.  

3.3 Integrated Half-Cycle Delay Line DCC  

The Integrated Half-Cycle Delay Line (IHCDL) DCC only uses only a single 

delay line for both DLL and DCC functions.  Through a unique initialization method the 

HCDL’s are implemented in the forward path VDL.  This same VDL is also used to align 

the external and output clocks.   

Figure 3.6 shows the block diagram of the IHCDL DCC.  The block diagram is 

similar to the basic DLL block diagram, but does have some significant differences.  The 

biggest difference is the VDL, which now has two tap points: one for the 0º phase and the 

other for the 180º phase.  The 0º Out and 180º Out signals are phase combined before 
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being sent to the output.  The Delay/Shift Control circuitry is also different from the 

typical DLL as a different shifting method must be employed to implement the duty cycle 

correction.   
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Phase 
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Input Buffer
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Buffer

Output Buffer

Replica Input 
Buffer

XCLK DQS0° out
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Figure 3.6 Integrated DCC DLL Block Diagram 

To find the half cycle time two HCDL’s must be generated in the VDL.  By 

taking advantage of the fact that the DLL can lock on multiple harmonics (or N's) the 

IHCDL DCC can generate two HCDL's in a single VDL.  Assuming that there is enough 

delay available in the VDL and the lock point is found, delay can be added in the VDL 

until the reference and feedback clocks are in phase again.  When the lock point is found 

again the feedback clock will be delayed by a full cycle from its previous state.  This 

effectively measures the clock period in terms of unit delay cells.  Because there are a 

finite number of unit delay cells that equal the clock period, exactly half this number of 

delay cells is equal to half of the clock period.  Counting the number of delay cells 

required to lock on the next lock point and dividing this number in half is how the two 

HCDL’s are formed in the IHCDL DCC.   
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Figure 3.7 uses a shift register diagram to show how the IHCDL DCC finds the 

next N (or N+1) lock point.  The ‘1’ to ‘0’ transition on the N Locked diagram shows the 

initial lock point.  To find the N+1 lock point, delay is added until the clock and reference 

clocks become in phase again.  If the number of delay cells between the N and N+1 lock 

points is counted then the phase at the tap exactly halfway between the N and N+1 lock 

points would have a phase that is 180 degrees out of phase with either lock point.    

 
Figure 3.7 How to Find the Next N Delay Line Diagram 

For example, let X be the number of unit delay cells required to move the lock 

point to the next N.  If X is an even integer than X/2 is also an integer.  Problems arise 

when X is an odd integer because X/2 is not an integer.  As the unit delay cells are 

discrete and cannot be split this means that, when X is odd, there will be a quantization 

error of one unit delay cell.  This quantization error can result in a substantial error at 

increased clock speeds.  To reduce this quantization error, fine shifting is used to reduce 

the error to +/- one fine delay cell instead of +/- one coarse unit delay cell.   

 Because two exit points are needed, the use of a second shift register is required.  

The 0º shift register sets the exit tap point for the 0º phase.  Likewise, the 180º shift 

register sets the tap point for the 180º phase.  Figure 3.8 shows a shift register diagram 
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with the dual shift registers.  Initially, the DLL sets the same lock point in both the 0º and 

180º shift register.  To find the N+1 lock point the 0º shift register is shifted to the left.  

For every two shifts in the 0º shift register one shift is issued in the 180º shift register 

until the reference and feedback clocks (which are still based on the 0º tap) are in phase 

again.   

0 00 000001 1 1 1 1 0 0 0 01 1 1 1 11 1 1 1 11 1 1
0° Shift Register

Initial Lock Point

0 00 000001 1 1 1 1 0 0 0 01 1 1 1 11 1 1 1 11 1 1
180° Shift Register

Initial Lock

0 00 000000 0 0 0 0 0 0 0 00 0 0 0 01 1 1 1 11 1 1
0° Shift Register

0° Lock Point

0 00 000000 0 0 0 0 0 0 0 01 1 1 1 11 1 1 1 11 1 1
180° Shift Register

DCC Lock 180° Lock Point

 
Figure 3.8 Delay Line Diagrams after the DLL and DCC have Locked 

Once the 0º and 180º lock points have been established then the 0º and 180º taps 

are phase combined to generate a single ended clock that has a 50% duty cycle and will 

make the output clock be in phase with the external clock.  Figure 3.9 shows this again 

with a shift register diagram and a phase combine symbol.  It should also be noted that 

the output timing diagram for the IHCDL DCC will be identical to the HCDL DCC, 

which is shown in Figure 3.2.   
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DCC Lock

180° Lock Point
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Figure 3.9 Delay Line Diagram Showing How the 0° and 180° Output are Generated 

The major advantage to the IHCDL DCC is a reduction in the required layout 

area.  The integrated delay line of the IHCDL DCC consumes less area than either OL or 

HCDL DCC because they require delay lines for both 0º and 180º phases.  Unfortunately, 

a 180º shift register is required for all three of the DCC designs.  The IHCDL DCC uses 

the same phase detector that the DLL uses which is another advantage over the other two 

designs, which have DCC specific phase detectors.  The shift control logic is also less 

complicated and smaller than the OL DCC.    

