

COMPARISON OF ASYNCHRONOUS VS. SYNCHRONOUS DESIGN

TECHNOLOGIES USING A 16-BIT BINARY ADDER

by

Michael Brandon Roth

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Masters of Science in Engineering, Electrical Engineering

Boise State University

April, 2004

 ii

 The thesis presented by Michael Brandon Roth entitled Comparison of

Asynchronous vs. Synchronous Design Technologies using a 16-Bit Binary Adder is

hereby approved:

 R. Jacob Baker Date
 Advisor

 Scott F. Smith Date
 Committee Member

 Sin Ming Loo Date
 Committee Member

 John R. Pelton Date
 Dean, Graduate College

 iii

ACKNOWLEDGMENTS

Without the love and support of the many family and friends this thesis and my

education would not have been possible. I sincerely appreciate all that have contributed

to my education over the years, all of the wonderful teachers and student peers, thank you.

 I would especially like to thank Dr. Jake Baker and Tyler Gomm. Dr. Baker,

thank you for your love of teaching, your amazing ability to explain difficult concepts,

and for being there from the beginning of this journey. Tyler, thanks for the support and

encouragement throughout this work, for being an example and always pushing the bar.

 To my family, thank you so much for the kind words and encouragement. Thanks,

to my aunts for all their love and support, I can not thank you enough, especially my aunt

Carol for her constant sharing of knowledge and wisdom. To my uncle Bruce, who has

always been there for me, and always offering to help in any possible capacity, a constant

role model in my life.

 Thanks to my parents for their continued undying love and support. To my dad

who never ceases to amaze me, and my mom for her amazing motherly qualities and her

ever listening ear. Thanks to my sister Lindsey for putting up with me in the stressful

times, and for all her help.

Finally Charity, thanks for all the love and support, the continued confidence in

me, and the new life lessons I didn’t realize I had left to learn.

 iv

ABSTRACT

 Asynchronous design is a promising technology that is gaining more and more

attention. It’s claimed to offer several advantages over synchronous designs including

high-speed performance, low power, and modularity.

To compare asynchronous to synchronous design technologies, two 16-bit binary

adders are designed. All design decisions are based on high-speed performance with area

and power as secondary concerns. Architectures are chosen for each adder design that

enables the given technology. The asynchronous design is optimized for the best case

average delay and the synchronous design is optimized for the best worse case delay.

The asynchronous 16-bit adder is implemented with a carry look-ahead architecture using

2-bit blocks. The carry-select architecture is selected for implementing the synchronous

16-bit adder.

 The two 16-bit adder designs are compared using two experiments. The first

experiment measures the computation delay for 10,000 random input permutations. The

synchronous design worse case delay is compared to the asynchronous average delay.

The asynchronous adder average delay outperforms the synchronous worse case delay by

more than 250 ps. In the second experiment the 16-bit binary adders are implemented

into an adder test-bench system, and 32 consecutive additions are performed. In this

experiment the synchronous adder design has a better computation delay by

approximately 500 ps per addition. In the adder test-bench system the asynchronous

adder performance realizes the full overhead delay associated with an asynchronous

implementation.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

LIST OF TABLES ... viii

LIST OF FIGURES .. ix

CHAPTER 1 – INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 This Thesis ... 2

CHAPTER 2 – THE BINARY ADDER .. 4

2.1 Binary Addition .. 4

2.2 Adder Architectures ... 5

2.2.1 Ripple-Carry Adder .. 5

2.2.2 Carry-Bypass or Carry-Skip Adder ... 6

2.2.3 Carry Look-Ahead Adder .. 7

2.2.4 Carry Select Adder .. 10

CHAPTER 3 – DESIGN OF AN ASYNCHRONOUS AND SYNCHRONOUS ADDER

.. 11

3.1 Design Considerations .. 11

3.2 DDCVSL Gate Design ... 11

3.2.1 DDCVSL Basics ... 12

3.2.2 Domino DDCVSL ... 13

 vi

3.2.3 Designing DDCVSL ... 14

3.2.3.1 DDCVSL Tree Design ... 14

3.2.3.2 Precharge and Restore Sizing 15

3.2.3.3 High-Skew Inverter .. 17

3.2.4 Example DDCVSL Design ... 17

3.3 Asynchronous Adder Design ... 19

3.3.1 Architecture ... 20

3.3.1.1 Single-Level CLA .. 21

3.3.1.1.1 2-Bit CLA Design 22

3.3.1.1.2 2-Bit CLA Design with Complement Carry

Generate ... 25

3.3.1.2 Multi-level or Treed CLA .. 28

3.3.1.3 Manchester Carry Chain ... 30

3.3.1.4 Architecture Experiment ... 31

3.3.2 Asynchronous Communication Design 33

3.3.2.1 Communication Control Logic 34

3.3.2.2 Completion Detection Circuit 38

3.3.3 Asynchronous 16-Bit Adder .. 42

3.3.4 Enhanced Asynchronous 16-Bit Adder 44

3.4 Synchronous Adder Design .. 45

3.4.1 Architecture ... 46

3.4.2 Carry-Select Adder Design ... 46

3.4.2.1 2-Bit CLA Design Assuming Carry-in 47

 vii

3.4.2.2 DDCVSL 2-Bit Multiplexer Design (MUX) 49

3.4.2.3 2-Bit CSA ... 50

3.4.3 Synchronous 16-Bit Adder .. 50

CHAPTER 4 – SIMULATION RESULTS ... 52

4.1 Test Vector Generation Using A PERL Program 52

4.2 Verification and Testing ... 56

4.2.1 Ideal Comparator ... 56

4.2.2 Asynchronous Design Verification ... 58

4.2.3 Synchronous Design Verification ... 59

4.2.4 Synchronous Worse Case Computation Time 61

4.3 Asynchronous vs. Synchronous Design ... 62

4.3.1 10,000 Random Test Vectors .. 63

4.3.2 Consecutive Additions .. 66

4.3.2.1 Asynchronous System Design 67

4.3.2.2 Synchronous System Design 70

4.3.2.3 Simulation Results .. 71

CHAPTER 5 – CONCLUSIONS ... 75

REFERENCES ... 78

APPENDIX A – 4-Bit CLA Topology Schematics ... 80

APPENDIX B - generateSource PERL Code .. 83

APPENDIX C - Adder Test-Bench System Schematics .. 92

 viii

LIST OF TABLES

1. Basic Binary Addition Inputs & Outputs .. 5

2. Summarizes Precharge Time and Change in Evaluation Time 16

3. Summary of DDCVSL vs. Static CMOS AND & XOR Gates 18

4. Truth Table for pi, gi, and ni [7] .. 26

5. 4-Bit CLA Topology Experiment ... 32

6. State Flow Table From Burstmode Machine .. 36

7. Reduced Flow Table ... 36

8. Synchronous Adder Computation Time Statistics for Worse Case Test

Vectors .. 62

9. Delay, Power, and Number of Transistors for the 16-Bit Adder Designs

 ... 66

10. Reduced Flow Table for Input Environment Asynchronous

Communication ... 69

11. Simulation Results of 32 Consecutive Additions 72

 ix

LIST OF FIGURES

1. Full Adder Block Diagram .. 4

2. Ripple Carry Adder (RCA) Block Diagram ... 6

3. Carry Bypass Block Diagram ... 7

4. Carry Look-Ahead Block Diagram ... 8

5. Carry Select Adder Block Diagram .. 10

6. DDCVSL Block Diagram [13] ... 13

7. DDCVSL Implementation of (a) AND and (b) XOR 18

8. DDCVSL Tree Implementation of (a) Carry0 and (b) Carry1 23

9. DDCVSL Schematics for (a) Carry0 and (b) Carry1 24

10. 2-Bit CLA Schematic .. 25

11. (a) Carry0 and (b) Carry1 Implemented with n (complement carry

 generate) .. 27

12. Block Diagram of Multi-Level CLA using Group Generate and Propagate

 ... 29

13. Manchester Carry Chain Schematic [7] .. 30

14. Asynchronous Burstmode Maching for 16-Bit Adder 35

15. Asynchronous Communication Control Logic ... 37

16. Two Completion Detection Implementations (a) Johnson’s Dynamic Design

[1] (b) Static Design .. 39

17. Dynamic Completion Detector with Parallel Structure 41

 x

18. Results of Three Completion Detection Circuits using Four Test

Conditions ... 41

19. Asynchronous 16-Bit Adder Schematic .. 43

20. Enhanced Asynchronous 16-Bit Adder with Carry-Bypass 45

21. Schematic for Carry1 when assuming carry-in is (a) low and (b) high 48

22. DDCVSL 2-Bit MUX ... 49

23. 2-Bit CSA Schematic .. 50

24. Synchronous 16-Bit Adder Schematic .. 51

25. Sources Generated by PERL Program for All Permutations of 5 Bits 54

26. 32 Random Inputs Generated by PERL Program for 5 Binary Sources ... 55

27. Verification Results Using An Ideal Comparator 57

28. Simulation Verification Results for 2-Bit CLA .. 58

29. Synchronous 2-Bit CSA Verification ... 60

30. Histogram Comparing the Enhanced Asynchronous and Asynchronous

16-bit Adder Designs .. 63

31. Asynchronous vs. Synchronous Histogram of Computation Delay 64

32. Burstmode Machine for Input Environment Asynchronous Communication

... 68

33. Input Environment Asynchronous Communication Logic 69

34. Asynchronous Adder Test-Bench System .. 70

35. Clocking Scheme for the Synchronous Adder System 71

 1

CHAPTER 1 - INTRODUCTION

1.1 Motivation

Asynchronous design is a promising technology that is gaining more and more

attention. A vast majority of the literature that reviews asynchronous and synchronous

design methods finds that an asynchronous design has several potential advantages over a

synchronous design. Others are critics of asynchronous designs and either claim there are

no advantages, or that an asynchronous design only has advantages in a small subset of

circumstances.

Asynchronous is an emerging circuit design technology that has promise for low

power and high-speed [1]. The idea behind the high-speed operation is asynchronous

circuits operate at average rates of operation, and synchronous circuits are required to

operate at worst case rates. A synchronous circuit is governed by a clock, which is set to

a frequency equal to the worse case delay of the circuit. An asynchronous circuit is not

controlled by a clock, and instead uses a completion detector to detect when it is

complete. Using the completion detector overtime, the asynchronous circuit approaches

an average rate of operation. Lower power is associated with an asynchronous design

due to the basic premise of reduced clock switching [2]. In synchronous digital circuits

the clocking infrastructure uses 20-40% of the total power [2]. As the complexity of

integrated circuits increase, global clock distribution becomes more and more difficult.

An asynchronous design is a solution to the clock distribution problem [2][3]. Another

advantage of an asynchronous design is it allows for modularity [4]. An asynchronous

 2

design that is delay-insensitive can be placed into any system design as a module without

adjusting internal timing to accommodate the new system design [3].

An article by Kinniment suggests that asynchronous designs only improve

average propagation time based on random inputs, but have limited performance benefits

when associated with a smaller set of conditions [5]. He argues that most circuit

implementations are not going to be subject to random inputs, but rather on average will

consist of some smaller subset. Fu-Chiung argues that Kinniment uses an unfair

comparison by comparing an asynchronous version of a ripple-carry adder to a

synchronous tree-like conditional sum adder [6]. In addition, Ruiz points out

Kinniment’s study only investigated asynchronous methods using standard gates and did

not include modifications, which might enhance or enable the asynchronous

performance [7].

