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 ABSTRACT 

 

     Optical pyrometry is the sensing of thermal radiation emitted from an object using a 

photoconductive device to convert photons into electrons, and is an important diagnostic 

tool in shock physics experiments.  Data obtained from an optical pyrometer can be used 

to generate a blackbody curve of the material prior to and after being shocked by a high 

speed projectile.  The sensing element consists of an InGaAs photodiode array, biasing 

circuitry, and multiple transimpedance amplifiers to boost the weak photocurrent from 

the noisy dark current into a signal that can eventually be digitized.  Once the circuit 

elements have been defined, more often than not commercial-off-the-shelf (COTS) 

components are inadequate to satisfy every requirement for the diagnostic, and therefore 

a custom application specific design has to be considered.  This thesis outlines the initial 

challenges with integrating the photodiode array block with multiple COTS 

transimpedance amplifiers onto a single chip, and offers a solution to a comparable 

optical pyrometer that uses the same type of photodiodes in conjunction with a re-

designed transimpedance amplifier integrated onto a single chip. The final design 

includes a thorough analysis of the transimpedance amplifier along with modeling the 

circuit behavior which entails schematics, simulations, and layout.  An alternative circuit 

is also investigated that incorporates an approach to multiplex the signals from each 

photodiode onto one data line and not only increases the viable real estate on the chip, but 

also improves the behavior of the photodiodes as they are subjected to  less thermal load.  

The optical pyrometer application specific integrated circuit (ASIC) for shock physic 

experiments includes a transimpedance amplifier (TIA) with a 100 kΩ gain operating at 
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bandwidth of 30 MHz, and an input-referred noise RMS current of  50 nA that is capable 

of driving a 50 Ω load. 
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CHAPTER 1 – INTRODUCTION 

1.1 BACKGROUND 

In shock wave physics experiments, dynamic temperature measurements are a critical 

diagnostic tool that provides valuable information about a material’s state under shock 

conditions [1].  To get real-time, in-situ temporal measurements, the diagnostic has to 

map the shape of the black body temperature curve at multiple wavelengths within a short 

record length.  The basic elements of the diagnostic system include a photodiode 

transducer to convert infrared thermal radiation to electricity, a transimpedance amplifier 

(TIA) to convert the small photocurrent into a viable voltage signal, and an analog-to-

digital converter (ADC) to record the signal.  The focus of this Thesis is a subsection of 

the overall diagnostic system called an optical pyrometer which consists of an array of 

photodetectors and a transimpedance amplifier. 

Limitations in current commercial-off-the-shelf (COTS) technology has shifted the 

focus away from assembling ad-hoc instrumentation with COTS components to 

designing application specific integrated circuits (ASICs) in order to meet the increasing 

design requirements of smaller footprints, higher bandwidth, and better noise 

performance.  An optical pyrometer ASIC chip solves the current problems of integrating 

differing package types associated with the photodiode array sensing unit with multiple 

TIAs; moreover, it allows a certain amount of flexibility in designing around a set of 

requirements without sacrificing the performance from COTS components.  In some 

cases an ASIC chip design will reduce the footprint of the instrument and increase its 
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performance.  The integration of the photodiode array with COTS transimpedance 

amplifiers into an optical pyrometer instrument may increase the thermal loading on the 

photodiode array.  Thermal loading is an important factor that has to be considered in any 

practical design as the photodiode package is susceptible to degradation in dynamic 

resolution as a consequence to sharing chip real estate with a set of transimpedance 

amplifiers.  Without the knowledge a priori of the type of data achievable from such 

experiments, that type of degradation in SNR can make the difference in the success of a 

diagnostic.  

 

1.2 MOTIVATION 

The implementation of a successful experimental diagnostic is limited more often 

than not by the technology that is available to both the scientist and engineer [2].  Many 

times there have been cases where a diagnostic cannot be fielded because an instrument 

has yet to be created to take the measurement of interest, or the COTS components that 

are available are unsuitable.  Characteristics that include, biasing, noise immunity, form 

factor, and integration have to be carefully balanced in order to achieve a successful 

diagnostic.  The constraint of having to utilize COTS components can severely impact the 

performance to the point where COTS are no longer a practical solution.  This can result 

in an experiment being delayed indefinitely, which can be costly to a company or 

research lab. 

Designing an optical pyrometer ASIC chip for shock physic experiments has two 

advantages.  The first advantage is that new types of diagnostics instrumentation that 
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have not been created thus far can be created in current technology, and the other is that 

the small form factor reduces the usable real estate in the test chamber thereby increasing 

the number of measurements.  The impact of this technology spans both science and 

engineering fields.  These types of instrumentation ASICs create vast opportunities in 

materials science as in-situ monitoring devices, and opens the door to analog and digital 

chip designers who will be called upon to create innovative instrumentation designs.  

 

1.3 THESIS ORGANIZATION 

This Thesis describes the simulation, design, layout, and fabrication of an optical 

pyrometer ASIC for shock physic experiments.  Chapter 2 gives background information 

on the photodiode, and emphasizes three different types that are likely to be used as the 

sensing element in an optical pyrometer instrument.  Chapter 3 provides a primer for the 

TIA.  Both the generic and improved TIA are discussed and compared in order to 

demonstrate how simple adjustments can make significant improvements in the AC 

performance.  Concepts such as feedback, mixing-sampling topologies, and AC 

characteristics that include open-loop and closed-loop gain are introduced.  Calculations 

of the AC parameters are compared with simulations in order to solidify the concepts.  

Chapter 3 also discusses the TIA biasing circuitry, and introduces the cascode current 

mirror.  The chapter concludes with an encapsulation of the improved TIA closed-loop 

gain.  Chapter 4 covers the noise sources present in the optical pyrometer ASIC.  Noise is 

a limiting characteristic for any design, and this design is not an exception.  Photodiode 

shot noise, dark current, noise equivalent power, and MOSFET thermal and flicker noise 
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are all discussed.  This chapter also discusses the noise modeling of the TIA along with 

simulations of the output noise, and input-referred noise of the improved TIA topology.  

Chapter 5 documents the testing of the improved TIA, and compares the test results with 

the results obtained through simulation.  Differences in the testing and simulations results 

are discussed, and a final TIA design is proposed that addresses the shortcomings with 

the improved TIA.  A discussion that includes simulations are included with the final TIA 

circuit.  Chapter 6 provides additional background regarding the optical pyrometer’s role 

in shock physics experiments, and the reasons why a new design is needed.  The chapter 

discusses a viable replacement option for the sensing transducer, and the final TIA chip 

layout.  This chapter concludes with a plan for future work. 
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CHAPTER 2 – PHOTODIODE BACKGROUND 

2.1 PN PHOTODIODE 

 The front-end of the optical pyrometer ASIC begins with the sensing element that 

converts infrared thermal radiation into an electrical signal.  An ideal transducer for this 

task is a photodiode.  A photodiode is comprised of a semiconductive material that is 

constructed into a pn junction with a heavily doped p-type material, and a lighter doped 

n-type material.  A section of the pn diode, called the active area, is exposed to the 

environment to trap incident radiation.  Figure 1 shows a cross sectional view of a pn 

photodiode. 

   

Light incident upon the active area of the photodiode generates electron-hole pairs 

(EHPs) when the energy of the electromagnetic radiation is greater than the bandgap 

energy of the photoconductive material [3]. The photodiode has terminals on both sides 

of the junction and is usually reverse-biased.  This implies that the p side of the junction 

is more negatively charged than the n side.  The reverse-bias attracts the majority carriers 

Figure 1. pn photodiode cross section [5]. 
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away from the junction, which exposes the immobile ions in the depletion region, and 

induces an electric field across the junction in a direction towards the p-type material [3, 

4].  In this respect a photodiode takes on the characteristics of a voltage-controlled 

capacitor where the majority carriers behave as two sides of the parallel plates, and the 

depletion region acts as the dielectric gap.  The depletion region, hence the electric field, 

penetrates deep into the n-region of the device because it is lightly doped.  Any incident 

radiation capable of generating EHPs sweeps the pair by drifting them in opposing 

directions towards their respective majority carriers [3, 5].  The electrons are pushed out 

of the terminal thereby generating a photocurrent in an external circuit.  An increase in 

the reverse-bias voltage increases the strength of the electric field within the depletion 

region of the device, and therefore increases the photocurrent.    Not all of the incident 

electromagnetic radiation is absorbed into the active area, and not all of the radiation that 

is absorbed generates EHPs.  Light below the material’s bandgap energy is absorbed and 

converted into heat, and light with energy above the bandgap energy does not imply an 

increase in the photocurrent.  The excess energy of photons at a wavelength below the 

maximum cutoff wavelength will also be absorbed as heat by the lattice, and will not 

contribute to additional photocurrent.  The cutoff wavelength (𝜆(µ𝑚)) for the conversion 

of light into electrons is given below 

𝜆(µ𝑚) =
ℎ𝑐

𝐸𝐺(𝑒𝑉)
=

1.24

𝐸𝐺(𝑒𝑉)
 (2-1) 

where 𝐸𝐺(𝑒𝑉) is the bandgap energy of the photoconductive material, and the constant 

ℎ𝑐 = 1.24 is derived from ((4.14 × 10−15𝑒𝑉 ∙ 𝑠) ∙ (3 × 108 𝑚/𝑠)) = 1.24 × 10−6𝑒𝑉 ∙

𝑚 = 1.24 𝑒𝑉 ∙ 𝜇𝑚 [5].  Near-infrared radiation has a wavelength of approximately 
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1.1µm, so the minimum bandgap that a material must have in order to generate a 

photocurrent is 

𝐸𝐺(𝑒𝑉) =
1.24

1.1µ𝑚
= 1.13 𝑒𝑉  (2-2) 

Also, not all of the EHPs, generated by the absorbed radiation, are swept to their 

respective terminals.  A small portion of the generated EHPs will recombine with each 

other, or become trapped within the defects of the material.  The lost charges primarily 

contribute to lattice vibrations (phonons) that will act as noisy dark current limiting the 

dynamic range of the device [5].  Some of the light incident upon the active area reflects 

off the interface and is lost by the transducer.  These factors and many others reduce the 

effectiveness of the device in converting light into an electrical signal thereby decreasing 

the quantum efficiency and responsivity of the photodiode.   

One figure-of-merit for a photodiode is quantum efficiency.  The equation for 

quantum efficiency 𝜂 is shown below 

𝜂 =
𝐼𝑝ℎ/𝑒

𝑃𝑜/ℎ𝜈
 (2-3) 

where 𝐼𝑝ℎ is the photocurrent in the external circuit due to the collection of electrons, 𝑒, is 

the electronic charge (1.60 × 10−19𝐶) in SI units, 𝑃𝑜 is the incident optical power, ℎ is 

Planck’s constant (6.62 × 10−34𝐽𝑠), and 𝜈 is the electromagnetic radiation frequency [5].  

Equation 2-3 gives a ratio of the number of electrons collected per second to the number 

of photons collected per second, and is a figure-of-merit for how efficient the 

photoconductive material is in converting light to electrons.  The window of the 

photodiode contains an anti-reflective (AR) coating to prevent a significant percentage of 
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the light from reflecting off the active area, and is one common method utilized for 

increasing the quantum efficiency 

Responsivity is another figure-of-merit for the photodiode that characterizes the 

conversion of light at a given wavelength into a photocurrent [5].  The equation for 

responsivity ℛ is  

ℛ =
𝐼𝑝ℎ

𝑃𝑜
 (2-4) 

 

2.2 PIN PHOTODIODE 

 Another way to increase the quantum efficiency of the photodiode is to sandwich 

an intrinsic layer between the highly doped p-region, 𝑝+, and a highly doped n-region, 

𝑛+, of the pn junction diode.  Figure 2 is a cross sectional view of a p-type/intrinsic/n-

type (PIN) photodiode. 

 
Figure 2. PIN photodiode cross section [5]. 
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Holes diffuse from the 𝑝+-side and electrons diffuse from the 𝑛+-side into the intrinsic 

layer where they recombine [5].  The depletion region generates a uniform electric field 

that is not present in a pn photodiode.  The PIN photodiode is designed for 

photoabsorption to take place entirely within the intrinsic region [6].  Once the 

photodiode is reverse-biased, the depletion region extends through the entire intrinsic 

layer generating an electric field that sweeps the EHPs towards the 𝑛+and 𝑝+sides [6].  

The increase in width of the depletion layer also increases the photogeneration area.  

Radiation with longer wavelengths can now contribute to the generation of EHPs since it 

is being absorbed within the depletion region.  Another benefit of the PIN photodiode is 

the depletion capacitance is significantly smaller than the pn photodiode, and the small 

depletion capacitance allows the device to detect radiation at high modulation 

frequencies.  The junction capacitance 𝐶𝐽 of the PIN photodiode is 

𝐶𝐽 =
𝐾𝑆𝜀0𝐴

𝑊
  (2-5) 

where 𝐾𝑆𝜀0 is the permittivity of the semiconductor, 𝑊 is the width of the depletion 

width, and 𝐴 is cross sectional area [6].  The width of the intrinsic layer is fixed, so the 

depletion capacitance does not depend on the applied voltage. 

 

2.3 AVALANCHE PHOTODIODE 

 One significant drawback in both the pn junction and PIN photodiodes are the low 

responsivity levels.  For the ideal photodiode, nothing more than what was put in could 

be expected out. The typical photodiode does not have gain, and this is problematic for 
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small photocurrent signals that are buried amongst the noise floor of the device or 

measuring system.  An avalanche photodiode (APD) uses gain to amplify small light 

signals into measurable photocurrents.  The gain mechanism for an APD is impact 

ionization.  Strong electric fields, generated from large reverse-bias voltages, accelerate 

electrons into surrounding atoms, and impart enough energy to the constituent atoms that 

cause the ejection of additional electrons [7].  The ionization process continues until the 

energy of the electron is less than the electron binding energy of the atom.  Avalanche 

multiplication implies that the quantum efficiency of the APD is greater than unity.  

Figure 3 shows an example cross-section for an APD. 

 

In Figure 3, electromagnetic radiation enters through the window, the 𝑝+  region, and 

stops within the intrinsic region of the device.  EHPs are generated, within the intrinsic 

region (electron in the conduction band and a hole in the valence band) due to the 

interaction of the light with the crystalline structure.  Photogeneration of EHPs and the 

avalanche multiplication are isolated processes within the APD because the 

multiplication is an inherently random proces.  This causes carrier fluctuation and leads 

to excess noise in the photocurrent signal thereby decreasing the signal-to-noise ratio 

(SNR) of the APD [5].  The reduction of the noise is achieved by decreasing the 

interaction probability that the carriers with the least impact ionization efficiency 

Figure 3. APD photodiode cross section [7]. 
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(photogenerated holes) have with the electrons.  The structure in Figure 3 allows the 

drifiting of the photogenerated electrons to the avalanche region without the interaction 

of the holes.  The avalanche multiplication factor, 𝑀 is given below 

𝑀 =
𝐼𝑝ℎ

𝐼𝑝ℎ𝑜
 (2-6) 

where 𝐼𝑝ℎis the multiplied APD photocurrent, and 𝐼𝑝ℎ𝑜 is the unmultiplied photocurrent 

[4, 5, 6, 7].  The multiplication factor can be obtained using the equation 

𝑀 =
1

1−(
𝑉𝑟

𝑉𝑏𝑟
)𝑛

   (2-7) 

where 𝑉𝑟 is the reverse-bias voltage, 𝑉𝑏𝑟 is the avalanche breakdown voltage, and 𝑛 is a 

temperature dependent characteristic index that provides the best fit to the experimental 

data.  Figure 4 shows a pictorial representation of avalance multiplication. 

