
DESIGN OF A DELAY-LOCKED LOOP

WITH A DAC-CONTROLLED ANALOG DELAY LINE

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Electrical Engineering

in the

College of Graduate Studies

University of Idaho

by

Tyler J. Gomm

March 2001

Major Professor: R. Jacob Baker, Ph.D.

ii

AUTHORIZATION TO SUBMIT

THESIS

This thesis of Tyler J. Gomm, submitted for the degree of Master of Science with a major in

Electrical Engineering and titled “Design of a Delay-Locked Loop with a DAC-Controlled

Analog Delay Line,” has been reviewed in final form. Permission, as indicated by the

signatures and dates given below, is now granted to submit final copies to the College of

Graduate Studies for approval.

Major Professor ________________________________ Date_____________
 R. Jacob Baker

Committee
Members ________________________________ Date_____________

 Harry W. Li

 ________________________________ Date_____________
 Larry Stauffer

Department
Administrator ________________________________ Date_____________

 Joseph J. Feeley

Discipline’s
College Dean ________________________________ Date_____________

 David E. Thompson

Final Approval and Acceptance by the College of Graduate Studies

 ________________________________ Date_____________
 Charles R. Hatch

iii

ABSTRACT

High-speed synchronous interface circuits require that the controlling clock signals

be accurately aligned. A dynamic de-skew circuit can be used to ensure good clock

alignment across variations in process, voltage, and temperature variations (PVT). The

delay-locked loop (DLL) is such a circuit, using a first-order closed-loop architecture that

dynamically aligns its output clock signal with a reference clock signal.

Two basic types of DLL architectures are currently used: analog and digital. The

analog DLL uses a continuously variable delay line to remove the skew between the output

clock and the reference clock. A digital delay line uses digital elements, making the design

more simple and portable, but with quantized steps in the delay time. Typical DLL

architectures are explained, as well as the factors that introduce error in the accuracy of

synchronized output.

The design of a DLL that uses a differential, analog delay line is presented. A

segmented, current-steering digital-to-analog converter (DAC) is designed. This DAC

controls the delay line in increments of the DAC resolution. A synchronous up/down

counter is used to control the DAC inputs. An arbiter is developed for phase detection.

The DLL initialization control circuitry is explained, and final performance characteristics

across PVT corners are presented.

This DLL is designed and simulated using Micron Technology, Inc.’s 2.5V, 0.15

micron DRAM process. The lock range is 100MHz to 200MHz, with varying jitter

performance. Suggestions are made for improvement of the jitter performance.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Dr. R. Jacob Baker for his insight

throughout the course of this work, and for his ability to teach. He has ensured that I have a

solid understanding of the design principles and concepts presented, and has had patience

with my never-ending questions. I would also like to thank him for his guidance and for

setting an example to follow in my professional career.

I extend thanks to my current employer, Micron Technology, Inc., for the

opportunities of learning and expertise gained in delay-locked loop circuits, as I have spent

the past year working exclusively on DLL-related issues.

Thanks to all of the coordinators and administrators in the University of Idaho’s

Engineering Outreach program for their assistance throughout the past several years.

Most of all, I would like to thank my wife for her incredible love and support and

my daughters for their understanding during this time.

v

TABLE OF CONTENTS

Authorization to Submit Thesis ……………...…………………………………... ii

Abstract ………………………………………………………………………….. iii

Acknowledgements ……………………………………………………………… iv

List of Tables ……………………………………………………………………. vii

List of Graphs …………………………………………………………………… viii

List of Figures …………………………………………………………………… ix

1 Introduction ……………………………………………………………………… 1

1.1 Motivation …………………………………………………………………. 1

1.2 Ideal DLL Operation ………………………………………………………. 2

1.3 Non-Ideal Considerations …………………………………………………. 5

2 Current DLL Designs ……………………………………………………………. 7

2.1 Digital DLL ……………………………………………………………….. 7

2.2 Analog DLL ………………………………………………………………. 11

2.3 Dual-Loop DLL …………………………………………………………... 12

2.4 Synchronous Mirror Delay ……………………………………………….. 12

vi

3 DLL Design ……………………………………………………………………... 15

3.1 Process and Simulation Models …………………………………………... 15

3.2 Proposed Design ………………………………………………………….. 15

3.3 Delay Line Design ………………………………………………………... 18

3.4 Current Reference Design ………………………………………………... 24

3.5 DAC Design ……………………………………………………………… 26

3.6 DAC Performance ………………………………………………………... 35

3.7 Up/Down Counter Design ………………………………………………... 42

3.8 Phase Detector Design ……………………………………………………. 48

3.9 DLL Control Circuitry ……………………………………………………. 54

3.10 Full System Design ……………………………………………………….. 59

4 DLL Performance ……………………………………………………………….. 60

4.1 Operation ………………………………………………………………….. 60

4.2 Performance Characteristics ………………………………………………. 62

5 Conclusions ……………………………………………………………………… 66

Bibliography …………………………………………………………………….. 68

Appendix – Additional Schematics …………………………………………….... 70

vii

LIST OF TABLES

1. Current reference performance across PVT ……………………………………….. 26

2. Counter toggle logic truth table ……………………………………………………. 45

3. DLL jitter performance …………………………………………………………….. 63

4. DLL lock range across PVT …………………………………………………….….. 65

5. Power supply requirements across PVT and tCK ………………………………….. 65

viii

LIST OF GRAPHS

1. Delay-line performance across PVT ………………………………………………. 21

2. Linear 1/T relationship …………………………………………………………….. 22

3. Delay-line duty-cycle performance ……………………………………………….. 23

4. Control currents vs. DAC input …………………………………………………… 41

5. Example phase detector response …………………………………………………. 50

6. Delay vs. input control, showing direction for proper initialization ………………. 56

7. DLL jitter performance vs. tCK …………………………………………………… 64

ix

LIST OF FIGURES

1. DLL usage example ………………………………………………………………… 1

2. Basic DLL block diagram ………………………………………………………….. 3

3. Basic DLL timing ………………………………………………………………….. 3

4. Digital DLL block diagram ………………………………………………………... 7

5. Register-controlled DLL …………………………………………………………... 8

6. Counter-controlled DLL …………………………………………………………... 9

7. Phase error in a digital DLL ………………………………………………………. 10

8. Phase detector timing for digital DLL …………………………………………….. 10

9. Analog DLL block diagram ……………………………………………………….. 11

10. Dual-loop DLL block diagram …………………………………………………….. 12

11. Basic SMD block diagram …………………………………………………………. 13

12. Other possible SMD implementations …………………………………………….. 14

13. Quadrature signals …………………………………………………………………. 16

14. Block diagram of proposed design ……………………………………………….... 17

15. Current-starved inverter …………………………………………………………… 18

16. Diff-amp-based delay element …………………………………………………….. 18

17. Differential delay line diagram ……………………………………………………. 19

18. Differential-to-single-ended converter …………………………………………….. 20

19. Simulated outputs of delay line …………………………………………………… 20

20. Beta multiplier current reference ………………………………………………….. 24

21. Cascode current reference …………………………………………………………. 25

x

22. DAC block diagram and ideal transfer curve ……………………………………… 26

23. Binary-weighted current steering DAC …………………………………………… 27

24. Binary-weighted L current sources ………………………………………………... 28

25. Binary-weighted L DAC transfer curve …………………………………………… 28

26. Breaking up the current sources …………………………………………………… 29

27. DAC transfer curve with broken-up current sources ……………………………… 29

28. Basic current steering DAC ……………………………………………………….. 30

29. Segmented current steering DAC block diagram …………………………………. 31

30. Circuit diagram of segmented current steering DAC ……………………………... 32

31. Current mirror for DAC current conversion ………………………………………. 33

32. Thermometer-code block diagram and logic equations …………………………… 33

33. Decoder circuit for segmented current-steering design …………………………… 34

34. Segmented current-steering DAC transfer curve ………………………………….. 35

35. Ideal DAC output vs. typical DAC output ………………………………………… 36

36. Ideal output overlaid on typical output …………………….……………………… 36

37. Differential nonlinearity of DAC …………………………………………………. 37

38. Typical output shown with line used for INL calculation ………………………… 38

39. Integral nonlinearity of DAC ……………………………………………………… 39

40. Poor DAC performance at high current …………………………………………… 40

41. DAC transfer curves across PVT …………………………………………………. 40

42. Up/Down counter interface to DAC ………………………………………………. 42

43. Basic ripple counter ……………………………………………………………….. 42

44. Clocked ripple counter …………………………………………………………….. 43

xi

45. Block diagram of synchronous up/down counter …………………………………. 44

46. Cascaded AND generator for counter toggle logic ………………………………... 46

47. Circuit diagram of synchronous up/down counter ………………………………… 47

48. Synchronous counter waveforms ………………………………………………….. 48

49. Simple phase detector with deadband …………………………………………….. 49

50. Deadband in the phase equal range ………………………………………………... 50

51. Two-way arbiter …………………………………………………………………… 51

52. Arbiter-based phase detector circuit ………………………………………………. 52

53. Arbiter waveforms ………………………………………………………………… 53

54. Configurable divide-by circuit …………………………………………………….. 55

55. DLL initialization circuitry ………………………………………………………... 57

56. Full DLL design, presented in hierarchical blocks ………………………………... 59

57. DLL initialization waveforms …………………………………………………….. 60

58. DLL waveforms after lock is achieved …………………………………………… 61

59. Simulated jitter with input tCK = 5ns, quiet power supply ……………………….. 62

60. Simulated jitter with input tCK = 5ns, AC noise on power supply is +/- 150mV at

10MHz …………………………………………………………………………….. 63

61. Use of constant delays to increase the useful frequency range …………………… 67

62. Schematic of toggle flip-flop used in counter …………………………………….. 70

63. Schematic of regular flip-flop used in counter …………………………………….. 70

1

CHAPTER 1 – INTRODUCTION

1.1 MOTIVATION

As the clock frequency of synchronous VLSI circuits increases, there arises a

greater need to correctly align system clocks. Emphasis must be placed on suppressing

clock skew and jitter. As the clock period is reduced, if jitter and skew remain the same,

the total clock phase error is increased. This can affect many aspects of a synchronous

system, including setup and hold times, data access times, and accuracy of internal control

signals.