1.2 This Thesis

This thesis investigates asynchronous vs. synchronous design technologies using

two 16-bit binary adders. An adder architecture and logic style is selected for each

design that enables the given design technology, asynchronous or synchronous to achieve

the best performance. The 16-bit adder designs will be compared using computation time,

number of transistors, and power. The adders will be tested using 10,000 random inputs.

This experiment demonstrates that the asynchronous design outperforms the synchronous

design on all but a small subset of input conditions. In addition, to evaluate the adders

performance both designs are implemented into an adder test-bench system, and 32

consecutive additions performed.

 3

The binary adder is used as the vehicle for comparison for two reasons. First, it is

a very relevant design. It is one of the most significant operations in any computing

system [1]. The binary adder is a basic building block in a processor design, and is used

to implement other complex functions like multiplication and division. A frequently used

module in a system has greater influences on overall performance. In one RISC

processor implementation 72% of all instructions use addition [4].

The second reason for using the binary adder in the comparison of asynchronous

and synchronous technologies is that the binary adder’s computation time is very data-

dependent. In order for an asynchronous system to have any benefit over a synchronous

implementation the system must exhibit a data-dependent delay [1]. For these two

reasons much of the work in the asynchronous literature uses the binary adder for

comparing asynchronous to synchronous design technologies [3][4][5][6].

 Throughout the design process all simulations are run using Micron Technology’s

0.11 µm process models with typical n-channel and p-channel drive, a 2.5 V power

supply, and a worse case temperature of 85 ºC. In the schematics all logic is designed

using a minimum gate width of 12 µm and a minimum length of 1 µm. The effective

transistor sizing is adjusted for the 0.11 µm process using a shrink factor, which is not

reported here for proprietary protection. For equal rising and falling transitions a P to N

ratio of 2 is used (minimum sized inverter is 24/12).

 4

CHAPTER 2 - THE BINARY ADDER

2.1 Binary Addition

Digital computers use the binary number system, which is composed of only two

possible values either a ‘1’ or a ‘0’. Each digit ‘1’ or ‘0’ is referred to as a bit. The full

adder in Figure 1, adds binary bits A and B, and outputs the result to sum and carry-out.

FA

A B

Sum

CarryoutCarryin

Figure 1 Full Adder Block Diagram.

Table 1, summarizes the addition of the two binary single bit numbers A and B. When

either A or B is a ‘1’ and the other is a ‘0’ the sum result is ‘1’. If both A and B are ‘1’

then the sum is ‘0’ and a carry is generated (carry-out is ‘1’). The carry-in and carry-out

terms are used when adding multiple-bit binary numbers. In a multiple-bit addition

carry-in is the input from the previous bit and carry-out is connected to the next bit’s

carry-in. From Table 1, carry-in is used in determining both the sum and the carry-out.

 5

Table 1 Basic Binary Addition Inputs & Outputs for the Full Adder.
Carry-in A B Sum Carry-out

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

2.2 Adder Architectures

Multiple-bit addition can be as simple as connecting several full adders in series,

or it can be more complex. How the full adders are connected or the technique that is

used for adding multiple bits defines the adder architecture. Architecture is the most

influential property on the computation time of an adder. This property can limit the

overall performance. In general the computation time is proportional to the number of

bits implemented in the adder. Many different adder architectures have been proposed to

reduce or eliminate this proportional dependence on the number of bits. Several adder

architectures are reviewed in the following sections.

2.2.1 Ripple-Carry Adder

The ripple-carry adder (RCA) is one of the simplest adder architecture. Due to

this architecture’s simplicity, it generally requires fewer transistors and less layout area

than other designs [7]. The architecture consists of cascading N full adders in series to

form an N-bit adder where the carry-out of the ith stage is connected to the carry-in of the

(i+1)th stage as in Figure 2. Carry bits ripple through the adder from stage to stage, thus

the name ripple-carry adder (RCA). From Rabaey [8], the worse case delay is defined by

 6

equation (1) where N is the number of bits in the adder, tCarry is the time required to

calculate a carry, and tSum is the time required to calculate the sum at a given stage.

Equation (1) is linear with the number of bits, which limits the performance of this adder

architecture, as N increases.

SumCarryADD ttNt +−=)1((1)

Figure 2 Ripple Carry Adder (RCA) Block Diagram.

2.2.2 Carry-Bypass or Carry-Skip Adder

The carry-bypass or carry-skip adder is much like the RCA only it has a carry

bypass path. This architecture divides the bits of the adder into an even number of stages

M. Each stage M has a carry bypass path that forwards the carry-in of the Mi stage to the

first carry-in of the Mi+1 stage. If the binary inputs are such that the carry would normally

ripple (or propagate) from the input of the Mi stage to the input of the Mi+1 stage, then the

carry takes the bypass path. A multiplexer is inserted between each stage M of the adder

to choose from the normal ripple path or the bypass path (see Figure 3).

 7

Figure 3 Carry Bypass Block Diagram.

In the figure the inputs to each full adder block are carry generate (gi) and carry

propagate (pi). These signals will be discussed in more detail in the carry look-ahead

adder discussion. When a bypass occurs it allows the Mi+1 stage to start evaluating sums

instead of waiting for the ith stage to ripple the carry through each bit of the stage. The

worse case delay of the CBA is defined by equation (2).

SumBypassCarrySetupADD ttMt
M

Ntt +−+
−

+=)1()
1

((2)

Where N is the number of bits in the adder, and M is the number of stages. tcarry and tsum

are the times to compute a carry and sum. tbypass is the time to bypass a carry to the next

stage, and tsetup is the time it takes to calculate carry propagate and generate. The worse

case delay is decreased compared to the RCA, but the speed is still linear with the

number of bits implemented in the adder architecture.

2.2.3 Carry Look-Ahead Adder

The carry look-ahead architecture reduces the delay dependence on the number of

bits by using a parallel structure. Instead of rippling the carry through all stages (bits) of

the adder, it calculates all carrys in parallel based on equation (3).

 8

1−+= iiii CpgC (3)

In equation (3) the gi and pi terms are defined as carry generate and carry propagate for

the ith bit. If carry generate is true then a carry is generated at the ith bit. If carry

propagate is true then the carry-in to the ith bit is propagated to the carry-in of i+1 bit.

They are defined by equations (4) and (5) where Ai and Bi are the binary inputs being

added.

iii BAg = (4)

iii BAp ⊕= (5)

Using the carry generate and carry propagate signals and the carry equation defined in

equation (3) the CLA architecture takes advantage of parallelism.

Figure 4 Carry Look-Ahead Block Diagram.

Figure 4 is a block diagram of a 4-bit CLA structure. As can been seen in the

figure the propagates and generates are calculated in parallel for each bit. Then using the

carry generate and propagate information each carry bit is calculated (in parallel), and

finally in this block diagram the carrys are feedback and all the sums are calculated in

 9

parallel. At a first glance it appears the CLA architecture computation time is

independent of the number of bits in the adder design. Equation (6) defines the

computation delay of a CLA.

sumcarrypgadd tttt ++= (6)

Where tpg is the time to compute carry generate and propagate, tcarry is the longest carry

computation time, and tsum is the time to calculate the sum. Equation (6) supports that the

CLA computation time is independent on the number of bits in the adder design, since N

(the number of bits in adder) does not appear in the equation.

CLA architectures are typically implemented using blocks of CLA structures

connected together, because one structure is not practical due to large fan-in [1]. This

makes sense if the carry equation (Eq. 3) is analyzed more closely. As the number of bits

implemented in the CLA increases the terms in the carry equation grow. This increases

the fan-in to the carry logic, as seen in the example below when the carry equation is

expanded.

in

in

CarryppgpgCpgC
CarrypgC

010110111

000

++=+=
+=

This increase in fan-in actually makes the CLA computation time dependent on the

number of bits in an adder. In addition, the fan-in limits the number of bits that can be

implemented in a given CLA. To design a CLA architecture, the adder is divided into

CLA blocks and then the blocks are cascaded to form the full adder. The CLA blocks

can be cascaded using several different approaches to optimize the design.

 10

2.2.4 Carry Select Adder

 The Carry Select or Conditional Sum architecture is considered the fastest

synchronous type adder [4]. Figure 5 illustrates a block diagram for a 2-bit slice.

Figure 5 Carry Select Adder Block Diagram.

In many architectures, including those already discussed, higher-order bits within the

architecture must wait for the carry from the lower order bits before computing the results.

To completely eliminate the data dependence this architecture computes both possible

values of sum and carry-out for both a carry-in of zero and one. As shown in Figure 5,

once the carry-in arrives the correct sum and carry-out are selected from a multiplexer

(MUX). Equation (7) defines the delay of the CSA architecture, where tsetup is the time to

compute the initial carry and tmux is the time for the MUX to select and pass an input.

summuxsetupadd tNttt ++= (7)

This architecture greatly reduces the computation time’s dependence on both the binary

data and the number of bits in the adder design.

 11

CHAPTER 3 - DESIGN OF AN ASYNCHRONOUS AND SYNCHRONOUS ADDER

3.1 Design Considerations

Two 16-bit binary adders are designed to compare asynchronous to synchronous

design technologies. All design decisions are based on high-speed with area (number of

transistors) and power as secondary concerns. The most influential design decisions on

adder performance are the adder architecture, and the logic style used to implement the

adder designs.

In designing the two adders the number of variables between the two designs is

kept to a minimum to ensure the differences observed are due to the design technology,

synchronous or asynchronous. For example, using identical architectures for both the

asynchronous and the synchronous adders could be considered as part of this requirement.

However, if the architecture gives an advantage and is more suitable to either design

technology, then the architecture can be considered as specific to the design technology.

Using different architectures then doesn’t introduce a secondary variable between the two

adder designs.

3.2 DDCVSL Gate Design

 The design requirements for the logic style used to realize the adder designs are

high-speed, and differential (dual-rail). Domino differential cascode voltage switch logic

(DDCVSL) is a logic style that meets these requirements. DDCVSL is very popular in

several of the asynchronous papers [1][3][7][9]. Johnson and Ruiz point out that

DDCVSL naturally leads to a delay-insensitive design due to the ease of detecting

 12

completion using the differential signals [1][7]. The dual-rail property is also useful for

providing differential inputs to the exclusive-OR (XOR) gates that are used in adder

designs to implement both the propagate and sum logic.

In a couple papers the performance of DDCVSL was compared to other logic

styles [10][13]. Chu and Pulfrey compared both static and dynamic logic styles using full

adder designs [10]. They found that DCVSL offered the best speed performance at a cost

of power.

3.2.1 DDCVSL Basics

 Figure 6 is a block diagram of a domino DCVSL (DDCVSL) gate. From the

figure, when the precharge signal is low the DDCVSL gate is in the precharge state

where the internal dynamic nodes are charged to VDD through transistors M1 and M2.

When precharge transitions high the precharge transistors are off, and the tree is in the

evaluate state. The dynamic nodes float until one of the DDCVSL trees evaluates and

pulls the corresponding dynamic node low through transistor M5, the evaluation or foot

transistor. Then one of the restore transistors either M3 or M4 pulls the opposite tree

back high if any charge sharing occurred between the dynamic node and nodes within the

off tree. The restore is important to ensure that the inverter connected to the off tree is

fully driving a low. The inverters are skewed with a sizing that makes the rising

transition faster (larger P:N ratio). Sizing the p-channel larger with a minimum n-channel

sizing allows for more of the input capacitance of the inverter to be dedicated to driving

the output high.

