DESIGN OF A DELAY-LOCKED LOOP
WITH A DAC-CONTROLLED ANALOG DELAY LINE
A Thesis
Presented in Partial Fulfillment of the Requirements for the
Degree of Master of Science
with a
Major in Electrical Engineering
in the
College of Graduate Studies

University of Idaho

by

Tyler J. Gomm

March 2001

Major Professor: R. Jacob Baker, Ph.D.



AUTHORIZATION TO SUBMIT
THESIS
Thisthesis of Tyler J. Gomm, submitted for the degree of Master of Science with amajor in
Electrical Engineering and titled “Design of a Delay-L ocked Loop with a DAC-Controlled
Anaog Delay Line,” has been reviewed in final form. Permission, as indicated by the

signatures and dates given below, is now granted to submit final copies to the College of

Graduate Studies for approval.
Major Professor Date
R. Jacob Baker
Committee
Members Date
Harry W. Li
Date
Larry Stauffer
Department
Administrator Date
Joseph J. Feeley
Discipline's
College Dean Date

David E. Thompson

Final Approval and Acceptance by the College of Graduate Studies

Date

CharlesR. Hatch



ABSTRACT

High-speed synchronous interface circuits require that the controlling clock signals
be accurately aligned. A dynamic de-skew circuit can be used to ensure good clock
alignment across variations in process, voltage, and temperature variations (PVT). The
delay-locked loop (DLL) is such acircuit, using a first-order closed-loop architecture that
dynamically aligns its output clock signal with areference clock signal.

Two basic types of DLL architectures are currently used: analog and digital. The
analog DLL uses a continuoudly variable delay line to remove the skew between the output
clock and the reference clock. A digital delay line uses digital elements, making the design
more ssimple and portable, but with quantized steps in the delay time. Typical DLL
architectures are explained, as well as the factors that introduce error in the accuracy of
synchronized output.

The design of aDLL that uses a differential, analog delay lineis presented. A
segmented, current-steering digital-to-analog converter (DAC) isdesigned. This DAC
controls the delay line in increments of the DAC resolution. A synchronous up/down
counter is used to control the DAC inputs. An arbiter is developed for phase detection.
The DLL initialization control circuitry is explained, and final performance characteristics
across PVT corners are presented.

This DLL is designed and simulated using Micron Technology, Inc.’s 2.5V, 0.15
micron DRAM process. The lock range is 100MHz to 200MHz, with varying jitter

performance. Suggestions are made for improvement of the jitter performance.
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CHAPTER 1-INTRODUCTION

1.1 MOTIVATION

As the clock frequency of synchronous VLS circuits increases, there arises a
greater need to correctly align system clocks. Emphasis must be placed on suppressing
clock skew and jitter. Asthe clock period is reduced, if jitter and skew remain the same,
the total clock phase error isincreased. This can affect many aspects of a synchronous
system, including setup and hold times, data access times, and accuracy of internal control
signals.

To eliminate clock skew, a simple, fixed-delay circuit might be used, but with
variations in process, voltage, and temperature (PVT), the delay time would vary. Also, if
the clock period were to change, the delay time would need to be modified. Therefore, a
dynamic, variable delay circuit is needed to eliminate system clock skew across PVT and
varying clock frequencies.

A Delay-Locked Loop (DLL) issuch acircuit. Fig. 1 showsaDLL being used to
ensure proper synchronization between a synchronous memory device and a memory

controller. Inthissmple

Control Clock

\

example, the DLL within Memory Memory
DLL .
Controller Device

-l

the memory device is used " Output Synchronized
to Control Clock

to ensure that there is no
Figurel DLL usage example.
skew between the control
clock generated by the controller and the data coming out of the memory. Thisis especially

important when a fast control clock is used; if skew remains in the output data while using a



fast clock rate, the memory controller might have a difficult time distinguishing from one
bit to the next being clocked from the memory.

As synchronous memory moves to other standards, such as double-data rate (DDR)
devices, where data is clocked out on both the rising and falling edges of the control clock,
the problem of internal clock skew is compounded. A DLL can solve this problem by
ensuring proper synchronization across PVT as well as variations in the control clock
frequency [1], [2].

There are limitations to the accuracy with which the DLL control clock may be
synchronized with the external reference clock. Some of these limitations are due to the
design of the DLL, while others are results of the process and system noise. Thisthesis
presents some of the common designs for clock synchronization circuits as well as the
possible drawbacks to these designs. The design and simulation of aDLL that uses a DAC-

controlled analog delay element are presented.

1.2 IDEAL DLL OPERATION

The basic Delay-Locked Loop block diagram and timing are shown in Fig. 2. Note
that the DLL has many similarities to a Phase-Locked Loop (PLL). One major differenceis
that rather than a V oltage-Controlled Oscillator (V CO), a voltage-controlled delay-lineis
used. If the output of the delay were fed back to the input (forming an oscillator), the DLL
could become aPLL. The other significant differenceis that the DLL has afirst-order
response, where the PLL has a second-order response [2], [3], [4], [5]. This means that
system stability is usualy not an issue for DLL designs, making them easier to redlize in

silicon. In addition, because thereis no VCO in the DLL, and therefore, no accumulation
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Figure2 Basic DLL block diagram.

of phase error due to supply noise, the jitter performance of aDLL can be better than that of
aPLL [2]. In other words, the jitter transfer function of a DLL is equal to zero, because the

reference clock both generates and synchronizes the output clock [3].

It should be noted that a PLL could also be used to accomplish the goal of de-

Reference Clock

Delay = phase F====t-

" r====1-1 F====t=n [

. U 1 U 1 U 1
difference B : ] : e : e
..... s To.o... T Toooo---
Delay = phase r====}-n Femm=}-n Fem-}-n [
difference + 1 cycle T > 1 [

Output Clock, synchronized by adding delay
(phase correction)

Figure3 Basic DLL timing.



skewing a control clock and a reference clock signal. However, due to the design
constraints and the noisy environments in which these circuits must function, DLL’s are
more often used for simple de-skew applications [3].

Asshown in Fig. 3, the DLL attempts to remove the skew, or phase difference,
from the output control clock by adding additional delay such that the phase of the two
clocks are equal. Fig. 3 shows that the delay added may be just the minimum phase
difference, or may be any multiple of the clock period plus the phase difference.

Referring back to Fig. 2, the phase detector in the DLL will maintain the total delay
around the loop such that it isequal to N :tCK , wheretCK isthe clock period. Ina
practical implementation, the external reference clock must propagate through an input
buffer, plus any additional control logic that is necessary. In Fig. 2, thisisall lumped
together as D1. Likewise, the synchronized control signal exiting the variable delay line
will have afinite propagation path out of the system. Thisis lumped together as D2. It
must be recognized that both of these delays are functions of PVT. Therefore, in order for
the DLL to properly cancel out the PVT variations of these finite delays, it must be capable
of removing D1 and D2 from the total forward delay. Thisis accomplished by modeling
the two delays as a fixed delay in the feedback path. The delay model should track D1 and
D2 across PVT as closely as possible. Notice that because the phase detector maintains the
loop delay at N :tCK , the variable delay issetat N :tCK - (D1+D2). The total forward-
path delay is now

D1+ N:tCK - (D1+D2)+D2 = N:tCK (1)



1.3 NON-IDEAL CONSIDERATIONS

Eq. (1) shows the most ideal DLL operation. The output is no longer a function of
PVT; the delays D1 and D2 have been eliminated and the phase detector will maintain the
loop delay as process, temperature, and voltage vary. Of course, there are limitations to
how well this occurs. When non-ideal system components are used, Eqg. (1) becomes

D1+ N:tCK-(D1+D2)+ D2 = N:tCK'+(D1- D1)+(D2- D2) 2

The ‘prime’ notation is used in EQ. (2) to denote the fact that the feedback delay model will
not perfectly match the input and output delays, and there will be limitations on how well
the phase detector and delay line can maintain exactly N :tCK around the loop. This loop
delay error might be due to granularity in the delay line, errors in the phase detector, or
delay modulation due to power supply variations. Therefore, the total DLL error will
reflect the accuracy of the loop delay plus any errors in modeling the input and output
delays.

A significant limitation of the DLL is the ability to lock across many frequencies
[5]. The variable delay line must be designed so that it can alow the loop delay to reach at
least 1:tCK when the longest clock period is used. However, in order to maintain
consistent operation, the DLL should be designed so that it does not lock on different
harmonics of the clock period. In other words, N must be the same value every time for a
given clock period. Any imperfections in the delay line will compound as more delay is
used; therefore it is desirable to keep N to aminimum. To avoid the problem of locking on
varying harmonics, the following inequality should be applied:

1 3
E XCK < tDELAY(MIN) <tCK < tDELAY(MAX) < E XCK ©)



Eq. (3) showsthat tg oy (the minimum possible delay through the variable

delay line) should be greater than 1/2 of the operating period, while tyg ,ywax, (the

maximum possible delay through the variable delay line) should be less than 3/2 of the
operating period [6]. Since t,g ,, Might vary as much as2:1 over PVT in atypica CMOS
process, the conditionsimposed by Eg. (3) can be maintained only over a narrow range of
operating frequencies. In practice, however, many DLL’s can ignore this limitation, and
allow the system to lock on harmonics of tCK.