 

 

Figure 4. Avalanche multiplication pictorial representation [5]. 
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CHAPTER 3 - TRANSIMPEDANCE AMPLIFIER BACKGROUND 

A transimpedance amplifier (TIA, a shunt-shunt feedback amplifier) generates a 

voltage signal at its output by amplifying a small current signal at its input of an active 

device.  The units of the transfer function are therefore V/I (ohms) hence the name 

transimpedance amplifier or transresistance amplifier.  TIAs use feedback to improve 

gain sensitivity, bandwidth, linearity, and output/input impedance.  Figure 5 shows the 

basic topology of a shunt-shunt feedback amplifier for low-noise, low-power, and high-

speed.  The reason for calling the transimpedance amplifier shunt-shunt is that the 

feedback network 𝑅𝑓 is in parallel (shunt) with both the output of the amplifier and the 

input of the amplifier. The current input is connected to the source terminal of M1.  The 

feedback network 𝑅𝑓 shunts some of the source current away from the input, and 

therefore the mixing of currents at the input active device M1 is known as shunt mixing.  

A similar analysis done at the output shows that again the feedback network is in parallel 

with the drain of the active device M2.  In other words, the feedback network is in 

parallel with the amplifier’s output.  Since any signal at the output of a feedback 

amplifier is sampled, the name used to describe this operation is called shunt sampling. 
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In an ideal transimpedance feedback amplifier, the feedback network will not load 

either the input or output of the amplifier and the equivalent impedance seen looking into 

input and output terminals of the amplifier is zero ohms.  In other words, the ideal TIA 

has zero ohms input resistance (current input) and zero ohms output resistance (voltage 

output). When designing a practical transimpedance amplifier; however, the loading from 

the feedback network has to be taken into consideration.  By using feedback techniques 

certain advantages can be exploited in controlling the input and output impedances.  The 

input impedance 𝑅𝑖𝑓, for the closed –loop transimpedance feedback amplifier 

𝑅𝑖𝑓 =
𝑅𝑖

1+𝛽𝐴𝑂𝐿
  (3-1) 

and the output in 𝑅𝑜𝑓 , for the closed-loop feedback amplifier is 

Figure 5. Generic shunt-shunt feedback amplifier [8]. 
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𝑅𝑜𝑓 =
𝑅𝑜

1+𝛽𝐴𝑂𝐿
   (3-2) 

where 𝛽 is the feedback factor (units of Mhos or Siemens), 𝐴𝑂𝐿 is the open-loop gain 

(units of ohms), 𝛽𝐴𝑂𝐿 the loop gain (unitless), 𝑅𝑖 the input impedance of the amplifier, 

and 𝑅𝑜 is the output impedance of the amplifier [8, 9].  As 𝐴𝑂𝐿 → ∞ , the input and 

output impedances of a feedback amplifier approach the ideal, that is,  𝑅𝑖𝑓 = 0 and 

𝑅𝑜𝑓 = 0.  The implication is that with a very large 𝐴𝑂𝐿 feedback is useful for reducing 

the TIA’s input/output impedances.   

Inspection of the circuit in Figure 5 shows that the input active device M1 is 

biased with a constant DC voltage at the gate terminal.  A current source, 𝐼𝑠𝑠, is used to 

ensure that the quiescent point remains constant as the small-signal AC current fluctuates. 

This current source, in more practical circuits, is replaced with a current mirror.  M2 is 

the output active device that is driving the load which is in parallel with the feedback 

network. The voltage across the load resistor is being sampled, and fedback via 𝑅𝑓. The 

feedback network 𝑅𝑓, connects the drain of M2 to the source terminal of M1.  A cursory 

analysis of the TIA in Figure 5 can be used to determine what type of feedback is 

employed.  To ensure negative feedback by the number of signal inversions around the 

feedback loop of the amplifier are counted [8, 9].  The general rule of thumb is that a 

signal enters either the gate or source terminal of the active device, and exits the drain or 

source.  When a signal enters the gate terminal and exits the drain, an inversion occurs.  

An odd number of inversions imply negative feedback.  In Fig.5 the input signal enters 

the source terminal of M1 and the output signal departs the drain terminal, so no 

inversion occurs.  The signal that left the drain of M1 enters the gate of M2.  This signal 
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leaves the drain of M2 and therefore there is only one inversion around the loop. Indeed 

this topology uses negative feedback. 

Figure 6 is the open-loop, small-signal, model for the shunt-shunt amplifier circuit 

in Fig. 5.  The open-loop small-signal model in Fig. 6 shows how the loading from the 

feedback network affects the shunt-shunt amplifier circuit.  The equivalent resistance of 

the feedback network seen at the input of the amplifier is determined by looking into the 

input terminal of the feedback network while shorting the output to ground.  The 

equivalent resistance of the feedback network seen at the output of the amplifier is 

determined by looking at the output terminal of the feedback network while shorting the 

input to ground.  In both cases the equivalent resistance is the value of 𝑅𝑓.  Now that the 

loading of the amplifier circuit by the feedback network has been factored into the small-

signal model, the open-loop gain that relates the output voltage to the input current can be 

evaluated directly from Figure 6.  

 

The open-loop gain is 

𝐴𝑂𝐿 =
𝑣2

∗

𝑖𝑠
∗

=
𝑣2

∗

𝑣𝑔2
∗ ∙

𝑣𝑔2
∗

𝑣1
∗ ∙

𝑣1
∗

𝑖𝑠
∗
 

Figure 6. Shunt-shunt feedback amplifier open-loop small-signal model. 
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= −
𝑔𝑚2 (𝑅𝐿||𝑅𝑓||((1 + 𝑔𝑚2𝑅4)𝑟𝑜2 + 𝑅4))

1 + 𝑔𝑚2𝑅4 +
𝑅4

𝑟𝑜2

∙
𝑔𝑚1𝑅3 +

𝑅3

𝑟𝑜1

1 +
𝑅3

𝑟𝑜1

∙ (
1 +

𝑅3

𝑟𝑜1

𝑔𝑚1 +
1

𝑟𝑜1

) ||𝑅𝑓 𝛺 

(3-3) 

when 𝑖1
∗ = 𝑖𝑠

∗.  Equation 3-3 simplifies to  

𝐴𝑂𝐿 = −
𝑔𝑚2(𝑅𝐿||𝑅𝑓)

1+𝑔𝑚2𝑅4
∙ 𝑔𝑚1𝑅3 ∙

1

𝑔𝑚1
||𝑅𝑓 𝛺 (3-4) 

when 𝑟𝑜2 ≫  𝑅2, 𝑅4, 𝑅𝐿, and 𝑟𝑜1 ≫  𝑅3.  The closed-loop gain, 𝐴𝐶𝐿,  for the shunt-shunt 

amplifier is  

𝐴𝐶𝐿 =
𝑣2

𝑖𝑠
=

𝐴𝑂𝐿

1+𝛽𝐴𝑂𝐿
 𝛺              (3-5) 

when 𝑖𝑠 = 𝑖1, and the feedback factor, 𝛽, is 

𝛽 =
𝑖𝑓

∗

𝑣2
∗ = −

1

𝑅𝑓
 𝑚ℎ𝑜𝑠  (3-6) 

The feedback factor is the gain of the feedback network and is a negative value since the 

output from the amplifier was previously determined to be negative.  The loop gain, 

𝛽𝐴𝑂𝐿, is a positive dimensionless quantity, so that is why the feedback factor has the 

units of mhos since the transimpedance amplifier has units of ohms. An increase in the 

loop gain or feedback factor will decrease the closed-loop gain of the TIA, and implies a 

trade-off between the precision and gain of a feedback amplifier [10]. 
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 The input impedance is the equivalent impedance seen through the drain terminal 

of M1 in parallel with 𝑅𝑓, and the output impedance is the parallel combination of 𝑅𝑓, 𝑅𝐿, 

and the equivalent impedance seen looking into the drain of M2, therefore 

𝑅𝑖 = (
1+

𝑅3
𝑟𝑜1

𝑔𝑚1+
1

𝑟𝑜1

) ||𝑅𝑓  (3-7) 

𝑅𝑜 = 𝑅𝐿||𝑅𝑓||((1 + 𝑔𝑚2𝑅4)𝑟𝑜2 + 𝑅4) (3-8) 

 

3.1 SHUNT-SHUNT FEEDBACK OPEN-LOOP GAIN VERIFICATION 

Equation 3-8 is an exact calculation of the open-loop gain of the shunt-shunt 

feedback amplifier.  However, there is a more practical method to determine the open-

loop gain.  Figure 7 shows the open-loop small-signal model of the shunt-shunt amplifier 

with the feedback network loading contribution on the output of M2.  Notice that the 

current source, which is 𝐼𝑠𝑠 in Fig. 5, is no longer present in Fig. 6.  The current source 

and the output resistance of M1 have been replaced with a resistance called 𝑅𝑐𝑎𝑠. This 

resistance is the equivalent resistance seen looking into the drain of the cascode circuit 

M1 and 𝐼𝑠𝑠 (generated from a current mirror).  To determine the open-loop gain the 

circuit can be broken down into two parts.  In the first part the voltage 𝑣𝑥 has to be 

determined, and the second part consists of finding the gain 𝑣𝑜𝑢𝑡/𝑣𝑥.  The voltage 𝑣𝑥 is 

calculated from the 𝑖𝑖 current flowing into the parallel resistance of 𝑅3 and 𝑅𝑐𝑎𝑠.  The 

cascode impedance is typically larger than the resistance used to generate the bias current 

of the TIA, so the voltage 𝑣𝑥 is approximated to 
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𝑣𝑥 = 𝑖𝑖(𝑅3||𝑅𝑐𝑎𝑠) ≈ 𝑖𝑖𝑅3  (3-9) 

The output voltage is calculated from the current generated from M2 flowing into the 

impedance seen looking into the output terminal.  The equivalent impedance at the output 

of M2 is the parallel combination of the load, feedback, and impedance looking into the 

drain of M2.  This expression is 

𝑣𝑜𝑢𝑡 = 𝑖𝑑(𝑅𝐿||𝑅𝑓||𝑟𝑖𝑛𝐷𝑟𝑎𝑖𝑛𝑀2) (3-10) 

Figure 8 demonstrates how to calculate the current 𝑖𝑑 from (3-10).  A KVL equation is 

written from 𝑅4 to 𝑣𝑥, and 𝑖𝑑 is solved as a function of 𝑣𝑥. 

𝑖𝑑𝑅4 + 𝑣𝑠𝑔2 + 𝑣𝑥 = 0  (3-11) 

𝑖𝑑 = 𝑔𝑚2𝑣𝑠𝑔2 → 𝑣𝑠𝑔2 =
𝑖𝑑

𝑔𝑚2
   (3-12) 

Figure 7. Small-signal analysis to find vx in the generic shunt-shunt feedback amplifier.  
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𝑖𝑑 = −
𝑣𝑥

1

𝑔𝑚2
+𝑅4

    (3-13) 

 

The circuit is redrawn in Fig. 9 to show how to calculate the impedance seen looking into 

the drain of M2.  A test voltage is applied to the drain of M2. The current in 𝑅𝐿||𝑅𝑓 is 

neglected since these are in parallel with the resistance looking into the drain of M2. 

Figure 8. Small-signal analysis to find vout/vx in the generic shunt-shunt feedback amplifier.  
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𝑟𝑖𝑛𝐷𝑟𝑎𝑖𝑛𝑀2 =
𝑣𝑡

𝑖𝑡
  (3-14) 

𝑖𝑡 + 𝑖𝑑 =
𝑣𝑡−𝑣𝑠𝑔2

𝑟𝑜2
  (3-15) 

𝑣𝑠𝑔2 = 𝑣𝑠2 = 𝑖𝑡𝑅4  (3-16) 

𝑖𝑑 = 𝑔𝑚2𝑣𝑠𝑔2 = 𝑔𝑚2𝑅4𝑖𝑡 (3-17) 

After substituting (3-16) and (3-17) into (3-15), an expression for 𝑣𝑡 is calculated. 

𝑣𝑡 = 𝑖𝑡[𝑟𝑜2(1 + 𝑔𝑚2𝑅4) + 𝑅4] (3-18) 

∴ 𝑟𝑖𝑛𝐷𝑟𝑎𝑖𝑛𝑀2 =
𝑣𝑡

𝑖𝑡
= 𝑟𝑜2(1 + 𝑔𝑚2𝑅4) + 𝑅4 (3-19) 

The open-loop gain for the shunt-shunt amplifier in Fig. 5 can now be determined after 

substituting (3-19), (3-13), and (3-9) into (3-10). 

Figure 9. Output impedance seen looking into drain M2.  
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|𝐴𝑂𝐿| =
𝑣𝑜𝑢𝑡

𝑖𝑖
≈

(𝑅𝐿||𝑅𝑓||[(1+𝑔𝑚2𝑅4)𝑟𝑜2+𝑅4])∙𝑅3

1

𝑔𝑚2
+𝑅4

 𝛺  (3-20) 

 

3.2 GENERIC TIA SIMULATION 

 Figure 10 shows the simulation schematic of the open-loop gain for the generic 

TIA (a shunt-shunt feedback amplifier).  A scale factor of 1µm is used, so the width for 

the PMOS and NMOS devices are 10 and 30 respectively.  The lengths for both devices 

were set at 2µm.   The low frequency gain of the circuit can be estimated from Equation 

3-8, and according to the equation, the open-loop gain cannot be greater than 𝑅𝑓, one 

over the feedback factor, 𝛽.  In order to verify that the open-loop gain is in part, 

determined by 𝑅𝑓, a DC operational point and AC analysis will be performed.  The 

results of the DC operational point analysis will give the numerical value for the 

transconductance, and the drain-source transconductance of M2 (the reciprocal of 𝑟𝑜2).  

Both the transconductance and 𝑟𝑜2 of M2 will be inserted into Equation 25, and the 

calculated result will be compared with the AC plot of 𝑣𝑜𝑢𝑡/𝑖𝑖𝑛.  
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Figure 11 shows the operational point analysis results.  

 
Figure 11. Generic TIA OP analysis results.  