Another advantage of the IHCDL DCC is the impact on forward path delay.  

Neglecting the added depth in the delay line, the IHCDL has approximately the same 

forward path delay impact as the OL DCC, which is minimal.  The duty cycle range also 

is equivalent to that of the other two wide range duty cycle DCC designs.   

The main drawback of the IHCDL DCC is the method in which duty cycle is 

calculated.  The DCC uses a closed phase loop system based on the 0º phase, but the 180º 

phase is not on a closed loop.  The 180º phase is dependent on an accurate shift count by 

the shift control logic to provide a corrected duty cycle.  The design of this DCC focuses 

on this weakness and uses methods to ensure that the shift count remains accurate.   
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Power dissipation could be expected to be similar or slightly better than the 

HCDL DCC, but since a string of delay cells equal to a full clock period are toggling in 

the delay line, a decent amount of current must be drawn from the power supply.  

Unfortunately, power dissipation is a necessary tradeoff for duty cycle correction.   

Of the three DCC’s compared in this chapter the IHCDL DCC has a slight 

advantage over the OL and HCDL DCC’s because of its integrated delay line topology.  

IHCDL has the same wide duty cycle range as the other DCC designs.  IHCDL and the 

OL DCC both have minimal impact to the forward path delay, which is better than the 

HCDL DCC.  For these advantages, the IHCDL DCC is the chosen DCC to design and 

characterize for this thesis.   
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CHAPTER 4 – INTEGRATED HCDL DCC DESIGN 

4.1 Exit Point Delay Line 

In an Integrated HCDL DCC two delay line exit (tap) points are required for the 

0º and 180º phases.  An exit point delay topology is used in this DLL and DCC design to 

accomplish this.  In an exit point delay line, the shift register determines the tap in which 

the clock will exit the delay line as opposed to the entry point delay line where the shift 

register determines the clock entry point [8].   

Figure 4.1 shows a diagram of an exit point delay line and the associated shift 

register.  The unit delay cell has the same delay as the entry point delay line, but the unit 

delay cell has an exit NAND gate on the output.  One input of the exit NAND receives 

the propagated ClkIn signal while the other input receives an exit enable signal.  A delay 

cell becomes the exit point whenever the current shift register bit has a ‘0’ stored in it and 

the upstream bit is a ‘1’.  The small red numbers in the diagram indicate the logic levels 

for the indicated shift register bit values.   

 
Figure 4.1 Clock Exit Point and Shift Register Value Diagram 
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For this design the delay line cells were designed to have a 100 ps delay per cell.  

This was done using a Monte Carlo simulation to determine the sizing of both the delay 

line NAND gates and the exit NAND gates.  A total of 128 stages were used in the delay 

line due to the configuration of the exit tree, which will be discussed in Section 4.3.  This 

means that the entire delay line should have a length of 12.8 ns.    

4.2 Dual Shift Register 

A distinct advantage of the exit point delay line is its ability to have more than 

one exit point.  This advantage is utilized in the IHDCL DCC as the 0º and 180º phases 

are generated at two different tap points separated by a half clock period worth of delay 

cells.  In order to keep track of the two exit points, two shift registers are required.  One 

shift register will keep track of the 0º exit point and the other will keep track of the 180º 

exit point.  Figure 4.2 shows a diagram of the Dual Shift Register used in this DCC 

design and how the 180º exit tap is determined based on the 180º shift register values.   

 
Figure 4.2 Dual Shift Register showing 180° Exit Point 
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In this configuration, the 0º shift register (the upper shift register) ultimately 

controls the final exit point of the delay line.  Recall that the 180º lock point is the 

halfway point between the 0º and 360º lock points.  The 180º exit point is determined 

again by the “1” to “0” transition in the 180º shift register.  When the 180º upstream bit is 

a ‘1’ and the downstream bit is a ‘0,’ the 180º exit NAND gate is allowed to pass the 

clock to the 180º exit tree, which will be discussed in the following section.   