Before discussing some of the various DLL implementations, another limitation
should be pointed out. If the feedback model error discussed above is negligible (although

thisis not usually practical), the maximum phase error is

_ P X,

€ (max) = tCK (4)

In Eq. (4), t, isthe minimum increment in which the variable delay line may be changed.
This equation shows that as the input frequency increases, the steady-state phase error will
also increase [5]. The minimum delay increment directly determines the jitter performance

of the DLL. This error becomes especidly significant in digital DLL’s, where the

minimum delay increment can be relatively large.



CHAPTER 2 - CURRENT DLL DESIGNS

2.1 DIGITAL DLL

There are essentially two types of DLL designs: analog and digital. The design
choice is determined by severa factors, including design complexity, layout size, system
noise levels, necessity of process portability, and required accuracy.

A digital delay-locked loop uses digital devices to implement the variable delay-line
(Fig. 4). This means that the minimum change in the delay is some quantized step. A
digital delay cell makes up the minimum delay, and many of these delay cells are used to

create the delay line. This minimum delay, or delay per stage, will be limited by the CMOS

External

Clock
4i >—| ass
Synchronized
| Output

Phase Selection |

-
-

\j

g Phase ‘Mafé?rtz or
> Detector Counter

Feedback Delay -

Figure4 Digital DLL block diagram.

process in which the device is fabricated. However, due to the reliable nature of digita

circuit performance across varying processes, a digital design may till be desirable [7].



As shown in Fig. 4, the variable delay is created by sending the reference clock
through many digital gates (these might be inverters, NAND gates, or NOR gates), and a
phase selector is used to choose which stage’s output will be used for the locked signal.

There are many flavors of digital DLL’s. The delay line may be implemented using
pairs of inverting CMOS gates (to avoid an unwanted phase inversion), with the pairs

ranging from NAND-invert to NOR-NAND combinations. This choice is influenced by the

required duty cycle, need for symmetry in t,, and t,,, , aswell as the method used to

inject or extract the clock into or out of the delay line [9]. In order to reduce the delay per
stage, the digital delay line might also be implemented using single cells of inverting
CMOS gates, but using a twisted-pair scheme to avoid the unwanted phase inversion
[71[20].

Other DLL design variations arise from the method used to control the delay line.
Fig. 5 shows aregister-controlled DLL (RDLL) where a shift register is used to shift a bit

that marks the delay-line entry point from left to right [8] [11].

External

Clock |
. Synchronized
| { | Output

-
P

Phase
Detector

v v

N-bit Shift Register

right .

Feedback Delay -

Figure5 Register-controlled DLL.



In the RDLL, each delay element is equal, and the shift register contains a bit that
controls where the reference clock enters the delay line. This can result in a straightforward
implementation, as the shift register may be integrated directly with the delay line [11].

Another digital delay line worth mentioning is one in which the delay elements are
binary-weighted, allowing an up/down counter to control the amount of total delay (Fig. 6).

This architecture is referred to as a counter-controlled DLL (CDLL) [§].

External

Clock | 1 2 4 ON-3 ON-2 DN-1
. o 3 san Synchronized
| ; ; ; } | Output
L& X ] ;
|
up
| -
Phase .
N-bit Up/Down Counter
> Detector -
down

Feedback Delay <

Figure6 Counter-controlled DLL.

Examining the previous figures, it is apparent that while the method of delay line
control will vary, the delay line remains digital. This resultsin a quantization of the output

phase. Shown in Fig. 7, as the input frequency varies, the DLL output can only track the
input clock edge to within the minimum resolution of the delay line, t,. Thisresultsina
possible phase error of 2p %, xf . In other words, the most ideal digital DLL will be
limited by the minimum delay per stage. Again, this assumes that a perfect phase detector
Is used, and is not generating additional phase error.

The phase detector used in adigital DLL needs only to be sensitive to variations of

phase greater than the granularity of the delay line. If it is more sensitive, the system might



Phase Error

Phase of DLL A
+ output .

T F (Ref -F(DLL
| ’ \ / (Reference) - F( Output)

1 - Phase of

A reference
1 2 clock

4 ’ 2-p'td'fref I >
T - \ 1:ref »
g 2'p'td fref -
Attt v
1:ref —>

Figure7 Phaseerrorinadigital DLL.

10

oscillate about the desired lock point. If not sensitive enough, additional phase error might

be added to the total error, as mentioned in the previous paragraph. Fig. 8 illustrates the

phase detector timing requirements.

N
Y

Reference Clock ——I—
Earliest DLL Lock J—I—I_

aestolttook ——1 L4 L

0 p 2p

Lock is attained across the phase range:

td td td

- =op @ —p D=-=p

tref tref tref

Figure8 Phase detector timing for digital DLL.
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2.2 ANALOGDLL
To reduce the static phase error incurred by using the quantized timing generated by
adigital delay line, an analog delay line may be used [6]. Due to the ability of an analog
delay element to vary continuously, the jitter in the output is reduced. Fig. 9 shows the
basic analog DLL. The overall topology remains the same; however, a charge-pump/loop

filter combination is frequently used to control the analog delay line [6], [8].

External Synchronized
Clock | | Output
| Voltage-Controlled Delay Line | >
A
up
™| Phase ~| Charge o )
Detector Pump »| Loop Filter
> >
down

Feedback Delay -

Figure9 Analog DLL block diagram.

The delay elements used to create the delay line are commonly found in voltage-
controlled oscillators (VCO’s) typical for PLL design. They may range from asimple,
current-starved gate, to complex amplifier-based designs. Again, the selection depends on
the environment in which the design will be used, the process tolerances, and the jitter
requirements.

Besides the advantage of reduced jitter in the output, an analog design may exhibit a
better power-supply rejection ratio (PSRR), can occupy a reduced area in the layout, and
consume less current than adigital DLL [7]. However, to achieve these results, the design
is usually of higher complexity and requires a process-specific implementation, making it

less portable to other processes.
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2.3 DUAL-LOOPDLL

Architectures that use two delay lines to enhance the performance of the DLL are
also used (Fig. 10). These designs have been proposed to solve the problem of jitter
induced by quantization in adigital DLL [6][15]. Either delay line may be digital or
analog, depending on the design approach. The intent is to use an easily-implemented
coarse delay line to set the loop very near to lock, and then to rely on afine delay line to
make small adjustments to the output phase, reducing the static quantization error shown in

Fig. 7.

External Synchronized

Clock N | - - - Output
Variable Delay (Coarse) |—>| Variable Delay (Fine) |—<—l>—>
L~ I I
I L ?
L Coarse Coarse Fine Fine
Phase |—®{ Delay Phase |—® Delay

—»{ Detector Control |—> Detector Control
‘ l Feedback Delay |<—

Figure10 Dual-loop DLL block diagram.

Another method of reducing the quantization error in a two-step processisto use

phase mixers, created from simple CMOS gates, to finely tune the DLL output [7], [16].

2.4 SYNCHRONOUS MIRROR DELAY

Although the concept of a synchronous mirror delay (SMD) deviates from the topic
of DLL’s, it isimportant to realize that alternate methods of clock synchronization across
PVT are possible [12]. The commonality between the synchronization circuits is the ability
to create adelay that isequal to N :tCK - (D1+D?2) (referring back to Fig. 2). Because

D1 and D2 vary across PVT, any circuit that can measure tCK minus the input and output



buffer delay (across PVT) can be used to synchronize two clocks. Fig. 11 shows abasic

block diagram of the SMD.
- K -
External |<D1->| |<—D1 + D2—>| —>| tCK - (D1 + D2) |<—
Clock |
| Delay Monitor »  Forward Delay Array

v

»  Mirror Control Circuit

/ Backward Delay Array

The N+1 clock triggers
the mirror control circuit _>| {CK - (D1 + D2) |<_

Synchronized
| Output

et

Figure11l Basic SMD block diagram.