Figure 10. Generic TIA AC analysis schematic.  
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From these simulation results, the transconductance and drain-source resistance of M2 

are listed under the name “mm2” in Fig. 11 and are: 

𝑔𝑚2 = 𝐺𝑚 = 131 𝜇𝐴/𝑉 (3-21) 

𝑟𝑜2 =
1

𝐺𝑑𝑠
=

1

0.198µ𝑆
= 5.05 𝑀𝛺  (3-22) 

Inserting both of these values into (3-20) gives 

|𝐴𝑂𝐿| =
𝑣𝑜𝑢𝑡

𝑖𝑖
≈

(5𝑘||5𝑘||[(1+131∙200𝑘)∙5.05𝑀+200𝑘])∙238𝑘
1

131
+200𝑘

= 2.97 𝑘𝛺 (3-23) 

The plot of the open-loop gain from the AC analysis is shown in Fig. 12, and it shows 

that the low frequency open-loop gain for the TIA, ≈ 2.6 𝑘𝛺, is in close agreement to the 

calculation in (3-23). 

 

 

Figure 12. Generic TIA open-loop gain plot from the AC analysis.  
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3.3 IMPROVED TIA CIRCUIT 

 The TIA in Figure 5 is a fully functional circuit, but there are some simple 

improvements that can be done to increase the open-loop gain without adding to the 

complexity of the design.  For instance, resistor 𝑅3 can be replaced with a PMOS device.  

This has the effect of increasing a term in the numerator of equation (3-20) therefore 

increasing the open-loop gain while generating a constant biasing current that is more 

insensitive to changes in the power supply.  The resistor 𝑅4 can be replaced with a wire 

(𝑅4 = 0). This has the effect of increasing the open-loop gain since a term in the 

denominator of (3-20) is decreasing.  The load resistance, 𝑅𝐿, in Figure 5 is replaced with 

an NMOS transistor.  The addition of this device will further increase the open-loop gain 

of the TIA.   Figure 13 shows the improved design.  The feedback amplifier is biased 

with a diode-connected current mirror.  Both an NMOS and PMOS current mirror are 

utilized to bias additional circuitry on the back-end of the TIA.  The M3 and the M4 

devices act as the PMOS and NMOS current mirrors respectively, and M1 behaves as the 

cascode.  The cascode increases the output resistance of the current mirror [11].  This has 

the effect of creating an ideal current source by maintaining a constant voltage drop 

across the output of the mirror [11].  The biasing voltages for the circuit in Figure 13 are 

𝑉𝑏𝑖𝑎𝑠𝑛 = 𝑉𝐺𝑆  (3-24) 

𝑉𝑛𝑐𝑎𝑠 = 𝑉𝑏𝑖𝑎𝑠𝑝 = 2𝑉𝐺𝑆  (3-25) 

Since the current mirror is a symmetric device, the drain voltages for M2 and M3 are 

𝑉𝐷2 = 2𝑉𝐺𝑆 = 𝑉𝑏𝑖𝑎𝑠𝑝  (3-26) 
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𝑉𝐷3 = 𝑉𝐺𝑆 = 𝑉𝑏𝑖𝑎𝑠𝑛  (3-27) 

respectively.   

On the back end of the shunt-shunt feedback amplifier is another type of amplifier 

called a series-shunt (transconductance) feedback amplifier.  This type of circuit series 

mixes the output voltage of the shunt-shunt- feedback amplifier with the feedback signal 

from the output of the M8 transistor.  Therefore the mixing taking place at the input 

active device M7 is series.  The output of M8 consists of a parallel connection between 

the 50 Ohm load resistor (the amplifier's load), the drain of M8, and the source terminal 

of M7.  This implies that the feedback network is shunting some of the current away from 

the output amplifier; hence the type of sampling at the output is referred to as shunt [12].  

 

The series-shunt feedback amplifier is considered a voltage amplification device with a 

gain having units V/V.  In this topology, the voltage amplifier has to drive a 50 ohm load, 

but it does not have enough drive strength to do this directly, so eight PMOS transistors 

Figure 13. Improved TIA design.  
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are connected in parallel (the MOSFET is contructed with 8 fingers).  The amplifier 

output  sources much more current than the other devices solely for driving a 50 ohm 

load.  This series-shunt feedback amplifier is designed to act as a voltage follower, and 

therefore it will have a voltage gain less than unity; however, the amplifier will have 

considerable current gain.  

 

 

3.3.1 IMPROVED TIA OPEN-LOOP GAIN VERIFICATION 

Recall that the open-loop gain for the generic shunt-shunt feeback amplifier in 

Figure 5 was already given in (3-20) and is restated below for convenience. 

|𝐴𝑂𝐿| =
𝑣𝑜𝑢𝑡

𝑖𝑖
≈

(𝑅𝐿||𝑅𝑓||[(1+𝑔𝑚2𝑅4)𝑟𝑜2+𝑅4])∙𝑅3

1

𝑔𝑚2
+𝑅4

 𝛺   

In the improved design of the shunt-shunt feedback amplifier, the open-loop gain 

simplifies to 

|𝐴𝑂𝐿| =
𝑣𝑜𝑢𝑡

𝑖𝑖
≈

(𝑟𝑜5||𝑅𝑓||𝑟𝑜4)∙𝑟𝑜1

1

𝑔𝑚4

= 𝑔𝑚4 (𝑟𝑜5 ||𝑅𝑓|| 𝑟𝑜4) ∙ 𝑟𝑜1 𝛺 (3-28) 

since 𝑔𝑚4 = 𝑔𝑚2, 𝑅3 = 𝑟𝑜1, 𝑟𝑜2 = 𝑟𝑜1, 𝑅𝐿 = 𝑟𝑜5, and 𝑅4 = 0.  Again, the improved 

design will have a larger gain than the generic design by virtue of the 

numerator/demoninator of (3-28) increasing/decreasing.   



27 

 

 To verify that the open-loop gain of the improved shunt-shunt feedback amplifier 

is indeed (3-28), a DC operating point analysis will be performed on the circuit in Fig. 13 

to determine the transconductance and drain-source conductance (inverse of the 

conductance is resistance) for M4, and the drain-source conductances of M1 and M5.  

The value calculated in equation (3-28) will be compared with the plot of the low 

frequency gain from an AC analysis.  Table 3-1 shows the results of the MOSFET 

characteristics from the DC operational point analysis.   

 

The transconductance of the PMOS device and the drain-source conductance for M4 are 

listed under the heading “mm4”and are given by:  

𝑔𝑚4 = 𝐺𝑚 = 3.02 𝑚𝐴/𝑉 (3-29) 

𝑟𝑜4 =
1

𝐺𝑑𝑠
=

1

0.117 𝑚𝑆
= 8.55 𝑘𝛺 (3-30) 

Table 3-1. Operational point analysis results for the improved TIA.  

Name: mmb3 mmb2 mm7 mm5 mm3 mm2 mmb1 mm8 mm6 mm4 mm1

Model: nmos nmos nmos nmos nmos nmos pmos pmos pmos pmos pmos

Id: 1.75E-03 1.75E-03 1.65E-03 1.79E-03 1.75E-03 1.74E-03 -1.75E-03 -6.21E-03 -1.65E-03 -1.80E-03 -1.74E-03

Vgs: 1.47E+00 1.69E+00 1.48E+00 1.47E+00 1.47E+00 1.69E+00 -1.84E+00 -1.37E+00 -1.84E+00 -1.79E+00 -1.84E+00

Vds: 1.47E+00 1.69E+00 3.23E+00 1.87E+00 1.47E+00 1.73E+00 -1.84E+00 -4.61E+00 -1.37E+00 -3.13E+00 -1.79E+00

Vbs: 0.00E+00 -1.47E+00 -3.93E-01 0.00E+00 0.00E+00 -1.47E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Vth: 5.79E-01 8.33E-01 6.51E-01 5.74E-01 5.79E-01 8.33E-01 -8.78E-01 -8.65E-01 -8.81E-01 -8.72E-01 -8.78E-01

Vdsat: 4.91E-01 5.07E-01 4.78E-01 4.92E-01 4.91E-01 5.06E-01 -6.98E-01 -4.17E-01 -6.96E-01 -6.76E-01 -6.97E-01

Gm: 2.92E-03 3.01E-03 3.03E-03 2.99E-03 2.92E-03 3.01E-03 2.85E-03 1.90E-02 2.68E-03 3.02E-03 2.84E-03

Gds: 1.32E-04 1.11E-04 5.51E-05 9.35E-05 1.31E-04 1.07E-04 1.73E-04 4.97E-04 2.38E-04 1.17E-04 1.77E-04

Gmb 7.11E-04 3.10E-04 5.60E-04 7.24E-04 7.11E-04 3.10E-04 6.85E-04 4.58E-03 6.52E-04 7.15E-04 6.83E-04

Cbd: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Cbs: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Cgsov: 5.90E-15 5.90E-15 5.90E-15 5.90E-15 5.90E-15 5.90E-15 1.72E-14 1.38E-13 1.72E-14 1.72E-14 1.72E-14

Cgdov: 5.90E-15 5.90E-15 5.90E-15 5.90E-15 5.90E-15 5.90E-15 1.72E-14 1.38E-13 1.72E-14 1.72E-14 1.72E-14

Cgbov: 5.28E-16 5.28E-16 5.28E-16 5.28E-16 5.28E-16 5.28E-16 4.89E-16 3.92E-15 4.89E-16 4.89E-16 4.89E-16

dQgdVgb: 4.35E-14 4.27E-14 4.32E-14 4.35E-14 4.35E-14 4.27E-14 9.26E-14 7.41E-13 9.26E-14 9.26E-14 9.26E-14

dQgdVdb: -5.68E-15 -5.61E-15 -5.65E-15 -5.67E-15 -5.68E-15 -5.61E-15 -1.70E-14 -1.36E-13 -1.71E-14 -1.70E-14 -1.70E-14

dQgdVsb: -3.13E-14 -3.05E-14 -3.07E-14 -3.12E-14 -3.13E-14 -3.05E-14 -7.02E-14 -5.54E-13 -7.02E-14 -7.00E-14 -7.02E-14

dQddVgb: -1.88E-14 -1.88E-14 -1.88E-14 -1.88E-14 -1.88E-14 -1.88E-14 -4.13E-14 -3.31E-13 -4.14E-14 -4.13E-14 -4.13E-14

dQddVdb: 5.75E-15 5.73E-15 5.74E-15 5.74E-15 5.75E-15 5.73E-15 1.71E-14 1.37E-13 1.72E-14 1.71E-14 1.71E-14

dQddVsb: 1.67E-14 1.45E-14 1.57E-14 1.67E-14 1.67E-14 1.45E-14 3.04E-14 2.42E-13 3.04E-14 3.03E-14 3.04E-14

dQbdVgb: -5.85E-15 -5.10E-15 -5.55E-15 -5.86E-15 -5.85E-15 -5.10E-15 -9.93E-15 -7.99E-14 -9.91E-15 -9.94E-15 -9.93E-15

dQbdVdb: 7.88E-17 5.20E-17 7.48E-17 8.39E-17 7.88E-17 5.23E-17 2.95E-17 2.91E-16 1.18E-17 3.55E-17 2.88E-17

dQbdVsb: -8.07E-15 -4.40E-15 -6.65E-15 -8.08E-15 -8.07E-15 -4.39E-15 -7.77E-15 -6.89E-14 -7.76E-15 -7.87E-15 -7.77E-15
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The drain-source conductances for M1 and M5 are listed under the headings “mm1” and 

“mm4” respectively. 

𝑟𝑜1 =
1

𝐺𝑑𝑠
=

1

0.177 𝑚𝑆
= 5.65 𝑘𝛺 (3-31) 

𝑟𝑜5 =
1

𝐺𝑑𝑠
=

1

93.5 µ𝑆
= 10.7 𝑘𝛺 (3-32) 

Inserting (3-29) – (3-32) into (3-28), the open-loop gain is calculated as 

|𝐴𝑂𝐿| =
𝑣𝑜𝑢𝑡

𝑖𝑖
≈ 𝑔𝑚4 (𝑟𝑜5 ||𝑅𝑓|| 𝑟𝑜4) ∙ 𝑟𝑜1 = (3.02

𝑚𝐴

𝑉
) ∙ (10.7𝑘||50𝑘||8.55𝑘) ∙ 5.65𝑘 =

74.1 𝑘𝛺 (3-33) 

Figure 14 shows the plot of the open-loop gain (𝑣𝑜𝑢𝑡1/𝑖𝑖𝑛) for the improved shunt-shunt 

feedback amplifier. 

 

The plot of the open-loop gain is in close agreement to the calculated value in (3-33).   

Figure 14. AC analysis plot of the open-loop gain for the improved shunt-shunt amplifier.  
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Several other features that are worth looking into is verifying that the dc drain 

voltages for M2 and M3 of the current mirror are equal to (3-26) and (3-27) respectively.  

According to Fig.15: 

 

𝑉𝐷2 = 2𝑉𝐺𝑆 = 𝑉𝑏𝑖𝑎𝑠𝑝 = 3.21𝑉 (3-34) 

𝑉𝐷3 = 𝑉𝐺𝑆 = 𝑉𝑏𝑖𝑎𝑠𝑛 = 1.47𝑉  (3-35) 

The expected voltages at the drain of the cascode and current mirror are indeed verified 

through the results of the operational point analysis. 

An AC analysis can also be performed on the series-shunt feedback amplifier to 

determine the open-loop gain of the circuit.  Since it was previously determined that this 

particular toplogy is a voltage follower, intutitvely the expectation is that the closed-loop 

voltage gain should be less than one, and with such a small closed-loop gain, the 

expectation is that the open-loop gain will also be small, but larger than unity.  In order to 

find an expression for the voltage follower gain, the circuit is reconstructed in Fig. 16 as a 

small-signal model. 

Figure 15. DC operating point nodal voltages. 
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Notice that since the desired response is the open-loop gain, the feedback connection is 

shorted to ground at the input, but the connection is opened at the output.  Anytime that 

there is series mixing or sampling, the feedback network will be shorted to ground; 

moreover, for shunt mixing or sampling, the feedback network will be opened.  Any gain 

in the path of the feedback network will load both the input and output active devices, 

and the model will have to reflect those loading effects.  For the circuit in Fig.16 there are 

no loading effects at the input or output because there is no gain in the feedback network.  