To eliminate clock skew, a simple, fixed-delay circuit might be used, but with

variations in process, voltage, and temperature (PVT), the delay time would vary. Also, if

the clock period were to change, the delay time would need to be modified. Therefore, a

dynamic, variable delay circuit is needed to eliminate system clock skew across PVT and

varying clock frequencies.

A Delay-Locked Loop (DLL) is such a circuit. Fig. 1 shows a DLL being used to

ensure proper synchronization between a synchronous memory device and a memory

controller. In this simple

example, the DLL within

the memory device is used

to ensure that there is no

skew between the control

clock generated by the controller and the data coming out of the memory. This is especially

important when a fast control clock is used; if skew remains in the output data while using a

Memory
Controller

Memory
DeviceDLL

Control Clock

Output Synchronized
to Control Clock

Figure 1 DLL usage example.

2

fast clock rate, the memory controller might have a difficult time distinguishing from one

bit to the next being clocked from the memory.

As synchronous memory moves to other standards, such as double-data rate (DDR)

devices, where data is clocked out on both the rising and falling edges of the control clock,

the problem of internal clock skew is compounded. A DLL can solve this problem by

ensuring proper synchronization across PVT as well as variations in the control clock

frequency [1], [2].

There are limitations to the accuracy with which the DLL control clock may be

synchronized with the external reference clock. Some of these limitations are due to the

design of the DLL, while others are results of the process and system noise. This thesis

presents some of the common designs for clock synchronization circuits as well as the

possible drawbacks to these designs. The design and simulation of a DLL that uses a DAC-

controlled analog delay element are presented.

1.2 IDEAL DLL OPERATION

The basic Delay-Locked Loop block diagram and timing are shown in Fig. 2. Note

that the DLL has many similarities to a Phase-Locked Loop (PLL). One major difference is

that rather than a Voltage-Controlled Oscillator (VCO), a voltage-controlled delay-line is

used. If the output of the delay were fed back to the input (forming an oscillator), the DLL

could become a PLL. The other significant difference is that the DLL has a first-order

response, where the PLL has a second-order response [2], [3], [4], [5]. This means that

system stability is usually not an issue for DLL designs, making them easier to realize in

silicon. In addition, because there is no VCO in the DLL, and therefore, no accumulation

3

of phase error due to supply noise, the jitter performance of a DLL can be better than that of

a PLL [2]. In other words, the jitter transfer function of a DLL is equal to zero, because the

reference clock both generates and synchronizes the output clock [3].

It should be noted that a PLL could also be used to accomplish the goal of de-

Variable Delay

Phase
Detector

Delay
Control

Feedback Delay

External
Clock

Synchronized
Output

D1 D2

D1 + D2

N tCK - (D1 + D2)

Total loop delay is
maintained at N tCK by

the Phase Detector

Total forward delay
sums to N tCK

Figure 2 Basic DLL block diagram.

Reference Clock

Output Clock, synchronized by adding delay
(phase correction)

Delay = phase
difference

Delay = phase
difference + 1 cycle

Figure 3 Basic DLL timing.

4

skewing a control clock and a reference clock signal. However, due to the design

constraints and the noisy environments in which these circuits must function, DLL’s are

more often used for simple de-skew applications [3].

As shown in Fig. 3, the DLL attempts to remove the skew, or phase difference,

from the output control clock by adding additional delay such that the phase of the two

clocks are equal. Fig. 3 shows that the delay added may be just the minimum phase

difference, or may be any multiple of the clock period plus the phase difference.

Referring back to Fig. 2, the phase detector in the DLL will maintain the total delay

around the loop such that it is equal to tCKN ⋅ , where tCK is the clock period. In a

practical implementation, the external reference clock must propagate through an input

buffer, plus any additional control logic that is necessary. In Fig. 2, this is all lumped

together as D1. Likewise, the synchronized control signal exiting the variable delay line

will have a finite propagation path out of the system. This is lumped together as D2. It

must be recognized that both of these delays are functions of PVT. Therefore, in order for

the DLL to properly cancel out the PVT variations of these finite delays, it must be capable

of removing D1 and D2 from the total forward delay. This is accomplished by modeling

the two delays as a fixed delay in the feedback path. The delay model should track D1 and

D2 across PVT as closely as possible. Notice that because the phase detector maintains the

loop delay at tCKN ⋅ , the variable delay is set at)21(DDtCKN +−⋅ . The total forward-

path delay is now

tCKNDDDtCKND ⋅=++−⋅+ 2)21(1 (1)

5

1.3 NON-IDEAL CONSIDERATIONS

Eq. (1) shows the most ideal DLL operation. The output is no longer a function of

PVT; the delays D1 and D2 have been eliminated and the phase detector will maintain the

loop delay as process, temperature, and voltage vary. Of course, there are limitations to

how well this occurs. When non-ideal system components are used, Eq. (1) becomes

)'22()'11('2)'2'1('1 DDDDtCKNDDDtCKND −+−+⋅=++−⋅+ (2)

The ‘prime’ notation is used in Eq. (2) to denote the fact that the feedback delay model will

not perfectly match the input and output delays, and there will be limitations on how well

the phase detector and delay line can maintain exactly tCKN ⋅ around the loop. This loop

delay error might be due to granularity in the delay line, errors in the phase detector, or

delay modulation due to power supply variations. Therefore, the total DLL error will

reflect the accuracy of the loop delay plus any errors in modeling the input and output

delays.

A significant limitation of the DLL is the ability to lock across many frequencies

[5]. The variable delay line must be designed so that it can allow the loop delay to reach at

least tCK⋅1 when the longest clock period is used. However, in order to maintain

consistent operation, the DLL should be designed so that it does not lock on different

harmonics of the clock period. In other words, N must be the same value every time for a

given clock period. Any imperfections in the delay line will compound as more delay is

used; therefore it is desirable to keep N to a minimum. To avoid the problem of locking on

varying harmonics, the following inequality should be applied:

tCKttCKttCK MAXDELAYMINDELAY ⋅<<<<⋅
2
3

2
1

)()((3)

6

Eq. (3) shows that)(MINDELAYt (the minimum possible delay through the variable

delay line) should be greater than 1/2 of the operating period, while)(MAXDELAYt (the

maximum possible delay through the variable delay line) should be less than 3/2 of the

operating period [6]. Since DELAYt might vary as much as 2:1 over PVT in a typical CMOS

process, the conditions imposed by Eq. (3) can be maintained only over a narrow range of

operating frequencies. In practice, however, many DLL’s can ignore this limitation, and

allow the system to lock on harmonics of tCK.

Before discussing some of the various DLL implementations, another limitation

should be pointed out. If the feedback model error discussed above is negligible (although

this is not usually practical), the maximum phase error is

tCK
td

MAX

⋅
=

π
εφ

2
)((4)

In Eq. (4), dt is the minimum increment in which the variable delay line may be changed.

This equation shows that as the input frequency increases, the steady-state phase error will

also increase [5]. The minimum delay increment directly determines the jitter performance

of the DLL. This error becomes especially significant in digital DLL’s, where the

minimum delay increment can be relatively large.

7

CHAPTER 2 – CURRENT DLL DESIGNS

2.1 DIGITAL DLL

There are essentially two types of DLL designs: analog and digital. The design

choice is determined by several factors, including design complexity, layout size, system

noise levels, necessity of process portability, and required accuracy.

A digital delay-locked loop uses digital devices to implement the variable delay-line

(Fig. 4). This means that the minimum change in the delay is some quantized step. A

digital delay cell makes up the minimum delay, and many of these delay cells are used to

create the delay line. This minimum delay, or delay per stage, will be limited by the CMOS

process in which the device is fabricated. However, due to the reliable nature of digital

circuit performance across varying processes, a digital design may still be desirable [7].

Phase Selection

Phase
Detector

Feedback Delay

External
Clock

Synchronized
Output

State
Machine or

Counter

Figure 4 Digital DLL block diagram.

8

As shown in Fig. 4, the variable delay is created by sending the reference clock

through many digital gates (these might be inverters, NAND gates, or NOR gates), and a

phase selector is used to choose which stage’s output will be used for the locked signal.

There are many flavors of digital DLL’s. The delay line may be implemented using

pairs of inverting CMOS gates (to avoid an unwanted phase inversion), with the pairs

ranging from NAND-invert to NOR-NAND combinations. This choice is influenced by the

required duty cycle, need for symmetry in pHLt and pLHt , as well as the method used to

inject or extract the clock into or out of the delay line [9]. In order to reduce the delay per

stage, the digital delay line might also be implemented using single cells of inverting

CMOS gates, but using a twisted-pair scheme to avoid the unwanted phase inversion

[7][10].

Other DLL design variations arise from the method used to control the delay line.

Fig. 5 shows a register-controlled DLL (RDLL) where a shift register is used to shift a bit

that marks the delay-line entry point from left to right [8] [11].

N-bit Shift RegisterPhase
Detector

Feedback Delay

External
Clock

Synchronized
Output

left

right

Figure 5 Register-controlled DLL.

9

In the RDLL, each delay element is equal, and the shift register contains a bit that

controls where the reference clock enters the delay line. This can result in a straightforward

implementation, as the shift register may be integrated directly with the delay line [11].

Another digital delay line worth mentioning is one in which the delay elements are

binary-weighted, allowing an up/down counter to control the amount of total delay (Fig. 6).

This architecture is referred to as a counter-controlled DLL (CDLL) [8].

Examining the previous figures, it is apparent that while the method of delay line

control will vary, the delay line remains digital. This results in a quantization of the output

phase. Shown in Fig. 7, as the input frequency varies, the DLL output can only track the

input clock edge to within the minimum resolution of the delay line, dt . This results in a

possible phase error of refd ft ⋅⋅π2 . In other words, the most ideal digital DLL will be

limited by the minimum delay per stage. Again, this assumes that a perfect phase detector

is used, and is not generating additional phase error.

The phase detector used in a digital DLL needs only to be sensitive to variations of

phase greater than the granularity of the delay line. If it is more sensitive, the system might

N-bit Up/Down Counter
Phase

Detector

Feedback Delay

External
Clock

Synchronized
Output

up

down

1 2 2N-34 2N-2 2N-1

Figure 6 Counter-controlled DLL.