 13

Figure 6 DDCVSL Block Diagram [13].

3.2.2 Domino DCVSL

In Figure 6, without the high-skew inverters the gate is simple a DCVSL gate. If

dynamic gates are directly connected in series an incorrect evaluation could occur. In

order to connect dynamic gates in series, it is necessary to add the inverters to the output

of the DCVSL gate forming a domino gate.

 For example, if two dynamic inverters are connected in series where the input of

the second gate is connected to the output of the first gate, the second gate may evaluate

incorrectly. When the gates are in the precharge state the output of the first gate is

precharged high, and therefore the input to the second gate is high. Then when the gates

enter the evaluate state, gate two will start to loose charge on its output (dynamic node)

before knowing the result of the first gate. This could result in an incorrect evaluation, or

 14

in an asynchronous implementation early completion detection. The domino technique

solves this problem by adding an inverter to the output of the dynamic gate, so that the

inputs to successive dynamic gates in a network are all low during precharge [8]. The

basic idea of domino is to only allow 0→1 transitions on the inputs of dynamic logic

during the evaluate state. As the inputs of each successive gate rise there is a falling

domino effect.

3.2.3 Designing DDCVSL

DDCVSL gate design involves determining the transistor arrangement and size in

the DDCVSL tree, sizing the precharge, restore, and foot (evaluate) transistors, and sizing

the high-skew inverter to drive the output load.

 3.2.3.1 DDCVSL Tree Design

 The DDCVSL tree design involves sizing and arranging the transistors to realize

the intended function. The function can be realized directly by connecting n-channel

transistors that reflect the function in the true tree, and the complement of the function in

the complement tree.

 Three things need to be considered when design the DDCVSL trees.

1. When possible transistors with the same input signal within the same tree or
between the true and complement trees should be combined or shared.

2. The number of transistors connected to the dynamic node should be kept to a
minimum to reduce the output capacitance.

3. Transistors with input signals that transition after other input signals within
the same stack should be moved up the stack if possible.

 15

By sharing transistors within or between trees the total number of transistors in the

overall design is reduced. Minimizing the capacitance on the dynamic node enables

faster evaluation times. The fewer devices connected to the dynamic nodes the better.

To demonstrate the proper tree connection equation (8) is realized.

)(CBAF += (8)

Transistor A should be connected to the dynamic node with B and C connected to the

source of A, instead of connecting both B and C to the dynamic node and then connecting

A to the sources of B and C. If an input is more likely to reach the DDCVSL gate last it

should be connected higher in the tree for two reasons. One faster operation will occur

because everything below it has already evaluated, and two if the tree ends up not

evaluating it reduces the voltage level the restore device must restore.

All the devices in the trees are sized the same so that longest stack of transistors

connected in series is equivalent to the minimum n-channel device width of 12 µm [12].

The foot or evaluate transistor is sized 1.5 times the size of the transistors in the tree [12].

 3.2.3.2 Precharge and Restore Sizing

 The sizing of the precharge and restore transistors are governed by the same

principles. Both the precharge and the restore transistors are directly connected to the

dynamic nodes. The larger the precharge and restore transistors the larger the

capacitance on the dynamic node, which decreases evaluation time. The goal is to size

the precharge and restore transistors large enough to reduce the precharge and restore

time, with the smallest affect on evaluation time. Basically, find the point of diminishing

returns skewed in favor of the evaluation time.

 16

The evaluation time of each DDCVSL gate is more critical than the precharge time. In

the asynchronous case a portion of the precharge time will be hidden during the

asynchronous handshaking, and in the synchronous case the only precharge requirement

is that the precharge time be less than the evaluation time (clock high vs. clock low time).

To determine the effect of the precharge transistor size on the evaluation time,

simulations were run using different sized precharge devices. Table 2 summarizes these

simulations.

Table 2 Summarizes Precharge Time and Change in Evaluation Time.
Precharge Device Precharge Delta Eval Time

Size (um) Time (ps) from 12um case
12 274
18 176 1.3
24 128 2.9
36 81 5.5
48 58 8.4

The third column in Table 2 demonstrates the change in evaluation time as the precharge

device is increased from the minimum 12 µm size. As the precharge device is increased

in size the precharge time decreases quickly, and the increase in evaluation time

approximately doubles. The precharge transistor size of 36 µm yields an increase of 5.5

ps. For example, if ten DDCVSL gates evaluate in series this would add 55 ps to the

default minimum sized precharge case. Using a precharge size of 24 µm cuts the

precharge time in half with only a 2.9 ps increase in evaluation time. The 24 µm size is

chosen for the DDCVSL gate implementations.

 The restore device was simulated using a one-device and two-device

configuration with several different sizes. The two-device configuration is simple two p-

channel transistors connected in series with the top transistor’s gate tied to ground. The

simulations yielded very little differences in results. A two-device configuration was

 17

chosen with each transistor sized with the minimum sizing of 12 µm/1 µm, which gives

an effective size of 6 µm/1 µm. This smaller device is desirable to reduce the current.

By implementing the restore device using two devices instead of a single 12 µm/2 µm

transistor the capacitance on the dynamic node is reduced [12].

3.2.3.3 High-Skew Inverter

 The high-skew inverter is sized in favor of the inverter output transitioning high,

the evaluate case. Therefore the p-channel is the skewed device. The n-channel is sized

with the minimum device size of 12 µm/1 µm (width/length). The p-channel is sized

based on the amount of output load. The minimum p-channel size used in the adder

designs for the skewed inverter is 36 µm/1 µm.

3.2.4 Example DDCVSL Design

 The AND and XOR functions are two basic gates that will be used to calculate

generate and propagate terms in the adder designs. These logic functions were

implemented directly into the DDCVSL trees in Figure 7. The gates were designed using

the DDCVSL design discussion.

 18

(a) DDCVSL AND (b) DDCVSL XOR

Figure 7 DDCVSL Implementation of (a) AND and (b) XOR.

 To show the advantages of DDCVSL gates the basic AND and XOR gates are

compared to their static CMOS counterparts. A test-bench was setup where all inputs to

the gates under test are driven by a minimum fan-out 4 driver, and all outputs are loaded

with a minimum sized inverter. The delay measurements are taking from the output of

the driver to the output of the gate. Table 3 lists the results.

Table 3 Summary of DDCVSL vs. Static CMOS AND & XOR Gates.
DDCVSL AND CMOS NAND CMOS AND DDCVSL XOR CMOS XOR

81.35 42.77 96.76 87.59 81.29
57.66 34.80 75.42 84.25 52.47
65.33 36.10 89.43 83.92 54.98
70.17 56.46 101.26 84.08 63.31

34.97 88.68 63.79
65.18 111.80 56.96

81.21
56.87

Average (ps) 68.63 45.05 93.89 84.96 63.86
MAX Delay (ps) 81.35 65.18 111.80 87.59 81.29

 19

The DDCVSL AND gate is compared to the static CMOS NAND and static CMOS AND

equivalent. The static CMOS AND is implemented using a NAND gate with an inverter.

Comparing DDCVSL AND to the equivalent CMOS AND demonstrates the high-speed

nature of DDCVSL. The DDCVSL XOR gate is slower than the static CMOS gate,

however the DDCVSL gate has differential inputs. If an inverter delay is added to the

static CMOS XOR gate delays, then the DDCVSL gate has a better average and worse

case delay. Notice that all possible permutations of input sequences that cause the output

to switch were tested. For the DDCVSL there are only four possibilities, because the

output always starts out at the same state, since this is a precharged gate. The CMOS

gates on the other hand have more permutations of inputs to test, which are based on the

previous state of the output.

3.3 Asynchronous Adder Design

 The asynchronous 16-bit adder design involves selecting and designing the best

architecture for an asynchronous technology, and designing the asynchronous

communication logic. All logic is designed for high-speed operation. The asynchronous

communication design is critical to the overall performance of the asynchronous adder.

As Nowick and others point out, asynchronous circuits have the potential to outperform

synchronous designs on average inputs [9]. However, if the asynchronous methods incur

significant overhead the potential benefits of the asynchronous design will be undercut.

 20

3.3.1 Architecture

The asynchronous adder architecture needs to exhibit several characteristics,

which include high-speed, and the ability to take advantage of an asynchronous

implementation. Asynchronous circuits have the potential to operate at an average delay.

Therefore, selecting a high-speed architecture for the asynchronous design involves

selecting an architecture that improves the average delay of the adder. Several

asynchronous articles use the carry look-ahead (CLA) architecture for implementing

asynchronous adders [1][4][6][7]. The CLA reduces the linear dependence on the

number of bits implemented in the adder, and improves the average computation delay.

The CLA improves the average computation delay by reducing the dependence of upper

bit evaluations on lower bit carrys through its parallel nature. In addition, completion

detection is easily implemented when using DDCVSL by monitoring the carry signals for

completion.

 The CLA may be implemented in several topologies. In the literature three CLA

topologies were used in asynchronous adder design, a single-level CLA [1], a multi-level

or tree-like CLA [6], and a CLA with a Manchester Carry Chain (MCC) [7][9]. Johnson

claims that the single-level CLA has better average-case delay than a multi-level, and

therefore is more suitable for an asynchronous implementation [1]. The multi-level CLA

for the average case requires a carry to propagate through more levels than a single-level

CLA. In addition, Franklin and Pan’s results show that a single-level CLA is more

feasible than a tree structure for the design of adders in asynchronous environments [4].

Ruiz on the other hand finds that the MCC offers the best speed performance [7].

 21

 To determine the best CLA topology for an asynchronous adder design, all three

topologies are implemented in a 4-bit experiment. The designs are simulated using all

possible input permutations. Then average and worse case delay for the carry-out of the

fourth bit is analyzed to determine the best CLA topology for an asynchronous adder

implementation.

 3.3.1.1 Single-Level CLA

 The single-level CLA is implemented using blocks of CLA structures connected

together in the form of a ripple-carry adder [1]. A single CLA structure is not practical

due to the large amount of fan-in associated with the carry signals. Within the blocks is a

true CLA structure where the carrys are calculated in parallel. The design of the single-

level topology involves choosing a block size, and designing the CLA structures.

The fan-in associated with the carry equation limits the block size. Equation (9)

is the generic form of the carry equation.

1−+= iiii CpgC (9)

In equation (9) gi is the ith bit generate term, pi is the ith bit propagate term, and Ci-1 is

the carry-in from the previous bit. As the number of bits increases the number of terms in

the carry equation grows thus increasing the fan-in. For example implementing a 4-Bit

CLA would produce the following carry equations.

in

in

in

in

CarryppppgpppgppgpgCpgC
CarrypppgppgpgCpgC

CarryppgpgCpgC
CarrypgC

012301231232332333

0120121221222

010110111

000

++++=+=
+++=+=

++=+=
+=

 22

The final product in the C3 equation has five inputs and would require a fan-in of five if

implemented with one level of logic. In the DDCVSL design the maximum stack size or

fan-in is limited to three or four.

The CLA block size must be selected to have the best overall speed performance.

If a block size of four is used multiple levels of logic are required to reduce the fan-in. A

block size of three would meet the requirements for fan-in, but leads to an irregular

design since adders are usually based on multiples of a byte (8 bits). Franklin and Pan

found that a block size of two is optimum for adders with sixty-four bits or less [4].

Based on this discussion a CLA block size of two is selected for the asynchronous adder.