The voltage at the output is given by 

𝑣𝑜𝑢𝑡2 = 𝑖𝑑8(𝑟𝑜8||𝑅𝐿)  (3-36) 

The current generated by M8 is 

𝑖𝑑8 = 𝑔𝑚8𝑉𝑆𝐺8 = −𝑔𝑚8𝑣𝑦 (3-37) 

Inserting (3-37) into (3-36) gives 

Figure 16. Series-shunt feedback amplifier small-signal model.  
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𝑣𝑜𝑢𝑡2 = −𝑔𝑚8𝑣𝑦(𝑟𝑜8||𝑅𝐿) (3-38) 

An expression for 𝑣𝑦, and the current generated by M7 are: 

𝑣𝑦 = 𝑖𝑑7(𝑟𝑜6||𝑟𝑜7)  (3-39) 

𝑖𝑑7 = 𝑔𝑚7𝑉𝐺𝑆7 = 𝑔𝑚7𝑣𝑜𝑢𝑡1  (3-40) 

Plugging (3-40) and (3-39) into (3-38) to form the expression as  

|𝐴𝑂𝐿| =
𝑣𝑜𝑢𝑡2

𝑣𝑜𝑢𝑡1
= 𝑔𝑚8(𝑔𝑚7(𝑟𝑜6||𝑟𝑜7))(𝑟𝑜8||𝑅𝐿) (3-41) 

Table 2-1 still gives the correct values that are required to calculate the open-loop gain 

since reconstructing the circuit in Figure 15 does not alter the DC characteristics.  Below 

are the results that are needed for (3-41): 

𝑔𝑚7 = 𝐺𝑚 = 3.03
𝑚𝐴

𝑉
   (3-42) 

𝑔𝑚8 = 𝐺𝑚 = 19.0
𝑚𝐴

𝑉
   (3-43) 

𝑟𝑜6 =
1

𝐺𝑑𝑠
=

1

0.238 𝑚𝑆
= 4.20 𝑘𝛺 (3-44) 

𝑟𝑜7 =
1

𝐺𝑑𝑠
=

1

55.1 µ𝑆
= 18.1 𝑘𝛺 (3-45) 

𝑟𝑜8 =
1

𝐺𝑑𝑠
=

1

0.497 𝑚𝑆
= 2.01 𝑘𝛺 (3-46) 

Inserting (3-46) – (3-42) into (3-41) gives 

|𝐴𝑂𝐿| =
𝑣𝑜𝑢𝑡2

𝑣𝑜𝑢𝑡1
= (19.0

𝑚𝐴

𝑉
) ((3.03

𝑚𝐴

𝑉
) ∙ (4.20𝑘||18.1𝑘))(2.01𝑘||50) = 9.6 (3-47) 
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Comparing the calculated value with the plot in Fig.17, the open-loop gain is reasonably 

close.  

 

The schematic that was used for the AC analysis is shown in Fig.18.  Notice that the 

circuit had to be altered in order to determine the open-loop gain by simulation.  The 

inductor at the gate of M7 allows the DC biasing from the shunt-shunt amplifier to 

maintain the bias point, and the capacitor AC couples the input signal to the input of the 

amplifier.  Also, the inductor in the feedback path blocks any feedback from the output 

amplifier, and the capacitor is added to ensure that M7 has an AC path to ground. 

Figure 17. AC analysis plot of the open-loop gain for the series-shunt amplifier.  
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3.3.2 IMPROVED TIA DESIGN ENCAPSULATION 

 In the previous section emphasis was placed on how to take a rudimentary design, 

such as the generic TIA, and make vast improvements with low complexity changes.  In 

this section not much has been discussed about the entire circuit when analyzed as a 

whole.  When characterizing these types of systems the open-loop gain and the feedback 

factor are the only relavant parameters because the loop gain is the most important 

characteristic in a feedback amplifier [13].  Once all of these parametrs are determined, 

the gain of the system can be calculated.  Up to this point, the open-loop gain for two 

devices that comprise the improved TIA have been calculated and simulated, but the 

closed-loop gain for both circuits have not.  Recall that the closed-loop gain is 3-10 and is 

shown below for convenience. 

Figure 18. AC analysis schematic of the open-loop gain for the series-shunt amplifier.  
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𝐴𝐶𝐿 =
𝐴𝑂𝐿

1 + 𝛽𝐴𝑂𝐿
  

For the improved shunt-shunt amplifier, the closed-loop gain is  

𝐴𝐶𝐿 =
𝐴𝑂𝐿

1+𝛽𝐴𝑂𝐿
=

−74.1 𝑘𝛺

1+
−1

50 𝑘𝛺
∙−74.1 𝑘𝛺

= −29.9 𝑘𝛺 (3-48) 

given that the feedback factor is 

𝛽 =
−1

𝑅𝑓
= −

1

50 𝑘𝛺
 𝑚ℎ𝑜𝑠 (3-49) 

The closed-loop gain is much less than the 50 kΩ because the open-loop gain of the 

improved TIA is not infinitiely large.  Figure 19 shows the plot of the closed-loop gain 

for the improved shunt-shunt feedback amplifier. 

 

The calculated value, and the plot of the closed-loop gain are in close agreement.  The 

closed-loop gain of the voltage follower is 

Figure 19. AC analysis plot of the closed-loop gain for the shunt-shunt amplifier.  
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𝐴𝐶𝐿 =
𝐴𝑂𝐿

1+𝛽𝐴𝑂𝐿
=

9.6

1+(1)(9.6)
= 0.91 (3-50) 

given that 𝛽 = 1.  Figure 20 shows a plot of the closed-loop gain of the voltage follower.   

 

Both the calculation and the plot are in close agreement.  For the entire TIA circuit, the 

closed-loop gain is the product of the gain from the shunt-shunt feedback circuit and the 

series-shunt feedback circuit.   

𝐴𝐶𝐿 = −29.9 𝑘𝛺 × 0.91 = −27.2 𝑘𝛺  (3-51) 

Figure 21 shows the plot of the closed-loop gain for the TIA, and the results are in close 

agreement.  Notice how the closed-loop gain of the TIA is smaller than the open-loop 

gain.  One of the disadvantages in incorporating negative feedback is the reduction in 

gain in order to achieve an increase in bandwidth, stability, and linearity. 

Figure 20. AC analysis plot of the closed-loop gain for the series-shunt amplifier.  
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Figure 21. AC analysis plot of the closed-loop gain for the TIA.  
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CHAPTER 4 – NOISE 

Noise in the most simplistic definition is any unwanted signal that degrades or 

interferes with a desired signal.  Electrical noise is commonly understood as the random 

thermal fluctuations of electron motion in conductors, but electrical noise is also the 

random movement of charge across a discontinuity.  This is the case with leakage current 

at the gate-oxide interface of metal-oxide semiconductor field-effect transistors 

(MOSFETs), and is referred to as shot noise.  The effects of noise in electrical circuits 

can be heard in the crosstalk interference from a two-way radio, the humming from a 

transformer, the flicker of a picture on a television screen, and the fluctuations seen with 

a signal on an oscilloscope.  Noise has an additive and random component, and there is 

no method that exists to eliminate it altogether.  The best that can be done is to minimize 

the effects of noise on the system, but with all designs there are associated costs.  Speed 

and bandwidth are often affected when noise minimization techniques are employed.  As 

in any design tradeoffs have to be considered.      

In the optical pyrometer ASIC there are several types of noise sources that can 

influence the integrity of the desired signal.  The predominant noise sources include 

thermal noise in any of the discrete resistors that are used for biasing the photodiode or 

for setting the gain in the feedback amplifiers, shot noise present within the photodiode 

and MOSFETs, and flicker and thermal noise in the short-channel MOSFETS (channel 

lengths less than 1 μm) that comprise the TIA circuit.  This chapter will discuss all of the 

dominant noise sources in the optical pyrometer ASIC chip, and will include the 

techniques that are used to model noise in simulations.  The calculation of the input-
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referred noise in the improved TIA circuit along with a noise simulation to verify the 

calculation will also be given in this section. 

 

4.1 THERMAL NOISE 

Thermal noise, or Johnson noise, is associated with the random motion of charge 

in a conductor, and is governed by temperatures above absolute zero.  There is no overall 

contribution in net current from all of the carriers undergoing random thermal motion; 

however, at any finite interval in time, there are nonzero changes in the net current [14].  

The equation that defines the power spectral density (PSD) of thermal noise is shown 

below 

𝑉𝑅
2(𝑓) = 4𝑘𝑇𝑅 (𝑉2 𝐻𝑧⁄ )  (4-1) 

where 𝑘, is Boltzmann’s constant, which is 13.8 × 10−24𝐽 ∙ °𝐾−1, 𝑇 is temperature in 

degrees Kelvin, or °𝐾, and 𝑅 is the resistance in ohms (Ω) [14].  One characteristic that is 

obvious from (4-1) is that the thermal noise PSD is constant over any bandwidth.  A 

signal that occupies the entire frequency spectrum, and has a near constant PSD is called 

white noise because it is similar to white light whose spectral content is also constant 

over the visible spectrum.  A spectrum analyzer (SA) is used to measure the thermal 

noise in a circuit.  The results of the noise analysis may give small output noise values, 

but in many cases, in an exceptionally designed system, that value provides a wealth of 

information.  If thermal noise was the only source of noise present within the system, 

then the output PSD shows the noise floor for that system.  Suppose that the system was a 
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digitizer, then knowing the noise floor implies knowing the smallest signal that can be 

digitized.  The circuit models for thermal noise are shown below in Fig.22. 

  

 

The units for the  voltage spectral density, 𝑉𝑅(𝑓),  are 𝑉 √𝐻𝑧⁄ , and 𝐴 √𝐻𝑧⁄  for 𝐼𝑅(𝑓).  At 

room temperature, approximately 300 K, the value for 4𝑘𝑇 approximates to  

4𝑘𝑇 = 4 ∙ (13.8 × 10−24𝐽 ∙ °𝐾−1) ∙ 300𝐾 ≈ 1.66 × 10−20 𝐽 (4-2) 

The mean-squared RMS output noise voltage for the current noise model is  

𝑉𝑜𝑛𝑜𝑖𝑠𝑒,𝑅𝑀𝑆
2 = ∫

4𝑘𝑇

𝑅
∙ 𝑅2 𝑑𝑓 = 4𝑘𝑇𝑅𝐵

𝑓2

𝑓1
  (𝑉𝑜𝑙𝑡𝑠2)  (4-3) 

where 𝐵 = 𝑓2 − 𝑓1 𝐻𝑧.  To reduce the thermal RMS output noise in a system, the 

practical solution is to limit its overall bandwidth.  

 A MOSFET has thermal noise associated with the resistance in the channel [14].  

The thermal noise is different if the MOSFET is operating in the triode or saturation 

region.  In the saturation region, the thermal noise PSD is  

𝐼𝑅,𝑀𝑂𝑆
2 (𝑓) =

4𝑘𝑇
3

2
∙

1

𝑔𝑚

=
8𝑘𝑇

3
∙ 𝑔𝑚   𝐴2 𝐻𝑧⁄   (4-4) 

Figure 22. Thermal noise models.  
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The thermal noise PSD for a MOSFET operating in the triode region is 

𝐼𝑅,𝑀𝑂𝑆
2 (𝑓) =

4𝑘𝑇

𝑅𝑐ℎ,𝑡𝑟𝑖𝑜𝑒
  𝐴2 𝐻𝑧⁄   (4-5) 

 A photodiode also has a thermal noise contribution, but it has more to do with the 

biasing than the actual photodiode. The photodiode is modeled as an parallel RC circuit 

in simulation.  Figure 23 shows the model of the shot noise. 

 

The resistance in the RC circuit is added to bias the photodiode, and the capacitance 

models the depletion capcitance for a reverse biased diode.  This capcitance 𝐶𝑑𝑒𝑝 is a 

function of the biasing voltage is described by 

𝐶𝑑𝑒𝑝 =
𝐶𝑗0

(1+
𝑉𝑑
𝑉𝑏𝑖

)
𝑚  (4-6) 

where 𝐶𝑗0 is the zero-bias depletion layer capacitance, 𝑉𝑑 is the voltage across the diode, 

𝑉𝑏𝑖 is the built-in potential, and 𝑚 is the grading coefficient [8].  According to Fig. 23, 

Figure 23. Shot noise model.  
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the output noise has a single-pole rolloff, so the RMS voltage output noise for the 

photodiode element in the optical pyrometer ASIC chip is  

𝑉𝑠ℎ𝑜𝑡,𝑅𝑀𝑆 = √
𝑘𝑇

𝐶
 (4-7)  

This is commonly referred as “kay tee over cee” noise.  To verify that the photodiode has 

an RMS output noise given by equation (4-7), the output noise is described as 

𝑉𝑜𝑛𝑜𝑖𝑠𝑒(𝑓) = √
4𝑘𝑇

𝑅
∙ [

𝑅∙
1

𝑗𝜔𝐶𝑑𝑒𝑝

𝑅+
1

𝑗𝜔𝐶𝑑𝑒𝑝

] = √
4𝑘𝑇

𝑅
∙ [

𝑅

1+𝑗𝜔𝑅𝐶𝑑𝑒𝑝
] (4-8) 

𝑉𝑜𝑛𝑜𝑖𝑠𝑒
2 (𝑓) =

4𝑘𝑇

𝑅
∙ [

𝑅2

1+(
𝑓

𝑓3𝑑𝐵
)

2] =
4𝑘𝑇𝑅

1+(
𝑓

𝑓3𝑑𝐵
)

2  (4-9) 

where 𝑓3𝑑𝐵 = 1/2𝜋𝑅𝐶 .  The output mean-squared noise voltage is 

𝑉𝑜𝑛𝑜𝑖𝑠𝑒,𝑅𝑀𝑆
2 = ∫

4𝑘𝑇𝑅

1+(
𝑓

𝑓3𝑑𝐵
)

2  𝑑𝑓 = 𝑁𝐸𝐵 ∙ 𝑉𝐿𝐹,𝑜𝑢𝑡
2𝑓2

𝑓1
 (4-10)   

𝑉𝑜𝑛𝑜𝑖𝑠𝑒,𝑅𝑀𝑆 = √𝑁𝐸𝐵 ∙ √𝑉𝐿𝐹,𝑜𝑢𝑡
2 = √𝑓3𝑑𝐵 ∙

𝜋

2
∙ 4𝑘𝑇𝑅 =

√
1

2𝜋𝑅𝐶𝑑𝑒𝑝
∙

𝜋

2
∙ 4𝑘𝑇𝑅 = √

𝑘𝑇

𝐶𝑑𝑒𝑝
𝑉𝑜𝑙𝑡𝑠 (4-11) 

Therefore the RMS output voltage noise is “kay tee over cee” and set by the diode’s 

depletion capacitance.  
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4.2 SHOT NOISE 

 In the optical pyrometer ASIC chip there are several devices that contribute to a 

noise source called shot noise.  There are two categories of shot noise that influences the 

performance of the chip.  The first is the noise attributed to the random movement of 

EHPs, and is called dark current.  The other type of shot noise has to do with the 

collection of photons, and is called photon shot noise.  Both the mean-squared values of 

dark current and photon shot noise combine to increase the noise in the circuit. 

 Random thermal motion of electrons in a conductor is not the only source of 

electrical noise present in a circuit.  The movement of charge across a potential 

discontinuity is another noise source, and is commonly referred to as shot noise.  Unlike 

thermal noise, shot noise is independent of temperature, and in comparison with flicker 

noise is also independent of bandwidth.  In high frequency systems, shot noise is usually 

less dominant than thermal noise.   