10

oscillate about the desired lock point. If not sensitive enough, additional phase error might

be added to the total error, as mentioned in the previous paragraph. Fig. 8 illustrates the

phase detector timing requirements.

fref

2·π·td·fref

Phase

Phase of
reference

clock

Phase of DLL
output

fref

2·π·td·fref

Phase Error

Φ(Reference) - Φ(DLL Output)

Figure 7 Phase error in a digital DLL.

Earliest DLL Lock

Latest DLL Lock

Reference Clock

Lock is attained across the phase range:

td

ππ ⋅→⋅−
refref t
td

t
td

tref

π2⋅=∆
reft
td

0 π 2π

Figure 8 Phase detector timing for digital DLL.

11

2.2 ANALOG DLL

To reduce the static phase error incurred by using the quantized timing generated by

a digital delay line, an analog delay line may be used [6]. Due to the ability of an analog

delay element to vary continuously, the jitter in the output is reduced. Fig. 9 shows the

basic analog DLL. The overall topology remains the same; however, a charge-pump/loop

filter combination is frequently used to control the analog delay line [6], [8].

The delay elements used to create the delay line are commonly found in voltage-

controlled oscillators (VCO’s) typical for PLL design. They may range from a simple,

current-starved gate, to complex amplifier-based designs. Again, the selection depends on

the environment in which the design will be used, the process tolerances, and the jitter

requirements.

Besides the advantage of reduced jitter in the output, an analog design may exhibit a

better power-supply rejection ratio (PSRR), can occupy a reduced area in the layout, and

consume less current than a digital DLL [7]. However, to achieve these results, the design

is usually of higher complexity and requires a process-specific implementation, making it

less portable to other processes.

Voltage-Controlled Delay Line

Phase
Detector

Charge
Pump

Feedback Delay

External
Clock

Synchronized
Output

Loop Filter

up

down

Figure 9 Analog DLL block diagram.

12

2.3 DUAL-LOOP DLL

Architectures that use two delay lines to enhance the performance of the DLL are

also used (Fig. 10). These designs have been proposed to solve the problem of jitter

induced by quantization in a digital DLL [6][15]. Either delay line may be digital or

analog, depending on the design approach. The intent is to use an easily-implemented

coarse delay line to set the loop very near to lock, and then to rely on a fine delay line to

make small adjustments to the output phase, reducing the static quantization error shown in

Fig. 7.

Another method of reducing the quantization error in a two-step process is to use

phase mixers, created from simple CMOS gates, to finely tune the DLL output [7], [16].

2.4 SYNCHRONOUS MIRROR DELAY

Although the concept of a synchronous mirror delay (SMD) deviates from the topic

of DLL’s, it is important to realize that alternate methods of clock synchronization across

PVT are possible [12]. The commonality between the synchronization circuits is the ability

to create a delay that is equal to)21(DDtCKN +−⋅ (referring back to Fig. 2). Because

D1 and D2 vary across PVT, any circuit that can measure tCK minus the input and output

Variable Delay (Coarse)

Coarse
Phase

Detector

Coarse
Delay

Control

Feedback Delay

External
Clock

Synchronized
Output

Variable Delay (Fine)

Fine
Delay

Control

Fine
Phase

Detector

Figure 10 Dual-loop DLL block diagram.

13

buffer delay (across PVT) can be used to synchronize two clocks. Fig. 11 shows a basic

block diagram of the SMD.

 The delay monitor is exactly the same delay used in the feedback path of the DLL; it

is used to model the input and output buffer delay. It is important to note that the SMD is

not a closed-loop system, therefore it would be incorrect to refer to a ‘lock time’ or ‘lock

point’. It is simply a clock generation circuit. The Nth clock propagates as far as it can

into the forward delay line before the next rising clock edge (N + 1) causes it to move down

into the backward delay line. The signal continues on its way out of the system. The total

forward path is calculated as follows:

[] tCKNDDDtCKNDDD ⋅⋅=++−⋅⋅+++ 22)21(2)21(1 (5)

Forward Delay ArrayDelay Monitor

External
Clock

Synchronized
Output

D1

D2

D1 + D2 tCK - (D1 + D2)

The N+1 clock triggers
the mirror control circuit

Mirror Control Circuit

Backward Delay Array

tCK

tCK - (D1 + D2)

Figure 11 Basic SMD block diagram.

14

Typically, N is equal to 1, allowing a synchronized output to be generated in only

two cycles. This is one of the significant advantages of the SMD over the DLL; the SMD

clock generation time is much faster than the typical DLL lock time.

The issue of granularity in the delay line still applies, and, as with the DLL, designs

have been proposed that use an analog method to time the)21(DDtCKN +−⋅ delay in the

SMD [13].

Once it is understood that this delay timing is the only element needed to

synchronize, other designs are possible. Fig. 12 shows a SMD implementation that uses an

up/down counter [14] or even a charge pump to measure the forward and then backward

time, instead of a delay line. The output resolution of this design is limited to the period of

the clock used to count up and down or the analog resolution of the charge pump.

However, it is easy to see that this type of design might be implemented using an extremely

small amount of layout area.

Up / Down Counter or
Charge Pump

Delay Monitor

External
Clock

Synchronized
Output

D1

D2

D1 + D2 tCK - (D1 + D2)

The N+1 clock triggers
the mirror control circuit

tCK

tCK - (D1 + D2)

up

down

out / overflow

Figure 12 Other possible SMD implementations.

15

CHAPTER 3 – DLL DESIGN

3.1 PROCESS AND SIMULATION MODELS

The process used for design and simulation of the DLL design proposed by this

thesis is Micron Technology, Inc.’s 2.5V, 0.15 micron process (0.124 micron after shrink),

specifically tuned for DRAM production. The typical process parameters, such as oxide

thickness, Cox, etc, are proprietary. The process provides two metal layers and single

polysilicon. One important feature of this process is that it is tuned such that the substrate

voltage is expected to be negative, with Vbb ≈ -0.65V. This raises the threshold voltage of

the N-channel devices. All N-channel transistors used in this design have the bulk node

connected to the negative Vbb potential. Because of the increased N-channel threshold

voltage, the N-to-P channel drive ratio is about 2:1.

All simulations were performed using HSPICE and/or ADM. Schematic capture

was done with Cadence’s DFII software. All transistor sizes are given in terms of lambda,

or the shrink factor (1 lambda = 0.124 micron).

As with most deep-submicron designs, simulation must be relied upon rather than

hand calculations. The deviation from the long-channel models due to short-channel effects

reduces the effectiveness of typical hand-calculations.

 3.2 PROPOSED DESIGN

The DLL designed for this thesis is intended for a 100MHz to 200MHz reference

clock frequency. As discussed in the previous chapter, a significant limitation of the digital

DLL is the coarse delay-per-stage, typical of a CMOS gate. In addition, a delay line that

16

can lock on a wide range of frequencies may occupy a large layout area. Therefore, this

design will use an analog delay line with the goal of using very few delay stages and

exhibiting continuous-delay behavior. Output jitter (with noise on the power supply) must

be in the range of 500ps in order to be a useful design. The power consumption should be

just a few milliamps.

Another useful design goal would allow generation of an in-phase output signal and

also quadrature signals; 0° (this is the in-phase output), 90°, 180°, and 270° phase (Fig. 13).

This is a desirable feature if the DLL were to be used in data recovery applications [17],

[18]. It could also be very useful for generating control signals for internal system

elements, for example, in the creation of internal synchronous DRAM timing signals. The

generation of quadrature signals is more easily done when an analog delay line is used, due

to its scaling nature. If a multiple of four delay stages is used, the quadrature signals are

already generated within the delay line. If a digital delay line were to be used, the 180°

Reference Clock

DLL Output
(0° or 360°)

DLL Output
(270°)

DLL Output
(180°)

DLL Output
(90°)

Figure 13 Quadrature signals.

17

signal could easily be obtained by simply inverting the output, but the 90° and 270°

generation would require a more complex approach.

Fig. 14 is a block diagram of the proposed DLL design. Instead of using a charge

pump and loop filter to create the control for the delay line, a current-output digital-to-

analog converter (DAC) is used. The phase detector generates up/down control signals for

a synchronous up/down counter that control the DAC. The concept is to use the features

and advantages of an analog delay line, producing quadrature output signals, and to rely on

the least significant bit (LSB) of the DAC to be fine enough to set a very small delay

change per DAC step in the delay line. This will, in effect, quantize the phase output of the

DLL just as in a digital delay line, but if the LSB of the DAC is small enough, output jitter

will be less than that of a digital DLL.

Current-Starved, Differential Delay Line

Phase
Detector

Up / Down
Counter

Feedback Delay

External
Clock

Synchronized
Output (360°)

DAC

up

down

Synchronized
Output (270°)

Synchronized
Output (180°)

Synchronized
Output (90°)

Figure 14 Block diagram of proposed design.

18

Another advantage to this approach is that by using an analog delay line, the total

layout size will be significantly reduced. The DAC will occupy the majority of the layout

area.

As previously discussed, a disadvantage of an analog design is the reduced

portability of the design from process to process. For the purposes of this design, this is not

much of a concern. More important is the ability of the design to maintain proper operation

across PVT in the same basic process.

3.3 DELAY LINE DESIGN

The delay line must be capable of supporting

the frequency range of interest (100MHz – 200MHz,

or 10ns - 5ns cycle time) and have good PSRR. The

simplest continuously variable CMOS delay element

is the current-starved inverter (Fig. 15). The center

transistors form a normal CMOS inverter and the top Figure 15 Current-starved
inverter.

Figure 16 Diff-amp-based delay element.

19

and bottom transistors serve as variable current supplies. As the current to the inverter is

changed, the rate that the output can charge up or down is affected, and therefore the delay

through the element is directly controlled. If several of these elements are arranged

sequentially, a simple analog delay line is formed. In practice, this type of delay element is

not frequently used because of its poor PSRR and susceptibility to noise [19]. In addition,

the current sources must be finely tuned to maintain good duty cycle characteristics.

A better design is the diff-amp-based delay element shown in Fig. 16. This circuit

has good symmetry and better power-supply rejection [19]. The rise and fall times of this

circuit are equal, due to the differential nature of the design. It sources and sinks the same

current into the output load, regardless of the switching direction. This is the design chosen

for the differential delay line of this thesis.