Using a block size of two, eight 2-bit CLAs are cascaded to form the full 16-bit

adder. Two different 2-bit CLA designs are proposed one traditional design that uses

generate and propagate, and a new design that proposes an additional signal, the

complement carry generate.

3.3.1.1.1 2-Bit CLA Design

 The 2-bit CLA adds two 2-bit binary numbers, A and B. It produces two sums,

one for each bit, and a carry-out from the results of the second addition. First the CLA

calculates the carry generate and carry propagate signals using equations (10) and (11)

where ‘i’ refers to the ith bit.

iii BAg = (10)

iii BAp ⊕= (11)

Using the equations above, a generate and propagate block is assembled using a

DDCVSL AND gate and a DDCVSL XOR gate to provide the carry generate and

propagate signals respectively (see the DDCVSL gate design section for the specifics on

 23

the DDCVSL AND and XOR designs). Two generate and propagate blocks are used in

the 2-bit CLA one for each bit to produce g0 and p0, and g1 and p1.

 The carry and sum for each bit are found using equations (12) and (13).

1−+= iiii CpgC (12)

11 −− ⊕=⊕⊕= iiiiii CpCBASum (13)

Expanding equation (12) for carry0 and carry1 results in equations (14) and (16) with the

corresponding complement equations (15) and (17).

inCpgC 000 += (14)
)(000 inCpgC += (15)

inCppgpgC 010111 ++= (16)
))((010111 inCppgpgC +++= (17)

Using equation (14) for the true tree and equation (15) for the complement tree carry0 is

implemented in Figure 8a. Carry1 is implemented in the same way using equation (16)

for the true tree and equation (17) for the complement tree in Figure 8b.

0p

0p

0g

0g

1g

1g1p 1p

inC inC 1p

1p0p

0p

0g

0g

inC inC

(a) (b)

Figure 8 DDCVSL Tree Implementations of (a) Carry0 and (b) Carry1.

Utilizing the designs procedures discussed in Chapter 2 for DDCVSL tree design,

the trees in Figure 8 are modified for implementation in a DDCVSL gate. First each tree

 24

needs to be checked for redundant transistors that can be combined. Then where possible

signals that could arrive last are moved towards the top of the stack. In addition, the

number of transistors connected to the dynamic nodes should be minimized where

possible.

 For carry0 there are no redundant transistors. Any carry signal could transition

last so the Cin (carry-in) signal is moved to the top of the stack, swapped with p0. Both

carry1 trees have a redundant transistor p1 and p1_ in the true and complement trees

respectively. The trees are rearranged to share these transistors, and the Cin is moved up

the true tree stack one place with p0 moved below it. Figure 9 illustrates these changes

implementing the DDCVSL gates for carry0 and carry1.

 (a) (b)

Figure 9 DDCVSL Schematics for (a) Carry0 and (b) Carry1.

The 2-bit CLA is constructed with two generate and propagate blocks (one for

each bit), the carry0 DDCVSL gate, the carry1 DDCVSL gate, and two DDCVSL XOR

gates for finding the sums. This produces three levels of logic where each level evaluates

 25

in parallel, carry generate and propagate, carry, and sum. Figure 10 is the schematic for

the 2-bit CLA.

Figure 10 2-Bit CLA Schematic.

 3.3.1.1.2 2-Bit CLA Design with Complement Carry Generate

 In addition to the traditional CLA carry generate and propagate terms, Ruiz

introduces a new term, the complement carry generate [7]. The complement carry

generate (n) is also known as carry kill [6] or delete carry [8]. Ruiz introduces this new

term to give symmetry and reduce the stack height in the DDVCSL trees in hopes of

improving the carry evaluation speed [7]. Using n in a 2-bit CLA design reduces the

number of transistors in the carry0 and carry1 logic, but increases the number of

transistors in the 2-bit CLA due to the added AND gate used to calculate n. Note that n

(complement carry generate) is calculated in parallel with the carry generate and

propagate terms, so it doesn’t add another level of logic to the CLA design.

 The complement carry generate signal is derived to get the carry complement

equation (18) in the same form as the true carry equation (19).

 26

)(1−+= iiii CpgC (18)

1−+= iiii CpgC (19)

Using Boolean algebra carry complement can be written in the form of equation (20)

where the complement carry generate, n is defined by equation (21).

1−+= iiii CpnC (20)

iii pgn = (21)

Table 4 below illustrates the relationship between all three terms based on inputs A and B.

From inspection it is observed that all the terms have the mutually exclusive property [7].

Meaning that only one term is high or true for any given input combination. This is a

requirement, because these signals, carry generate, carry propagate, and complement

carry generate independent of each other define the carry bit.

Table 4 Truth Table for pi, gi, and ni [7].
Ai Bi pi gi ni

0 0 0 0 1
0 1 1 0 0
1 0 1 0 0
1 1 0 1 0

 Using equations (20) the complement carry0 and carry1 equations with n are

realized in equations (22) and (23).

inCpnC 000 += (22)

inCppnpnC 010111 ++= (23)

Equations (14) and (16) are used to implement the true trees for carry0 and carry1, and

equations (22) and (23) are used to implement the complement trees. The trees are

designed like in the previous example for the 2-bit CLA in the carry0 and carry1 design.

Here the carry0 trees share p0, and the carry1 trees share p0 and p1. Figure 11, illustrates

the DDCVSL schematics for carry0 and carry1 implemented with n.

 27

(a) (b)

Figure 11 (a) Carry0 and (b) Carry1 Implemented with n (complement carry generate).

 The goal of implementing the carry logic with n is to reduce the evaluation time

of the trees. The smaller the stack height the faster the tree will evaluate. Comparing

Figures 10 and 11 notice that the carry0 DDCVSL trees have a maximum stack height of

3. For the implementation without n there are three possible cases of an evaluation

having a stack depth of three, and with n there are only 2 cases. For the carry1 DDCVSL

trees the maximum stack depth is 4. The implementation without n has 5 possible

evaluations with a stack height of 4, and with n only 2 possible cases with a stack height

of 4. It is this difference that is believed will improve the average propagation delay

when implementing the 2-bit CLA with n.

 The 2-bit CLA with n is then implemented like the design without n. The carry

generate and propagate block now has an additional DDCVSL AND gate to calculate n,

and the carry0 and carry1 logic is changed to the carry0 and carry1 with n. The sum

 28

implementation remains the unchanged. The schematic is not shown here, it is basically

the same as Figure 10.

3.3.1.2 Multi-level or Treed CLA

The multi-level CLA design will also use a block size of 2 based on the

arguments presented in the single-level design. The multi-level structure attempts to

reduce the carry ripple effect evident in the single-level topology between each 2-bit

CLA structure.

Multi-level CLA designs introduce the idea of a group carry generate and a group

carry propagate, usually denoted with a Gi and Pi. The group carry generate and group

carry propagate are defined by equations (24) and (25).

kjjijiki GPGG ,1,,, −+= (24)

kjjiki PPP ,1,, −= (25)

The multi-level CLA is implemented with two different blocks. The first block is the 2-

bit CLA that was designed above in the single-level CLA, and the second block computes

the group generate and propagate signals. Figure 12 is a block diagram of a 4-bit multi-

level CLA. Notice the tree-like structure.

 29

Generate
Propagate

& Sum
Logic

A0 B0

Carryin

g1 p1

Sum1

Generate
Propagate

& Sum
Logic

A1 B1

g0 p0

Sum0

Group
Generate
Propagate

Logic

Generate
Propagate

& Sum
Logic

A2 B2

g3 p3

Sum3

Generate
Propagate

& Sum
Logic

A3 B3

g2 p2

Sum2

Group
Generate
Propagate

Logic

Group
Generate
Propagate

Logic

Carry0Carry1Carry2

Group
Generate
Propagate

Logic

Carryout

P10G10G32 P32

P30G30

Figure 12 Block Diagram of Multi-Level CLA using Group Generate and Propagate.

The first level of gates in Figure 12 is implemented with the 2-bit CLA. The rest of the

levels in the tree are then composed of the group generate and propagate blocks.

The group generate and propagate block simply implements equations (24) and

(25). The group generate equation is of the same form as the carry0 equation (14).

Group generate is then implemented with the same logic already designed for carry0 with

the inputs changed to correspond to equation (24). The group propagate equation (25), is

implemented with the DDCVSL AND gate.

 30

3.3.1.3 Manchester Carry Chain

The Manchester Carry Chain (MCC) is a CLA topology that uses pass-transistor

logic to propagate carrys. Ruiz suggests that the MCC is a promising dynamic CLA with

a regular, fast, and simple structure [7].

The MCC uses a series of pass-transistors to implement the carry chain. Unlike

the single-level and multi-level designs the block size of the MCC isn’t restricted by the

fan-in associated with larger block sizes for the carry signals. Ruiz suggests a block size

of four [7]. The MCC is dynamic, and all internal nodes are precharged to VDD, where

each carry has its own dynamic node. Figure 13 is the schematic for the MCC where the

carrys are implemented on the left, and the complement carrys are implemented on the

right.

Figure 13 Manchester Carry Chain Schematic [7].

Referring to the schematic the basic idea is that if any generate signal is high for

the corresponding carry it will pull the input to the skewed inverter low through the

 31

evaluate transistor at the bottom of the stack. When the input of the inverter goes low

then the carry is high. If the propagate signal is high, it passes this result up the stack to

the next carry. If several of the propagate terms are high, and a lower order generate term

is high, the generate transistor may be required to pull as many as four dynamic nodes

low. This amount of load on the single generate transistor presents a sizing issue.

 Higher order generate and propagate terms don’t see as much load as the lower

order terms. Rabaey suggests sizing the transistors progressively [8]. Starting at either

extreme (far left for the generates and at the top for the propagate transistors) the first

transistor is sized with the minimum sizing. Successive transistors in either the propagate

or generate chain are sized half a minimum transistor larger than the previous transistor

[8]. Like in the other DDCVSL designs the evaluate transistor at the bottom is sized 1.5

times the largest transistor.

3.3.1.4 Architecture Experiment

Three CLA topologies have been reviewed the single-level, the multi-level, and

the MCC. To determine the best CLA topology to use in the design of the 16-bit

asynchronous adder, all three are compared to find the best performance.

For the comparison the three topologies are implemented in a 4-bit configuration.

Then the time to compute the carry at the fourth bit for all possible permutations of inputs

is used to evaluate the performance. All inputs are driven with a minimum sized driver

(two inverters), and all outputs are loaded with a minimum sized inverter for simulation

purposes. Table 5 lists the average and worse case delay for each design, and the number

 32

of transistors required to implement the design. The 4-bit experiment schematics are

found in Appendix A.

Table 5 4-Bit CLA Topology Experiment.
Single-level Single-level Multi-level CLA MCC MCC1 MCC2

with n w/o n CLA (tree) k + 6 k + 12 k x 2
Average (ps) 162.59 167.50 324.07 225.65 204.43 190.45
Worse Case (ps) 287.43 284.52 469.98 461.88 385.95 329.51

G & P logic 290 422 422 422 422 422
Carry Logic 205 181 553.5 87 109 181
Total
Transistors 495 603 975.5 509 531 603

The single-level CLA designs outperform the multi-level and the MCC. The tree or

multi-level CLA demonstrates the worst average case performance and requires almost

twice as many transistors as the single-level CLA with n. The initial MCC design has a

comparable amount of transistors compared to the single-level designs, but has a larger

average delay by about 70 ps, and a larger worse case delay of approximately sixty

percent.