The term shot noise is also called Schottky noise [15].  This later name was 

coined by a German physicist (Walter Schottky) who studied the random fluctuations of 

current in semiconductor devices.  Two conditions have to exist for the presence of shot 

noise.  The first condition is that a device must have a potential barrier, and the second is 

that the potential barrier is the driving mechanism for current.  In diodes, a pn junction 

acts as a barrier that impedes the flow of current.  As electrons encounter the barrier, the 

potential energy starts to increase to a point where the electrons have enough energy to 

surmount the barrier. The net gain in energy amounts to an increase in the kinetic energy 

of the electrons.  The shot noise is associated with this flow of electrons as a consequence 
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of this gain in kinetic energy across the potential barrier.  Figure 24 shows a pictorial 

description of shot noise generation in a pn junction diode. 

 

The shot noise PSD is given by 

𝐼𝑠ℎ𝑜𝑡
2 (𝑓) = 2𝑞𝐼𝐷𝐶  𝐴2 𝐻𝑧⁄  (4-12) 

Equation (4-12) shows that shot noise has a white spectrum, and therefore is independent 

of frequency, but is dependent on the charge of an electron and current. 

 In the optical pyrometer ASIC chip, the circuit element that is the largest 

contributor to shot noise is the photodiode.  The device is reverse biased, so a significant 

electric potential barrier is generated; however, since the photodiode has a small 

saturation current due to the thermally generated EHPs while reverse biased, the noise 

contribution attributed to shot noise is minimal.  A small saturation current, hence a small 

shot noise contribution, is the result of the potential barrier for a reverse biased 

photodiode being large enough to prevent the thermally generated EHPs from drifting to 

Figure 24. Shot noise generation [15].  
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the p region [15].  Not all of the electrons are confined to the n region of the photodiode, 

so the few electrons that do migrate to the p region, and do not recombine, account for 

the small DC saturation current.   

 

4.2.1 DARK CURRENT 

 The thermally generated current, resulting from thermal generation in the 

photodiode's depletion region, is called dark current.  The name dark current and 

saturation current are used to describe the thermally generated carriers in a photodiode 

and diode respectively.  If the dark current is a constant then it can be easily be blocked 

or removed from the desired signal; however, as mentioned in 4.2, the discrete nature of 

electrons implies that the signal will fluctuate, therefore the only solution available is to 

minimize the effect on the photocurrent signal.  Dark current is modeled as 

𝐼𝑛𝑜𝑖𝑠𝑒,𝑑𝑎𝑟𝑘
2 (𝑓) = 2𝑞𝐼𝑑𝑎𝑟𝑘   (𝐴2/𝐻𝑧)  (4-13) 

The RMS dark current is 

𝐼𝑑𝑎𝑟𝑘,𝑅𝑀𝑆 = √2𝑞𝐼𝑑𝑎𝑟𝑘𝐵  (𝐴𝑚𝑝𝑠)  (4-14) 

where 𝐵 is the bandwidth of the PD. 

 

4.2.2 PHOTON NOISE 

 Shot noise is not limited to electrons passing over a potential barrier in a 

semiconductor, but is also inclusive of how photons are received by a photodiode.  The 
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number of photons collected by an instrument, such as a photodiode, follows a Poisson 

distribution [16].  This is due to the discrete nature of photons, and the uncorrelated 

events of receiving consecutive photons [16].  The indepenence of random photon arrival 

accounts for the shot noise in the photodiode.  Photonic shot noise has the same “white” 

distribution as shot noise, but is only a concern at low light levels.  Photonic shot noise is 

defined as 

𝐼𝑛𝑜𝑖𝑠𝑒,𝑝ℎ𝑜𝑡𝑜𝑛
2 (𝑓) = 2𝑞𝐼𝑝ℎ𝑜𝑡𝑜  (𝐴2/𝐻𝑧)  (4-15) 

The RMS photonic noise current is 

𝐼𝑝ℎ𝑜𝑡𝑜𝑛,𝑅𝑀𝑆 = √2𝑞𝐼𝑝ℎ𝑜𝑡𝑜𝐵  (𝐴𝑚𝑝𝑠)  (4-16) 

where 𝐵 is the bandwidth of the PD.  Notice the difference between equations (4-16) and 

(4-14).  The dark current contributes to the shot noise, and is a function of the dark 

current, or the electrons that are thermally generated in the device; however, the photonic 

noise is a function of the photocurrent.  The photocurrent is the desired signal, but this 

equation is implying that the photocurrent is not a constant even if the source is 

producing continuous width (CW) radiation.  The desired signal exhibits fluctuations due 

to the statistical nature of collecting photons. 

The fluctuations in the signal current are greater at low light levels since the 

fluctuations account for a greater percentage of the signal (1000 photons collected with 

an uncertainity of ±100 (1%) photons, or 1,000,000 photons collected with an 

uncertainty of ±1000 (0.1%) photons where the uncertainty for a Poisson distribution is 

√�̅�, where �̅� is the average number of photons collected) [17].  The implication of 
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photonic shot noise on a photodiode is that there is a limitation that exists in receiving 

photons from a source, and as long as that source is emitting a significant amount of 

photons, then photonic shot noise minimally impacts the SNR of the system.  

The total shot noise is  

𝐼𝑠ℎ𝑜𝑡,𝑅𝑀𝑆
2 = 𝐼𝑑𝑎𝑟𝑘,𝑅𝑀𝑆

2 + 𝐼𝑝ℎ𝑜𝑡𝑜𝑛,𝑅𝑀𝑆
2 = 2𝑞(𝐼𝑑𝑎𝑟𝑘 + 𝐼𝑝ℎ𝑜𝑡𝑜)𝐵  (𝐴𝑚𝑝𝑠2) 

 (4-17) 

 

4.2.3 NOISE EQUIVALENT POWER 

An important parameter that often is quoted in photodiode datasheets is the noise 

equivalent power (NEP).  NEP is the optical power required to produce a photocurrent 

signal that is equivalent to the total shot noise in a photodiode for a particular wavelength 

of light within a bandwidth of 1 Hz [19].  This is the same as saying that NEP is the 

required optical power in achieving unity SNR within a bandwidth 1 Hz.  The equation 

for NEP is 

𝑁𝐸𝑃 =
𝑃𝑜

√𝐵
=

1

𝑅
∙ √2𝑞(𝐼𝑑𝑎𝑟𝑘 + 𝐼𝑝ℎ𝑜𝑡𝑜)  (𝑊/√𝐻𝑧)  (4-18) 

where 𝑅 is the responsivity defined by equation (2-4) and restated as 

ℛ =
𝐼𝑝ℎ

𝑃𝑜
 

The photocurrent in the numerator of the responsivity equation is replaced with the 

equivalent shot noise current per the definition for NEP. 
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4.3 FLICKER NOISE 

 Flicker, or (one-over-f), noise is found in all active devices [18].  The spectrum of 

flicker noise decreases as the frequency increases.  Figure 25 shows an example PSD for 

flicker noise in a device.   

 

Clearly at low frequencies the dominant noise source in any system that contains active 

devices will almost certainly be flicker noise, and high frequencies, a reasonable 

assumption for the dominant noise source in most practical systems is either thermal or 

shot noise (white noise sources).  

 In the optical pyrometer ASIC chip, the MOSFETS that comprise the current 

mirrors and feedback amplifiers will contribute the highest amount of flicker noise within 

the circuit.  The drain current will exhibit a flicker as charge carriers move across the 

gate-oxide interface and become trapped amongst the extra energy states.  This trapping 

and releasing induces the flicker that is more likely to occur at low frequencies [19].  The 

noise model to describe flicker noise in general is described as 

Figure 25. Flicker noise PSD [18].  



48 

 

𝐼1

𝑓

2(𝑓) = 𝑉1

𝑓

2(𝑓) =
𝐹𝑁𝑁

𝑓
 𝐴2 𝐻𝑧 𝑜𝑟 𝑉2 𝐻𝑧⁄⁄  (4-19) 

where 𝐹𝑁𝑁 is the flicker noise numerator [8].  For MOSFETS, the 𝐹𝑁𝑁 is described as 

𝐹𝑁𝑁 =
𝜅

𝐶𝑜𝑥𝑊𝐿
  (4-20) 

where 𝜅 is a proceess-dependent parameter, and 𝐶𝑜𝑥 is the oxide capacitance.  In SPICE, 

the flicker noise numerator is 

𝐹𝑁𝑁 =
𝐾𝐹∙𝐼𝐷

𝐴𝐹

(𝐶𝑜𝑥
′ ∙𝐿)2

 (4-21) 

𝐶𝑜𝑥
′ =

𝜖𝑟𝜖0

𝑡𝑜𝑥
  (4-22) 

𝐾𝐹 is the flicker noise coefficient, 𝐼𝐷 is the DC drain current, and 𝐴𝐹 is the flicker noise 

exponent that is assumed to have a typical value of 1 [8, 14].  The 𝐹𝑁𝑁 in (4-20) and (4-

21) implies that low noise circuits will have MOSFETS with device areas that are large in 

order to minimize the effects of flicker noise.  The mean-squared value is 

𝑉1

𝑓
,𝑅𝑀𝑆

2 = ∫
𝐹𝑁𝑁

𝑓
𝑑𝑓 = 𝐹𝑁𝑁 ∙ (ln 𝑓2 − ln 𝑓1) = 𝐹𝑁𝑁 ∙ ln  

𝑓2

𝑓1
  𝑉2𝑓2

𝑓1
  (4-23) 

Considering both the flicker and thermal noise components for the MOSFET, the circuit 

model is shown in Fig. 26.  The overall noise model for the MOSFET is 

𝐼𝑛𝑜𝑖𝑠𝑒,𝑀𝑂𝑆
2 (𝑓) = 𝐼1

𝑓

2(𝑓) + 𝐼𝑅,𝑀𝑂𝑆
2 (𝑓) =

𝐾𝐹∙𝐼𝐷
𝐴𝐹

(𝐶𝑜𝑥
′ ∙𝐿)2∙𝑓

+
8𝑘𝑇

3
∙ 𝑔𝑚  (4-24) 
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4.4 TREATMENT OF NOISE IN IMPROVED TIA CIRCUIT 

Recall that the improved TIA circuit is in Fig. 13.  Before going right into the 

analysis of the circuit, a few details regarding noise in current mirrors and how to treat 

noise in multi-stage amplifiers will make the transitions through the analysis appear 

seamless.  Many times throughout this section the output noise measurement is less 

important for the interpretation of the effects of noise in the system than the input-referrd 

noise.  Input-referred noise cannot physically be measured within a circuit; nevertheless, 

the information that it conveys gives us a model for how the input signal is affected by 

the noise.  Now the active device can be treated as a noiseless amplifier, and the output 

signal, from the noise alone, generates the output noise exactly like the actual circuit. 

 

4.4.1 THE TREATMENT OF NOISE IN CURRENT MIRRORS 

Figure 27 shows a simple current mirror with the inclusion of the MOSFET noise 

models for MB1 and M1.   

Figure 26. MOSFET noise model.  
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The MOSFET noise model contains the flicker and themal noise components, and is 

described in equation (4-24).  If the MOSFETs are perfectly matched then the noise from 

MB1 gets mirrored over to M1.  In order to see this, the diode-connected MB1 transistor 

in Fig. 27 is modified to represent a resistor, and now the circuit is shown in Fig. 28.   

 

The noise voltage at the gate of MB1 and M1 is the same, and is represented as 

𝑣𝑛,𝑀𝐵1
2 (𝑓) = 𝑣𝑛,𝑀1

2 (𝑓) = 𝑣𝑛
2(𝑓)   𝑉2 𝐻𝑧⁄   (4-25) 

Figure 28. Output-referred noise for a simple current mirror.  

The noise from MB1 gets 

referred over to M1 

Figure 27. Simple current mirror noise model.  
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A diode-connected transistor is modeled as a resistor with resistance 1/𝑔𝑚, so, the noise 

current across the diode-connected transistor is 

𝑖𝑛
2(𝑓) =

𝑣𝑛
2(𝑓)

𝑔𝑚,𝑀𝐵1
2   (4-26) 

Referring this to the output of the current gives 

𝑣𝑜
2(𝑓) = 𝑔𝑚,𝑀1

2 ∙ 𝑖𝑛
2(𝑓) = 𝑔𝑚,𝑀1

2 ∙
𝑣𝑛

2(𝑓)

𝑔𝑚,𝑀𝐵1
2 = 𝑣𝑛

2(𝑓)  (4-27) 

This implies that the noise from MB1 is mirrored over to the output M1, therefore the 

total output noise for a simple current mirror is 

𝐼𝑛𝑜𝑖𝑠𝑒,𝐶𝑀
2 (𝑓) = 𝐼𝑛𝑜𝑖𝑠𝑒,𝑀𝐵1

2 (𝑓) + 𝐼𝑛𝑜𝑖𝑠𝑒,𝑀1
2 (𝑓)  (4-28) 

 The improved TIA design incorporates a cascode current mirror instead of a 

simple current mirror.  There are several advantages in utilizing a casocde current mirror.  

One that has already been mentioned is the current gets closer to ideal since the voltage 

across the output of the mirror remains relatively constant; however, from the standpoint 

of noise, the cascode current mirror improves the circuit’s SNR.  The gain of a cascode 

current mirror is significantly larger than the gain of the simple current mirror, and the 

input-referred noise is inversely proportional to the gain, so the noise is reduced and the 

signal power is increased, therefore the SNR is increased.  Figure 29 shows a cascode 

circuit that includes the noise models for the MOSFETs.   



52 

 

 

In both the PMOS and NMOS current mirrors the noise from MB1 and MB3 are mirrored 

over to M1 and M3 respectively; however, something interesting happens with the noise 

from M2.  The noise current from M2 has two possible paths to go.  One is through the 

cascode consisting of the impedance looking into the drain of M2, and the other path is a 

circulation around M2.  The impedance of M2 is much smaller than the impedance of the 

cascode, so the noise current from M2 simply circulates around M2, and does not 

contribute to the noise in the rest of the circuit.  This is a powerful low noise design 

technique that also has added benefit of higher gain because of the larger output 

impedance. 

 

4.4.2 INPUT-REFERRED NOISE IN MULTI-STAGE AMPLIFIERS 

 The output noise for a single amplifier according to Fig. 30 is 

Figure 29. Cascode current mirror with noise.  
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𝑣𝑜𝑛𝑜𝑖𝑠𝑒
2 (𝑓) = 𝐴2𝑣𝑖𝑛𝑜𝑖𝑠𝑒

2 (𝑓) (𝑉2/𝐻𝑧)  (4-29) 

 

For a circuit with 𝑁 amplifiers, in cascade, the output referred-noise is 

𝑣𝑜𝑛𝑜𝑖𝑠𝑒
2 (𝑓) = (𝐴1

2𝐴2
2 ∙∙∙ 𝐴𝑁

2 ) ∙ 𝑣𝑖𝑛𝑜𝑖𝑠𝑒1
2 (𝑓) + (𝐴2

2 ∙∙∙ 𝐴𝑁−2
2 𝐴𝑁−1

2 𝐴𝑁
2 ) ∙ 𝑣𝑖𝑛𝑜𝑖𝑠𝑒2

2 (𝑓) +∙∙∙

+𝐴𝑁
2 𝑣𝑖𝑛𝑜𝑖𝑠𝑒𝑁

2   (4-30) 

The input-referred noise becomes 

𝑣𝑖𝑛𝑜𝑖𝑠𝑒
2 (𝑓) = 𝑣𝑖𝑛𝑜𝑖𝑠𝑒1

2 (𝑓) +
(∙∙∙ 𝐴𝑁−2

2 𝐴𝑁−1
2 𝐴𝑁

2 )

𝐴1
2 ∙ 𝑣𝑖𝑛𝑜𝑖𝑠𝑒2

2 (𝑓) +∙∙∙ 

+
𝐴𝑁

2

𝐴1
2𝐴2

2∙∙∙𝐴𝑁−2
2 𝐴𝑁−1

2 ∙ 𝑣𝑖𝑛𝑜𝑖𝑠𝑒𝑁
2

  (4-31) 

This result implicity says that to minimize the overall noise in the 𝑁 cascaded amplifiers, 

the focus should be reducing the noise of the first stage amplifier. 