The range of the delay element stage and the desired frequency lock range of the

DLL dictate the number of stages required. Simulations show that the minimum delay per

stage is ~400ps. If eight stages are used, the minimum delay for the entire line will be

about 3.2ns. This will meet the required minimum delay of 5ns, with margin for PVT

variation. Fig. 17 shows the arrangement of the eight differential delay elements. If the

delay line is locked such that the entire delay is equal to tCK, every two stages will have a

1/4 tCK 1/4 tCK 1/4 tCK 1/4 tCK

Clk

Clk

Clk Out
(90°)

Clk Out
(180°)

Clk Out
(270°)

Clk Out
(0°, 360°)

Figure 17 Differential delay line diagram.

20

delay of ¼ tCK. Tapping the delay line at the ¼ tCK points creates the quadrature DLL

outputs. A differential-to-single-ended converter is used to drive the output (Fig. 18).

SPICE simulation shows the delay line ability to create the proper quadrature

signals. Fig. 19 shows the delay line output with a 10ns clock input period and a fixed

control current. Note that because the delay line is simulated here as a stand-alone circuit,

Figure 18 Differential-to-single-ended converter.

Figure 19 Simulated outputs of delay line.

21

the total delay through the delay line is not exactly 10ns, and therefore the quadrature

shown in Fig. 19 is not perfect. When the delay line is used in a locked DLL, the

quadrature will be correct.

One issue should be mentioned about the DLL’s ability to properly generate the four

quadrature signals. The ideal DLL equations rely on the feedback delay model to cancel

out the effect of the input and output buffers. If delay is used in the feedback path, the total

delay-line delay will not be an exact multiple of the input clock period. This means that if

the delay-line timing is divided into quarters, the quarter delays will not be exactly ¼ tCK.

Because this design does not have a significant input or output buffer delay time, a

feedback delay model will not be used. This allows the circuit to generate better quadrature

output signals.

Total Delay-Line Delay vs. DAC Input

0.00

5.00

10.00

15.00

20.00

25.00

0 10 20 30 40 50 60 70

DAC Input

D
el

ay
 (

n
s) Fast Corner

Typical

Slow Corner

Graph 1 Delay-line performance across PVT.

22

The simulated characteristics of the differential delay line are shown in Graph 1.

The delay line was simulated using an ideal DAC used to generate the control current.

Simulations were performed on the fast and slow corners as well as at typical PVT.

Throughout this thesis, the fast corner is simulated using the fastest transistor

models for the process, highest voltage (2.8V), and lowest temperature (0° C). The slow

corner is run at the slowest transistor models, lowest voltage (2.2V), and highest

temperature (80° C). The typical runs are done using typical transistor speeds, nominal

voltage (2.5V), and nominal temperature (25° C).

An important observation can be made from the data shown in Graph 1. As the

control current decreases, the delay increases in a 1/x fashion. If a linear DAC is used to

control the delay line, the delay change per LSB is not constant across the delay range. As

1 / Total Delay

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 10 20 30 40 50 60 70

DAC Input

Fr
eq

ue
nc

y
(G

H
z)

Fast Corner

Typical

Slow Corner

Graph 2 Linear 1/T relationship.

23

the total delay increases, the minimum delay-line variation also increases. The largest

delay change per LSB occurs when the delay elements are fed very little current. The

smallest change occurs when the delay elements are only slightly starved. This means that

the DLL will have good jitter performance when higher current is used (fastest delay), and

poor jitter performance with low current (slowest delay).

For PLL design, this is not a typical concern because the delay line is used as a

variable oscillator, and the output of interest is frequency. Graph 2 shows that this delay

line, if used as an oscillator, would be much more linear. Of course, this does not help the

performance of the DLL.

Of interest is the duty cycle symmetry of the delay line. Graph 3 shows the

simulation results of the duty cycle across PVT. As expected, this delay line has good

Duty Cycle vs. DAC Input

48.80%

49.00%

49.20%

49.40%

49.60%

49.80%

50.00%

50.20%

50.40%

50.60%

0 10 20 30 40 50 60 70

DAC Input

D
u

ty
 C

yc
le

 (
%

)

Fast Corner

Typical

Slow Corner

Graph 3 Delay-line duty-cycle performance.

24

symmetry due to the diff-amp nature of the delay element. This is important, especially if

the control signals generated by the DLL are created using both the rising and falling-edges

of the clock.

3.4 CURRENT REFERENCE DESIGN

In order to ensure that the current-output DAC will have good performance across

PVT, it is extremely important that a stable current reference be used in the DAC. The

ideal current reference has infinite source impedance, and the output does not vary,

regardless of the voltage on the output nodes. One significant limitation of current sources,

especially in deep submicron designs, is the finite value of ro and limited output swing [19].

To achieve better analog performance, the transistors that are used to source/sink a linear

current are sized so that the length is at least 5 lambda. This increases ro of the source,

making it more linear.

Figure 20 Beta multiplier current reference.

25

For this design, a beta multiplier reference is used (Fig. 20). The left-hand part of

the circuit ensures that at power-up, the self-biased loop converges to the desired operating

point, rather than at zero current. This is required for all self-biased circuits [19]. The

transistor MN7 is sized so that it is a factor of K times larger than MN1. This sizing makes

17 MNMN K ββ ⋅= which sets IRVV GSMNGSMN += 71 . The basic design equation for this circuit

is shown as Eq. (6) [19].

2

1
2

1
1

2

−⋅=

KR
I

MNβ
(6)

The reference for this design is set such that the current through the rightmost leg is

nominally 40uA. The resistor is made from N-type active area. All values and transistor

sizes are shown in Fig. 20.

As previously stated, it is desirable to increase ro of the reference to improve the

Figure 21 Cascode current reference.

26

analog performance across variations in voltage. This was attempted by using a cascode

version of the beta multiplier shown in Fig. 21. The circuit shows reduced effects of the

finite output resistance; however, in a design where Vdd is only 2.5V, the threshold voltage

drop across each device makes this reference unusable for this design.

Simulations of the beta multiplier circuit show good performance across PVT

(Table 1). To improve the performance across the operation corners, a resistor exhibiting a

smaller temperature coefficient would have to be used. However, for the DAC in this

design, this reference will suffice.

3.5 DAC DESIGN

The ideal digital-to-analog converter output response is shown in Fig. 22. The

VDD Slow Corner Typical Fast Corner
2.2 V 37.2 uA 35.3 uA 32.0 uA
2.5 V 44.0 uA 40.0 uA 35.2 uA
2.8 V 49.7 uA 43.6 uA 37.5 uA

Table 1 Current reference performance across PVT.

N-bit DAC
N-bit digital
input code

IOUT

000
Digital input code, b2b1b0

1 LSB

1/8

2/8

3/8

4/8

5/8

6/8

7/8

0
010 100 110001 011 101 111

IOUT

IOUT (MAX)

Figure 22 DAC block diagram and ideal transfer curve.

27

analog output is a current, and is tuned to supply the proper range of control current so that

the delay line can move through the correct range of delay. For usage in this DLL, the

DAC must be monotonic. In other words, for every increase in the input code, the output

current increases, and for every decrease in the input word, the output current decreases.

As was shown in the simulations of the delay line, the current control versus total delay is

already nonlinear, therefore linearity in the DAC is not absolutely necessary, so long as the

monotonicity is good. Although not attempted for this design, it would be beneficial to

have a DAC design with a nonlinear output response, tuned to the nonlinear response of the

delay line. This would maintain consistency in the DLL jitter performance, regardless of

the reference clock frequency.

For this design, a six-bit DAC is used. This allows relatively simple

implementation, monotonic transfer curves, and good linearity. The DAC will control the

delay line in 64 discrete increments.

The most straightforward current-output DAC design uses each bit in the digital

input word to switch in a binary-weighted current source (Fig. 23). The minimum current

2N-1I 2N-2I 4I 2I I

IOUT

DN-1 DN-2 D2 D1 D0

Figure 23 Binary-weighted current steering DAC.

28

(LSB) is set by I.

This design was simulated using the current reference of the previous section to

examine the response. The transistor lengths were used to modify the current sources as

shown in Fig. 24. Note that this figure does not show the switches used to gate each source

on or off of the output. The simulation results show extremely poor performance (Fig. 25).

The output is non-monotonic due to inconsistencies in the current sources. This is caused

W: 5
L: 16

W: 5
L: 8

W: 5
L: 4

MSBLSB

W: 5
L: 32

W: 5
L: 64

Figure 24 Binary-weighted L current sources.

Figure 25 Binary-weighted L DAC transfer curve.

29

by variations in the percent of lateral diffusion, etc from one source to the next. In addition,

the transistor responses are not necessarily linear as the length changes.

In an attempt to improve the

monotonicity and reduce the

inconsistencies in the current sources,

the weighted-L devices may be broken

up (Fig. 26). This approach ensures that

process parameters such as lateral

diffusion affect every device in the same

proportions. Other issues arise,

however, such as body effect on the

stacked transistors.

Simulation results show that the

DAC is now monotonic (continuously

W: 5
L: 16

W: 5
L: 8

W: 5
L: 4

MSBLSB

W: 5
L: 4

W: 5
L: 4

W: 5
L: 4

MSBLSB

W: 5
L: 4

W: 5
L: 4

W: 5
L: 4

W: 5
L: 4

Figure 26 Breaking up the current sources.

Figure 27 DAC transfer curve with broken-up current sources.

30

increases), however, the linearity is still very poor (Fig. 27). This is a result of body effect

and the nonlinear transistor response of current versus length.

The binary-weighted designs require only N current sources, but do not exhibit good

linearity in a practical design. The layout also becomes larger when the current sources are

broken up as shown in Fig. 26.

In order to achieve good linearity and monotonicity, a non-binary-weighted current-

steering approach is used. Fig. 28 shows the basic current steering DAC. Notice that this

design requires N2 current sources. In this case, rather than controlling each current source

directly with the bits from the input word, a thermometer code must be generated from the

input word [19]. For even a six-bit DAC, it is not trivial to have N2 , or 64, current sources

and to decode the individual controls for each source (thermometer-code controls).

As seen in the previous SPICE simulations, these current steering DAC’s have the

problem of glitches in the output every time the DAC input is changed. This is because all

of the sources are in parallel, and it is possible that one source will be on while the next one

I I I I I

IOUT

22 −ND
32 −ND

2D 1D 0D

Figure 28 Basic current steering DAC.

31

switches on [19]. These glitches are faster than the delay line’s ability to respond, and are

therefore acceptable for this particular design.