 An asynchronous circuit’s performance is more influenced by the average delay

than the worse case delay [4]. With this in mind, two additional experiments were

attempted to improve the MCC average delay by adjusting the transistor sizes in the

original design. In the original design the transistor sizing was increased in the propagate

pass gate stack, and in the parallel connected generate stack by half the minimum width

plus the previous transistors size. In the two experiments this sizing was changed to

increasing each stage by one minimum device (k = k + 12 µm), and in the second

experiment use a multiplication factor of 2 (k = k x 2). The results of these experiments

are found in the last two columns of Table 6. Even for the multiplication factor of 2

 33

sizing, the MCC average case delay is still 30 ps slower than the single-level CLA

designs.

As expected the single-level 2-bit CLA with n (complement carry generate) has a

better average case delay than the 2-bit CLA without n due to the reduced stack depth in

the DDCVSL carry logic. However, the single-level CLA without n has a better worse

case delay than the single-level CLA with n. The reason the single-level CLA design

with n has a larger worse case delay is believed to be the added input capacitance on the

dynamic node in the DDCVSL carry gates. For example, the DDCVSL carry1 gate with

n has a total of 3 transistors connected to either dynamic node compared to the DDCVSL

carry1 without n which only has 1 transistor in the complement tree and 2 transistors in

the true tree connected to the dynamic node. Based on these results the 16-bit

asynchronous adder will be designed using the single-level 2-bit CLA design with n

(complement carry generate).

3.3.2 Asynchronous Communication Design

Design of the asynchronous communication logic is critical to the asynchronous

adder performance. The asynchronous communication design includes the

communication control and the completion detection circuit. The total computation time

of the 16-bit asynchronous adder is defined by equation (26).

HSCDAddASYN tttt ++= (26)

In equation (26) tAdd is the time to complete the addition, tCD is the delay to detect

completion, and tHS is the time it takes to complete the handshaking communication with

the environment. The overhead delay associated with the asynchronous design is then tCD

 34

plus tHS. If this overhead is too large the asynchronous design will not have any benefits

over the synchronous design.

3.3.2.1 Communication Control Logic

The asynchronous 16-Bit binary adder communicates with its environment in a

passive/active manner. The input and output signals used to communicate with the

environment are

Adder Inputs
1. RequestAdd – requests the adder to perform an addition.
2. AckMem – output environment acknowledges capture of the addition results.
3. AddDone – signals to the communication control that the addition is complete.

Is the output of the completion detector.

Adder Outputs
1. RequestMem – request the output environment to capture the adder results.
2. AckAdd – acknowledges to the input environment that the addition is

complete and the adder is ready for the next addition.

Using these input and output signals pseudo VHDL code is developed to define the

asynchronous adder communication.

Adder_PA:process
 begin
 loop

guard (ReqAdd, 1) -- start addition
 guard (AddDone, 1) -- addition complete
 assign (ReqMem, 1) -- register adder results
 guard (AckMem, 1) -- output captured
 assign (ReqMem, 0)

assign (AckAdd, 1) -- acknowledge addition complete
guard (AckMem, 0)
guard (ReqAdd, 0) -- begin precharge of DDCVSL
guard (AddDone, 0) -- precharge complete
assign (AckAdd, 0)

 end loop;
 end process Adder_PA;

 35

From the code above, the adder first waits for a request, ReqAdd high from the

input environment. This request signal is used as the clock to the 2-bit CLA blocks.

When ReqAdd is high the DDCVSL trees are in the evaluate state and when it is low they

are in the precharge state. Once the adder gets the request it then waits for the addition to

complete. The completion detection circuit signals when the 16-bit addition is complete

by transitioning the signal AddDone high. After the addition is complete the adder

requests the environment to capture the addition results by transitioning ReqMem high.

Once the environment acknowledges that the addition results have been captured, the

adder acknowledges to the environment the addition is complete by transitioning AckAdd

high. The environment then transitions the request signal ReqAdd low, and the addition

logic then begins to precharge. Once the precharge is complete the adder transitions

AckAdd low to signal to the environment that it is ready for the next addition request.

From the VHDL code the burst mode machine describing the adder

communication was developed, Figure 14.

S0

S1

S2 S3

S4

S5
ReqAdd+

AddDone+ /
ReqMem+

AckMem+ /
ReqMem-

AckMem- /
AckAdd+

ReqAdd-

AddDone- /
AckAdd-

Asynchronous 16-Bit Adder BurstMode Machine

Figure 14 Asynchronous Burstmode Machine for 16-Bit adder.

 36

Then from the burstmode machine in Figure 14 the state flow table is derived, Table 6.

Table 6 State Flow Table from Burstmode Machine.
Inputs = ReqAdd / AddDone / AckMem

X3X2X1 000 001 011 010 110 111
S0 000 S0, 00 ----- ----- ----- ----- -----
S1 001 ----- ----- ----- ----- S2, -0 -----
S2 011 ----- ----- ----- ----- S2, 10 S3, -0
S3 010 ----- ----- ----- ----- S4, 0- S3, 00
S4 110 ----- ----- ----- S5, 01 S4, 01 -----
S5 111 S0, 0- ----- ----- S5, 01 ----- -----

Outputs = ReqMem / AckAdd

The flow table in table 6 has a total of six states. The next step is to minimize the number

of states require to implement the asynchronous communication by finding the

compatible states. Using the techniques from chapter 4 of Myers [14] states zero, one,

and two are compatible, and states three, four, and five are compatible. This reduces the

total number of states to implement the burstmode machine to two. Table 7 is the

reduced flow table with only two states.

Table 7 Reduced Flow Table.
Inputs = ReqAdd / AddDone / AckMem

X1 000 001 011 010 110 111
S0 0 S0, 00 ----- ----- ----- S0, 10 S1, -0
S1 1 S0, 0- ----- ----- S1, 01 S1, 01 S1, 00

Outputs = ReqMem / AckAdd

From the reduced flow table, karnaugh maps for the output signals ReqMem and

AckAdd, and the next state variable X are derived. Equations (27) through (29) are

found from solving the covering problem for each karnaugh map.

AddDoneXqMemRe ⋅= (27)
AckMemAddDoneXAckAdd ⋅⋅= (28)

 37

AddDoneXAckMemqAddReX ⋅+⋅= (29)

These equations define the logic that controls the asynchronous communication. This

logic must be able to respond to a request or acknowledge from the environment at any

moment. Since the logic must be active all the time, there can’t be a precharge state

where the logic is not active, and therefore the logic is not implemented using DDCVSL.

The logic is designed by implementing the equations directly using AOI (And-Or-

Invert) logic. Implementing the logic in AOI offers a speed advantage over traditional

CMOS gates [15]. Using the techniques from chapter 12 of Baker [15] the AOI logic is

designed. Figure 15 is the schematic for the asynchronous communication control logic.

Figure 15 Asynchronous Communication Control Logic.

 38

3.3.2.2 Completion Detection Circuit

The completion detection circuit is very critical to the asynchronous adder design.

In order to achieve high performance self-timed asynchronous circuits, the key is to

design fast completion detection [16]. Its speed will inherently limit the overall

performance of the asynchronous adder. The completion detection circuit adds to the

overhead associated with an asynchronous design.

The adder is finished computing when all the sums have evaluated. Johnson

designed a completion detector that uses the carrys to detect completion rather than the

sums [1]. In a CLA architecture the carrys evaluate before the sums. Using the carrys to

detect completion allows some of the completion detection time to overlap with the sum

calculation, which masks some of the completion detection time from adding to the

overall computation time of the asynchronous adder. Johnson points out that the

asynchronous design becomes delay bounded if the completion circuit detects before the

last sum finishes evaluating [1]. The completion detection time is required to be larger

than the sum evaluation time.

 The differential signaling that is used between the 2-bit CLA blocks makes it very

easy to detect completion by monitoring the differential carry signals from each 2-bit

block. When one of the differential output signals switches from the precharge state the

carry has evaluated. Figure 16a illustrates Johnson’s dynamic implementation of the

completion detection circuit using the carry signals to detect completion [1].

 39

 (a) (b)

Figure 16 Two Completion Detection Implementations (a) Johnson’s Dynamic Design [1]

(b) Static Design.

In Figure 16a two dynamic gates are required to monitor the eight pairs of differential

carry signals. Each carry differential pair is connected in parallel in the dynamic gate

stack. Then when either the true or complement carry transitions high the corresponding

section in the stack discharges. When one of each carry pair in the stack has transitioned

the dynamic node is pulled low detecting completion. The two dynamic gates are

connected in a domino style to produce the AddDone signal. Charge sharing effects are

reduced using a keeper with its gate connected to the output of the inverter, and an

additional precharge device that precharges the middle node in the stack.

To evaluate the dynamic implementation by Johnson [1], I designed a completion

detector in static CMOS, shown in Figure 16b. I simulated both designs using different

scenarios where the carry signals evaluate in different orders. Examining the logic

configuration in both circuits in Figure 16 I formulated four worse case scenarios.

 40

 Test Sets
1. Each carry evaluates in succession.
2. Carry3 evaluates last (dynamic worse case)
3. Carry7 evaluates last (dynamic & static)
4. Carry5 evaluates last (a static worse case)

Test set 1 is tested, because it is associated with the worse case delay of the adder where

the carry-in is propagated through the entire adder. The remaining test sets are developed

based on transistor placement.

When using large stacks of transistors a worse case delay occurs when the bottom

transistor in the stack evaluates last. This is due to the smaller VDS across the bottom

transistor. Carry1 is the input to the bottom transistor in the first dynamic gate stack in

Figure 16a. However, the Carry1 evaluation time is not dependent on the previous blocks

addition time. Therefore, Carry1 will never take longer than any other carry to evaluate.

Carry3, the input to the second transistor from the bottom of the stack could evaluate

after all other carrys. This is the worse case scenario for the dynamic completion detector

and is used for test set 2. Test set 3 is from a possible worse case evaluation in the static

CMOS implementation in Figure 16b. In the static design the Carry7 and Carry7_ result

from the 2-input NAND gate is connected to the bottom transistor in a 4-input NAND

gate. Test set 4 uses Carry5 evaluating last, which is a possible secondary worse case in

each design.

 The simulation results of these test sets resulted in the Johnson’s dynamic

implementation only outperforming the static case for test set 1. The static design

outperforming the dynamic design for any test condition was unexpected. Examining the

circuits in Figure 16, the static implementation is more parallel in nature. In the dynamic

case when Carry3 evaluates last, the completion detection circuit evaluates in a serial

 41

manner. In addition, the dynamic circuit has 5 levels of logic and the static has 4 levels

of logic. The dynamic completion detector is modified to reduce the number of logic

levels and introduce a more parallel structure, Figure 17.

Figure 17 Dynamic Completion Detector with Parallel Structure.

In Figure 17 the dynamic gates are connected in parallel rather than in series using

a static NAND gate. Figure 18 is a chart diagram showing the results of all three

completion detection circuits for the four test sets introduced earlier. Note that the

modified completion detector has the same worse case test conditions as the original by

Johnson [1]. From Figure 18 the modified completion detector in Figure 17 outperforms

both of the other designs for three of the test sets, and is only slightly slower than the

original dynamic for test set 1.

 42

Completion Detection Circuit Comparison

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

DataSet0 DataSet1 DataSet2 DataSet3

D
el

ay
 (p

s) Dynamic

Static

Mod.
Dynamic

Figure 18 Results of Three Completion Detection Circuits using Four Test Conditions.