Because of the dual exit points, two exit NAND gates are required per unit delay 

cell for the 0º and 180º exit points, respectively.  Because two NAND gates load the 

second NAND gate in the delay cell, this capacitive gate load must be modeled on the 

output of the first NAND gate in the delay cell.  If this load is not modeled there would 

be a rising vs. falling edge skew on the output clock which would increase with depth in 

the delay line.  To model this load two more NAND gates must be added to the delay 

cell.   

In total there are six NAND gates in the unit delay cell.  Two gates are for the 

VDL.  Another two are placed on the output and are for the 0º and 180º exit points.  Two 

more act to model the exit NAND’s, but an additional function is added to one of these 

gates.  During measure initialization, one of the model NAND gates is used during 

initialization to set the shift register bits.  This approach allows measure initialization 

with only one delay line.  The other model NAND gate is simply a dummy gate present 

only for its capacitive load.  Figure 4.3 shows the schematic of the unit delay cell for the 

IHCDL DCC.   
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Figure 4.3 Unit Delay Cell Schematic 

4.3 Exit Tree 

In an exit point delay line the clock can exit the delay line after any delay cell.  

Because there are a large number of exit points, there are a large number (equal to the 

number of delay cells) of exit paths for the clock propagating down the delay line.  There 

is a unique exit path for each delay cell, which eventually decodes down to a single path: 

the output of the delay line.  The exit tree effectively decodes all of the exit points down 

to a single path.    

Figure 4.4 shows a diagram of the clock exit tree.  The first stage (or entry 

NAND) of the exit tree is integrated into the unit delay cell.  The exit path is enabled by 

the same enable signal that enables the exit NAND gate.  This enable signal progressively 

enables all of the gates in the path of the exit NAND, which creates the exit path for the 

clock.   
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Figure 4.4 Clock Exit Tree Diagram 

Since there is an exit point for both the 0° and 180° tap points in the IHCDL DCC 

then there must also be 0° and 180° exit trees.  For simplicity Figure 4.4 only shows a 

single exit tree, but for this design the two exit trees are interleaved.  Since there is a total 

of 128 stages (2^7 stages) then the exit path must have a total of seven NAND gates.  The 

first exit path NAND is the exit NAND imbedded in each delay cell.  The rest of the exit 

tree contains six tiers of exit NAND gates.   

Because the exit path becomes part of the forward path, once the proper delay cell 

is selected, is it important that the exit tree does not introduce clock skew.  A typical two 

input NAND gate, as seen in Figure 4.5(a), consists of two PMOS transistors in parallel 

that share an output node with two NMOS transistors connected in series.  The two inputs 

are arbitrarily named A and B.  The propagation delay through A and B is different 

because the propagation path for A has a different loading than does the path for B.  For 

example, in Figure 4.5(a), the source transistor MNA will see the channel resistance of 

MPB through ground, but MPB will not see this same resistance.  MPB will instead have 

to drive through the channel resistance of MPA to discharge the output.  The result of this 

imbalance is propagation skew between input A and input B, which could mean adjacent 

delay cells could have different propagation delays through the same exit NAND gate.   
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Figure 4.5 Schematic of (a) Typical NAND Gate and a (b) Balanced NAND Gate 

To correct this imbalance a balanced NAND gate can be used as shown in Figure 

4.5(b).  In a balanced NAND the loading for terminal A and B are identical because there 

are two NMOS branches with the A and B inputs swapped.  This guarantees that the 

propagation delay through A and B will see the same loading and therefore will have the 

same value.   

As can be seen by Figure 4.4 the exit tree NAND gates have three inputs.  The A 

input is used to enable the exit tree NAND and the B and C inputs are used for the exit 

path.  Like the 2-input typical NAND, a 3-input typical NAND gate will also have a 

propagation delay offset between the A, B, and C terminals.  To show the benefit of using 

an exit tree consisting of balanced NAND gates, a simulation was run using a modeled 

exit tree.  As the exit path requires an exit tree with six tiers to decode 128 stages, a string 

of six 3-input NAND gates placed in series was used to model the exit tree.  Since the 

enable is always on input A, only inputs B and C will have a time sensitive clock applied 

to them.  For this reason, four strings of exit NAND’s were placed: (1) a typical string 
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using only the B input, (2) a typical string using only the C input, (3) a balanced string 

using on the B input, and (4) a balanced string using only the C input.     

Figure 4.6 shows the results of this simulation.  The input clock, ClkInAll, is 

plotted along with the output of the four exit NAND strings. The blue, light blue, red, and 

green signals correspond to the typical B input, typical C input, balanced B input, and 

balanced C input exit NAND string, respectively.  Notice that the typical C input exit 

NAND string has an extra 50 ps propagation delay from the other strings, which are 

practically identical to each other.  This suggests that the propagation time through a 

typical NAND exit tree for a clock exit path that only passes through the C input will be 

50 ps longer than the path that only passes through B input.  For this reason, a balanced 

NAND exit tree is used for this DLL design.   