 

4.4.3 PHOTODIODE INPUT-REFERRED NOISE IMPACT  

 Figure 31 shows the input-referred noise of an amplifier due to the thermal noise 

contribution from the biasing circuit of a photodiode.  In section 4.1, the model for the 

Figure 30. Output-referred noise of a single amplifier.  



54 

 

photodiode was shown as a capacitor, and the RMS output noise voltage was the “kay tee 

over cee” noise. 

 

 

The input noise from the PD was given in (4-11), and is repeated below. 

𝑉𝑖𝑛𝑜𝑖𝑠𝑒,𝑅𝑀𝑆 = √
𝑘𝑇

𝐶
𝑉𝑜𝑙𝑡𝑠 

Consider that the amplifier has a small input impedance, similar to a TIA, so the input-

referred noise from the PD divides across the bias resistor and input impedace of the 

amplifier.  Therefore, the RMS noise across the input of the amplifier is 

𝑉𝑖𝑛𝑜𝑖𝑠𝑒,𝑅𝑖𝑛 = √
𝑘𝑇

𝐶
∙

𝑅𝑖𝑛

𝑅𝑖𝑛+𝑅𝑏𝑖𝑎𝑠
  (𝑉)  (4-32) 

The noise across the input of the TIA is also expressed as an RMS current from 

Figure 31. PD input noise.  
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𝐼𝑖𝑛𝑜𝑖𝑠𝑒,𝑅𝑖𝑛 =
√

𝑘𝑇

𝐶

𝑅𝑏𝑖𝑎𝑠
∙

𝑅𝑏𝑖𝑎𝑠

𝑅𝑏𝑖𝑎𝑠+𝑅𝑖𝑛
= √

𝑘𝑇

𝐶
∙

1

𝑅𝑖𝑛+𝑅𝑏𝑖𝑎𝑠
  (𝐴)  (4-33) 

If the active device is a TIA then the expectation is the input impedance is small, so let’s 

assume 𝑅𝑖𝑛 = 1 𝛺.  In choosing an appropiate value for the bias resistance, the bias 

voltage and reverse current are used from the component datasheets.  Table 4-1 shows the 

effect of PD noise on a noiseless TIA. 

 

As the depletion capcitance of a PD decreases, the thermal noise increases, and the 

consequence of this on the system is a reduction in the SNR.  For applications that 

require the sensing of near-infrared (NIR) or infrared (IR) radiation, the choice of PD is 

limited to InGaAs photodiodes that have extremely small depletion capacitance values, 

and these types of PDs have the potential of decreasing the SNR of the overall system.  

Not only does the PD affect the noise, but the biasing resistor also impacts the noise 

sensitivity.  In a TIA, the input-referred noise from the PD decreases as the biasing 

resistor’s resistance increases; however, an increase in this resistance also reduces the 

bandwidth since the 3-dB cutoff is inversely proportional to the resistance of the bias 

resistor.  This is another example of the tradeoffs between low-noise design and the 

effects on a system’s speed and bandwidth. 

Table 4-1. PD RMS input-referred noise.  
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4.5 IMPROVED TIA CIRCUIT NOISE ANALYSIS 

 Recall that the improved TIA circuit is shown in Fig. 13.  In performing the noise 

analysis of this circuit, the series-shunt feedback amplifier is ignored since the noise 

contribution is insignificant when referring the output noise back to the input of the TIA.  

In the discussion regarding input-referred noise in multi-stage amplifiers, from section 

4.4.2, the input-referred noise of the first amplifier has the largest noise contribution, so 

any attempt in reducing the noise starts here.  The noise models for the series-shunt 

feedback amplifier are not included in the analysis because they contribute the least 

amount of noise in the circuit.  The MOSFET noise in the series-shunt feedback amplifier 

is reduced by the gain from the previous stages, and therefore will have a miniscule role 

in the overall noise.  Figure 32 shows the model for the input-referred noise, 𝑖𝑖𝑛𝑜𝑖𝑠𝑒
2 (𝑓),  

in a TIA.  The desired photocurrent signal, 𝑖𝑝ℎ, is as an open circuit for the noise 

analysis. 

 
Figure 32. TIA noise model.  
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The output noise from the TIA is given below: 

𝑣𝑜𝑛𝑜𝑖𝑠𝑒
2 (𝑓) = (𝑖𝑖𝑛𝑜𝑖𝑠𝑒

2 (𝑓) +
4𝑘𝑇

𝑅𝑓
) ∙ 𝑅𝑓

2  (𝑉𝑜𝑙𝑡𝑠2)  (4-34) 

In Fig.33, on the next page,  the noise model for the improved TIA circuit is 

shown.  Only the MOSFETs that contribute significant noise are modeled.  Notice that 

the feedback resistance thermal noise model is not shown in the figure.  As seen in Eq. 

(4-34), the thermal noise from the feedback resistor is factored into the overall analysis 

and has little impact when determining the input-referred noise current (𝑖𝑖𝑛𝑜𝑖𝑠𝑒
2 (𝑓)).  Also, 

the MOSFET noise from the cascode is shown, but will not add any noise into the circuit.  

Recall the discussion about the treatment of noise in current mirrors from section 4.4.1.  

Essentially the noise current circulates around the cascode and never leaves since the 

impedance of the cascode compared to the MOSFET that generates the noise current is 

significantly larger.  The goal is to determine the noise at the node labeled 𝑣𝑥, the output 

of the first amplifier (the shunt-shunt feedback amplifier).  Once the noise at this node is 

calculated, the input-referred noise current is simply this noise voltage divided by the 

gain, in ohms, of M2.  
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The input-referred noise for the improved TIA is  

 

𝑖𝑖𝑛𝑜𝑖𝑠𝑒
2 (𝑓) =

𝑣𝑥
2(𝑓)

𝐴1
2 =

𝑣𝑜𝑛𝑜𝑖𝑠𝑒1
2 (𝑓)+𝑣𝑖𝑛𝑜𝑖𝑠𝑒2

2 (𝑓)

𝐴1
2   (𝐴2/𝐻𝑧)  (4-35) 

given that  

𝐴1
2 = (𝑟𝑜1||𝑅𝑐𝑎𝑠)2  (𝛺)2  (4-36) 

The output noise at the drain of M6 is called 𝑣𝑜𝑛𝑜𝑖𝑠𝑒2
2 (𝑓) and is defined as 

Figure 33. Improved TIA noise model.  
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𝑣𝑜𝑛𝑜𝑖𝑠𝑒2
2 (𝑓) = (𝐼𝑛𝑜𝑖𝑠𝑒,𝑀4

2 (𝑓) + 𝐼𝑛𝑜𝑖𝑠𝑒,𝑀5
2 (𝑓)) ∙ (𝑟𝑜4||𝑟𝑜5)2  (𝑉2/𝐻𝑧)  (4-37) 

Referring the output noise back to the input gives 𝑣𝑖𝑛𝑜𝑖𝑠𝑒2
2 (𝑓)   

𝑣𝑖𝑛𝑜𝑖𝑠𝑒2
2 (𝑓) =

𝑣𝑜𝑛𝑜𝑖𝑠𝑒2
2 (𝑓)

𝐴2
2 =

[(𝐼𝑛𝑜𝑖𝑠𝑒,𝑀4
2 (𝑓) + 𝐼𝑛𝑜𝑖𝑠𝑒,𝑀5

2 (𝑓)) ∙ (𝑟𝑜4||𝑟𝑜5)2]

𝑔𝑚4
2 ∙ (𝑟𝑜4||𝑟𝑜5)2

 

=
(𝐼𝑛𝑜𝑖𝑠𝑒,𝑀4

2 (𝑓)+𝐼𝑛𝑜𝑖𝑠𝑒,𝑀5
2 (𝑓))

𝑔𝑚4
2   (𝑉2/𝐻𝑧)  (4-38) 

The output noise from the first stage amplifier, 𝑣𝑜𝑛𝑜𝑖𝑠𝑒1
2 (𝑓), is caclculated as 

𝑣𝑜𝑛𝑜𝑖𝑠𝑒1
2 (𝑓) = (𝐼𝑛𝑜𝑖𝑠𝑒,𝑀1

2 (𝑓) + 𝐼𝑛𝑜𝑖𝑠𝑒,𝑀3
2 (𝑓)) ∙ (𝑟𝑜1||𝑅𝐶𝑎𝑠)2  (𝑉2/𝐻𝑧)  

 (4-39) 

Plugging (4-39), (4-38), and (4-36) into (4-35) gives 

𝑖𝑖𝑛𝑜𝑖𝑠𝑒
2 (𝑓) =

𝑣𝑥
2(𝑓)

𝐴1
2 =   

[(𝐼𝑛𝑜𝑖𝑠𝑒,𝑀1
2 (𝑓)+𝐼𝑛𝑜𝑖𝑠𝑒,𝑀3

2 (𝑓))∙(𝑟𝑜1||𝑅𝑐𝑎𝑠)2+
(𝐼𝑛𝑜𝑖𝑠𝑒,𝑀4

2 (𝑓)+𝐼𝑛𝑜𝑖𝑠𝑒,𝑀5
2 (𝑓))

𝑔𝑚4
2 ]

(𝑟𝑜1||𝑅𝑐𝑎𝑠)2
 (4-40) 

𝑖𝑖𝑛𝑜𝑖𝑠𝑒
2 (𝑓) = 𝐼𝑛𝑜𝑖𝑠𝑒,𝑀1

2 (𝑓) + 𝐼𝑛𝑜𝑖𝑠𝑒,𝑀3
2 (𝑓) + ⋯ 

+
(𝐼𝑛𝑜𝑖𝑠𝑒,𝑀4

2 (𝑓)+𝐼𝑛𝑜𝑖𝑠𝑒,𝑀5
2 (𝑓))

𝑔𝑚4
2 ∙(𝑟𝑜1||𝑅𝑐𝑎𝑠)2

    (𝐴2/𝐻𝑧) (4-41) 

The noise current in M1 and M3 have two components.  Recall that the noise from the 

current mirrors gets referred over to the output of the mirror. 
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𝐼𝑛𝑜𝑖𝑠𝑒,𝑀1
2 (𝑓) = 𝐼𝑜𝑛𝑜𝑖𝑠𝑒,𝑀𝐵1

2 (𝑓) + 𝐼𝑜𝑛𝑜𝑖𝑠𝑒,𝑀1
2 (𝑓)  (𝐴2/𝐻𝑧)  (4-42) 

𝐼𝑛𝑜𝑖𝑠𝑒,𝑀3
2 (𝑓) = 𝐼𝑜𝑛𝑜𝑖𝑠𝑒,𝑀𝐵3

2 (𝑓) + 𝐼𝑜𝑛𝑜𝑖𝑠𝑒,𝑀3
2 (𝑓)  (𝐴2/𝐻𝑧)  (4-43) 

Equation (4-40) shows that the input-referred noise for the TIA follows the assertion 

from section 4.4.2 that 

𝑖𝑖𝑛𝑜𝑖𝑠𝑒
2 (𝑓) =  𝑖𝑖𝑛𝑜𝑖𝑠𝑒1

2 (𝑓) +
𝑖𝑖𝑛𝑜𝑖𝑠𝑒2

2 (𝑓)

𝐴1
2   (𝐴2/𝐻𝑧)  (4-44) 

To complete the entire noise analysis, the feedback resistance is now included, so the 

output noise is 

𝑣𝑜𝑛𝑜𝑖𝑠𝑒
2 (𝑓) = [(𝐼𝑛𝑜𝑖𝑠𝑒,𝑀1

2 (𝑓) + 𝐼𝑛𝑜𝑖𝑠𝑒,𝑀3
2 (𝑓) +

(𝐼𝑛𝑜𝑖𝑠𝑒,𝑀4
2 (𝑓)+𝐼𝑛𝑜𝑖𝑠𝑒,𝑀5

2 (𝑓))

𝑔𝑚4
2 ∙(𝑟𝑜1||𝑅𝑐𝑎𝑠)2

) +
4𝑘𝑇

𝑅𝑓
] × 𝑅𝑓

2
 

 (4-45) 

 In order to reduce the noise in the TIA circuit attention must be drawn to 

𝐼𝑛𝑜𝑖𝑠𝑒,𝑀1
2 (𝑓) and 𝐼𝑛𝑜𝑖𝑠𝑒,𝑀3

2 (𝑓).  Since an increase in thermal noise is proportional to the 

transconuctance of a MOSFET, the obvious choice is to reduce this value in order to 

reduce the noise; however, the speed of a MOSFET is also proprtional to the 

transconductance, so decreasing this value will also have the latent effect of reducing the 

speed of the TIA.  For the flicker noise, an obvious choice is to use larger channel areas 

to minimize noise, but this also reduces the speed of the TIA since the speed of a 

MOSFET is inversely proportional to the channel length.  The point to be made here is 

that tradeoffs need consideration, and if low-noise is more important than speed, then the 

techniques mentioned are more than adequate to employ in the design process. 
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 Figurre 34 shows the noise analysis schematic for the improved TIA, and Fig.35 

shows the simulation results for the thermal noise in the MB1 and M1 MOSFETs.   

 

 
Figure 35. Voltage spectral density noise plot for MB1 an M1.  

 

Figure 34. TIA noise analysis schematic.  
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This plot shows that there is slightly more thermal noise contributions to the output noise 

from M1 than MB1.  Recall that the noise in a current mirror gets referred over to the 

output of the mirror, so the noise in M1 is approximately twice as much since M1 is the 

output and MB1 is the input of mirror.  Figure 36 shows the thermal noise in the TIA due 

to MOSFETs M1 through M5. 

 

Notice that the noise contributions from M2, M4, and M5 are significantly smaller than 

the contributions from M1 and M3.  M2 is the cascode, and therefore the noise circulates 

around M2 without much effect on the TIA circuit.  The input-referred noise at M4 and 

M5 are inversely proportional to the square of the gain from the first stage amplifier, and 

because the gain from the first stage is large, the noise contributions from M4 and M5 

MOSFETs are small. 