The delay monitor is exactly the same delay used in the feedback path of the DLL;

is used to model the input and output buffer delay. It isimportant to note that the SMD is
not a closed-loop system, therefore it would be incorrect to refer to a‘lock time' or ‘lock

point’. Itissimply aclock generation circuit. The Nth clock propagates asfar asit can

13

it

into the forward delay line before the next rising clock edge (N + 1) causes it to move down

into the backward delay line. The signal continues on its way out of the system. The totd

forward path is calculated as follows:

D1+ (D1+D2) +2{N*CK - (D1+D2)|+D2 = 2xNx%CK (5)
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Typicaly, N isequal to 1, allowing a synchronized output to be generated in only
two cycles. Thisisone of the significant advantages of the SMD over the DLL; the SMD
clock generation time is much faster than the typical DLL lock time.

The issue of granularity in the delay line still applies, and, as with the DLL, designs
have been proposed that use an analog method to timethe N :tCK - (D1+D2) delay in the
SMD [13].

Once it is understood that this delay timing is the only element needed to
synchronize, other designs are possible. Fig. 12 shows a SMD implementation that uses an
up/down counter [14] or even a charge pump to measure the forward and then backward
time, instead of adelay line. The output resolution of this design is limited to the period of
the clock used to count up and down or the analog resolution of the charge pump.

However, it is easy to see that this type of design might be implemented using an extremely

small amount of layout area.

B o .

[ ol
|<-D1->| |<—D1 + D2—>| —>| {CK - (D1 + D2) |<—
External
Clock | up
| Delay Monitor >
down
» | Up/Down Counter or

!

/ out / overflow

Charge Pump

The N+1 clock triggers
the mirror control circuit _>| {CK - (D1 + D2) |<_
Synchronized
| Output

| >
-

Figure12 Other possible SMD implementations.
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CHAPTER 3—-DLL DESIGN

3.1 PROCESSAND SIMULATION MODELS

The process used for design and simulation of the DLL design proposed by this
thesisis Micron Technology, Inc.’s 2.5V, 0.15 micron process (0.124 micron after shrink),
specifically tuned for DRAM production. The typical process parameters, such as oxide
thickness, Cox, etc, are proprietary. The process provides two metal layers and single
polysilicon. One important feature of this processisthat it is tuned such that the substrate
voltage is expected to be negative, with Vbb» -0.65V. This raises the threshold voltage of
the N-channel devices. All N-channd transistors used in this design have the bulk node
connected to the negative Vbb potential. Because of the increased N-channel threshold
voltage, the N-to-P channel driveratio is about 2:1.

All simulations were performed using HSPICE and/or ADM. Schematic capture
was done with Cadence’ s DFII software. All transistor sizes are given in terms of lambda,
or the shrink factor (1 lambda = 0.124 micron).

As with most deep-submicron designs, simulation must be relied upon rather than
hand calculations. The deviation from the long-channel models due to short-channel effects

reduces the effectiveness of typical hand-calculations.

3.2 PROPOSED DESIGN
The DLL designed for this thesisisintended for a 100MHz to 200MHz reference
clock frequency. Asdiscussed in the previous chapter, a significant limitation of the digital

DLL isthe coarse delay-per-stage, typical of a CMOS gate. In addition, adelay line that
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can lock on awide range of frequencies may occupy alarge layout area. Therefore, this
design will use an analog delay line with the goal of using very few delay stages and
exhibiting continuous-delay behavior. Output jitter (with noise on the power supply) must
be in the range of 500ps in order to be a useful design. The power consumption should be
just afew milliamps.

Another useful design goal would allow generation of an in-phase output signal and

also quadrature signals; 0° (thisis the in-phase output), 90°, 180°, and 270° phase (Fig. 13).

Reference Clock

DLL Output
(0° or 360°)

DLL Output
(90°%)

DLL Output
(180°)

DLL Output
(270°)

Figure 13 Quadrature signals.

Thisis adesirable feature if the DLL were to be used in data recovery applications [17],
[18]. It could also be very useful for generating control signals for internal system
elements, for example, in the creation of internal synchronous DRAM timing signals. The
generation of quadrature signalsis more easily done when an analog delay line is used, due
to its scaling nature. If amultiple of four delay stages is used, the quadrature signals are

already generated within the delay line. If adigital delay line were to be used, the 180°
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signal could easily be obtained by simply inverting the output, but the 90° and 270°
generation would require a more complex approach.

Fig. 14 isablock diagram of the proposed DLL design. Instead of using a charge
pump and loop filter to create the control for the delay line, a current-output digital-to-
analog converter (DAC) isused. The phase detector generates up/down control signals for
a synchronous up/down counter that control the DAC. The concept is to use the features
and advantages of an analog delay line, producing quadrature output signals, and to rely on
the least significant bit (LSB) of the DAC to be fine enough to set avery small delay
change per DAC step in the delay line. Thiswill, in effect, quantize the phase output of the
DLL just asin adigital delay line, but if the LSB of the DAC is small enough, output jitter

will be less than that of adigital DLL.

Synchronized
Output (90°)

Synchronized
Output (180°)

-

Synchronized
Output (270°)

-
-

External
Clock

Synchronized
Output (360°)

|l> I Current-Starved, Differential Delay Line I

i

=4 DAC

\VARYARVARY,

up
Phase | Up / Down
Detector | Counter
down |

4| Feedback Delay I:

v

Figure 14 Block diagram of proposed design.
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Another advantage to this approach is that by using an analog delay line, the total
layout size will be significantly reduced. The DAC will occupy the majority of the layout
area.
As previously discussed, a disadvantage of an analog design is the reduced
portability of the design from process to process. For the purposes of this design, thisis not
much of a concern. More important is the ability of the design to maintain proper operation

across PVT in the same basic process.

3.3 DELAY LINE DESIGN

The delay line must be capable of supporting ' "‘—“"[ﬂ
the frequency range of interest (100MHz — 200MHz, |""|:°
ving A Vit
or 10ns - 5ns cycle time) and have good PSRR. The L’*[
simplest continuously variable CMOS delay element e -,
is the current-starved inverter (Fig. 15). The center )
transistors form a normal CMQOS inverter and the top Figure15 Current-starved
inverter.
MP4
Vbiaspp Gq 180.0/5.8
gMPZ |j¥MP3 . MP1 |j+MPB
Vinp 18.8/1. 10.6/1.6 10.6/1.8 16.0/1.0
Vinn | i i E]—q Voutp
| Voutn
Q Q Q

MN3 MN2 MN1 MNG
5./1.+;| =58/18 | ol 5.8/10 %5./1.@

Figure 16 Diff-amp-based delay element.
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and bottom transistors serve as variable current supplies. As the current to the inverter is
changed, the rate that the output can charge up or down is affected, and therefore the delay
through the element is directly controlled. If several of these elements are arranged
sequentially, a simple analog delay line is formed. In practice, this type of delay element is
not frequently used because of its poor PSRR and susceptibility to noise [19]. In addition,
the current sources must be finely tuned to maintain good duty cycle characteristics.

A better design is the diff-amp-based delay element shown in Fig. 16. This circuit
has good symmetry and better power-supply rejection [19]. Therise and fall times of this
circuit are equal, due to the differential nature of the design. It sources and sinks the same
current into the output load, regardiess of the switching direction. Thisis the design chosen
for the differential delay line of this thesis.

The range of the delay element stage and the desired frequency lock range of the
DLL dictate the number of stages required. Simulations show that the minimum delay per
stage is ~400ps. If eight stages are used, the minimum delay for the entire line will be
about 3.2ns. Thiswill meet the required minimum delay of 5ns, with margin for PVT

variation. Fig. 17 shows the arrangement of the eight differential delay elements. If the

Clk Out Clk Out Clk Out Clk Out

|7y0°) |7>30°) |7>(270°)
Clk | . f . [ :
|4—1/4 tCK—>| 172 tCK—>| e 1/4 tCK—>| le——1/4 tCK—>|

Figure17 Differential delay line diagram.

delay line is locked such that the entire delay is equal to tCK, every two stages will have a
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delay of ¥4tCK. Tapping the delay line at the ¥4 tCK points creates the quadrature DLL

outputs. A differential-to-single-ended converter is used to drive the output (Fig. 18).

Vinnp—E

MP2
Bd 20.9/1.0

MP@
20.8/1.0

MN@
10.0/1.8

20.0/1.8
) MP1

MP4
20.9/1.0

4 Out
<

10.9/1.8
MN1

MN2
10.8/1.6

MN3
10.6/1.9

Figure 18 Differential-to-single-ended converter.

SPICE simulation shows the delay line ability to create the proper quadrature

signals. Fig. 19 shows the delay line output with a 10ns clock input period and a fixed

control current. Note that because the delay line is ssimulated here as a stand-alone circuit,

Vout (0° or 360°)

Vout (90°)

Vout (180°)

Vout (270°)

NIRRT R TR

Figure19 Simulated outputs of delay line.
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the total delay through the delay line is not exactly 10ns, and therefore the quadrature
shown in Fig. 19 is not perfect. When the delay line is used in alocked DLL, the
quadrature will be correct.