 
Figure 4.6 Simulation of Balanced vs. Typical NAND Exit Tree 
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4.4 Phase Combiner 

Because the DCC will be providing an independent 180º phase, it is necessary to 

have a phase combine circuit.  The purpose of the phase combine circuit is to mix the 

rising edge clock from the DLL and the falling edge clock from the DCC and create an 

output clock that is the combination of both.  In the event that the DCC is disabled the 

phase combine circuit should simply pass the output of the DLL.   

The schematic of the phase combine circuit used in this design is shown in Figure 

4.7.  DllOut0 and DllOut180 are the rising and falling edge outputs, respectively.  

DllOut0 and DllOut180 are sent through pulse generators that create rising and falling 

edge pulses.  These pulses are provided to a set-reset latch, which will cause the output 

(DllOut) to rise upon a rising edge pulse and fall upon a falling edge pulse.  Because the 

falling edge pulse has to toggle two NAND gates to reset DllOut, a mux is inserted into 

the rising edge pulse path.  Inserting the additional mux in the set path matches the 

propagation delays for both the rising and falling edge pulses to DllOut.   

When the DCC is disabled (i.e. when DccInitF is high) the pulse generators are 

bypassed and the DllOut0 and DllOut180 signals are simply passed to DllOut.  DllOut0 

and DllOut180 must be similarly delayed as if they were going through the pulse 

generators and phase combiner to prevent any clock skew between the DCC enabled and 

disabled cases.   
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Figure 4.7 Phase Combine Schematic 

Figure 4.8 shows a simulation of the phase combine circuit that demonstrates its 

operation.  Because of the pulse generators, the duty cycle of DllOut0 and DllOut180 

does not matter: only their rising edges do.  There are approximately 500 ps of 

propagation delay for both DllOut0 and DllOut180.  Notice that while DllOut0 and 

DllOut180 have non-ideal duty cycles, the phase combined outputs, DllOut and DllOutF, 

can have an ideal duty cycle if the rising edges of DllOut0 and DllOut180 are 180 

degrees out of phase.   

 
Figure 4.8 Phase Combine Simulation 
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When the DCC has not been initialized, the phase combine circuit operates in the 

bypass mode where DllOut0 and DllOut180 are passed to the output.  Once the DCC 

initialization is complete, as indicated by the DccInitF signal, then the phase combine 

circuit will begin to combine phase.  When DccInitF switches there will be a single cycle 

where the output clock duty cycle is interrupted, but this will only be temporary as the 

corrected duty cycle will continue to be phase combined from that time forward.   

4.5 Shift Divider 

In the IHCDL DCC it is critical that the 180º exit point be shifted exactly half as 

many times as the 0º exit point to ensure that the 0º and 180º phases are 180 degrees out 

of phase.  Any two shifts of the 0º exit point whether shallower or deeper into the delay 

line must result in a shift in the same direction of the 180º exit point.  During the DCC 

initialization the two exit points are typically shifted deeper into the delay line, but once 

the lock point is acquired sometimes a shallower lock point is required. For this purpose, 

a shift divider circuit was designed for this DCC. 

Figure 4.9 shows a schematic of the coarse shift divider circuit.  Any time a 

coarse shift clock is issued a pulse on CSclk occurs.  This pulse is always passed to the 0º 

CSclk (CSclk0).  For two CSclk pulses in the same phase direction a single CSclk180 

pulse is generated.  The CSclk pulse always propagates to the CSclk0 path, but only 

passes alternatively for the CSclk180 path given the phase doesn’t change between CSclk 

pulses.   

 



    
58

 
Figure 4.9 Shift Divider Schematic 

The toggle (or divide by two) flip-flops (TFF) in the upper portion of the 

schematic store CSclk pulses for the Shift Left (SL) and Shift Right (SR) directions.  

Based on the phase (via the RawSL signal), the CSclk pulse is stored, which switches the 

output of the TFF.  When a second CSclk pulse occurs in the same phase direction, the 

enable signal to the CSclk180 mux, PassCSclk, is changed to allow the CSclk pulse 

through.  Otherwise, the CSclk pulse is blocked because CSclk180 is essentially shorted 

to ground.   

Figure 4.10 shows the timing diagram for the operation of the shift divider.  

Notice that every other CSclk pulse is passed to CSclk180, but if the phase changes (i.e. 