One of the requirements of the completion detector using the carry signals to

detect completion was that it must have a longer evaluation time then the slowest sum

evaluation. From Figure 18 the fastest completion detection time is 93 ps for test set 1.

The sums in the adder are implemented using the DDCVSL XOR gates. From Table 3

the longest DDCVSL XOR evaluation is 87 ps, which barely meets the requirement. The

delay associated with the communication control logic provides additional margin to this

timing requirement. Then the modified completion detector can be used in the

asynchronous 16-bit adder design where most of the completion detection time is

concealed during the sum evaluation.

3.3.3 Asynchronous16-Bit Adder

 The asynchronous adder design is composed of 2-bit CLA blocks, a completion

detector, and asynchronous communication logic. From the architecture experiment, the

 43

2-bit CLA with n was selected for implementing the 16-bit adder. Eight 2-bit CLA

blocks are then cascaded in a single-level to form the full 16-bits. The asynchronous

communication logic handles the handshaking between the input and output environment.

The completion detector informs the asynchronous communication logic when an

addition is complete. The ReqAdd input to the adder is used in the asynchronous logic to

determine the state of the adder, and is also used as the clock to the 2-bit CLA blocks.

The asynchronous 16-bit adder schematic is found in Figure 19.

Figure 19 Asynchronous 16-Bit Adder Schematic.

 In Figure 19, it is noticed that the asynchronous adder at a top level has the ripple-

carry structure. In this asynchronous adder design there are several levels of parallel

computing, however between the 2-bit CLA blocks a maximum ripple-carry chain of

seven is possible. In order to reduce this large ripple-carry chain an enhanced

asynchronous adder design is proposed.

 44

3.3.4 Enhanced Asynchronous 16-Bit Adder

 The enhanced asynchronous adder design incorporates a carry-bypass structure to

reduce the maximum ripple-carry chain within the asynchronous 16-bit adder. In the

asynchronous 16-bit adder in Figure 19 there is a maximum carry chain of seven, if the

carry is propagated from the first 2-bit CLA to the last 2-bit CLA. The enhanced

asynchronous design reduces the maximum carry ripple chain to four.

 By dividing the 2-bit CLA blocks into carry-bypass stages the maximum carry

chain is reduced. A carry bypass occurs when the all the internal propagate terms within

the bypass stage are true. The bypass is implemented by modifying the 2-bit CLA blocks

to output the internal propagate signals. DDCVSL AND gates are then used to detect a

carry bypass from the propagate signals. A MUX at each bypass stage chooses between

the carry bypass, or the carry-out from the previous 2-bit CLA. When a bypass is

detected the carry-in is passed directly to the next stage.

The first step in designing the carry-bypass is to select the stage size. A carry-

bypass implementation inherently has a minimum delay. If the stage size is too small, the

delay associated with the bypass logic could approach the delay for the normal ripple

path, and then the bypass will have little advantage if any over the normal ripple path.

However, the smaller the stage size the smaller the maximum carry-ripple chain.

 A stage size of 2 is determined to have little benefit. The bypass implementation

requires 2 gate delays. One gate delay to determine if all propagates are true, and one to

MUX the carry-bypass or the carry-out from the previous 2-bit CLA. The normal ripple

path for a stage size of 2 only has 3 gate delays, which gives a savings of 1 gate delay

 45

when the bypass is used. A stage size of 4 on the other hand has a carry-ripple of 5 gate

delays, and with the carry bypass would give a savings of 3 gate delays.

With a bypass stage size of 4 every 2-bit CLA block after the fourth has a carry-

bypass path. Figure 20 is the schematic for the enhanced asynchronous 16-bit adder with

a reduced maximum carry chain of four.

Figure 20 Enhanced Asynchronous 16-Bit Adder with Carry-Bypass.

3.4 Synchronous Adder Design

The synchronous 16-bit adder design involves selecting the best architecture for a

synchronous implementation, and designing the logic. The synchronous adder will

operate at a frequency equal to its worse case computation time. It is therefore critical to

reduce the worse case computation in the synchronous design.

 46

3.4.1 Architecture

 The synchronous adder is synchronized at a constant clock rate. Since the input

data is unknown, this clock rate must be set to handle the worse case data-dependent

computation delay. For high-speed performance the synchronous architecture is then

selected based on the best worse case delay, rather than the best average delay like the

asynchronous design.

 The Carry-Select Adder (CSA) architecture is considered one of the fastest adder

architectures, especially for a synchronous implementation [4]. This architecture

computes the carry-out and sums based on both possible values of carry-in. Then once

the carry-in arrives the correct sum and carry-out are chosen from a MUX.

For the worse case computation the CSA is the fastest adder architecture for two

reasons. First the data dependence is virtually nonexistent since the adder computes both

sets of results for the two possible carry-in values. Second the computation delay

dependence on the number of bits implemented in the adder is reduced compared to other

architectures. The computation time of this architecture only increases by a MUX delay

for each additional bit in the architecture. See Chapter 2 section 2.2 for a more detailed

explanation of the CSA.

3.4.2 Carry-Select Adder Design

 The CSA architecture is used to implement the synchronous 16-bit adder. The

CSA architecture like the CLA in the asynchronous design is implemented with blocks to

construct the full 16-bit adder. The larger the CSA block size the more carry dependent

delay occurs within the block. As the block size is decreased the total MUX delay

 47

increases. For a block size of 1 the MUX delay would be NtMUX where N is the number

of bits in the adder. If the block size is increased to 2, then the MUX delay is reduced by

half. As the block size is increased the data-dependent delay increases within the CSA

block.

 From the asynchronous architecture discussion, the 2-bit CLA design reduces the

data dependent delay by using a parallel type structure. Selecting a block size of 2 for the

CSA, and implementing the CSA block with a 2-bit CLA will both reduce the MUX

delay associated with the CSA, and keep the data dependent delay within the CSA block

to a minimum.

 Within the CSA block two sets of sums and two carry-out values are calculated,

and then the correct value selected by the carry-in from the previous 2-bit CSA. The

CSA design involves implementing two 2-bit CLA designs, one assuming carry-in low

and one assuming carry-in high to calculate the sum and carry-out values, and designing

a 2-bit MUX to select the correct sums and carry-out based on the carry-in.

 3.4.2.1 2-Bit CLA Design Assuming Carry-in

Assuming that carry-in is high or low allows for a reduction in the carry and sum

logic in the CLA designs. The carry generate and propagate logic remain unchanged

from the original 2-bit CLA design discussed in the asynchronous adder.

The carry0 equation when carry-in is low reduces to equation (30), and when

carry-in is high reduces to equation (31).

0000 gCpgC in =+= (30)

000 pgC += (31)

 48

From equation (30) carry0 is equal to the bit0 carry generate of the 2-bit CLA when carry-

in is low. When carry-in is high, the carry0 equals the bit0 carry generate OR-ed with the

bit0 carry propagate. Carry0 assuming carry-in high is realized with a DDCVSL OR gate.

The carry1 equation reduces to equation (32) and (33) based on a carry-in of low

and high respectively.

011010111 gpgCppgpgC in +=++= (32)

010111 ppgpgC ++= (33)

The carry1 logic is implemented in Figure 21 using equations (32) and (33).

(a) (b)

Figure 21 Schematic for Carry1 when assuming carry-in is (a) low and (b) high.

The sum logic is also reduced, but only for the bit0 sum of the 2-bit CLA. The

bit1 sum remains unchanged. Equation (34) is the bit0 sum equation for a carry-in low

and equation (35) for a carry-in high. The bit0 sum is equal to the bit0 propagate or the

complement propagate based on carry-in.

000 pCpSum in =⊕= (34)

000 pCpSum in =⊕= (35)

 49

 From the changes in the sum and carry logic two new 2-bit CLA designs are

constructed. The original 2-bit CLA design from the asynchronous adder is used as a

template for the two new designs. Both 2-bit CLA designs replace the carry0, carry1, and

bit0 sum with the corresponding logic for carry-in of low or high.

 3.4.2.2 DDCVSL 2-Bit Multiplexer Design (MUX)

 In each 2-bit CSA block the correct sums and carry-out are chosen based on

carry-in (the carry-out from the previous block). A 2-bit multiplexer (MUX) is designed

to gate the correct carry and sum. The MUX operation is defined by equation (36) and

(37).

CLKBCLKAF ⋅+⋅= (36)
))((CLKBCLKAF ++= (37)

Figure 22 is the DDCVSL implementation for a 2-bit MUX where the passA signal is

equal to CLK and the passB signal is equal to CLK_.

Figure 22 DDCVSL 2-Bit MUX.

 50

 3.4.2.3 2-Bit CSA

 The 2-bit CSA blocks are implemented using two 2-bit CLA and three 2-bit MUX.

The CSA uses two different 2-bit CLA designs, one assuming carry-in is high, and one

assuming carry-in is low. Three 2-bit MUX are used to gate the correct bit0 sum, bit1

sum, and the carry-out based on the carry-in value. Figure 23 illustrates the 2-bit CSA

schematic.

Figure 23 2-Bit CSA Schematic.

3.4.3 Synchronous 16-Bit Adder

 The synchronous 16-bit adder is assembled using the 2-bit CSA blocks, and one

2-bit CLA. The carry-in along with the other binary inputs to the 16-bit adder are

required to be available on the rising transition of clock. Therefore the carry-in is already

available to the first 2-bit block. Using the CSA for the first block has no advantage and

will only increase the number of transistors required in the synchronous adder design.

Therefore the 2-bit CLA is used for the first 2-bit block. Then seven 2-bit CSA blocks

are cascaded in series to calculate the other fourteen bits in the 16-bit adder. Figure 24 is

the synchronous 16-bit adder schematic.

 51

Figure 24 Synchronous 16-Bit Adder Schematic.

 52

CHAPTER 4 - SIMULATION RESULTS

 Simulations are run to verify the adder designs for correct operation, and to

evaluate the performance of each design. The synchronous adder will operate at the same

speed for all input conditions, which is defined by the worse case computation delay.

The asynchronous adder operates at a rate that is data-dependent. The asynchronous and

synchronous designs are evaluated using two different comparisons. First the

synchronous operating frequency is compared to the asynchronous adder’s performance

for 10,000 random test vectors. For the second experiment the adders are implemented

into an adder system and 32 consecutive additions are performed.

4.1 Test Vector Generation Using A PERL Program

 To verify the designs, find the worse case delay, and find the average delay based

on 10,000 random inputs, requires a large number of input voltage sources with each

source having multiple transitions. Determining these transitions and manually

generating the sources in a flat text file is an unreasonable and a time-consuming task,

especially for the 10,000 random inputs. To accomplish this task a PERL program was

written to generate the multiple voltage sources. The sources can be generated based on

all possible permutations or on random data. The program specifies each source and its

corresponding value over time in a piece-wise linear voltage source statement. As the

program was developed additional features were discovered and implemented. Using this

PERL program made the testing and verification of the adder designs straightforward and

convenient. Appendix B lists the PERL code for the generateSource program.

 53

The generateSource PERL program prompts the user for the following
information.

1. Test vectors generated based on random or all possible permutations.
2. Template source name (sourcename = template + current source number).
3. Number of voltage sources.
4. Number of data vectors. If all permutations, number of data vectors is based

on number of sources 2N where N is the number of sources.
5. Data cycle time, time between each test vector.
6. Rise and fall time of each input source.
7. Generate differential sources.
8. Generate source results files based on binary addition of voltage sources.
9. Generate delay measurement file.