One issue should be mentioned about the DLL’s ability to properly generate the four
quadrature signals. The ideal DLL equations rely on the feedback delay model to cancel
out the effect of the input and output buffers. If delay is used in the feedback path, the total
delay-line delay will not be an exact multiple of the input clock period. This means that if
the delay-line timing is divided into quarters, the quarter delays will not be exactly ¥4 tCK.
Because this design does not have a significant input or output buffer delay time, a

feedback delay model will not be used. This allows the circuit to generate better quadrature

output signals.

Total Delay-Line Delay vs. DAC Input
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Graph 1 Delay-line performance across PVT.
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The simulated characteristics of the differential delay line are shown in Graph 1.
The delay line was simulated using an ideal DAC used to generate the control current.
Simulations were performed on the fast and ow corners as well as at typical PVT.

Throughout this thesis, the fast corner is simulated using the fastest transistor
models for the process, highest voltage (2.8V), and lowest temperature (0° C). The slow
corner is run at the slowest transistor models, lowest voltage (2.2V), and highest
temperature (80° C). Thetypical runs are done using typical transistor speeds, nominal
voltage (2.5V), and nominal temperature (25° C).

An important observation can be made from the data shown in Graph 1. Asthe
control current decreases, the delay increases in a 1/x fashion. If alinear DAC is used to

control the delay line, the delay change per LSB is not constant across the delay range. As
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the total delay increases, the minimum delay-line variation also increases. The largest
delay change per LSB occurs when the delay elements are fed very little current. The
smallest change occurs when the delay elements are only dightly starved. This means that
the DLL will have good jitter performance when higher current is used (fastest delay), and
poor jitter performance with low current (slowest delay).

For PLL design, thisis not atypical concern because the delay lineisused as a
variable oscillator, and the output of interest is frequency. Graph 2 shows that this delay
ling, if used as an oscillator, would be much more linear. Of course, this does not help the
performance of the DLL.

Of interest is the duty cycle symmetry of the delay line. Graph 3 shows the

simulation results of the duty cycle across PVT. As expected, this delay line has good

Duty Cycle vs. DAC Input
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Graph 3 Delay-line duty-cycle performance.



24
symmetry due to the diff-amp nature of the delay element. Thisisimportant, especidly if
the control signals generated by the DLL are created using both the rising and falling-edges

of the clock.

3.4 CURRENT REFERENCE DESIGN

In order to ensure that the current-output DAC will have good performance across
PVT, it is extremely important that a stable current reference be used in the DAC. The
ideal current reference has infinite source impedance, and the output does not vary,
regardless of the voltage on the output nodes. One significant limitation of current sources,
especialy in deep submicron designs, is the finite value of r, and limited output swing [19].
To achieve better analog performance, the transistors that are used to source/sink alinear
current are sized so that the length is at least 5 lambda. Thisincreases r,, of the source,

making it more linear.

Vref_out

19.8/18.8
M1

Mominally 48 wh

Startup circuit

Figure20 Betamultiplier current reference.
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For this design, a beta multiplier reference is used (Fig. 20). The left-hand part of
the circuit ensures that at power-up, the self-biased loop converges to the desired operating
point, rather than at zero current. Thisisrequired for al self-biased circuits[19]. The
transistor MN7 is sized so that it is afactor of K times larger than MN1. This sizing makes
Puns = K X0y, Which sets Vg = Veannz T IR. The basic design equation for this circuit

is shown as Eq. (6) [19].

2

2 e 10

| = e
b, & VK ©)

The reference for this design is set such that the current through the rightmost leg is
nominally 40uA. The resistor is made from N-type active area. All values and transistor
sizes are shown in Fig. 20.

As previoudly stated, it is desirable to increase r, of the reference to improve the
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Figure21 Cascode current reference.



analog performance across variations in voltage. This was attempted by using a cascode

version of the beta multiplier shown in Fig. 21. The circuit shows reduced effects of the
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finite output resistance; however, in a design where Vdd is only 2.5V, the threshold voltage

drop across each device makes this reference unusable for this design.

Simulations of the beta multiplier circuit show good performance across PVT

(Table 1). Toimprove the performance across the operation corners, aresistor exhibiting a

smaller temperature coefficient would have to be used. However, for the DAC in this

design, this reference will suffice.

3.5 DAC DESIGN

The ideal digital-to-analog converter output response is shown in Fig. 22. The

N-bit digital
input code

VDD Slow Corner Typical Fast Corner
22V 37.2 UA 35.3 UA 32.0 UA
25V 44.0 uA 40.0 uA 35.2 UA
28V 49.7 UA 43.6 UA 37.5UA

Table1l Current reference performance across PVT.

N-bit DAC

7/8
6/8

5/8

4/8
3/8 A

2/8 1

1/8
0

ouT

OUT (MAX)

A

T »

i A

14—!—!—!—!—!—!—?
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Digital input code, b,b,b,

Figure22 DAC block diagram and ideal transfer curve.
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analog output is a current, and is tuned to supply the proper range of control current so that
the delay line can move through the correct range of delay. For usagein thisDLL, the
DAC must be monotonic. In other words, for every increase in the input code, the output
current increases, and for every decrease in the input word, the output current decreases.
Aswas shown in the smulations of the delay line, the current control versus total delay is
already nonlinear, therefore linearity in the DAC is not absolutely necessary, so long as the
monotonicity is good. Although not attempted for this design, it would be beneficial to
have a DAC design with a nonlinear output response, tuned to the nonlinear response of the
delay line. Thiswould maintain consistency in the DLL jitter performance, regardless of
the reference clock frequency.

For this design, asix-bit DAC isused. This alows relatively simple
Implementation, monotonic transfer curves, and good linearity. The DAC will control the
delay line in 64 discrete increments.

The most straightforward current-output DAC design uses each bit in the digital

input word to switch in a binary-weighted current source (Fig. 23). The minimum current

2N 2N-2| 4 21 |

Figure23 Binary-weighted current steering DAC.
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(LSB) isset by I.

This design was simulated using the current reference of the previous section to

< LSB MSB

Py & 8

W: 5 W:5 W: 5 W:5 W: 5
¢ o0 L: 64 L:32 L: 16 L:8 L:4

L4 @ L4

Figure24 Binary-weighted L current sources.

examine the response. The transistor lengths were used to modify the current sources as
shown in Fig. 24. Note that this figure does not show the switches used to gate each source
on or off of the output. The simulation results show extremely poor performance (Fig. 25).

The output is non-monotonic due to inconsistencies in the current sources. This s caused

Figure25 Binary-weighted L DAC transfer curve.
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by variations in the percent of latera diffusion, etc from one source to the next. In addition,
the transistor responses are not necessarily linear as the length changes.

In an attempt to improve the

<« LSB MSB
monotonicity and reduce the

e ® _| W: 5 _| W: 5 _| W: 5

L: 16 L:8 L:4

inconsistencies in the current sources,
the weighted-L devices may be broken
up (Fig. 26). This approach ensures that J

< LSB MSB

process parameters such as latera

T
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diffusion affect every device in the same

—
W: 5 W: 5
proportions. Other issues arise, ce — ]u —|
_| W:5
however, such as body effect on the L
_| W 5
stacked transistors. 1 '

Simulation results show that the
Figure 26 Breaking up the current sources.

DAC is now monotonic (continuously

Figure27 DAC transfer curve with broken-up current sources.
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increases), however, the linearity is still very poor (Fig. 27). Thisisaresult of body effect
and the nonlinear transistor response of current versus length.

The binary-weighted designs require only N current sources, but do not exhibit good
linearity in a practical design. The layout also becomes larger when the current sources are
broken up as shown in Fig. 26.

In order to achieve good linearity and monotonicity, a non-binary-weighted current-
steering approach is used. Fig. 28 shows the basic current steering DAC. Notice that this
design requires 2" current sources. In this case, rather than controlling each current source
directly with the bits from the input word, a thermometer code must be generated from the
input word [19]. For even asix-bit DAC, it isnot trivial to have 2", or 64, current sources

and to decode the individua controls for each source (thermometer-code controls).

Figure 28 Basic current steering DAC.

As seen in the previous SPICE simulations, these current steering DAC'’s have the
problem of glitches in the output every time the DAC input is changed. Thisis because all

of the sources are in paralldl, and it is possible that one source will be on while the next one
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switcheson [19]. These glitches are faster than the delay line' s ability to respond, and are
therefore acceptable for this particular design.