The approach used for this design is to use a segmented current steering design. In

this scheme, the bits in the lower half of the control word (least significant bits) are used to

control three binary-weighted current sources. The bits in the upper half are decoded into

thermometer code to control current sources that are all weighted the same. This takes

advantage of the linearity in the LSB’s of the binary-weighted approach, and relies on the

consistency of the MSB’s to keep the DAC linear. Fig. 29 shows the block diagram.

4I 2I I

IOUT

D2
D1 D0

8I 8I 8I 8I 8I

C2 C1 C0

8I

C5 C4 C3

8I

C6

MSB = 111 MSB = 110 MSB = 101 MSB = 100 MSB = 011 MSB = 010 MSB = 001

Figure 29 Segmented current steering DAC block diagram.

32

To set a minimum current, an extra leg is added to the DAC with the control

transistor always turned on. Fig. 30 shows the circuit implementation of the segmented

current steering design.

An observation about the block diagram of Fig. 29 may be made; the circuit can

easily be made into a differential design if the current sources were switched from the Iout

node to a Iout* node instead of to ground. A differential design would double the current

difference on the output, and would improve the noise sensitivity of the DAC. This was not

done for this design.

This DAC cannot directly control the delay line previously discussed. A current

mirror is used to provide the necessary current for the DAC and to set the bias voltage for

Figure 30 Circuit diagram of segmented current steering DAC.

33

each analog delay element in the delay line (Fig. 31). The transistor sizing of this current

mirror will be discussed later. The additional two legs on the right of the mirror provide

current references for N-channel sources and also a scaled-down reference for P-channel

sources. These were used experimentally in this design, but are unused in the final

implementation.

The three LSB’s of the control word are used to directly switch the three, binary-

weighted sources on and off.

The three MSB’s of the DAC

must be decoded to create the

thermometer code that controls

the seven (7123 =−) equal-

weighted current sources. Fig.

32 shows the block diagram,

truth table, and logic equations

required for the decoder.

Figure 31 Current mirror for DAC current conversion.

3-to-7
Decoder

D3

D4

D5

C
0

C1

C2

C3

C4

C5

C
6

D3D4D5 C0 C1 C2 C3 C4 C5 C6

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1 C0 = D5 + D 4 + D 3

C1 = D5 + D4

C2 = D5 + D4D3

C3 = D5

C4 = D5D4 + D5D3

C5 = D5D4

C6 = D5D4D3

Figure 32 Thermometer-code block diagram and logic equations.

34

To improve the timing of the decoder so that all seven outputs transition as close

together as possible, the various gate sizes were tuned to provide similar delay paths. The

current-steering DAC design is already susceptible to glitches on the output, so it is

important to ensure that all of the control signals transition simultaneously. This tuning

was done by simulating the DAC, looking for significant glitches on the output, tuning the

required path, and then reiterating. Fig. 33 shows the final circuit with the gate sizes.

Although the decoder is tuned, the synchronization is not perfect with variations in

PVT. For the purposes of this design, the tuning is close enough that the instantaneous

glitches produced at the DAC output have a very short duration and can be ignored. If a

more perfect synchronization were necessary, all of the control signals, including the

Figure 33 Decoder circuit for segmented current-steering DAC design.

35

thermometer code and the LSB’s, could be latched before being allowed to control the

DAC current sources.

3.6 DAC PERFORMANCE

The segmented current-steering DAC has much better linearity and is monotonic.

Fig. 34 shows the DAC output at typical process, voltage (2.5V), and temperature (25° C).

Although the output looks nearly perfect, it is important to quantitatively

characterize the DAC linearity. Due to the non-ideal nature of real devices, a DAC will

exhibit slight differences between the ideal and actual performance. For data converter

characterization, this difference is knows as differential nonlinearity (DNL) [19]. It is

defined as

heightincrementIdealntransitionofheightincrementActualDNLn −= (7)

Figure 34 Segmented current-steering DAC transfer curve.

36

The number n refers to the corresponding digital input code transition. When the DNL of a

converter is defined, it will be the worst-case DNL across the entire range of operation. For

the converter to be termed as accurate to N bits, the DNL must be less than ± 1/2 LSB.

Fig. 35 shows the ideal DAC output and the actual DAC output (at typical PVT)

separately.

Fig. 36 shows that there

is a small amount of nonlinearity

in the DAC. To calculate the

DNL as defined by Eq. (7), the

ideal LSB value is subtracted

from the actual step height of

each output level.

Figure 35 Ideal DAC output vs. typical DAC output.

Figure 36 Ideal output overlaid on typical output.

37

The results are shown in Fig. 37. Notice that the error due to glitches (from the

switching input code) has been ignored and only the steady-state difference is used. The

magnitude of the DNL is +0.30, -0.11 LSB for this design. This means that the DAC is

accurate to 6-bits with regard to linearity.

As previously stated, the primary design goal for the DAC is monotonic

performance; if the outputs do not move in the same direction as the input code, it will be

possible for the DLL to never find a proper lock point. It is easy to see from the DNL

shown in Fig. 37 that the DAC is indeed monotonic because the DNL is never less than –1

LSB. In other words, the difference from the actual to the ideal value is never going to

cause the output to decrease for an increasing input. The most negative DNL of this design

is –0.11 LSB.

Differential Nonlinearity of DAC

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60

Digital Input Code

D
N

L
 (L

S
B

s)

Figure 37 Differential nonlinearity of DAC.

38

Further examination of Fig. 37 shows that the greatest contributor to the DNL of

this DAC design is due to the switching of the three LSB’s. The three lowest bits were

implemented using binary-weighted current sources. The slight error in the sizing of the

transistors used as current sources causes the DNL error. Notice that the DNL response is

periodic with the eight values created by the three LSB’s. Without the error induced by

these current sources, the DNL has a slightly negative trend.

As was shown in section 3.3, the total delay line delay has a nonlinear response to a

linear control input. Therefore, the slight differential nonlinearity of this DAC is of no

consequence for this design. In fact, in order to get a linear response in the total delay time,

a non-linear DAC would have to be designed.

Figure 38 Typical output shown with line used for INL calculation.

39

Another important DAC characteristic is the integral nonlinearity (INL) [19]. This is

defined as the difference between the converter output and a straight line drawn between

the first and last output values (Fig. 38). This characteristic defines the linearity of the

overall transfer curve. The equation used to calculate INL is as follows:

npoatlinereferenceofvalueOutputncodeinputforvalueOutputINLn int−= (8)

Fig. 39 shows the integral nonlinearity for this DAC design. Again notice that the

glitches have been ignored. The INL is also greater than ± 1/2 LSB, making the converter

accurate to only 5 bits. Again, this will not affect the DAC performance as used in the

DLL.

When the current mirror of Fig. 31 was presented, the transistor sizing was not

explained. The left-most transistor of this reference acts as a supply to all of the current

sources in the DAC. As the input word increases, more sources are switched into the

Figure 39 Integral nonlinearity of DAC

40

circuit, pulling more current

from this source. When the

DAC was first being evaluated

across PVT corners, poor results

were observed at the slow corner

(Fig. 40).

The source transistor in

the mirror was simply not large

enough to provide the required

current for high-valued DAC

input words. This effect was exaggerated at the slow corner, where the transistor currents

Figure 40 Poor DAC performance at high current.

Figure 41 DAC transfer curves across PVT.

41

are reduced due to high temperature and lower supply voltage. After the source transistor

width in the current mirror was sized up to the dimensions shown in Fig. 31, the DAC

performance improved significantly. Fig. 41 shows the final DAC performance across the

PVT corners.

All of the SPICE output shown to this point does not clearly show the absolute

values of the DAC output, nor have the delay line currents been shown. Graph 4 shows the

DAC output current as well as the current mirrored into the delay-line elements vs. the

DAC input word. This graph also shows the performances across PVT.

It should be clear at this point just how critical the operation of the current reference

used for the DAC has become. Any variation in the reference as the supply voltage,

Control Currents vs. DAC Input

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70

DAC Input

C
u

rr
en

t
(u

A
)

DAC Output (Fast)

DAC Output (Typical)

DAC Output (Slow)

Delay Current (Fast)

Delay Current (Typical)

Delay Current (Slow)

Graph 4 Control currents vs. DAC input.

42

temperature, and/or process varies will propagate through the DAC and into the delay-line

control current.

With good performance across PVT and a monotonic transfer curve, this DAC is

well suited for operation in the DLL.

3.7 UP/DOWN COUNTER DESIGN

Referring back to Fig. 14, the DAC is controlled by an Up/Down counter. In effect,

this counter is the ‘filter’ for the DLL. It is essentially the loop filter that is used in PLL

design and pure analog DLL design, except that it moves in a linear fashion, preserving the

first-order nature of the DLL. Fig. 42 shows the basic counter interface to the DAC.

Although the DAC has very fast glitches in the output due to the nature of the

design, it is important that the additional noise not be introduced by feeding an unsettled

control signal to the DAC. If a simple ripple counter were to be used to count up (Fig. 43),

6-bit Synchronous
Up / Down Counter 6-bit DAC

IOUT

Up

Down

Clock

Figure 42 Up/Down counter interface to DAC.

MSBLSB

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Count

Figure 43 Basic ripple counter.

43

a finite time must pass before all of the outputs are valid. The output from the LSB stage

must propagate all the way through to the output of the MSB stage before the output can be

used. If this type of counter were used to directly control the DAC, the glitches would now

be of significant width and could no longer be ignored for this design.

To ensure that the counter outputs were completely synchronous, the outputs might

simply be passed through a set of latches, which would be clocked after the ripple counter

settling time had passed (Fig 44). This is a simple solution that occupies relatively little

layout area. However, this counter can only count up, not down.

Of course, a fully synchronous counter can be designed as a finite state machine

(FSM) with all of the ‘next’ states fully decoded at the inputs of each latch. This design

approach guarantees synchronous operation, but the logic required to decode the ‘next’

states increases exponentially as the number of bits in the counter increase. This might still

be a good solution to implement a counter that can count up or down as long as the number

of counter bits is relatively small.

For a synchronous counter, consider a design similar to that of Fig. 44, except that

rather than a ripple counter used as the input to a register, pipeline logic could ripple

MSBLSB

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Count

Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D

Figure 44 Clocked ripple counter.

44

through and determine the next state of the output latches. This concept is shown in the

block diagram of Fig. 45. Notice that the output latches are toggle flip-flops and the setup

logic simply determines whether or not the bit that it controls will toggle on the next clock

cycle.