 

 

Figure 36. Thermal noise contribution in the TIA due to MOSFETs M1 through M5. 
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CHAPTER 5 – SIMULATION AND TESTING RESULTS   

5.1 IMPROVED TIA FINAL SIMULATION RESULTS 

 Prior to sending the TIA chip for fabrication, a final simulation was done on the 

improved TIA circuit that also includes the model for the photodiode.  This is an 

important step in the verification process to evaluate the performance of the TIA, and at 

the very least will give the best case acheivable results.  Recall from Chapter 3 that the 

TIA is composed of bias circuitry, a shunt-shunt feedback amplifier, and a series-shunt 

feedback amplifier.  The analysis and simulation was originally done at the transistor 

level.  Now the analysis is focused on one level of abstraction up from the transistor 

level, and the TIA is treated as a black box.  In this section a DC, transient, and noise 

simulation is performed on the TIA.  The primary difference between these simulations 

done in this chapter as compared to Chapter 3 is the additional circuitry that interfaces 

with the input of the TIA.  Models for the photodiode and parasitics appear in the 

schematics to create a practical realization of the optical pyrometer ASIC.  Figure 37 

shows the schematic used in simulating the DC analysis of the TIA circuit.  The PD is not 

included in the DC sweep since it is AC coupled to the input of the TIA. 
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A DC sweep of the input and output terminals are displayed in Fig. 38 and Fig. 39 

respectively. 

 

The expectation is that the DC voltage at the input pin should be close to 1.4 V and vary 

as little as possible with changes in the input current indicating low TIA input resistance. 

Figure 38. Input terminal DC sweep of the improved TIA. 

 

Figure 37. Improved TIA circuit DC analysis. 
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Notice at the the output, there is a DC offset. Any current with a peak-to-peak value of 

110 μA or greater, and the DC offset at the output saturates around 2 V.   

The schematic for the transient analysis is shown in Fig.40, and includes the 

model for the photodiode (PD). 

 

 
Figure 40. Improved TIA circuit schematic with PD model. 

 

Figure 39. Output terminal DC sweep of the improved TIA. 
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Notice that there are several capacitors and inductors used at the input and output 

terminals of the TIA.  The 100pF capacitor is an AC coupling capacitor to block any of 

the DC voltage at the input terminal.  This capacitor prevents the input pin of the TIA 

from interfering with the biasing of the PD.  It also prevents the biasing circuity from 

driving the input of the TIA.  Essenttially the desired signal at the input terminal will 

have only an AC current component.  The 2.5 pF capacitor models the reverse-biased 

photodiode (PD), and the 40 V DC power supply with the 100 kΩ input resistor functions 

as the bias to the PD.  Also notice the 10 nH and 1 pF capacitors at both the input and the 

output terminals.  These were included in the schematic to model the parasitics of any 

wires or copper traces that are used for connecting and interfacing other devices to the 

TIA.  The input pulse parameters are described in Table 5-1. 

 

A delay time of 1005 ns is specified to allow enough warmup time for the TIA.  This 

allows the DC opertional point to reach a steady-state.  The pulse current contains a 

parameter value of {Ipeak}, and allows the user to specifiy a list of values for SPICE to 

execute from the the layout view of the schematic.  In this simulation, the name of the list 

is Ipeak, and the values for Ipeak appear in the SPICE command below the schematic in 

Fig.39 (.step param Ipeak list ).  Since SPICE ignores any directive that begins with an 

Table 5-1. Input pulse parameters. 
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asterik, the current simulation will generate an output voltage given the peak input 

currents of 100nA, 200nA, 500nA, and 1μA.  Figure 41 shows the output of the TIA 

given the input currents from the list Ipeak. 

 

For the noise simulation, the schematic looks identical to the transient analysis 

schematic; however, the SPICE directive is different.  The simulation schematic is shown 

in Fig. 42. 

 
Figure 42. Improved TIA noise analysis schematic. 

 

Figure 41. Output signals produced by Ipeak currents. 
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The SPICE directive states that the noise measurement is made at the output of the TIA.  

Notice that the Ipeak list is not specified anywhere in the SPICE directive.  The reason 

for this is noise measurements are made without an input signal because the only interest 

here is the measurement of noise and not the input signal in addition to the noise.  Since 

the input signal is a current, the input pin of the TIA is treated as an open circuit (Hi-Z).  

If the input signal was a voltage then the input terminal is pulled to ground.  The output 

noise voltage spectral density plot is shown in Fig. 43. 

 

The output noise RMS voltage is found by integrating the output noise voltage spectral 

density from the starting frequency (1 kHz) to the ending frequency (10 GHz).  In 

LTspice, the RMS output noise voltage is found by pressing CTRL + left mouse button 

on V(onoise).  The output noise RMS voltage is in Fig. 44. 

Figure 43. Output noise measurent for the Improved TIA circuit. 
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The noise simulation also generates a gain versus frequency plot, and is shown in Fig.45. 

 

Therefore the input-referred noise is 

𝐼𝑖𝑛𝑜𝑖𝑠𝑒,𝑅𝑀𝑆 =
𝑉𝑜𝑛𝑜𝑖𝑠𝑒,𝑅𝑀𝑆

𝐴𝐶𝐿
=

2.77 𝑚𝑉

13 𝑘𝛺
= 213 𝑛𝐴 𝑅𝑀𝑆  (5-1) 

Notice from Fig.45 that the best closed-loop gain that is expected from the TIA is 13 kΩ, 

but ideally the expectation is that the gain is equivalent to the feedback resistance (25 

kΩ).  A natural question is what happened to half of the gain?  One way to understand 

what is happening with the TIA lies with the closed-loop gain.  An expression for the 

closed-loop gain is 

Figure 45. Gain vs. frequency for the Improved TIA circuit. 

 

Figure 44. Output noise RMS voltage for the Improved TIA circuit. 
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𝐴𝐶𝐿 =
𝐴𝑂𝐿

1+𝛽𝐴𝑂𝐿
  (5-2) 

The closed-loop gain reduces to  

𝐴𝐶𝐿 =
1

1

𝐴𝑂𝐿
+𝛽

=
1

𝛽 
  (5-3) 

as 𝐴𝑂𝐿 → ∞.  It was previously determined from Chapter 3 that the value for the 

feedback factor,  𝛽, is 𝛽 = −1/𝑅𝑓; where 𝑅𝑓 is the feedback resistance. 

∴ 𝐴𝐶𝐿 = 𝑅𝑓 = 25 𝑘𝛺  (5-4) 

This is the best gain that is aceivable with this TIA.  The problem with this is that the 

open-loop gain for the TIA is certainly not infinitely large.  The actual open-loop gain is 

determined from simulation, so the schematics below demonstrate how to measure the 

open-loop gain for the Improved TIA.  Figure 46 is the schematic for determining the 

open-loop gain of the shunt-shunt feedback amplifier. 
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Figure 47 shows the schematic for determining the open-loop gain of the series-shunt 

feedback amplifier. 

Figure 46. Open-loop gain of the shunt-shunt feedback amplifier with 𝑅𝑓 = 25 𝑘𝛺. 
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The series-shunt feedback amplifier stage uses an AC voltage source as the input 

stimulus since the input mixing is voltage; however, the shunt-shunt feedback amplifier 

uses an AC current for an input stimulus because the input mixing is current.  The 

inductors isolate the AC signals from feeding back to the input while maintaining the 

same DC biasing.  An inductor between the amplifier stages also isolates the analysis to a 

single stage.   Capacitors are utilized to provide an AC path to ground.  The plot of the 

gain from the shunt-shunt feedback amplifier is shown in Fig. 48. 

Figure 47. Open-loop gain of the series-shunt feedback amplifier. 
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The results of the simulation in Fig.46 show that the open-loop gain for the shunt-shunt 

feedback amplifier is 𝐴𝑂𝐿,𝑠ℎ𝑢𝑛𝑡−𝑠ℎ𝑢𝑛𝑡 = 62 𝑘𝛺.  Figure 49 shows the open-loop gain of 

the series-shunt feedback amplifier.  The closed-loop gain of the shunt-shunt feedback 

amplifier is 

𝐴𝐶𝐿,𝑠ℎ𝑢𝑛𝑡−𝑠ℎ𝑢𝑛𝑡 =
𝐴𝑂𝐿

1+𝛽𝐴𝑂𝐿
=

62 𝑘𝛺

1+
1

25 𝑘𝛺
∙62 𝑘𝛺

= 17.8 𝑘𝛺   (5-5) 

 
Figure 49. Series-shunt feedback amplifier open-loop gain. 

 

Figure 48. Shunt-shunt feedback amplifier open-loop gain. 
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According to the simulation results in Fig. 49, the open-loop gain of the series-shunt 

feedback amplifier is 𝐴𝑂𝐿,𝑠𝑒𝑟𝑖𝑒𝑠−𝑠ℎ𝑢𝑛𝑡 = 7.7.  Therefore, the closed-loop gain of the 

series-shunt feedback amplifier is 

𝐴𝐶𝐿,𝑠𝑒𝑟𝑖𝑒𝑠−𝑠ℎ𝑢𝑛𝑡 =
𝐴𝑂𝐿

1+𝛽𝐴𝑂𝐿
=

7.7

1+1∙7.7
= 0.89  (5-6) 

Therefore, the open-loop gain of the improved TIA is 

𝐴𝐶𝐿 = 𝐴𝐶𝐿,𝑠ℎ𝑢𝑛𝑡−𝑠ℎ𝑢𝑛𝑡 ∙ 𝐴𝐶𝐿,𝑠𝑒𝑟𝑖𝑒𝑠−𝑠ℎ𝑢𝑛𝑡 = 17.8 𝑘𝛺 ∙ 0.89 = 15.8 𝑘𝛺  (5-7)  

As expected, since the open-loop gain of the TIA is not infinitely large, the closed-loop 

gain will never be 25 kΩ.  

 

5.2 IMPROVED TIA CIRCUIT TEST RESULTS 

 The improved TIA circuit was fabricated through MOSIS on a multi-project 

wafer.  The deliverable consists of a ceramic forty pin dual inline package (DIP) chip 

with five unique TIAs.  A picture of the bare die chip is shown in Fig. 50. 
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A schematic of the test circuit is shown in Fig. 51.  The TIA is modeled as an operational 

amplifier (op-amp), so the details of the improved TIA circuit at the transistor level are 

omitted.   

 
Figure 51. Test circuit schematic. 

 

Figure 50. Improved TIA circuit bare die chip. 
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The “CTIA_v4” nomenclature in Fig. 51 is the fourth version TIA on the chip out of five 

unique TIAs.  The equipment that was used to test the TIA circuit is shown in Table 5-2. 

 

A picture of the test bench is shown in Fig. 52. 

 

Figure 53 is a top level view of the DIP connected to the proto-board.  One drawback in 

using a DIP package for high frequency design is the bonding wires from the chip to the 

pads are long enough to increase the parasitic impedance resulting in poor impedance 

Figure 52. Test bench. 

 

Table 5-2. Equipment fielded for TIA test. 

 

Equipment Name Model#

DC Power Supply Agilent E3649A

Pulse Generator Stanford Research Systems DG535

Pulse Generator Hewlett Packard 8082A

Oscilloscope Rhode & Schwarz RTO 1024

Multimeter Fluke 77

Spectrum Analyzer Hewlett Packard 8563A

50 ohm feedthru terminantor EG&G n/a
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matching.  The poor impedance control could result in the degradation of the output 

response to current pulses with fast rise times (several nanoseconds). 

 

The testing requires current-to-voltage conversion, so in order to generate a 

current at the input of the TIA, a voltage source (𝑣𝑝𝑢𝑙𝑠𝑒 in Fig. 51) and an input resistance 

is used.  The input pulse current as a function of time is 

𝑖𝑖𝑛(𝑡) =
𝑣𝑝𝑢𝑙𝑠𝑒(𝑡)

𝑅𝑖𝑛
  (5-8) 

Throughout the testing, 𝑣𝑝𝑢𝑙𝑠𝑒 or 𝑅𝑖𝑛 were adjusted in order to produce a large enough 

current.  A coupling capacitor is utilized to isolate the pulse generator from the input of 

the TIA.  Since the pulse generator is terminated with 50 ohms, and the input impedance 

of the circuit is much larger than 50 ohms, a 50 ohm feedthru is connected in between the 

pulse generator and 𝑅𝑖𝑛 to reduce the reflections caused by an impedance mismatch.  The 

Figure 53. Top level view of DIP. 
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output of the TIA circuit is connected to an oscilloscope with 50 ohm coupling, and 

therefore a 50 ohm feedthru is not needed.   

 Two different types of pulse generators were fielded in order to test the TIA with 

input currents that have large pulse widths (>100 ns) and short pulse widths (<100 ns).  

The Stanford Research Systems DG535 produced a 𝑣𝑝𝑢𝑙𝑠𝑒(𝑡) at an amplitude of −11 𝑉𝑝𝑝 

with a pulse width of 800 ns, and the Hewlett Packard 8082A generated a 𝑣𝑝𝑢𝑙𝑠𝑒(𝑡) at an 

amplitude of −5 𝑉𝑝𝑝 with pulse widths in the tens of nanoseconds.  Both pulse generators 

have the ability in generating pulses with rise times of 1 ns or more. The drawback in 

fielding the 8082A pulse generator is that signal amplitudes were limited to −5 𝑉𝑝𝑝, so to 

get a meaningful signal through the amplifier, the input resistor was reduced from 100 kΩ 

to 10 kΩ.  Figures 54 through 56 show the input pulses for the DG535 and 8082A that 

were used in creating the input current pulses.  All of the input voltage signals were 

falling-edge pulses.  As a result, the output pulses will have a rising-edge since the output 

of the TIA is 180° out of phase with the input.  The screen shots were taken directly from 

the Rhode & Schwarz RTO 1024 oscilloscope. 
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At 5x attenuation, the actual input voltage peak-to-peak is -11 V with the DG535 pulse 

generator. 

 
Figure 55. 8082A input voltage pulse #2 at < 5ns pulsewidth. 

 

Figure 54. DG535 input voltage pulse #1 at 5x attenuation and 844 ns pulse width. 
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Notice in Fig. 56 the same pulse generator was used, but one signal appears to behave as 

a square wave, and has a pulse width of 5 ns; however, the pulse in Fig. 55 is not a square 

wave, but has a pulsewidth of approximately2 ns. 

The output pulses are shown in Figures 57 through 60. 

Figure 56. 8082A input voltage pulse #3 at < 10ns pulsewidth. 
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Figure 58. Output pulse #2. 

 

Figure 57. Output pulse #1. 
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Table 5-3 displays the theoretical and measured results for different input stimuli.   

Figure 60. Output pulse #4. 

 

Figure 59. Output pulse #3. 