The approach used for this design is to use a segmented current steering design. In
this scheme, the bits in the lower half of the control word (least significant bits) are used to
control three binary-weighted current sources. The bits in the upper half are decoded into
thermometer code to control current sources that are all weighted the same. This takes
advantage of the linearity in the LSB’s of the binary-weighted approach, and relies on the

consistency of the MSB’sto keep the DAC linear. Fig. 29 shows the block diagram.

ouT

21 |

8l 8l 8l 8l 8l 8l 8l

MSB =111 MSB =110 MSB =101 MSB =100 MSB =011 MSB =010 MSB = 001

Figure29 Segmented current steering DAC block diagram.
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To set aminimum current, an extraleg is added to the DAC with the control
transistor always turned on. Fig. 30 shows the circuit implementation of the segmented

current steering design.
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Figure30 Circuit diagram of segmented current steering DAC.

An observation about the block diagram of Fig. 29 may be made; the circuit can
easily be made into a differential design if the current sources were switched from the oy
node to alo* node instead of to ground. A differential design would double the current
difference on the output, and would improve the noise sensitivity of the DAC. This was not
done for this design.

This DAC cannot directly control the delay line previously discussed. A current

mirror is used to provide the necessary current for the DAC and to set the bias voltage for



each analog delay element in the delay line (Fig. 31). The transistor sizing of this current

mirror will be discussed later. The additional two legs on the right of the mirror provide
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Figure31 Current mirror for DAC current conversion.

current references for N-channd sources and also a scaled-down reference for P-channel

sources. These were used experimentally in this design, but are unused in the final

implementation.

The three LSB’s of the control word are used to directly switch the three, binary-

weighted sources on and off.
The three MSB'’s of the DAC
must be decoded to create the
thermometer code that controls
theseven (2°-1=7) equa-
weighted current sources. Fig.
32 shows the block diagram,
truth table, and logic equations

required for the decoder.
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Figure 32 Thermometer-code block diagram and logic equations.
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To improve the timing of the decoder so that al seven outputs transition as close
together as possible, the various gate sizes were tuned to provide similar delay paths. The
current-steering DAC design is already susceptible to glitches on the output, so it is
important to ensure that all of the control signals transition simultaneously. This tuning
was done by simulating the DAC, looking for significant glitches on the output, tuning the

required path, and then reiterating. Fig. 33 shows the final circuit with the gate sizes.
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Figure 33 Decoder circuit for segmented current-steering DAC design.

Although the decoder is tuned, the synchronization is not perfect with variationsin
PVT. For the purposes of this design, the tuning is close enough that the instantaneous
glitches produced at the DAC output have a very short duration and can be ignored. If a

more perfect synchronization were necessary, al of the control signas, including the



thermometer code and the LSB’s, could be latched before being allowed to control the

DAC current sources.

3.6 DAC PERFORMANCE

The segmented current-steering DAC has much better linearity and is monotonic.
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Fig. 34 shows the DAC output at typical process, voltage (2.5V), and temperature (25° C).

Figure 34 Segmented current-steering DAC transfer curve.

Although the output looks nearly perfect, it is important to quantitatively
characterize the DAC linearity. Due to the non-ideal nature of real devices, a DAC will
exhibit dlight differences between the ideal and actual performance. For data converter
characterization, this difference is knows as differential nonlinearity (DNL) [19]. Itis

defined as

DNL, = Actual increment height of transition n- Ideal increment height

()



36
The number n refers to the corresponding digital input code transition. When the DNL of a
converter is defined, it will be the worst-case DNL across the entire range of operation. For

the converter to be termed as accurate to N bits, the DNL must be lessthan + 1/2 LSB.

353850202 R R R R R R R
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Figure 35 Ideal DAC output vs. typical DAC output.

Fig. 35 shows the ideal DAC output and the actual DAC output (at typical PVT)
Separately.

Fig. 36 shows that there
iIsasmall anount of nonlinearity
inthe DAC. To calculate the
DNL asdefined by Eqg. (7), the
ideal LSB value is subtracted
from the actua step height of

each output level.

Wi

Figure 36 Ideal output overlaid on typical output.
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The results are shown in Fig. 37. Notice that the error due to glitches (from the
switching input code) has been ignored and only the steady-state difference isused. The
magnitude of the DNL is +0.30, -0.11 LSB for thisdesign. This means that the DAC is

accurate to 6-bits with regard to linearity.

Differential Nonlinearity of DAC

0.4 1

DNL (LSBs)

-0.3

0.4 T T T T T T
0 10 20 30 40 50 60
Digital Input Code

Figure37 Differential nonlinearity of DAC.

As previoudly stated, the primary design goal for the DAC is monotonic
performance; if the outputs do not move in the same direction as the input code, it will be
possible for the DLL to never find a proper lock point. It is easy to see from the DNL
shown in Fig. 37 that the DAC is indeed monotonic because the DNL is never less than —1
LSB. Inother words, the difference from the actua to the ideal value is never going to
cause the output to decrease for an increasing input. The most negative DNL of this design

is—0.11 LSB.
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Further examination of Fig. 37 shows that the greatest contributor to the DNL of
this DAC design is due to the switching of the three LSB’s. The three lowest bits were
implemented using binary-weighted current sources. The dight error in the sizing of the
transistors used as current sources causes the DNL error. Notice that the DNL responseis
periodic with the eight values created by the three LSB’s. Without the error induced by
these current sources, the DNL has a dightly negative trend.

Aswas shown in section 3.3, the total delay line delay has a nonlinear response to a
linear control input. Therefore, the dight differential nonlinearity of this DAC is of no
consequence for this design. Infact, in order to get alinear response in the total delay time,

anon-linear DAC would have to be designed.

A

DAC Qutput
~ (Typical)

INL line, drawn
through first and
last values.

Figure 38 Typical output shown with line used for INL calculation.
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Another important DAC characteristic is the integral nonlinearity (INL) [19]. Thisis
defined as the difference between the converter output and a straight line drawn between
the first and last output values (Fig. 38). This characteristic defines the linearity of the
overdl transfer curve. The equation used to calculate INL is as follows:
INL,, = Output value for input code n- Output value of referenceline at point n (8)
Fig. 39 shows the integral nonlinearity for this DAC design. Again notice that the
glitches have been ignored. The INL is also greater than + 1/2 L SB, making the converter

accurate to only 5 bits. Again, thiswill not affect the DAC performance as used in the

DLL.
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Figure 39 Integral nonlinearity of DAC

When the current mirror of Fig. 31 was presented, the transistor sizing was not
explained. The left-most transistor of this reference acts as a supply to all of the current

sources in the DAC. Asthe input word increases, more sources are switched into the
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circuit, pulling more current
from this source. When the
DAC wasfirst being evauated

across PVT corners, poor results

were observed at the low corner

(Fig. 40).

The source transistor in

the mirror was smply not large

enough to provide the required

Figure40 Poor DAC performance at high current.
current for high-vaued DAC

input words. This effect was exaggerated at the slow corner, where the transistor currents

Figure4l DAC transfer curvesacross PVT.
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are reduced due to high temperature and lower supply voltage. After the source transistor
width in the current mirror was sized up to the dimensions shown in Fig. 31, the DAC
performance improved significantly. Fig. 41 shows the final DAC performance across the
PVT corners.

All of the SPICE output shown to this point does not clearly show the absolute
values of the DAC output, nor have the delay line currents been shown. Graph 4 shows the
DAC output current as well as the current mirrored into the delay-line elements vs. the

DAC input word. This graph aso shows the performances across PVT.

Control Currents vs. DAC Input
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o o
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Graph 4 Control currentsvs. DAC input.

It should be clear at this point just how critical the operation of the current reference

used for the DAC has become. Any variation in the reference as the supply voltage,



42
temperature, and/or process varies will propagate through the DAC and into the delay-line
control current.

With good performance across PVT and a monotonic transfer curve, thisDAC is

well suited for operation in the DLL.

3.7 UP/DOWN COUNTER DESIGN

Referring back to Fig. 14, the DAC is controlled by an Up/Down counter. In effect,
this counter is the ‘filter’ for the DLL. It is essentialy the loop filter that is used in PLL
design and pure analog DLL design, except that it movesin a linear fashion, preserving the

first-order nature of the DLL. Fig. 42 shows the basic counter interface to the DAC.

Up

Down lour

6-bit Synchronous 6-bit DAC

Up / Down Counter

Tyvivy

Clock

Figure42 Up/Down counter interface to DAC.

Although the DAC has very fast ditches in the output due to the nature of the
design, it is important that the additional noise not be introduced by feeding an unsettled

control signal to the DAC. If asimple ripple counter were to be used to count up (Fig. 43),

Count Q Q Q Q Q Q

ol
ol
ol
ol
ol
ol

LSB > MSB

Figure 43 Basic ripple counter.
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afinite time must pass before all of the outputs are valid. The output from the LSB stage
must propagate all the way through to the output of the MSB stage before the output can be
used. If thistype of counter were used to directly control the DAC, the glitches would now
be of significant width and could no longer be ignored for this design.