RawSL changes state) any CSclk pulses in the opposite phase are still stored.  For 

example, three CSclk pulses are issued when RawSL is high.  This results in three 

CSclk0 pulses, but only one CSclk180 pulse.  The third CSclk pulse is stored until the 
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next CSclk pulse when RawSL is high.  When this happens a pulse on CSclk180 is 

immediately generated.  The same argument holds for when RawSL is low.   

   

CSclk

CSclk0

CSclk180

RawSL

 
Figure 4.10 Timing Diagram for the Shift Divider 

The same shift divider concept must be used for fine shifts or else error can 

accumulate between the 0º and 180 º phases once the fine delays are enabled.  Figure 4.11 

shows the schematic of the fine shift control circuit that includes a shift divider for the 

fine delay line.  Now FSL and FSR (fine shift left and shift right decisions from the fine 

phase detector) determine the shift direction and pulses on FCSclk are counted.  The 

FCSclk pulses are generated from the majority filter after the fine phase loop has been 

enabled.   

 
Figure 4.11 Fine Shift Divider 
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4.6 Initialization and Locking 

Figure 4.12 shows a flow chart of the locking of the DLL and DCC.  Upon the 

DLL reset, after a fixed number of cycles the measure initialization occurs, which places 

the DLL close to its lock point.  Register-controlled operation resumes using the coarse 

phase detect to determine if the feedback clock (FbPD) arrives sooner or later than the 

reference clock (RefPD).  The DLL is considered locked when three consecutive phase 

equal states are captured within the hysteresis of the coarse phase detector.   

When the DCC is enabled the part is put into Force Shift Left mode, which forces 

the DLL to shift left until the 180 degree phase boundary is crossed.  Until the DCC was 

initialized the 0º and 180º exit points where shifted identically.  Because the DCC is 

enabled, the shift divider is only issuing one shift to the 180º shift register for every two 

shifts to the 0º shift register.  When in force shift left mode a shift is issued every other 

cycle until the Ph180 phase boundary is crossed.  When this happens the majority filter is 

used to filter the phase information by at a faster rate than at normal operation.   

 
Figure 4.12 DLL and DCC Lock Flow Chart 
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As discussed in Section 2.8, in fast shift mode the majority filter can issue a shift 

every four cycles.  The majority filter is placed into fast shift mode immediately after 

force shift left mode so that the DCC will find a lock sooner than if the majority filter 

were only allowing shifts every eight cycles.  Once the phase detector detects three phase 

equal states between the reference clock and the 360º phase the DCC is consider locked 

and the fine phase loop is enabled.   

When the fine phase loop is enabled, due to the coarse phase detect hysteresis, the 

DCC should be within one coarse unit delay of the lock point.  The DCC is considered 

locked at this point even though the fine phase detect will continue to shift and eventually 

lock to a tighter resolution.  Because of the fine phase detector’s not having a phase equal 

state and for the sake of simplicity, phase equal detect logic for the fine phase loop was 

omitted from this design.  Not having phase equal detect logic for this design will prevent 

any phase equal control circuitry from being switch when the DLL is operating in the fine 

phase loop.   

Finally, it should be noted that 0º lock point is actually the 360º lock point.  It is 

possible to phase combine the initial lock point (the true 0° lock point) and the 180º lock 

point and still create a DccOut signal that has a corrected duty cycle and DLL adjusted 

phase.  The problem with doing this is that the initial lock point must be stored either in 

another shift register or a latch in one of the current shift registers.  This was a design 

consideration that was intentionally omitted for the sake of simplicity.  If the initial lock 

point were used for the 0º tap the forward path delay would be reduced by a full clock 

period and the power dissipation would be reduced because the delay cells between the 

180º and 360º taps would not toggle.   

 



    
62

CHAPTER 5 – INTEGRATED HCDL DCC PERFORMANCE 

 

5.1 Duty Cycle Correction 

Figure 5.1 shows how the HCDL DCC adjusts the 0° and 180° phases by plotting 

the output of coarse VDL.  The first 20 cycles are required for the DLL to find a lock via 

measure initialization.  Recall that both the 0° and 180° phases are locked at the same tap.  