The generateSource program first prompts the user whether to generate random data or

all possible permutations. Then the program asks the user to input the default or template

name for the voltage sources, and the number of sources to generate. Each source is

generated in a separate file with a filename that corresponds to the source name. The

filename includes the template voltage source name and a number based on the total

number of sources. If random test vectors are generated the user is asked how many

random vectors to generate. If all permutations are generated the program generates 2N

permutations where N is the number of input sources to generate. Once the data values

are known, the program also needs to know the data cycle time, and the rise and fall time

for each transition to create the piece-wise linear voltage sources. Since the adder

designs require differential inputs the program then offers to generate differential sources.

The program writes all the sources to their corresponding files. To use these voltage

sources in a simulation the source filenames are included in the simulation control file.

 The generateSource program generates the input voltage sources that specify the

binary numbers that are added by the adders. Since the program has the addition

 54

information available, an additional feature is added to generate voltage sources that

specify the expected sum and carry-out results from each addition. Like the input voltage

sources the expected sum and carry-out voltage sources are written to separate files with

unique filenames corresponding to the result that is specified within the file. Having a

source that specifies the expected results makes visually inspecting the output waveforms

less time consuming. If the expected result sources are used with a comparator to

compare to the adder’s results, the verification process becomes even more

uncomplicated. This feature calculates the expected results for the sum bits and the

carry-out by using equations (10) through (13) found chapter 3.

Figure 25 demonstrates the input, expected sum, and expected carry-out source

waveforms generated by the PERL program for all permutations of five binary input

voltage sources.

Figure 25 Sources Generated by PERL Program for All Permutations of 5 Bits.

 55

Figure 26 illustrates 32 random input combinations for five binary inputs, and the

expected sum and carry-out waveforms from the addition of the five inputs created by the

generateSource program.

Figure 26 32 Random Inputs Generated by PERL Program for 5 Binary Sources.

 For evaluating the adder designs it is necessary to measure the computation time

for each addition. A useful tool for measuring the time between two signals is

the .measure statement provided by the simulation software, HSIM. Each measure

requires a .measure statement. For a large simulation like the 10,000 random inputs

generating the .measure statements is also impractical. The generateSource program is

setup to create a file containing .measure statements to measure the delay of each

addition. The function allows the user to specify both the signal to trigger the

measurement and the target signal. If no target is specified the function creates

a .measure statement for each adder output.

 56

4.2 Verification and Testing

 The asynchronous and synchronous 16-bit adder designs are verified to ensure

proper results for all possible input permutations. For the 16-bit adders there are 233

possible input permutations. This large number of input permutations is impractical to

simulate, and is not possible in the simulation environment I am using for my thesis. A

more practical two-step method that requires fewer input permutations is devised by

using the knowledge of the adder designs.

A verification system is designed to assist in the verification process. This system

uses an ideal comparator to compare the circuit results with the expected results. For

each step in the verification process the correct results are verified by checking the

outputs of ideal comparators.

4.2.1 Ideal Comparator

 An ideal comparator is implemented to aid in the design verification by

comparing each simulated adder output with an expected result signal. The expected

result signals are defined by a set of piece-wise linear sources that are created by the

generateSource PERL program. An ideal comparator is used, because the comparator is

utilized as a verification tool, and therefore ideal operation is preferred.

 The comparator makes the verification very efficient. Without the comparators

for each result being verified, the verification would involve analyzing each input,

computing the expected results, and then comparing to the specific output. Instead when

using the comparators, the output of each comparator is quickly scanned for any incorrect

results. The comparator has two input terminals, a positive terminal and a negative

 57

terminal. If both terminals are equal, then the comparator’s output is 0 volts. If the

positive terminal is at a higher voltage than the negative terminal, then the output of the

comparator is VDD, and if the negative terminal is at a higher voltage than the positive

terminal the output is –VDD. Figure 27 illustrates the comparator operation for passing

and failing cases.

Figure 27 Verification Results Using An Ideal Comparator.

To demonstrate the comparators operation, the expected result sources

SumExpect<0> and SumExpect<1> were modified with incorrect results. In Figure 27

the comparator output signals are Sum0result, Sum1result, and Carryresult. Both the

Sum0result and Sum1result signals transition above and below the zero level indicating

that the comparators detected the incorrect results that were modified. The Carryresult

signal maintains a zero level throughout all the test vectors indicating the carry was

 58

computed correcting in all cases. This demonstrates the comparators ability to identify a

correct or incorrect result, and the quick verification method when using a comparator.

4.2.2 Asynchronous Design Verification

The adders are composed of 2-bit blocks, which are cascaded to form the full 16-

bit adders. Verifying the 2-bit block design for all possible permutations of inputs is the

first step in verifying the 16-bit adder designs. For the 2-bit CLA there are 25 or 32

possible input cases. Using my generateSource program all the possible permutations of

inputs were generated, and the corresponding expected output results. Figure 28

demonstrates the verification of the 2-bit CLA for the asynchronous design.

Figure 28 Simulation Verification Results for 2-Bit CLA.

The 2-bit CLA designs with n and without n are both verified in Figure 28. Ideal

comparators are used to compare each output of the CLA to the expected results. The

 59

Sum0result, Sum1result, and Carryresult are the output of the comparators for the 2-bit

CLA without n. In Figure 28 these signals maintain a zero level throughout all input

permutations verifying the 2-bit CLA without n design. The Sum0resultb, Sum1resultb,

and Carryresultb are the output of the comparators for the 2-bit CLA with n. Again in

figure 24 these signals maintain a zero level verifying the 2-bit CLA with n design.

If the 2-bit CLA blocks are verified, then it follows that once their interconnection

is confirmed within the 16-bit adder, the full 16-bit design is then verified. The 2-bit

CLA blocks within the 16-bit adder are connected by carry signals. By propagating a

carry from the first 2-bit CLA to the last 2-bit CLA will verify this interconnection. This

was accomplished by setting the 16-bit adder carry-in value to high, setting all the bits of

the binary number A high, and all the bits of the binary number B low, where the adder is

adding A and B. By setting the bits of A high, and the bits of B low a carry propagate is

created at each bit position within the adder, and the original carry-in high is propagated

through all 2-bit CLA to the carry-out of the adder. This input condition was applied to

the asynchronous 16-bit adder design and the correct result verified. Therefore the

asynchronous 16-bit adder is verified for correct operation for all possible input values.

4.2.3 Synchronous Design Verification

 The synchronous design is composed of 2-bit CSA blocks to form the full 16-bit

adder. Like the asynchronous design verification, the first step in verifying the

synchronous design is to verify these 2-bit blocks. Figure 29 illustrates the verification of

the 2-bit CSA for the synchronous design.

 60

Figure 29 Synchronous 2-Bit CSA Verification.

The 2-bit CSA is implemented with two 2-bit CLA designs, one assuming a carry-in low

and one assuming carry-in high. The result signals Sum0result, Sum1result, and

Carryresult are the output of the comparators that correspond to the CLA assuming carry-

in low, and the Sum0resultb, Sum1resultb, and Carryresultb correspond to the CLA

assuming carry-in high. From Figure 29 these comparator outputs remain at a zero level

for all possible permutations of inputs verifying the 2-bit CSA design.

 The final step is to verify the interconnection of the 2-bit CSA blocks within the

16-bit adder. The carry signal that interconnects the 2-bit CSA blocks gates a MUX to

choose between the sums and the carry-outs. In the 2-bit CSA verification the MUX

operation was already verified. To verify the interconnection in the synchronous design

it is only necessary to verify that the connection gates the MUX to select a set of results

 61

for each 2-bit block. Therefore only one correct 16-bit addition was required to finish the

synchronous design verification.

4.2.4 Synchronous Worse Case Computation Time

 The final step in testing the synchronous design is to find the worse case

computation time. This delay defines the maximum speed at which the synchronous

adder may operate. As was pointed out in the design verification, it is unreasonable to

use all possible permutations of inputs. Using the knowledge of the synchronous adder

architecture a reduced number of input combinations is developed.

 The synchronous 16-bit adder is constructed with one 2-bit CLA as the first 2-bit

block and then the remaining seven 2-bit blocks are 2-bit CSAs. Each 2-bit CSA

calculates the sums and the carry-out for the 2-bit block for both possible values of carry-

in. Therefore, the CSA computation delay is independent on the carry-in from the

previous 2-bit block. Based on this observation the 2-bit CSA worse case computation

time uses the same data condition for the first six 2-bit CSA blocks. The delay between

these six is associated with the carry-out signals. The seventh 2-bit CSA worse case

delay is associated with the sum computation.

 From this discussion the synchronous 16-bit adder is divided into three test

sections. The three sections are the first 2-bit CLA block, the next six 2-bit CSA blocks,

and the final 2-bit CSA block. Each section is tested with all possible input permutations

giving a reduced number of test vectors. The total number of binary input sources

required is thirteen, four binary inputs per test section and one carry-in value. The total

number of permutations is then 213 or 8192. Using these permutations the synchronous

 62

design is tested for the worse case computation delay by measuring the delay of the

sixteenth sum bit. Table 8 shows the computation time statistical information for all

8192 permutations.

Table 8 Synchronous Adder Computation Time Statistics for Worse Case Test Vectors.
Delay (ps)

Min 856.09
Max 1029.33
Average 856.09
Std Dev 36.11

 From Table 8 the worse-case computation time is approximately 1.03 ns. The

synchronous 16-bit adder is then required to operate at a rate not to exceed 970 MHz or

1.03 ns. Note that in Figure 8 the difference between the minimum and maximum delay

is less than 200 ps. When compared to the asynchronous design this tighter distribution

demonstrates that the synchronous design was designed to improve the worse case delay.

4.3 Asynchronous vs. Synchronous Designs

 The asynchronous and synchronous 16-bit adder designs are compared using two

different experiments. The first experiment adds 10,000 randomly generated 16-bit

binary numbers. The speed, power, and the number of transistors in each design are

compared. Then an asynchronous and a synchronous adder system is implemented with

an input and output environment to test consecutive additions using the two different

adder technologies.

 63

4.3.1 10,000 Random Test Vectors

To show the asynchronous design’s ability to outperform the synchronous design

for average delay, 10,000 random test vectors are generated using the generateSource

PERL program described in the verification section. The synchronous design has the

same execution time for all 10,000 test vectors, since it is clocked at its worse-case

computation delay. An asynchronous design’s computation delay is data-dependent, and

thus for the 10,000 test vectors there is a distribution of different computation delays.

The asynchronous designs will have a longer computation time than the synchronous for

the worse-case data condition. This is due to the overhead delay of the asynchronous

design for detecting completion.

First the enhanced asynchronous and the asynchronous design are compared in

Figure 30.

6
5
0

6
8
0

7
1
0

7
4
0

7
7
0

8
0
0

8
3
0

8
6
0

8
9
0

9
2
0

9
5
0

9
8
0

1
0
1
0

1
0
4
0

1
0
7
0

1
1
0
0

1
3
0
0

Asynchronous

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

Computation Delay (ps)

16-Bit Adder Computation Delay for 10,000 Random Inputs

Asynchronous
Enhanced ASYNC

Figure 30 Histogram Comparing the Enhanced Asynchronous and Asynchronous

16-bit Adder Designs.

 64

The enhanced asynchronous design improves the worse-case delay as expected. This is

seen in Figure 30 where the enhanced asynchronous doesn’t have any computation times

in the 1.3 ns range. However, the overall distribution for the enhanced asynchronous

design is shifted toward longer computation times in the histogram. This is due to the

added MUX delay between the 2-bit CLA blocks for the carry-bypass. The asynchronous

design has a better average case delay, and is therefore used for the comparison to the

synchronous adder in Figure 31.