To ensure that the counter outputs were completely synchronous, the outputs might
simply be passed through a set of latches, which would be clocked after the ripple counter
settling time had passed (Fig 44). Thisis a simple solution that occupies relatively little

layout area. However, this counter can only count up, not down.

i |
[F JF WF WF Wr Wf
I

LSB

ol

ol
ol
ol
ol

\ 4

MSB

Figure 44 Clocked ripple counter.

Of course, afully synchronous counter can be designed as a finite state machine
(FSM) with al of the ‘next’ states fully decoded at the inputs of each latch. This design
approach guarantees synchronous operation, but the logic required to decode the ‘ next’
states increases exponentially as the number of bits in the counter increase. This might still
be a good solution to implement a counter that can count up or down as long as the number
of counter bitsisrelatively small.

For a synchronous counter, consider a design similar to that of Fig. 44, except that

rather than a ripple counter used as the input to aregister, pipeline logic could ripple



through and determine the next state of the output latches. This concept is shown in the
block diagram of Fig. 45. Notice that the output latches are toggle flip-flops and the setup

logic simply determines whether or not the bit that it controls will toggle on the next clock

cycle.

[ S A S A S 1 A S A
Up »] Toggle [,] Toggle || Toggle |,] Toggle |, Toggle || Toggle
Down N Decisﬁon N Decisﬁon N Decisjon N Decis_ion N Decis,_ion N Decis_ion
Logic Logic Logic Logic Logic Logic
S O O O S P

T 1 [ ] [ 1 T I |
vV vV vV \ 2] vV 5 \ A
Q © Q © Q © Q © Q © Q ©
BO* BO B1* B1 B2* B2 B3* B3 B4* B4 B5* B5
LSB » MSB

Figure45 Block diagram of synchronous up/down counter.

This design till requires a finite settling time before the output latches are clocked,
but the setup-logic does not increase as bits are added to the counter. If additional bits are
required, additional toggle latches and setup-logic are added, and a little more propagation
setup time is required.

To develop the toggle decision logic, the truth table of Table 2 must be used. The
table is an example of athree-bit counter, showing the state of the up and down control
signals, the current bit count, and whether or not a bit will toggle on the next clock cycle
(BoutN). The setup logic isimplemented as a logic state that will ripple through,

depending on the current count and the state of the up and down controls.
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Thisis done by logically ANDing the bits of lower significance in the current count.

If al of the lower bits are asserted, it is time to toggle the next bit. The same is done for

both counting up and counting down, except that the logic levels are changed.

Down Up B2 B1 BO|BoutO0 BoutO* Boutl Boutl* Bout2 Bout2*
0 1 0O 0 O 1 0 0 1 0 1
0 1 0 0 1 1 0 1 0 0 1
0 1 0 1 O 1 0 0 1 0 1
0 1 0 1 1 1 0 1 0 1 0
0 1 1 0 O 1 0 0 1 0 1
0 1 1 0 1 1 0 1 0 0 1
0 1 1 1 0 1 0 0 1 0 1
0 1 1 1 1 1 0 1 0 1 0
1 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 0 1 0 1 1 0
1 0 1 0 1 0 1 1 0 1 0
1 0 1 0 O 0 1 0 1 0 1
1 0 0 1 1 0 1 1 0 1 0
1 0 0O 1 O 0 1 0 1 1 0
1 0 0O 0 1 0 1 1 0 1 0
1 0 0O 0 O 0 1 0 1 0 1

If asingle AND gate were used to determine whether or not the current bit should

toggle, the gate would get very large as more bits were added to the counter (n - 1 inputs

Table2 Counter toggle logic truth table.

on the AND gate). Also, two of these gates would be required on the input of every toggle

flip flop (one for up and one for down). Instead of using a single gate, the AND function

can be carried out by propagating through a series of two-input ANDs. This means that for

the nth toggle flip-flop, alogical AND of n- 1 will still be calculated, except that
additional propagation time will be required. Fig. 46 shows asingle cell that can be
cascaded to create the AND function for both the up and down directions.

The input, BAND, is simply the AND function from the lower bit (n- 1). Itis

ANDed with the output of the current (nth) bit, BN. The output, if asserted, will cause the
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current (nth) flip-flop to toggle. Also, this output is sent to the next counter logic cell

(n+1). The sameisdone for the logic used to count down, but the assertion levels are

changed.
BANDp————————&s- GNAG GI2
p= ef= BANDBN
BNp—m——a—
GNA2 Gl
R=78 fi= Count*
BAND* P Count
D—m— GNA an
R=18 e—{R= BAND*BN*
BN*p——————

Figure46 Cascaded AND generator for counter toggle logic.

Fig. 47 shows how the cells are cascaded in front of each flip-flop bit in the counter.
This figure shows the entire six-bit synchronous circuit. Each bit is preset to alogic one
upon initialization. Thisisrequired for DLL initialization, which will be discussed later.
Note that an extratoggle logic cell and aregular flip-flop are used (bottom of schematic).
Thisis done to generate a‘carry out’, or overflow signal that may used by the DLL control
circuitry to detect when the counter (and therefore the DAC) has reached a limit.

The schematics for the toggle flip-flop and the regular flip flop are shown in Fig. 62
and Fig. 63 in the Appendix.

The six-bit counter will have a maximum count frequency limited by the
propagation time through the toggle decision logic. Normally, this would be a five-gate
delay, but with the overflow detection, a sixth gate delay is added. With a gate-propagation
delay of ~100ps per gate, this counter is more than fast enough for the purposes of this

design. Fig. 48 shows the SPICE simulation waveforms for the counter.
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Figure47 Circuit diagram of synchronous up/down counter.
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Clk

Figure48 Synchronous counter waveforms.

3.8 PHASE DETECTOR DESIGN

The phase detector for aDLL may be more simple that that used in aPLL, because
only phase must be determined, not frequency. However, the detector is critical to the
overal performance and the output phase error [20], [21], [22].

Aswas previoudy discussed, in order to reduce the jitter and error in the output, it is
desirable to use adelay line that can be changed in extremely small increments. EQ. (4)
showed that the maximum phase error is a direct function of the smallest increment in
which the delay line may be changed. However, this equation, as well as Eqg. (1), assumes

that the phase detector is maintaining the DLL loop delay at exactly N :tCK .
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Although the smallest increment in which the phase detector can control the loop is
set by the delay line, it isimportant that the phase detector not contribute to the total error.

This can be illustrated by examining the simple phase detector of Fig. 49.

Deadband
(Phase Equal Region)
>
DLL Output Clock Q1
D Q—»
Reference Clock —
d Q —T
unit \ /
Delay Reference Clock
Q2
) DLL Output Clock
DLL Output Clock
(Delayed)
Q1 Q2 Action
0 0 | Too Late - Remove Delay Q1
0 1 |180° Out of Phase - Remove or Add Delay Phase Equal
1 0 | Phase is Equal - Do Nothing q
1 1 | Too Early - Add Delay Q2

Figure49 Simple phase detector with deadband.

The unit delay of this detector is set to be identical to the minimum delay increment
of the delay line. If set properly, the deadband created by the ‘ phase equal’ region will not
contribute to the final DLL phase error. If the delay is set too short, the DLL lock point can
oscillate between two lock points, and therefore cause jitter in the output. If the delay is set
too long, the deadband behavior will become apparent, and the phase detector will require
larger changes in the output phase before taking any action. This will directly create phase

error in addition to that calculated in Eq. (4).



The deadband of this phase detector is calculated using waveforms of Fig. 50. An
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Figure50 Deadband in the phase equal range.

example of deadband calculation can be seen in Graph 5. For this curve, a unit delay of

2p

td
tck

50

0.5nsisused. Because phase is afunction of clock period, the frequency of interest must be

defined. For Graph 5, aclock period of 5nsis used.

4

Phase Detect Response: td = 0.5ns, tck = 5ns,
Phase Equal Window = 0.628319 Radians
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Graph 5 Example phase detector response.
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At this point, it should be clear that this simple phase detector could contribute to
the total phase error of aDLL system if the deadband is too great. Thisis not an issue for
digital DLL’s, where the digital unit delay of the delay line is easily modeled in the
detector. However, for an analog continuous delay line, this deadband would not be
acceptable, as it would be the limiting factor in the phase performance.

The delay line used in this DLL design isanalog. The minimum change in delay is
set by the LSB of the controlling DAC. Because the LSB of the DAC can control the delay
in finer increments than the delay of a CMOS gate, it is hot reasonable to use the simple
phase detector previously discussed. The resolution of the detector must be reduced. In

this case, acircuit known as an arbiter is a good solution (Fig. 51).

b A_Claon

Ref_Clk e GHAS
o
I—u—

Lo

DLL_Chi b—.—

B_Clean

Figure51 Two-way arbiter.