This design still requires a finite settling time before the output latches are clocked,

but the setup-logic does not increase as bits are added to the counter. If additional bits are

required, additional toggle latches and setup-logic are added, and a little more propagation

setup time is required.

To develop the toggle decision logic, the truth table of Table 2 must be used. The

table is an example of a three-bit counter, showing the state of the up and down control

signals, the current bit count, and whether or not a bit will toggle on the next clock cycle

(BoutN). The setup logic is implemented as a logic state that will ripple through,

depending on the current count and the state of the up and down controls.

MSBLSB

Toggle
Decision

Logic

T
QQ

*

Toggle
Decision

Logic

T
QQ

*

Toggle
Decision

Logic

T
QQ

*

Toggle
Decision

Logic
T

QQ
*

Toggle
Decision

Logic

T
QQ

*

Toggle
Decision

Logic

T
QQ

*

Up
Down

B0* B0

B0* B0

B1* B1

B1* B1

B2* B2

B2* B2

B3* B3

B3* B3

B4* B4

B4* B4

B5* B5

Clock

Figure 45 Block diagram of synchronous up/down counter.

45

This is done by logically ANDing the bits of lower significance in the current count.

If all of the lower bits are asserted, it is time to toggle the next bit. The same is done for

both counting up and counting down, except that the logic levels are changed.

If a single AND gate were used to determine whether or not the current bit should

toggle, the gate would get very large as more bits were added to the counter (1−n inputs

on the AND gate). Also, two of these gates would be required on the input of every toggle

flip flop (one for up and one for down). Instead of using a single gate, the AND function

can be carried out by propagating through a series of two-input ANDs. This means that for

the nth toggle flip-flop, a logical AND of 1−n will still be calculated, except that

additional propagation time will be required. Fig. 46 shows a single cell that can be

cascaded to create the AND function for both the up and down directions.

The input, BAND, is simply the AND function from the lower bit (1−n). It is

ANDed with the output of the current (nth) bit, BN. The output, if asserted, will cause the

Down Up B2 B1 B0 Bout0 Bout0* Bout1 Bout1* Bout2 Bout2*
0 1 0 0 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 1 1 0 1 0 1 0
0 1 1 0 0 1 0 0 1 0 1
0 1 1 0 1 1 0 1 0 0 1
0 1 1 1 0 1 0 0 1 0 1
0 1 1 1 1 1 0 1 0 1 0
1 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 0 1 0 1 1 0
1 0 1 0 1 0 1 1 0 1 0
1 0 1 0 0 0 1 0 1 0 1
1 0 0 1 1 0 1 1 0 1 0
1 0 0 1 0 0 1 0 1 1 0
1 0 0 0 1 0 1 1 0 1 0
1 0 0 0 0 0 1 0 1 0 1

Table 2 Counter toggle logic truth table.

46

current (nth) flip-flop to toggle. Also, this output is sent to the next counter logic cell

(1+n). The same is done for the logic used to count down, but the assertion levels are

changed.

Fig. 47 shows how the cells are cascaded in front of each flip-flop bit in the counter.

This figure shows the entire six-bit synchronous circuit. Each bit is preset to a logic one

upon initialization. This is required for DLL initialization, which will be discussed later.

Note that an extra toggle logic cell and a regular flip-flop are used (bottom of schematic).

This is done to generate a ‘carry out’, or overflow signal that may used by the DLL control

circuitry to detect when the counter (and therefore the DAC) has reached a limit.

The schematics for the toggle flip-flop and the regular flip flop are shown in Fig. 62

and Fig. 63 in the Appendix.

The six-bit counter will have a maximum count frequency limited by the

propagation time through the toggle decision logic. Normally, this would be a five-gate

delay, but with the overflow detection, a sixth gate delay is added. With a gate-propagation

delay of ~100ps per gate, this counter is more than fast enough for the purposes of this

design. Fig. 48 shows the SPICE simulation waveforms for the counter.

Figure 46 Cascaded AND generator for counter toggle logic.

47

Figure 47 Circuit diagram of synchronous up/down counter.

48

3.8 PHASE DETECTOR DESIGN

The phase detector for a DLL may be more simple that that used in a PLL, because

only phase must be determined, not frequency. However, the detector is critical to the

overall performance and the output phase error [20], [21], [22].

As was previously discussed, in order to reduce the jitter and error in the output, it is

desirable to use a delay line that can be changed in extremely small increments. Eq. (4)

showed that the maximum phase error is a direct function of the smallest increment in

which the delay line may be changed. However, this equation, as well as Eq. (1), assumes

that the phase detector is maintaining the DLL loop delay at exactly tCKN ⋅ .

Figure 48 Synchronous counter waveforms.

49

Although the smallest increment in which the phase detector can control the loop is

set by the delay line, it is important that the phase detector not contribute to the total error.

This can be illustrated by examining the simple phase detector of Fig. 49.

The unit delay of this detector is set to be identical to the minimum delay increment

of the delay line. If set properly, the deadband created by the ‘phase equal’ region will not

contribute to the final DLL phase error. If the delay is set too short, the DLL lock point can

oscillate between two lock points, and therefore cause jitter in the output. If the delay is set

too long, the deadband behavior will become apparent, and the phase detector will require

larger changes in the output phase before taking any action. This will directly create phase

error in addition to that calculated in Eq. (4).

DLL Output Clock

Unit
Delay

Reference Clock

Q

Q

D

Q

Q

D

Q1

Q2

DLL Output Clock

Reference Clock

DLL Output Clock
(Delayed)

Q1

Q2

Phase Equal

Deadband
(Phase Equal Region)

 Q1 Q2 Action

 0 0 Too Late - Remove Delay
 0 1 180° Out of Phase - Remove or Add Delay
 1 0 Phase is Equal - Do Nothing
 1 1 Too Early - Add Delay

Figure 49 Simple phase detector with deadband.

50

The deadband of this phase detector is calculated using waveforms of Fig. 50. An

example of deadband calculation can be seen in Graph 5. For this curve, a unit delay of

0.5ns is used. Because phase is a function of clock period, the frequency of interest must be

defined. For Graph 5, a clock period of 5ns is used.

DLL Output Clock

Reference
Clock

Phase is 'equal' across the phase range:

td

π20 ⋅→
tck
td

tck

π2⋅=∆
tck
td

0 π 2π

1

0

1

0DLL Output Clock
(Delayed)

Figure 50 Deadband in the phase equal range.

Phase Detect Response: td = 0.5ns, tck = 5ns,
Phase Equal Window = 0.628319 Radians

0 5 10 15

Radians

P
h

as
e

D
et

ec
to

r
O

u
tp

u
t

Shift Left

Phase Equal

180° Out of
Phase

Shift Right

Graph 5 Example phase detector response.

51

At this point, it should be clear that this simple phase detector could contribute to

the total phase error of a DLL system if the deadband is too great. This is not an issue for

digital DLL’s, where the digital unit delay of the delay line is easily modeled in the

detector. However, for an analog continuous delay line, this deadband would not be

acceptable, as it would be the limiting factor in the phase performance.

The delay line used in this DLL design is analog. The minimum change in delay is

set by the LSB of the controlling DAC. Because the LSB of the DAC can control the delay

in finer increments than the delay of a CMOS gate, it is not reasonable to use the simple

phase detector previously discussed. The resolution of the detector must be reduced. In

this case, a circuit known as an arbiter is a good solution (Fig. 51).

This circuit simply determines which of the two inputs occurs earliest in time. If

Ref_Clk occurs slightly before DLL_Clk then the output A_Clean will go high, and the

Figure 51 Two-way arbiter.

52

output B_Clean will stay low. If DLL_Clk occurs before Ref_Clk, then the output B_Clean

will go high while A_Clean stays low. Note that the output inverters get their power supply

from the outputs of the Set-Reset (SR) latch. This ensures that A_Clean and B_Clean can

not both be high at the same time. When designed properly, this circuit can discriminate

between edges with only tens of picoseconds of separation [10].

To create the proper control signals for the up/down counter, a bit of signal

conditioning is required. The arbiter cannot directly control the counter. The A_Clean and

B_Clean signals do not have good duty cycle and may have glitches present from the times

when the inputs return low. The up/down control signals are generated by latching the

arbiter outputs as shown in Fig. 52. The SR flip-flop used to create the latch clocks is

necessary to remove glitches before triggering the output latches.

Figure 52 Arbiter-based phase detector circuit.

53

The operation of this phase detector is apparent from the simulation waveforms

shown in Fig. 53. Note how the SR flip-flop used to create the ‘clk’ signal successfully

eliminates the glitches seen on the NOR output. Also note that the detector properly detects

the phase difference in the two input signals.

It should be noted that this arbiter will never allow the DLL to lock in a steady state.

The counter will always count either up or down, causing an oscillation in the output phase.

This is similar to the situation where the unit delay is too short in the simple phase detector

previously discussed. However, the LSB control of the delay line is expected to be small

enough as to be negligible for this design. The ideal design would have an infinitely small

delay per unit change in control, and the oscillation caused by the arbiter would not be a

consideration. Although not implemented in this design, it would be a simple matter to

filter the arbiter outputs and not allow the counter to change unless a sequence of more than

Figure 53 Arbiter waveforms.

54

one ‘up’ or ‘down’ signal was detected. Again, this was not considered an issue for this

design due to the small delay increment.

3.9 DLL CONTROL CIRCUITRY

Up to this point, the actual direction dictated by the phase detector has been ignored.

The waveforms of Fig. 53 show that if DLL_Clk occurs before Ref_Clk, then the counter is

to count down. When DLL_Clk occurs after Ref_Clk, the counter is to count up. In

addition, the preset condition of the counter has not been discussed.

To determine the count direction, it is important to realize that for this design, as the

counter value increases, the delay in the delay line decreases. Therefore, when the arbiter

detects that the reference clock signal occurs after the fed-back DLL output, additional

delay is required to make the phase equal, and the counter must count down. If the

reference clock occurs before the DLL output, then too much delay exists, and delay must

be removed. This is accomplished by counting up.