This explains why the phase difference between 0° Out and 180° Out is practically 

nothing.  After 20 cycles, the DCC begins to skew the 0° and 180° phases.  The skew is 

linearly inserted until about the two thirds point where the shift filter slows the shift rate 

from every other cycle (in force shift left mode) to every four cycles.  Once the DCC has 

finished adjusting the duty cycle, the register-controlled operation of the DLL resumes.   
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Figure 5.1 Phase Difference Between 0º Out and 180º Out during DCC Initialization (tCK = 5 ns) 
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The clock period for this simulation is 5 ns, so the ideal phase difference between 

the 0° and 180° phases is 2.5 ns.  Notice that the final phase is about a coarse unit delay 

from 2.5 ns.  Fortunately, the output is not dependent on this resolution as this is only the 

output of the coarse VDL.  The fine VDL will bring the 0° and 180° phases closer to the 

ideal 50% duty cycle phase.  This can be seen in Figure 5.2, which is a magnified plot of 

Figure 5.1, but with the output of the fine VDL included.  Notice that the coarse VDL can 

get the phase within about 60 ps of the ideal phase whereas the fine VDL improves this 

margin by almost a factor of two.  The fine VDL gets the phase within 25 ps of the ideal 

phase difference of 2.5ns.  For a 5 ns clock period, a 25 ps duty cycle phase offset is 

equivalent to a duty cycle offset of 0.5%, which is very acceptable if we are targeting +/- 

5%.   
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Figure 5.2 Coarse and Fine Phase Difference between 0° Out and 180° Out 
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While Figures 5.1 and 5.2 show the phase difference at the output of the coarse 

and fine VDL’s, Figure 5.3 plots the output duty cycle (measured from the output data 

strobe, XDQS).  Figure 5.3 also shows the output duty cycle for a range of clock periods 

from 3 to 10 ns instead of for just a single clock period at 5 ns.  Unfortunately, the duty 

cycle offset is not as tight across this range of clock periods as the 5 ns case.    
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Figure 5.3 Output Duty Cycle vs. Clock Cycles for tCK from 3 ns to 10 ns 

As can be seen in Figure 5.3, as tCK gets larger the number of cycles it takes 

before the duty cycle becomes corrected is pushed out.  This push out is because the 

phase combine circuit waits until the DCC is initialized before switching from a non-

corrected to a corrected duty cycle.  Notice that there is also a wider spread of final duty 

cycle variation between the tCK’s, but that all speeds fall within +/- 5% of 50% duty 

cycle.  The clock periods of 9 and 10 ns do not have corrected duty cycle values because 
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the DCC runs out of delay line as the DLL is locked too deeply for an additional full tCK 

worth of delay line to be added while finding the next 0º lock point.  This data would 

indicate that the maximum clock period is between 8 and 9 ns (for 1.5V, 85C, and TT 

process models).  

There is also a certain amount of phase drift for some of the tCK plots in Figure 

5.3.  The 7ns plot, for example, drifts from 50% down to 46% back up to 49% and so on.  

This is a result of the fine shifting jittering around the lock point.  Because the phase of 

the 0 º and 180 º phases are independent and both can be off by +/- 1 fine delay, there is a 

total phase offset of +/- 2 fine delay elements.  This offset results in the drift of the duty 

cycle across simulation time. 

5.2 Lock Time 

Because the DCC shifts the 0º phase a full clock period deeper into the delay line, 

the initialization time is extended when the DCC is enabled.  As tCK is increased so is the 

time that it takes for the DLL to reacquire a lock on the 0º phase.  The DLL is considered 

locked when the fine phase loop is enabled because the DLL is out phase by no more 

than one coarse delay unit at the point the fine phase loop is enabled.  Table 5.1 shows 

the lock time in cycles versus the clock period for the IHCDL DCC.    

Notice that for each 1 ns increase in tCK there is approximately a 20 cycle increase 

to the lock time.  There is slight lock time variability between clock speeds because of the 

hysteresis of the coarse phase detector and the requirement of three consecutive PhEQ 

commands to determine a lock.  Again 9 and 10 ns clock periods cannot find a lock point 

because there are not enough delay cells for the DCC to insert a full tCK worth of delay 

cells in the delay line.   
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tCK [ns] Cycles to Lock
3 83
4 103
5 125
6 142
7 167
8 182
9 No Lock
10 No Lock  

Table 5.1 Clock Period vs. Lock Time 

The DDR2 JEDEC specifications require that a DLL find a lock within 200 cycles 

of the DLL reset for clock periods up to 8 ns.  The addition of the IHCDL DCC function 

to this DLL still allows it to pass this specification for clock periods less than or equal to 

8 ns.  This makes this DCC design a truly viable candidate for use on a DDR2 DRAM.    

5.3 Duty Cycle Range 

Possibly the most critical characteristic of a DCC is how much duty cycle can it 

actually correct.  For characterization purposes it is useful to examine the duty cycle 

transfer curve, which is simply of a plot of the input versus output duty cycle.  Figure 5.4 

plots the duty cycle transfer curve of the IHCDL DCC for a clock period of 5 ns.  The 

blue line curve plots the duty cycle transfer curve when the DCC is enabled and the pink 

line plots the transfer curve for the DCC disabled case.   
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Figure 5.4 Input vs. Output Duty Cycle with DCC Enabled and Disabled (tCK = 5 ns) 

Notice that for the DCC enabled case from an input duty cycle of 10% to 80% the 

output duty cycle is relatively flat and lies between 55% and 45% duty cycle.  Over this 

input duty cycle range the duty cycle transfer curve is nearly flat.  A flat duty cycle 

transfer curve suggests that the output duty cycle is independent of the input duty.  This 

independence is indeed the case for this DCC as it is not dependent upon the falling edge 

of the input clock for any calculation.   