This circuit simply determines which of the two inputs occurs earliest in time. If

Ref Clk occurs dightly before DLL_Clk then the output A_Clean will go high, and the
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output B_Clean will stay low. If DLL_Clk occurs before Ref_Clk, then the output B_Clean
will go high while A_Clean stays low. Note that the output inverters get their power supply
from the outputs of the Set-Reset (SR) latch. This ensuresthat A_Clean and B_Clean can
not both be high at the same time. When designed properly, this circuit can discriminate
between edges with only tens of picoseconds of separation [10].

To create the proper control signals for the up/down counter, a bit of signal
conditioning is required. The arbiter cannot directly control the counter. The A_Clean and
B_Clean signals do not have good duty cycle and may have glitches present from the times
when the inputs return low. The up/down control signals are generated by latching the
arbiter outputs as shown in Fig. 52. The SR flip-flop used to create the latch clocks is

necessary to remove glitches before triggering the output latches.

PRE_
PRE_ p—oo——— MP3
PRE_
%’2'&
"’“aﬁﬁf as =
ACLEAN {@c A_CLEANi o o b Down
latch
L 'y

clko

REF_CIK > oA
:
P

clk

B_CLEANi b qQ

Figure52 Arbiter-based phase detector circuit.
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The operation of this phase detector is apparent from the simulation waveforms

shown in Fig. 53. Note how the SR flip-flop used to create the ‘clk’ signal successfully
eliminates the glitches seen on the NOR output. Also note that the detector properly detects

the phase difference in the two input signals.

REF Clk | =F

DLL_Clk

A_CLEAN

B_CLEAN

Sesgi.Bsufi.Baat
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clk (for latches)

Up

Down

- BEE N T L AT

Figure53 Arbiter waveforms.

It should be noted that this arbiter will never allow the DLL to lock in a steady state.
The counter will always count either up or down, causing an oscillation in the output phase.
Thisis similar to the situation where the unit delay is too short in the simple phase detector
previoudly discussed. However, the LSB control of the delay line is expected to be small
enough as to be negligible for this design. The ideal design would have an infinitely small
delay per unit change in control, and the oscillation caused by the arbiter would not be a
consideration. Although not implemented in this design, it would be a simple matter to

filter the arbiter outputs and not allow the counter to change unless a sequence of more than



one ‘up’ or ‘down’ signal was detected. Again, thiswas not considered an issue for this

design due to the small delay increment.

3.9 DLL CONTROL CIRCUITRY

Up to this point, the actual direction dictated by the phase detector has been ignored.
The waveforms of Fig. 53 show that if DLL_CIlk occurs before Ref_Clk, then the counter is
to count down. When DLL_Clk occurs after Ref_Clk, the counter isto count up. In
addition, the preset condition of the counter has not been discussed.

To determine the count direction, it isimportant to realize that for this design, as the
counter value increases, the delay in the delay line decreases. Therefore, when the arbiter
detects that the reference clock signal occurs after the fed-back DLL output, additional
delay isrequired to make the phase equal, and the counter must count down. If the
reference clock occurs before the DLL output, then too much delay exists, and delay must
be removed. Thisisaccomplished by counting up.

It isimportant to realize that because the phase detector maintains the delay around
theloop a N :tCK , any instantaneous changes to the delay line will not be seen at the
phase detector inputs for approximately N :tCK . This meansthat if a command to count
up (remove delay) is given, it will take at least one cycle for the phase detector to see that
the delay has been properly removed. |If additional commands continue to be given, the
phase detector can overcorrect by giving too many count commands. To eliminate this
problem, the arbiter output can be sampled every other cycle (assuming that the loop delay

isonly 1:tCK). If theloop delay is greater than one clock period, then the arbiter decision

must be sampled even more slowly. Fig. 54 shows the divide-by circuit used to sample the
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arbiter output. Instead of directly sampling the arbiter output, the clock frequency used to
control the counter is simply reduced. Note that the metal-layer switches shown in Fig. 54
will alow the circuit to be used as a divide-by-two or a divide-by-four, depending on the

typical loop delay. This directly reducesjitter in the DLL output.
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Figure54 Configurable divide-by circuit.

In addition to the divide-by circuit, the DLL control circuitry must include the
ability to properly initialize the system to the optimum lock point. At initialization, the
controls must force the counter to move in the proper direction until alock point is found.
Once found, the DLL must be released to naturally track phase differences in the outpuit.
The controls must be able to detect when the counter has shifted to an extreme, and either
reset the DLL or stop additional counting from occurring.

Due to the nonlinearity in the delay vs. control curve (Graph 6), and the fact that a
linear DAC is being used to set the delay, the DLL performance will be poorest when the
delay line is operating at a maximum delay. The DAC will always move in LSB steps (due

to its linearity), but the 1/x response in the delay time will move in larger increments as the
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delay elements become more starved of current. This means that for the DLL to lock in the
region of best performance, the controls must ensure that the lock point is searched for from
the right-most end of the delay curve. In other words, the delay must initially be set at a
minimum (delay line current supply is large), and the counter must be forced to count down
until alocked condition is detected (Graph 6). If this were not done, it would be possible
for the loop delay to lock to a higher multiple of the reference clock period, in the region of

poor operation.
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Graph 6 Delay vs. input control, showing direction for proper initialization.

The initialization control circuitry is shown in Fig. 55. The PRE_ input isan
asynchronous system reset signal, active low. This signal will initialize the counter to the

highest count possible (all ones) and will reset the divide-by circuit and the phase-equal
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detector. The Ovfl input is the overflow signal generated by the up/down counter whenever

the counter rolls over.
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Figure55 DLL initialization circuitry.

The approach used for this design is to reset the DLL and begin a new search for a
lock point if the limits of the delay line delay are reached. This was chosen rather than
simply staying ‘stuck’ at an extreme (freezing the count at either end) for two reasons: first,
there exists a possibility that the DLL can lock on another harmonic of the reference signal

(different multiple of tCK). If thisisthe case, a ‘reset, search again’ approach lets the
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system attempt to find a harmonic. Second, it will be clear when testing the device that the
DLL isnot finding alock point by examining the system output signa. If the system were
just frozen at the ends, it might appear that the DLL is actually locked instead of frozen.

The Ovfl or the PRE_ signals are allowed to reset the system. The global preset,
QPRE _, setsa SR flip-flop, which places the system in a ‘force down’ condition
(Force DWN). In this mode, the system will force the counter to count down, regardless of
the direction the arbiter is trying to move the counter. Because it is understood that the
arbiter will oscillate about the lock point once found, the detection of phase equal is
accomplished by watching for the arbiter to try to count down in one cycle and then to
count up in the next cycle. This indicates that the phase detect has reversed direction. This
detection of alock condition is done by registering the condition of the arbiter’s DOWN
output into a two-bit pipeline (Fig. 55). When a condition in the pipeline of ‘Not DOWN,
DOWN'’ is detected, the PHEQI signal is asserted, which resets the SR flip-flop, taking the
system out of the initialization mode.

In redlity, thisinitialization scheme is very simple. The initialization of other DLL
designs may be incredibly complex, requiring much more control circuitry that must take
care of many special conditions. This complexity is necessary for these designs because it
is very important to have consistent DLL operation and lock points from device to device
and from run to run. It must be stressed that initialization problems can be the cause of

poor DLL operation.
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3.10 FULL SYSTEM DESIGN

The entire DLL design is shown in Fig. 54 using a hierarchical schematic. All of
the component blocks have been previously discussed. For this design, the differential
clock used for the delay line is generated from a singled-ended clock, as shown in this
schematic. A pass gate is used to match an inverter delay so that the clocks entering the
delay line are exactly 180° out of phase.

The only inputs to the system are the reference clock signal and the asynchronous
reset signal, PRE_. The quadrature outputs are buffered after exiting the differential-to-
single-ended convertersin the delay line block (Fig. 18).