 



83 

 

 

There are several points regarding these results that need addressing.  Output pulse #1 

and #2 corresponds with the Input pulse #1 generated from the DG535 and Input pulse #2 

generated from the 8082A respectively.  Notice that the output signal in Fig. 58 is an 

order of magnitude smaller than the signal in Fig.57, but the feedback resistance for input 

pulse #1 is almost five times smaller.  The expectation is that even for a smaller input 

pulse current with a significantly larger feedback resistor, the gain for output pulse #2 

should be approximately twice as much the output pulse #1.  An explanation for this 

discrepancy lies with the DC output voltage.  Output pulse #2 is starting close to ground 

(there is a measured 7 mV offset), and with a small offset, the circuit is barely driving the 

50 ohm load of the oscilloscope, and therfore there is not much gain.  From the DC 

sweep of the output voltage in Fig. 37, the expectation is that the minimum DC offset is 

approximately 300 mV, but the actual measured DC offset is an order of magnitude 

smaller.  One possible reason for this occurrence is a mismatch in the devices.  The 

improved TIA schematic in Fig.13 is again shown in Fig .61 with a zoomed in shot of the 

current mirror circuitry. 

Table 5-3. TIA test theoretical and measured results. 
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The presumption is that the gate potential of M1 and M3 remain constant under normal 

operating conditions.  M1 and M3 are the current mirrors and they need to adjust the 

current supply as the feedback resistance changes.  As the feedback resistor size is 

increased, for high gain, the amount of current that is fed through that resistor decreases 

requiring larger changes in the output voltage.  This results in the failure of the series-

shunt feedback amplifier which causes the overall design to fail.  The way to simulate 

this behavior in the current mirrors is to change the gate potential with one of the mirrors, 

and verify what happens at the output of the series-shunt feedback amplifier.  The entire 

circuit with this change is shown in Fig. 62. 

Figure 61. Improved TIA schematic with emphasis on the current mirror. 
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The transient analysis simulation for the output is displayed in Fig. 63. 

 

The output DC voltage is now at 50 mV, but the decrease in gain is severe.  The change 

in output voltage from the DC offset is approximately 2 mV.  Compare this result with 

the 15 mV change in output voltage from Fig. 41.  Another issue is the current mirror 

Figure 63. Transient analysis results of a positive increase in the M1 gate potential. 

 

Figure 62. Improved TIA schematic with a negative increase in the M1 gate potential. 
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sensitivity to a mismatch in MOSFETs.  If the channel width of M1 is one micrometer 

different then the channel width of MB1, the change in the output is drastic.  The same 

reasoning can easily apply to the MB3 and M3 transistors  Figure 64 shows the output 

voltage with a one micrometer increase in the channel width of M1, and Fig. 65 shows 

the same output with a one micrometer decrease in the channel width of M1. 

 

With a 1 μm increase in the channel length of M1 causes the DC offset at the output of 

the TIA to change to 49 mV, and the gain has also been hampered.  In this particular 

case, the TIA is a unity-gain device. 

Figure 64. Transient analysis results of a 1 μm increase in the channel width of M1. 
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Look at what happens to the TIA when M1 has a 1 μm decrease in the channel width.  

Now the DC offsetvoltage is approximately 712 mV, and the maximum change in voltage 

is 15 V/V.  The implication is the lack of balance between the biasing and the feedback 

resistor is causing the current mirrors to fight against each other, and therefore shutting 

off the series-shunt feedback amplifier. 

The noise measurement was taken with a Hewlett Packard 8563 Spectrum 

Analyzer.  Recall that in order to take a proper noise measurement for the TIA, leave the 

input pin opened (Hi-Z), so that only the noise and not the desired signal is actually 

measured.  A picture showing the output noise of the TIA is in Fig. 66. 

Figure 65. Transient analysis results of a 1 μm decrease in the channel width of M1. 
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The picture in Fig. 66 shows the horizontal axis is frequency (Hz), and the vertical axis is 

in RMS voltage.  A sweep of the output noise starts at 0 and ends at 10 MHz.  The 

resolution bandwidth for this particular measurement is 𝑓𝑟𝑒𝑠 = 2 𝑀𝐻𝑧.  Figure 66 shows 

the flicker noise (1/𝑓) roll off, and according to the marker, the knee frequency is at 

approximately 5 MHz.  The RMS voltage at the one-over-f knee frequency is 68 μV 

according to the on-screen marker.  To determine the output noise power spectral density, 

the resolution bandwidth and the output noise RMS voltage are needed.  The equation is 

given by 

𝑉𝑜𝑛𝑜𝑖𝑠𝑒
2 (𝑓) =

𝑉𝑜𝑛𝑜𝑖𝑠𝑒,𝑅𝑀𝑆
2

𝑓𝑟𝑒𝑠
=

(68 𝜇𝑉)2

2 𝑀𝐻𝑧
= 2.31 × 10−15 𝑉2/𝐻𝑧  (5-9) 

  The voltage spectral density is given by 

Figure 66. Spectrum analyzer output noise measurement of the improved TIA. 
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𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = √𝑃𝑆𝐷 = √2.31 × 10−15 𝑉2/𝐻𝑧 = 48.1 𝑛𝑉/√𝐻𝑧  

 (5-10) 

The input-referred RMS noise is 

𝐼𝑖𝑛𝑜𝑖𝑠𝑒,𝑅𝑀𝑆 =
𝑉𝑜𝑛𝑜𝑖𝑠𝑒,𝑅𝑀𝑆

𝐴
=

68 𝜇𝑉

23.1 𝑘𝛺
= 2.94 𝑛𝐴 𝑅𝑀𝑆  (5-11) 

This is approximately two orders-of-magnitude smaller than what was shown in equation 

5-1.  The reason for the discrepancy is the series-shunt feedback amplifier is essentially 

turned off as a result of the feedback altering the biasing current.  

 

5.3 TIA FINAL DESIGN 

 The improved TIA demonstrates the challenges involved in designing a suitable 

current-to-voltage amplifier for the optical pyrometer ASIC.  One reason for the lack of 

robustness of the improved TIA lies with the relationship between the biasing and the 

feedback network.  Any redesign will have to address the issue of isolating the feedback 

network effects from the DC biasing.  One topology that does this is shown in Fig. 67. 
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The final TIA circuit has a number of different features that address the shortcomings 

frrom the previous design.  One of the problems with the improved TIA was the inability 

to set the biasing current, and because the bias point was dependent on the feedback 

network, not having the control over this parameter meant an asymmetrical voltage 

swing.  This implies that the gain of the TIA was not only dependent on the feedback 

resistance, but dependent on the relationship between the feedback and bias point.  Here 

is how that problem was corrected.  An off-chip resistor, or potentiometer will set the 

bias current as seen in Fig. 67 with a pin labeled Rbias.  This pin allows the user to set the 

bias current, 𝐼𝑏𝑖𝑎𝑠, across the foloded-cascode current mirrors, the differential pair 

amplifier, and the the series-shunt feedback amplifier.  More control over the biasing in 

the TIA will prevent the problems with the feedback and bias relationship.  A folded-

cascode current mirror structure is utilized to better match the bias current in the PMOS 

and NMOS current mirrors.  The series-shunt feedback amplifier at the output is identical 

Figure 67. Final TIA design for the optical pyrometer ASIC. 
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to the one used in the improved TIA; however, the ambiguity with the input voltage 

signal to the series-shunt amplifier in the previous design was one of the reasons that a 

failure occurred in the rest of the circuit, so understanding the bias current behavior at the 

output and input is crucial in determining the success of the overall TIA.  Figure 68 

shows the TIA at higher level of abstraction.   The transistor-level details are kept hidden. 

 

 Now that the biasing resistor is set to give the user more control of where to set 

the TIA’s quiescent point, the next problem is determining the added resistance needed at 

the noninverting pin of the TIA in Fig. 68.  Looking back at Fig. 67, the output of the 

TIA has two DC currents flowing into 50 ohm load.  The total current suuming at the 

output node is  

𝐼𝑂,𝐷𝐶 = 𝐼𝑏𝑖𝑎𝑠 + 8 ∙ 𝐼𝑏𝑖𝑎𝑠  (5-11) 

Figure 68. Final TIA op-amp schematic. 
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Figure 67 shows that the PMOS device connected at the output via the drain terminal has 

eight times the width, and therefore will have approximately eight time the bias current.  

If the DC output current is driving a 50 ohm load, or oscilloscope, then the offset voltage 

becomes 

𝑉𝑜𝑓𝑓𝑠𝑒𝑡 = 9𝐼𝑏𝑖𝑎𝑠 ∙ 50 = 450 ∙ 𝐼𝑏𝑖𝑎𝑠  (5-12) 

To balance this DC voltage at the output of the TIA, the input pin of the TIA also needs 

to have an equivalent 𝑉𝑜𝑓𝑓𝑠𝑒𝑡, so if a 450 Ω resistor is placed on the noninverting to 

ground, then another 𝑉𝑜𝑓𝑓𝑠𝑒𝑡 appears on that pin, and therefore the offset voltage also 

appears on the input pin.  Since the potential difference between the noninverting pin and 

the output are identical, no DC current will flow through the feeback resistance, and 

therefore the relationship between the feedback and biasing are no longer intertwined.     

Figure 69 is the schematic and DC analysis of the output voltage versus input 

current respectively.  This will aid in demonstrating where the amplifier is operating, and 

the amount of gain that is expected. 
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Clearly with only 1 μA of peak current through the TIA with a 5 kΩ bias resistor 

and 100 kΩ feedback resistance, there is expectation of large gain.  A peak input current 

pulse of 5 μA with a 100 kΩ feedback resistor will give approximately 100 kΩ of gain 

according to Fig. 70. 

 
Figure 70. Final TIA DC analysis gain expectation with an 𝑅𝑏𝑖𝑎𝑠 = 5𝑘𝛺. 

 

Figure 69. Final TIA DC analysis schematic. 
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Increasing the 𝑅𝑏𝑖𝑎𝑠 resistance will improve the performance of the TIA.  Figure 71 

shows the transient analysis results for an 𝑅𝑏𝑖𝑎𝑠 = 5 𝑘𝛺. 

 

Clearly with a larger bias resistance the response and gain improves.  Figure 72 is a plot 

of the output voltage with an 𝑅𝑏𝑖𝑎𝑠 = 20 𝑘𝛺. 

 

Notice that the output voltage has an undershoot.  Now what is happening to the TIA as 

the current source is providing too much current to the amplifiers is the TIA is at the edge 

of instability.  At this point, the TIA is marginally stable, and any increase in the current 

Figure 72. Final TIA transient analysis with an 𝑅𝑏𝑖𝑎𝑠 = 20 𝑘𝛺. 

 

Figure 71. Final TIA transient analysis with an 𝑅𝑏𝑖𝑎𝑠 = 5 𝑘𝛺. 
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will force it into an unstable state.  Figure 73 shows a transient analysis with a feedback 

resistance of 25 kΩ, and an 𝑅𝑏𝑖𝑎𝑠 = 2 𝑘𝛺.  This demonstrates a fast pulse response. 

 

Figure 74 is a plot of the final TIA closed-loop gain with a feedback resistance of 100 

kΩ. 

 

For this TIA, the unity-gain bandwith occurs at approximately 2.5 GHz.  A plot of the 

output noise power spectral density is in Fig. 75. 

Figure 74. Final TIA closed-loop gain with an 𝑅𝑓 = 100 𝑘𝛺. 

 

Figure 73. Final TIA transient analysis with an 𝑅𝑏𝑖𝑎𝑠 = 2 𝑘𝛺, and 𝑅𝑓 = 25 𝑘𝛺. 
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The RMS output noise voltage is 4.7 mV, so the input-referred noise RMS current is 

𝐼𝑖𝑛𝑜𝑖𝑠𝑒,𝑅𝑀𝑆 =
𝑉𝑜𝑛𝑜𝑖𝑠𝑒,𝑅𝑀𝑆

𝐴𝐶𝐿
=

4.7 𝑚𝑉

95 𝑘𝛺
≈ 50 𝑛𝐴 𝑅𝑀𝑆  (5-13) 

 

5.4 TRANSIMPEDANCE AMPLIFIER LAYOUT 

 The key element in the design of the optical pyrometer ASIC is the design of the 

transimpedance amplifier (TIA).  Chapters 3 discussed two different types of TIAs, one 

that was referred to as a generic TIA, and the other called an improved TIA.  The 

improved TIA addressed the shortcomings with the open-loop gain of the generic model; 

however, the improved TIA was sensitive to any mismatch in the biasing circuitry, so that 

design is not suitable for the optical pyrometer ASIC.  The end of Chapter 5 discusses a 

viable option for a practical TIA.  Figure 76 is the layout of the final TIA, and Fig. 76 is 

the 1.5 𝑚𝑚 × 1.5 𝑚𝑚 chip layout which included 4 TIAs. 

Figure 75. Final TIA output noise PSD with an 𝑅𝑓 = 100 𝑘𝛺. 

 



97 

 

 

 

The chip in Fig. 77 consists of four TIAs.  Two of the TIA have a 450 Ω bias resistor on 

chip while the other two require external bias resistors.  The chips are fabricated with a 

C5 Process (On Semiconductor 500 nm) with two polysilicon layers and 3 metal layers. 

 

Figure 77. Chip layout 1.5 𝑚𝑚 × 1.5 𝑚𝑚. 

 

Figure 76. Layout of the final TIA. 
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CHAPTER 6 – CONCLUSIONS AND FUTURE WORK 

 The infrared optical pyrometer ASIC will consist of a 16 channel linear 

photodiode array and a folded-cascode differential TIA with a gain of 100 kΩ, a 

bandwidth of 30 MHz, and an input-referred noise current of 50 nA RMS.  Two different 

topologies were designed an analyzed, but ultimately the only viable option is the Final 

TIA circuit.  The key element in the Final TIA design was the use of a techique called 

replicatitive biasing to ensure minimal DC leakage through the feedback network.  Once 

a relationship was identified between the biasing and feedback, the Final TIA appeared to 

be a more practical consideration.  The simulations have shown promise, and the chip is 

to be fabricated in November of 2013.  The anticipated testing date is the middle of 

December.  

 Future work also includes investigating ways to further reduce noise while 

improving bandwidth, and also requires extensive testing of the final TIA prior to its 

implementation within the optical pyrometer ASIC.  The chip design gives us the ability 

to test the performance of each TIA for several different scenarios simultaneously.  

Testing will require the in-house fabrication of a PCB  that will include a 16 photodiode 

linear, the TIA chip, and high frequency 50 ohm SMA connectors that connect directly to 

16 channels of an off-chip digitizer.  The PCB will route the power, off-chip bias resistor, 

feedback resistor, and I/O signals of the TIA chip.  This setup will make the testing of 

four TIAs easier while at the same time minimizing the effects of parasitics from 

protoboarding.  In future generations of the infrared optical pyrometer ASIC, the 

reduction in TIA power will be essential in minimizing the thermal load on the 

photodiode array.  One drawback in using the Final TIA over the Improved TIA is the 



99 

 

significant power draw of the Final TIA.  Going from a single-ended input amplifier to a 

differential amplifier implies an increase in the dissipated power.  One way to potentially 

reduce the thermal load on the photodiodes is to mulltiplex the PD signals onto a single 

TIA chip.  An ADC is another option as an add-on to the optical pyrometer by acting as 

an on-board digitizer thereby completing the first prototype chip to be fileded in the next 

shock physics experiment. 
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