It is important to realize that because the phase detector maintains the delay around

the loop at tCKN ⋅ , any instantaneous changes to the delay line will not be seen at the

phase detector inputs for approximately tCKN ⋅ . This means that if a command to count

up (remove delay) is given, it will take at least one cycle for the phase detector to see that

the delay has been properly removed. If additional commands continue to be given, the

phase detector can overcorrect by giving too many count commands. To eliminate this

problem, the arbiter output can be sampled every other cycle (assuming that the loop delay

is only tCK⋅1). If the loop delay is greater than one clock period, then the arbiter decision

must be sampled even more slowly. Fig. 54 shows the divide-by circuit used to sample the

55

arbiter output. Instead of directly sampling the arbiter output, the clock frequency used to

control the counter is simply reduced. Note that the metal-layer switches shown in Fig. 54

will allow the circuit to be used as a divide-by-two or a divide-by-four, depending on the

typical loop delay. This directly reduces jitter in the DLL output.

In addition to the divide-by circuit, the DLL control circuitry must include the

ability to properly initialize the system to the optimum lock point. At initialization, the

controls must force the counter to move in the proper direction until a lock point is found.

Once found, the DLL must be released to naturally track phase differences in the output.

The controls must be able to detect when the counter has shifted to an extreme, and either

reset the DLL or stop additional counting from occurring.

Due to the nonlinearity in the delay vs. control curve (Graph 6), and the fact that a

linear DAC is being used to set the delay, the DLL performance will be poorest when the

delay line is operating at a maximum delay. The DAC will always move in LSB steps (due

to its linearity), but the 1/x response in the delay time will move in larger increments as the

Figure 54 Configurable divide-by circuit.

56

delay elements become more starved of current. This means that for the DLL to lock in the

region of best performance, the controls must ensure that the lock point is searched for from

the right-most end of the delay curve. In other words, the delay must initially be set at a

minimum (delay line current supply is large), and the counter must be forced to count down

until a locked condition is detected (Graph 6). If this were not done, it would be possible

for the loop delay to lock to a higher multiple of the reference clock period, in the region of

poor operation.

The initialization control circuitry is shown in Fig. 55. The PRE_ input is an

asynchronous system reset signal, active low. This signal will initialize the counter to the

highest count possible (all ones) and will reset the divide-by circuit and the phase-equal

Total Delay-Line Delay vs. DAC Input

0.00

5.00

10.00

15.00

20.00

25.00

0 10 20 30 40 50 60 70

DAC Input

D
el

ay
 (

n
s) Fast Corner

Typical

Slow Corner

Initialize from the right

Region of good operation

Region of
poor operation

Graph 6 Delay vs. input control, showing direction for proper initialization.

57

Figure 55 DLL initialization circuitry.

detector. The Ovfl input is the overflow signal generated by the up/down counter whenever

the counter rolls over.

The approach used for this design is to reset the DLL and begin a new search for a

lock point if the limits of the delay line delay are reached. This was chosen rather than

simply staying ‘stuck’ at an extreme (freezing the count at either end) for two reasons: first,

there exists a possibility that the DLL can lock on another harmonic of the reference signal

(different multiple of tCK). If this is the case, a ‘reset, search again’ approach lets the

58

system attempt to find a harmonic. Second, it will be clear when testing the device that the

DLL is not finding a lock point by examining the system output signal. If the system were

just frozen at the ends, it might appear that the DLL is actually locked instead of frozen.

The Ovfl or the PRE_ signals are allowed to reset the system. The global preset,

QPRE_, sets a SR flip-flop, which places the system in a ‘force down’ condition

(Force_DWN). In this mode, the system will force the counter to count down, regardless of

the direction the arbiter is trying to move the counter. Because it is understood that the

arbiter will oscillate about the lock point once found, the detection of phase equal is

accomplished by watching for the arbiter to try to count down in one cycle and then to

count up in the next cycle. This indicates that the phase detect has reversed direction. This

detection of a lock condition is done by registering the condition of the arbiter’s DOWN

output into a two-bit pipeline (Fig. 55). When a condition in the pipeline of ‘Not DOWN,

DOWN’ is detected, the PHEQi signal is asserted, which resets the SR flip-flop, taking the

system out of the initialization mode.

In reality, this initialization scheme is very simple. The initialization of other DLL

designs may be incredibly complex, requiring much more control circuitry that must take

care of many special conditions. This complexity is necessary for these designs because it

is very important to have consistent DLL operation and lock points from device to device

and from run to run. It must be stressed that initialization problems can be the cause of

poor DLL operation.

59

3.10 FULL SYSTEM DESIGN

The entire DLL design is shown in Fig. 54 using a hierarchical schematic. All of

the component blocks have been previously discussed. For this design, the differential

clock used for the delay line is generated from a singled-ended clock, as shown in this

schematic. A pass gate is used to match an inverter delay so that the clocks entering the

delay line are exactly 180° out of phase.

The only inputs to the system are the reference clock signal and the asynchronous

reset signal, PRE_. The quadrature outputs are buffered after exiting the differential-to-

single-ended converters in the delay line block (Fig. 18).

As previously mentioned, the feedback delay normally used in DLL design is not

used here. This will allow the loop delay to be contained almost entirely in the delay line,

making the simple generation of quadrature outputs possible. Also, for this design, there is

no input and output buffer delay, making it unnecessary to model the delay in the feedback

path.

Figure 56 Full DLL design, presented in hierarchical blocks.

60

CHAPTER 4 – DLL PERFORMANCE

4.1 OPERATION

As discussed in the previous section, the DLL initializes such that the delay is set at

the minimum, then searches for a lock point by adding delay in the delay line. This ensures

that the lock point of optimum jitter performance is found. Once the lock point is found,

the arbiter will cause the system to oscillate by 1 LSB of DAC control current. Fig. 57

shows the typical initialization sequence.

Notice that the total DAC current begins at the maximum current level, then directly

approaches the lock point in a linear fashion. This figure clearly illustrates that the DLL is

a first-order system; there are no second-order effects, such as overshoot, undershoot, or

system oscillation. The current sources for the individual delay stages track the DAC

 Figure 57 DLL initialization waveforms.

61

output current, with a ~5:1 reduction. This is expected, and is due to the reduction across

the current mirror. The PHEQi signal is not asserted until the arbiter moves from a count

down to a count up condition. At that point, the Force_DWN signal is de-asserted,

signaling that a lock point has been found. The DLL is then allowed to track the variations

in the input reference clock as Vdd and temperature change. It can be seen in Fig. 57 that

once the lock point is acquired, the system begins to oscillate about the lock point as the

arbiter moves the counter up and down.

The initialization sequence was simulated using a divide-by-two in the control

circuitry. This reduces the arbiter-induced oscillations by allowing the phase detector to see

the results of a count command before issuing an additional command (there is a one-clock

period delay around this loop when the system is locked). Fig. 58 shows that the DLL

Figure 58 DLL waveforms after lock is achieved.

62

output clock tracks the reference clock in a locked state. Note that the up and down control

signals alternate every two clock cycles. The quadrature waveforms are also shown. Close

examination reveals that the quadrature is not perfect, due to the fact that the entire loop

delay is not contained in the delay line alone.

4.2 PERFORMANCE CHARACTERISTICS

The previous operational waveforms show that the DLL is functioning correctly, but

it is important to quantify the operation. It is understood that the DAC will move into a

region of poor performance as the reference clock period increases due to the 1/x

relationship between control current and delay. This means that the DLL jitter performance

will degrade as the reference frequency decreases.

The original design goal for this DLL is to be capable of locking on frequencies

from 100MHz to 200MHz (10ns to 5ns period). Also, an important feature of the DLL is

the ability to maintain lock and minimum

jitter with variations in the power supply.

Of course, the output jitter will also include

any jitter on the input reference clock.

System jitter was characterized in

simulation by initializing the DLL and

allowing for a long period of simulation

time after lock is reached. The clock

output waveforms are extracted from the

point after which lock is declared, and each

Figure 59 Simulated jitter with input tCK = 5ns,
quiet power supply.

63

clock period is overlaid on top of the previous. This creates a waveform similar to that of

an oscilloscope triggering on each period. Fig. 59 shows the simulated jitter using a 5ns

input reference clock, nominal transistor models, room temperature, and Vdd = 2.5V. The

jitter shown is due to the 1 LSB oscillation created by the arbiter. A peak-to-peak jitter of

192ps is measured.

To determine the DLL’s ability

to maintain minimal jitter with noise on

the power supply, the same experiment

is performed with an AC noise

superimposed on Vdd. Fig. 60 shows

the jitter results using a 10MHz

sinusoid. The AC amplitude is

± 150mV (300mV peak-to-peak).

System jitter in this case is measured to

be 469ps. The increase in jitter is due to

the variation in the delay per element as the current supply changes. The phase detector

properly detects these variations and reacts accordingly, but it cannot do so instantaneously.

Figure 60 Simulated jitter with input tCK = 5ns,
AC noise on power supply is +/-150mV at

10MHz.

tCK (ns) Jitter (Quiet Supply) Jitter (AC on Supply)

4 158 432
5 192 469
6 245 588
7 375 783
8 608 1024
9 932 1403

10 1340 1915

Table 3 DLL jitter performance.

64

These jitter calculations are especially important as the reference clock frequency

decreases. Many simulations were run to generate the jitter results shown in Table 3. The

AC noise added to VDD is still ± 150mV. This data was collected using nominal process,

voltage, and temperature models. The graph of the data shows that the AC noise tends to

create a static addition in the system jitter (Graph 7). Notice that the jitter performance

degrades as expected. The jitter is in an acceptable range of less than 500ps when the

reference clock period is 5ns (200MHz). For a reference period of 10ns, the peak-to-peak

jitter jumps to a worst-case value of almost 2ns! This would be unacceptable for many

DLL usage situations, for example, in a DDR DRAM design, where output data is available

for only half the clock period. Once again, this poor performance is due to the non-linear

delay vs. current control relationship (see Graph 6). A possible solution to the jitter

performance at high values of tCK is discussed in the next chapter.

DLL Jitter vs. tCK

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 6 8 10 12

tCK (ns)

P
ea

k-
to

-P
ea

k
Ji

tt
er

 (
p

s)

VDD = 2.5V

VDD = 2.5V +/- 150mV
Sinusoid at 10 MHz

Graph 7 DLL jitter performance vs. tCK.