As previously mentioned, the feedback delay normally used in DLL design is not
used here. Thiswill alow the loop delay to be contained almost entirely in the delay line,
making the simple generation of quadrature outputs possible. Also, for this design, thereis

no input and output buffer delay, making it unnecessary to model the delay in the feedback
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Figure56 Full DLL design, presented in hierarchical blocks.
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CHAPTER 4 - DLL PERFORMANCE

4.1 OPERATION

As discussed in the previous section, the DLL initializes such that the delay is set at
the minimum, then searches for alock point by adding delay in the delay line. This ensures
that the lock point of optimum jitter performance is found. Once the lock point is found,
the arbiter will cause the system to oscillate by 1 LSB of DAC control current. Fig. 57

shows the typical initialization sequence.
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Figure57 DLL initialization waveforms.
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Notice that the total DAC current begins at the maximum current level, then directly
approaches the lock point in alinear fashion. This figure clearly illustrates that the DLL is
afirst-order system; there are no second-order effects, such as overshoot, undershoot, or

system oscillation. The current sources for the individual delay stages track the DAC
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output current, with a~5:1 reduction. Thisis expected, and is due to the reduction across
the current mirror. The PHEQI signal is not asserted until the arbiter moves from a count
down to a count up condition. At that point, the Force DWN signal is de-asserted,
signaling that alock point has been found. The DLL isthen alowed to track the variations
in the input reference clock as Vdd and temperature change. It can be seen in Fig. 57 that
once the lock point is acquired, the system begins to oscillate about the lock point as the
arbiter moves the counter up and down.

The initialization sequence was simulated using a divide-by-two in the control

circuitry. This reduces the arbiter-induced oscillations by allowing the phase detector to see
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Figure58 DLL waveforms after lock is achieved.

the results of a count command before issuing an additional command (there is a one-clock

period delay around this loop when the system is locked). Fig. 58 shows that the DLL
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output clock tracks the reference clock in alocked state. Note that the up and down control
signals alternate every two clock cycles. The quadrature waveforms are also shown. Close
examination reveals that the quadrature is not perfect, due to the fact that the entire loop

delay is not contained in the delay line aone.

4.2 PERFORMANCE CHARACTERISTICS

The previous operational waveforms show that the DLL is functioning correctly, but
it is important to quantify the operation. It is understood that the DAC will move into a
region of poor performance as the reference clock period increases due to the 1/x
relationship between control current and delay. This means that the DLL jitter performance
will degrade as the reference frequency decreases.

The original design goal for this DLL isto be capable of locking on frequencies
from 100MHz to 200MHz (10ns to 5ns period). Also, an important feature of the DLL is
the ability to maintain lock and minimum
jitter with variations in the power supply.
Of course, the output jitter will also include
any jitter on the input reference clock.

System jitter was characterized in

simulation by initializing the DLL and

alowing for along period of simulation

time after lock isreached. The clock

output waveforms are extracted from the Figure59 Simulated jitter with input tCK = 5ns,
quiet power supply.

point after which lock is declared, and each
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clock period is overlaid on top of the previous. This creates a waveform similar to that of
an oscilloscope triggering on each period. Fig. 59 shows the simulated jitter using a 5ns
input reference clock, nominal transistor models, room temperature, and Vdd = 2.5V. The
jitter shown is due to the 1 LSB oscillation created by the arbiter. A peak-to-peak jitter of
192ps is measured.

To determine the DLL’ s ability

to maintain minimal jitter with noise on
the power supply, the same experiment

is performed with an AC noise

superimposed on Vdd. Fig. 60 shows

the jitter results using a 10MHz

snusoid. The AC amplitudeis

+ 150mV (300mV peak-to-peak).

Figure60 Simulated jitter with input tCK = 5ns,
AC noise on power supply is+/-150mV at
10MHz.

System jitter in this case is measured to
be 469ps. Theincrease in jitter is due to
the variation in the delay per element as the current supply changes. The phase detector

properly detects these variations and reacts accordingly, but it cannot do so instantaneously.

tCK (ns) | Jitter (Quiet Supply) Jitter (AC on Supply)
4 158 432
5 192 469
6 245 588
7 375 783
8 608 1024
9 932 1403
10 1340 1915

Table3 DLL jitter performance.
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These jitter calculations are especially important as the reference clock frequency
decreases. Many simulations were run to generate the jitter results shown in Table 3. The
AC noise added to VDD is still + 150mV. This data was collected using nominal process,
voltage, and temperature models. The graph of the data shows that the AC noise tends to

create a static addition in the system jitter (Graph 7). Notice that the jitter performance

DLL Jitter vs. tCK
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X /
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©
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200 -
0
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Graph 7 DLL jitter performance vs. tCK.

degrades as expected. Thejitter isin an acceptable range of less than 500ps when the
reference clock period is 5ns (200MHz). For areference period of 10ns, the peak-to-peak
jitter jumps to aworst-case value of ailmost 2ns! This would be unacceptable for many
DLL usage situations, for example, in a DDR DRAM design, where output datais available
for only half the clock period. Once again, this poor performance is due to the non-linear
delay vs. current control relationship (see Graph 6). A possible solution to the jitter

performance at high values of tCK is discussed in the next chapter.
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The DLL’s ability to lock on the frequency range of interest was characterized
across all cornersof PVT (Table4). The slow corner wasrun at Vdd = 2.2V, slow
transistor models, and temperature = 80° C. Typical simulations were run at Vdd = 2.5V,
typical transistor models, and temperature = 25° C. The fast corner wasrun at Vdd = 2.8V,

fast models, and temperature = 0° C. This DLL design is capable of locking on clock

signals with periods of 4nsto 10ns (100MHz

PVT Corner | tCK (min) tCK (max)
. Slow 4.0 ns 12 ns
to 250 MHz) across PVT. Aswas shown in :
Typical 3.25ns 11 ns
Fast 2.75ns 10 ns

Table 3, the jitter becomes larger towards tCK
) ) ) Table4 DLL lock range across PVT.

= 10ns, so this DLL will have other practical

limitations as to the input frequency. The positive aspect here is that for the fast

frequencies, where system clock synchronization becomes more critical, the DLL has the

tightest jitter and highest immunity to power supply variation.

Aswith all designs, the power consumption characteristics are important. The

current requirements for this circuit are shown in Table 5. Note that because the DAC

Slow Corner Typical Fast Corner
tCK Initialization Locked Initialization Locked Initialization Locked
5ns 3.2mA 2.3 mA 3.7mA 1.8 mA 4.2 mA 1.7mA
7.5ns 3.1 mA 1.4mA 3.7mA 1.0mA 4.1 mA 1.2mA
10 ns 3.1 mA 0.8 mA 3.7mA 0.7 mA 4.3 mA 0.9 mA

Table5 Power supply requirements across PVT and tCK.

current is the largest contributor to the power consumption, the demand is greatest at
initialization, when the DAC is set to the maximum possible output (fastest delay in the
delay line). Thislevel does not change for varying input clock periods. However, after

lock is achieved, the current, due to device switching, tracks the input clock frequency.



66

CHAPTER 5—-CONCLUSIONS

The design presented and characterized in this thesis has good jitter performance for
the fastest reference clock frequencies and has good power-supply noise regjection. The
most significant limitation of this design is the fact that as the control current for the delay
line is reduced, the smallest ‘step’ in delay increases. This has a direct influence on the
system jitter and its ability to maintain lock with minimal phase error. There are severa
possible solutions that would improve the DLL performance for longer clock periods.

To ensure that the delay line steps remain small, even when the elements are heavily
starved, the LSB of the controlling DAC could be reduced by increasing the number of bits
in the converter. Even if linearity is not maintained at exactly + %2 LSB, aslong as the
converter is monotonic, the DAC would still be appropriate for this application, and the
jitter on the output would be reduced.

Instead of increasing the resolution of the DAC, another solution would be to design
anonlinear DAC that maintains the delay vs. current control curves linear. In effect, the
DAC would cancel out the non-linear nature of the delay vs. control. With this solution, the
jitter performance would be constant, regardless of the input frequency.

Another method would be to change the design into a hybrid DLL, similar to a dual-
loop approach, but with only one phase detector. The counter output could be used to
switch in a series of larger, coarse delays (analog or digital) as needed, ensuring that the
analog differential delay line is always operating in the region of good performance

(referring back to Graph 6). Thisis the region where the delay per unit change of control
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current isfinest. This architecture (shown in Fig. 61) would actually be arelatively smple

addition, requiring a minimal amount of extra layout area.

Synchronized

| N Output (360°)
’—7{ Current-Starved, Differential Delay Line | I/ >
External A
Clock
4l>_—>| Fixed-Delay Stages
up |
Phase ™| Up / Down
Detector Counter DAC
—1 >
down

4| Feedback Delay I:

Figure61 Use of constant delaysto increase the useful frequency range.

As arule of thumb, to achieve the best jitter performance and smallest phase error,
the delay line must have as fine of delay steps as possible, and the phase detector must be
able to differentiate phase differences to the resolution of the delay line.

Although this DLL could be improved upon in many other ways, the basic
components and design approach can remain intact, taking advantage of a delay line that
has continuous delay variation (rather than quantized steps), and good power-supply

rejection.
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APPENDIX — ADDITIONAL SCHEMATICS

MP3

Figure 62 Schematic of toggle flip-flop used in counter.

Pregy

Figure 63 Schematic of regular flip-flop used in counter.