Conversely, the transfer curve for the DCC disabled case is linear instead of being 

flat.  This dependence means that when the DCC is disabled the output duty cycle is a 

direct function of the output duty cycle. In this case the input to output duty cycle is 

nearly a one to one relationship so the transfer curve is practically the y = x line.  

The DDR2 JEDEC specifies that the input clock duty cycle can vary from 45% to 

55%.  Figure 5.5 shows a magnified version of Figure 5.4 with these specification limits 
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plotted in red for both the input and output duty cycle.  Notice that the input duty cycle 

range for the DCC enabled case is wider than 30% to 70% (a range greater than 40%) 

while the input duty cycle range for the DCC disabled case is equal to 45% to 55% (a 

range of 10%).  From Figure 5.4 the input duty cycle range for the DCC enabled case is 

approximately 10% to 80% or 70%.   
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Figure 5.5 Input vs. Output Duty Cycle Plot with Spec Limits 

The previous two figures demonstrate that the IHCDL DCC provides a significant 

improvement to the input duty cycle range.  This improvement is because the IHCDL 

DCC determines where the falling edge of the output clock should be independent of 

where the input falling edge occurs.  The DCC only needs a clock signal with two 

consistent rising edges spaced apart by the clock period to create the 0º and 180º phases 

and (after phase combination) an output clock with a corrected duty cycle.  This falling 

edge independence is the most attractive benefit for using a DCC as it allows a 

 



    
69

customer’s application to supply a non-ideal duty to the part and still receive an output 

duty cycle close to 50%.   

5.4 Duty Cycle Jitter 

Table 5.2 shows the duty cycle jitter versus PVT for the IHCDL DCC at 5 ns 

clock period.  For process, three models were used: fast n-channel and fast p-channel 

(FF), typical n-channel and typical p-channel (TT), and slow n-channel and slow p-

channel.  The three PVT points were taken such that the fastest (FF, 1.7 V, 0C), slowest 

(SS, 1.3 V, 130C), and most typical (TT, 1.5 V, 85C) conditions were compared.  The 

results show that the fast corner has the best duty cycle jitter variation with 3.59%.  The 

slow corner has the worst duty cycle variation with 9.54%.  Finally, the typical corner has 

a duty cycle jitter value that is between the fast and slow corners, but nearer to the fast 

corner value with 4.35%.   

Duty Cycle Jitter

FF 1.7V 0C 3.59%

TT 1.5V 85C 4.35%

SS 1.3V 130C 9.54%

PVT

 
Table 5.2 Duty Cycle Jitter vs. PVT (for tCK = 5 ns) 

The slow corner could be out of spec if the IHCDL DCC is not perfectly centered 

at 50% duty cycle.  The DCC will probably not center the duty cycle perfectly so the 

IHCDL DCC would fail the JEDEC DDR2 specification of +/- 5% duty cycle across 

PVT.  Thus if the IHCDL DCC were to be used in a design, the duty cycle jitter would 

have to be a critical design focus.   
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5.5 Power 

Because the DCC requires additional logic than the DLL by itself to function, 

there is an additional current demand for this operation.  The result is additional power 

consumption when the DCC is enabled.  Table 5.2 summarizes the current demand for 

the IHCDL for both the DCC enabled and disabled cases.  The average current was 

measured over 600 cycles including the initialization of DCC.  The average power can be 

found by multiplying by the supply voltage of 1.5 V.  At 3 ns, the worst case for power 

consumption, the DCC only draws an additional 750 μA.  A 750 μA additional current 

draw is an acceptable cost for the benefit duty cycle correction especially given that the 

DLL itself draws almost five times that much current at the same tCK.   