65

The DLL’s ability to lock on the frequency range of interest was characterized

across all corners of PVT (Table 4). The slow corner was run at Vdd = 2.2V, slow

transistor models, and temperature = 80° C. Typical simulations were run at Vdd = 2.5V,

typical transistor models, and temperature = 25° C. The fast corner was run at Vdd = 2.8 V,

fast models, and temperature = 0° C. This DLL design is capable of locking on clock

signals with periods of 4ns to 10ns (100MHz

to 250 MHz) across PVT. As was shown in

Table 3, the jitter becomes larger towards tCK

= 10ns, so this DLL will have other practical

limitations as to the input frequency. The positive aspect here is that for the fast

frequencies, where system clock synchronization becomes more critical, the DLL has the

tightest jitter and highest immunity to power supply variation.

As with all designs, the power consumption characteristics are important. The

current requirements for this circuit are shown in Table 5. Note that because the DAC

current is the largest contributor to the power consumption, the demand is greatest at

initialization, when the DAC is set to the maximum possible output (fastest delay in the

delay line). This level does not change for varying input clock periods. However, after

lock is achieved, the current, due to device switching, tracks the input clock frequency.

PVT Corner tCK (min) tCK (max)

Slow 4.0 ns 12 ns
Typical 3.25 ns 11 ns

Fast 2.75 ns 10 ns

Table 4 DLL lock range across PVT.

Slow Corner Typical Fast Corner

tCK Initialization Locked Initialization Locked Initialization Locked

5 ns 3.2 mA 2.3 mA 3.7 mA 1.8 mA 4.2 mA 1.7 mA
7.5 ns 3.1 mA 1.4 mA 3.7 mA 1.0 mA 4.1 mA 1.2 mA
10 ns 3.1 mA 0.8 mA 3.7 mA 0.7 mA 4.3 mA 0.9 mA

Table 5 Power supply requirements across PVT and tCK.

66

CHAPTER 5 – CONCLUSIONS

The design presented and characterized in this thesis has good jitter performance for

the fastest reference clock frequencies and has good power-supply noise rejection. The

most significant limitation of this design is the fact that as the control current for the delay

line is reduced, the smallest ‘step’ in delay increases. This has a direct influence on the

system jitter and its ability to maintain lock with minimal phase error. There are several

possible solutions that would improve the DLL performance for longer clock periods.

To ensure that the delay line steps remain small, even when the elements are heavily

starved, the LSB of the controlling DAC could be reduced by increasing the number of bits

in the converter. Even if linearity is not maintained at exactly ± ½ LSB, as long as the

converter is monotonic, the DAC would still be appropriate for this application, and the

jitter on the output would be reduced.

Instead of increasing the resolution of the DAC, another solution would be to design

a nonlinear DAC that maintains the delay vs. current control curves linear. In effect, the

DAC would cancel out the non-linear nature of the delay vs. control. With this solution, the

jitter performance would be constant, regardless of the input frequency.

Another method would be to change the design into a hybrid DLL, similar to a dual-

loop approach, but with only one phase detector. The counter output could be used to

switch in a series of larger, coarse delays (analog or digital) as needed, ensuring that the

analog differential delay line is always operating in the region of good performance

(referring back to Graph 6). This is the region where the delay per unit change of control

67

current is finest. This architecture (shown in Fig. 61) would actually be a relatively simple

addition, requiring a minimal amount of extra layout area.

As a rule of thumb, to achieve the best jitter performance and smallest phase error,

the delay line must have as fine of delay steps as possible, and the phase detector must be

able to differentiate phase differences to the resolution of the delay line.

Although this DLL could be improved upon in many other ways, the basic

components and design approach can remain intact, taking advantage of a delay line that

has continuous delay variation (rather than quantized steps), and good power-supply

rejection.

Current-Starved, Differential Delay Line

Phase
Detector

Up / Down
Counter

Feedback Delay

External
Clock

Synchronized
Output (360°)

DAC

up

down

Fixed-Delay Stages

Figure 61 Use of constant delays to increase the useful frequency range.

68

BIBLIOGRAPHY

[1] H. Yoon, G.-W. Cha, C. Yoo, N.-J. Kim, K.-Y. Kim, C. H. Lee, K.-N. Lim, K. Lee, J.-
Y. Jeon, T. S. Jung, H. Jeong, T.-Y. Chung, K. Kim, and S. I. Cho, “A 2.5-V, 333-
Mb/s/pin, 1-Gbit, double-data-rate synchronous DRAM,” IEEE J. Solid-State Circuits,
vol. 34, pp. 1589-1599, Nov. 1999.

[2] T. H. Lee, K. S. Donnelly, J. T. C. Ho, J. Zerbe, M. G. Johnson, and T. Ishikawa, “A
2.5 V CMOS delay-locked loop for an 18 Mbit, 500 Megabyte/s DRAM,” IEEE J.
Solid-State Circuits, vol. 29, pp. 1491-1496, Dec. 1994.

[3] T. H. Lee and J. F. Bulzacchelli, “A 155-MHz clock recovery delay- and phase-locked
loop,” IEEE J. Solid-State Circuits, vol. 27, pp. 1736-1746, Dec. 1992.

[4] J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased
techniques,” IEEE J. Solid-State Circuits, vol. 31, pp. 1723-1732, Nov. 1996.

[5] S. Tanoi, T. Tanabe, K. Takahashi, S. Miyamoto, and M. Uesugi, “A 250-622 MHz
deskew and jitter-suppressed clock buffer using two-loop architecture,” IEEE J. Solid-
State Circuits, vol. 31, pp. 487-493, Apr. 1996.

[6] Y. Moon, J. Choi, K. Lee, D.-K. Jeong, and M.-K. Kim, “An all-analog multiphase
delay-locked loop using a replica delay line for wide-range operation and low-jitter
performance,” IEEE J. Solid-State Circuits, vol. 35, pp. 377-384, Mar. 2000.

[7] B. W. Garlepp, K. S. Donnelly, J. Kim, P. S. Chau, J. L. Zerbe, C. Huang, C. V. Tran,
C. L. Portmann, D. Stark, Y.-F. Chan, T. H. Lee, and M. A. Horowitz, “A portable
digital DLL for high-speed CMOS interface circuits,” IEEE J. Solid-State Circuits, vol.
34, pp. 632-644, May 1999.

[8] G.-K. Dehng, J.-M. Hsu, C.-Y. Yang, and S.-I. Liu, “Clock-deskew buffer using a
SAR-controlled delay-locked loop,” IEEE J. Solid-State Circuits, vol. 35, pp. 1128-
1136, Aug. 2000.

[9] Y. Okajima, M. Taguchi, M. Yanagawa, K. Nishimura, and O. Hamada, “Digital delay-
locked loop and design technique for high-speed synchronous interface,” IEICE Trans.
Electron, vol. E79-C, pp. 798-807, Jun. 1996.

[10] B. Keeth, R. J. Baker, DRAM Circuit Design: A Tutorial, IEEE Press, 2001. ISBN 0-
7803-6014-1

[11] F. Lin, J. Miller, A. Schoenfeld, M. Ma, and R. J. Baker, “A register-controlled
symmetrical DLL for double-data-rate DRAM,” IEEE J. Solid-State Circuits, vol. 34,
pp. 565-568, Apr. 1999.

69

[12] T. Saeki, Y. Nakaoka, M. Fujita, A. Tanaka, K. Nagata, K. Sakakibara, T. Matano, Y.
Hoshino, K. Miyano, S. Isa, S. Nakazawa, E. Kakehashi, J. M. Drynan, M. Komuro, T.
Fukase, H. Iwasaki, M. Takenaka, J. Sekine, M. Igeta, N. Nakanishi, T. Itani, K.
Yoshida, H. Yoshino, S. Hashimoto, T. Yoshii, M. Ichinose, T. Imura, M. Uziie, S.
Kikuchi, K. Koyama, Y. Fukuzo, and T. Okuda, “A 2.5-ns clock access, 250-MHz,
256-Mb SDRAM with synchronous mirror delay,” IEEE J. Solid-State Circuits, vol.
31, pp. 1656-1665, Nov. 1996.

[13] D. Shim, D.-Y. Lee, S. Jung, C.-H. Kim, and W. Kim, “An analog synchronous mirror
delay for high-speed DRAM application,” IEEE J. Solid-State Circuits, vol. 34, pp.
484-493, Apr. 1999.

[14] I. Youji, A. Masakazu, and N. Hiromasa, inventors; Hitachi Ltd., assignee. 1999 Sep.
21. Signal Generator with Synchronous Mirror Delay Circuit. U.S. Patent 5,955,905.

[15] S. Sidiropoulos, and M. A. Horowitz, “A semidigital dual delay-locked loop,” IEEE J.
Solid-State Circuits, vol. 32, pp. 1683-1692.

[16] M. Mota and J. Christiansen, “A high-resolution time interpolator based on a delay
locked loop and an RC delay line,” IEEE J. Solid-State Circuits, vol. 34, pp. 1360-
1366, Oct. 1999.

[17] M. Rau, T. Oberst, R. Lares, A. Rothermel, R. Schweer, and N. Menoux, “Clock/data
recovery PLL using half-frequency clock,” IEEE J. Solid-State Circuits, vol. 32, pp.
1156-1159, Jul. 1997.

[18] J.-Y. Park and J.-K. Kang, “A 1.0 Gbps CMOS oversampling data recovery circuit
with fine delay generation method,” IEICE Trans. Fundamentals, vol. E83-A, pp.
1100-1105, Jun. 2000.

[19] R. J. Baker, H. W. Li, and D. E. Boyce, CMOS: Circuit Design, Layout, and
Simulation, IEEE Press, 1998. ISBN 0-7803-3416-7

[20] M. Combes, K. Dioury, and A. Greiner, “A portable clock multiplier generator using
digital CMOS standard cells,” IEEE J. Solid-State Circuits, vol. 31, pp. 958-965, Jul.
1996.

[21] A. Efendovich, Y. Afek, C. Sella, and Z. Bikowsky, “Multifrequency zero-jitter delay-
locked loop,” IEEE J. Solid-State Circuits, vol. 29, pp. 67-70, Jan. 1994.

[22] H. O. Johansson, “A simple precharged CMOS phase frequency detector,” IEEE J.
Solid-State Circuits, vol. 33, pp. 295-299, Feb. 1998.

70

APPENDIX – ADDITIONAL SCHEMATICS

Figure 62 Schematic of toggle flip-flop used in counter.

Figure 63 Schematic of regular flip-flop used in counter.