Dcc Enabled Dcc Disabled
tCK [ns] Average Current [mA] Average Current [mA] Delta [mA]

3 5.116 4.360 0.756
4 3.796 3.161 0.635
5 3.312 2.610 0.702
6 2.971 2.359 0.612
7 2.734 2.098 0.636
8 2.540 1.922 0.618
9 2.238 1.794 0.444
10 2.014 1.694 0.320  

Table 5.3 Clock Period vs. Average Current (Vdd = 1.5V) 

5.6 Response to Voltage Supply Variation 

Figure 5.6 shows the output duty cycle response to an instantaneous voltage 

change for two conditions.  The first (blue line) is a voltage bump at 750 cycles from 1.5 

V up to 1.7 V.  The second (pink line) represents the voltage bump from 1.5 V down to 

1.3 V.  Notice that in both cases after the shifting has stabilized the value is no longer 

equal to the 50% point of 2.5 ns.  This deviation from the nominal correction can be 

explained by referencing Figure 3.8 again.  Because of the positive voltage bump (blue 
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line), the 0° lock point must be shifted deeper in the delay line to keep the reference and 

feedback clocks in phase.  Naturally, the 180° lock point, due to the shift divider, will 

move half the distance deeper into the delay line as the 0° lock point.  The problem is that 

because the supply voltage has changed the value of the initial lock point would have also 

changed.  Maintaining the precise difference between the initial lock point and N + 1 lock 

point is essential for accurate calculation of the 180° tap point.  When the voltage supply 

changes dramatically (like in this example), the full tCK relationship between the initial 

lock point and the N + 1 lock point is lost.  Consequently, there is a duty cycle offset as a 

result of a voltage bump.  
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Figure 5.6 Output Duty Cycle Response to an Instantaneous Change in Voltage 
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It is a characteristic of this design that the relationship between the N (initial) lock 

point and the N + 1 lock point must be maintained for proper duty cycle correction.  This 

relationship is the detriment of using a single delay line for the duty cycle correction.  

The IHCDL DCC requires a relative stable voltage supply to provide an accurate 

corrected duty cycle.  This DCC, however, can recover from a voltage bump if the 

original voltage is reacquired.  Figure 5.7 shows the output duty cycle movement for a 

voltage bump from 1.5 V up to 1.7 V and back down to 1.5 V.  While there will be a 

considerable amount of duty cycle jitter as a result of the voltage supply variation, 

eventually the DCC will recover the duty cycle to its proper value.   
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Figure 5.7 Output Duty Cycle Response to a Voltage Change from 1.5 V to 1.7 V to 1.5 V 

While Figures 5.6 and 5.7 show the output duty cycle response to an 

instantaneous voltage supply change, Figure 5.8 shows the duty cycle response to a 100 

mV peak sinusoidal variation on the voltage supply.  The responses for 1 MHz and 500 
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kHz are plotted on Figure 5.8.  Both frequencies show that the output duty cycle is 

directly dependent upon the voltage supply variation, which is the same result of the 

instantaneous voltage supply change.   
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Figure 5.8 Output Duty Cycle for +/-100 mV Sinusoidal Voltage Supply 
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CHAPTER 6 – CONCLUSIONS 

6.1 Conclusions 

The IHCDL DCC design presented in this thesis has a wide duty cycle range, 

good duty cycle correction across a range of typical clock periods, minimal impact to 

DLL lock time, and reasonable power consumption.  Because of the IHCDL DCC’s use 

of only a single delay line to generate the 0° and 180° phases, this DCC offers a 

significant layout area improvement over the other DCC designs considered.  

Furthermore, a closed loop duty cycle detection method is employed that reduces the 

chance for the DCC to accumulate error.   

This design has problems with duty cycle jitter across PVT and due to power 

supply variations.  PVT jitter issues are primarily related to the method that the fine delay 

line was implemented how it interacts with the coarse delay line.  Power supply induced 

duty cycle jitter is a consequence of using the same delay line for the 0° and 180° phases 

and the jitter unavoidable with this DCC topology.   

In future designs, the DCC presented in this thesis could be substantially 

improved by two methods.  First, the implementation of a wider range linear phase mixer 

would decrease the minimum fine delay step and, when matched properly to the unit 

coarse delay cell, would reduce the jitter that occurs when the end of the fine VDL has 

been reached and a coarse shift is needed.  Second, the design of a more robust shift 

divider would more effectively handle the transition between fine to coarse shifting and 

would prevent any duty cycle offset.  Undoubtedly, the design of the shift divider is the 

most critical design consideration for a successful implementation of the IHCDL DCC.   
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CHAPTER 8 – APPENDIX 

8.1 Additional Schematics 

 
Figure 8.1 Top Level DLL/DCC Schematic 

 

 
Figure 8.2 Schematic of DLL/DCC (without feedback) 
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Figure 8.3 ClkIn Schematic 
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Figure 8.4 Control Schematic 
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Figure 8.5 Schematic of Delay Line 
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Figure 8.6 DCC Delay Element Schematic 
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Figure 8.7 Schematic of Shift Control 
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Figure 8.8 Schematic of Lock 
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