16-Bit Adder Computation Delay for 10,000 Random Inputs

0

200

400

600

800

1000

1200

1400

1600

65
0

67
0

69
0

71
0

73
0

75
0

77
0

79
0

81
0

83
0

85
0

87
0

89
0

91
0

93
0

95
0

97
0

99
0

10
10

10
30

10
50

10
70

10
90

12
00

13
00

More

Computation Delay (ps)

Fr
eq

ue
nc

y

Asynchronous
Synchronous

Figure 31 Asynchronous vs. Synchronous Histogram of Computation Delay.

 Many important observations are seen in Figure 31. First as expected a small

subset of asynchronous computation delays are longer than the synchronous delay.

However, on average the asynchronous design outperforms the synchronous design.

Kinniment stated that an asynchronous design would outperform a synchronous design

 65

for random data, but that for real data a synchronous design would outperform an

asynchronous design [5]. Kinniment observed that real data is skewed towards the worse

case delay rather than the average delay [5]. If the histogram in Figure 31 is truly based

on evenly distributed random data, this graph clearly shows that this is not the case. The

number of asynchronous computation delays that exceeds the synchronous computations

is about 1% of the 10,000 random inputs. Therefore even if real data is skewed towards

the worse-case the asynchronous design would still outperform the synchronous design.

For the synchronous to outperform the asynchronous design, the real data would have to

be skewed towards the top 1% of computation delays.

Another observation is the benefit of the synchronous design using the CSA. If

the synchronous adder design used the same architecture as the asynchronous, then the

synchronous computation time in Figure 31 would match the slowest asynchronous time

minus the completion detection delay. In this asynchronous design the maximum

completion detection delay is approximately 80 ps. This would result in a synchronous

design with a computation delay around 1.2 ns as compared to 1.03ns for the CSA design.

By using the CSA in the synchronous design, it enables the synchronous adder to achieve

higher performance. This supports my design decision to use different adder

architectures that allow the design technologies to realize the best performance.

Table 9 compares the average and worse case delay, power, and the number of

transistors in the three 16-bit adder designs. The average and worse case delays

summarize the same results already discussed in the histograms. As expected the

enhanced asynchronous design with carry-bypass consumes a little more power than the

asynchronous, due to the extra circuitry required for the bypass. The synchronous design

 66

consumes more power than the asynchronous designs, but it also has 50% more

transistors than either asynchronous design. The larger power isn’t due to the differences

between the design technologies, but just the larger design. The advantage in power that

asynchronous designs demonstrate is a function of the synchronous clock distribution

network which is not present in this experiment. The number of transistors reported for

each design is based on the equivalent minimum number of transistors required to

implement the design.

Table 9 Delay, Power, and Number of Transistors for the 16-Bit Adder Designs.
Asynchronous Enhanced Synchronous

Asynchronous
Average Delay 763.84 ps 793.71 ps ------
Worse Case Delay 1314.16 ps 1188.79 ps 1030 ps
Power (2.5V) 10.45 mA 10.93 mA 14.85 mA
Number Transistors 3240 3330 4908

4.3.2 Consecutive Additions

The 10,000 random inputs clearly demonstrate the distribution in computation

times between the synchronous and asynchronous designs. However, this comparison

between the designs is not complete. By testing the adders as a single component all of

the overhead associated with the asynchronous design is not realized in the analysis. It is

necessary to simulate the asynchronous adder in an adder system where it communicates

with an environment. Then by performing several consecutive additions a true

comparison on performance can be evaluated.

Two adder test-bench systems are developed to test the adders, an asynchronous

system and a synchronous system. The asynchronous system is implemented with the

original asynchronous design since it has a better average computation time then the

 67

enhanced asynchronous design. The system designs are tested using thirty-two

consecutive additions.

4.3.2.1 Asynchronous System Design

 The asynchronous system design involves developing an asynchronous input and

output environment. The input environment is required to hold the binary data for the

thirty-two consecutive additions. After each addition is complete the input environment

provides the next two 16-bit binary numbers to the adder and the next carry-in. The

output environment captures the addition results.

The input environment is implemented using an ideal shift register. An ideal

design is used, because we are not concerned with testing a shift register design, but

rather just require its functionality. The ideal shift register is implemented in a master-

slave latch style using voltage-controlled resistors for switches, voltage-controlled

voltage sources for drivers, and capacitors to store data. The shift registers are designed

to allow a parallel load of all bits at the beginning of a simulation using the Load signal.

The asynchronous input environment has thirty-three 32-bit shift registers, one for each

bit in the 16-bit binary numbers, and one for the carry-in. See Appendix C for a

schematic of the ideal 8-bit shift register used to construct the 32-bit shift registers.

 The input environment requires asynchronous communication logic to facilitate

communication with the asynchronous adder. The input environment asynchronous

communication is defined by the burstmode machine in Figure 32.

 68

Figure 32 Burstmode Machine for Input Environment Asynchronous Communication.

From Figure 32, the input environment first waits for the shift registers to be loaded.

Once the Load signal transitions low, the ReqAdd signal is set high requesting the adder

to perform an addition. The input environment then waits for the adder to acknowledge

that the addition is complete by AckAdd transitioning high. In response to the AckAdd

the ReqAdd signal is set low, and the Shift signal is set high instructing the shift registers

to perform a shift. When the shift registers have finished shifting the Done signal

switches high, and the Shift signal is set low. The input environment now waits for the

adder to finish precharging. Once the precharge is complete the AckAdd signal

transitions low, and the adder is ready for the next addition. The input environment then

requests the next addition by transitioning ReqAdd high.

 From the burstmode machine in Figure 32 and after finding the compatible states

a reduced flow table is derived using techniques from Myers [14] chapter 4, Table 10.

 69

Table 10 Reduced Flow Table for Input Environment Asynchronous Communication.
Inputs = Load / AckAdd / Done

X3 X2 X1 000 001 011 010 110 111 101 100
S0 000 S0, 10 ----- ----- S1, 01 ----- ----- ----- S0, 00
S1 011 S1, 01 S2, 00 S2, 00 S1, 01 ----- ----- ----- -----
S2 110 S0, 10 S2, 00 S2, 00 S2, 00 ----- ----- ----- -----

Outputs = ReqAdd / Shift

A three variable state assignment is used to prevent critical races between the state

variables X3, X2, and X1. The state assignment in Table 10 ensures that when switching

from state to state at least one state variable remains constant. The flow table is used to

develop karnaugh maps for each output variable and each state variable. Solving the

karnaugh maps yields the logic in Figure 33. Shift and the next state variable X1 are

equal and therefore Shift is used for X1.

Figure 33 Input Environment Asynchronous Communication Logic.

 70

 The output environment captures the addition results from the adder. It is

implemented using an ideal 17-bit register, sixteen bits for the sum results and one bit for

the carry-out. The design of the asynchronous communication for the output

environment was very straightforward. When the adder is complete it signals a request,

ReqMem to the environment to capture the addition results. ReqMem is used to clock the

17-bit register and capture the results. The output environment acknowledges the capture

by transitioning AckMem high, and the adder responds with setting ReqMem low.

 Figure 34 illustrates the asynchronous adder system. The individual schematics

for each block in the asynchronous adder system can be found in Appendix C.

Figure 34 Asynchronous Adder Test-Bench System.

4.3.2.2 Synchronous System Design

The synchronous design uses the same input and output environment components

as the asynchronous system design only without the asynchronous communication logic.

Then the only missing component for the synchronous system design is the clocking

scheme to control the environment and the adder.

 71

Figure 35 Clocking Scheme for the Synchronous Adder System.

In Figure 35 three clocks define the synchronous clocking scheme. The

AddClock clocks the synchronous adder, RegClock clocks the output environment, and

the ShiftClock clocks the input environment. The Addclock period is set equal to the

worse case computation delay (1.05 ns) of the synchronous adder plus the delay

associated with the output environment. After the addition is complete, AddClock must

remain high during RegClock so the output environment can capture the addition results

before the DDCVSL logic begins to precharge.

The ShiftClock is defined as the complement of the AddClock. While AddClock

is low and the adder is precharging, the input environment shifts the shift registers for the

next addition. The synchronous adder system schematic is not shown here, it is similar to

the asynchronous system in Figure 34.

4.3.2.3 Adder System Simulation Results

The synchronous and asynchronous adder systems are tested with the same 32

random test vectors. The time from the Load signaling transitioning low to the last

addition is measured, Table 11.

 72

Table 11 Simulation Results of 32 Consecutive Additions.

Asynchronous 126.215 ns
Synchronous 107.474 ns

delta 18.741 ns
per addition 587 ps

From Table 11 the synchronous outperforms the asynchronous design substantially in this

test bench. These results are unexpected and therefore analyzed to understand the

difference.

 From the 10,000 random input experiment, the difference in the average

computation time of the asynchronous and the static computation time of the synchronous

is approximately 250 ps. If the asynchronous overhead for detecting completion and

performing the handshaking communication with the environment exceeds the 250 ps,

the synchronous design will outperform the asynchronous design.

The completion detection time was kept to a minimum by using the carry signals

to detect completion. Then the completion detection is executing in parallel with the sum

evaluation. It was shown that with the fastest sum evaluation and the longest completion

detection delay the left over effective completion detection delay was approximately

80 ps.

 From the analysis of the asynchronous system two other major contributors to the

asynchronous overhead where found. The ReqAdd signal is used to clock the DDCVSL

logic within the adder in addition to being used in the communication logic to keep track

of the current state of the adder. The ReqAdd signal had to be buffered to drive the large

load associated with all the DDCVSL gates within the adder. This buffer was duplicated

 73

in the synchronous design but the delay of the buffer for the synchronous system has a

one time effect on the computation time of the adder. In the synchronous system, once

the clock passes through the buffer the first time, it still clocks the adder at the same rate

from cycle to cycle. The asynchronous system, on the other hand takes the delay hit from

the buffer for each addition. Once the adder signals to the input environment that it is

ready for the next addition, the adder sits idle waiting for the ReqAdd signal to pass

through the buffer. If the buffer is thought of as a pipeline, in the synchronous case once

the pipeline is full it remains full, but in the asynchronous case it must be filled for every

request. The buffer delay is approximately 350 ps.

 The other delay contributor to the asynchronous system’s slower performance is

the asynchronous logic. For every handshake communication between the input or

output environment at least 2 gate delays are acquired. One set of handshakes for the

output environment and one set for the input environment results in 8 gate delays, which

at 50 ps per gate delay is 400 ps.

 In the 32 consecutive additions, one addition for the asynchronous system took

about 600 ps longer than the synchronous system. Using the estimates for the

asynchronous overhead, the 600 ps delta, and the adder computation delay from the

previous section it is shown that the simulation results are understood.

Equation (37) is the asynchronous overhead for the asynchronous system.

HSqAddbufCDeadASYNCoverh tttt 2Re ++= (37)
pspspspst eadASYNCoverh 830)504(235080 =⋅++=

Equation (38) is the difference between the asynchronous and the synchronous

computation time based on the 10,000 random inputs (standalone adder computation

time). Solving equation (38) for the synchronous computation time in terms of the

 74

asynchronous time gives equation (39). From Table 9 the difference between the

asynchronous average delay and the synchronous worse case delay is approximately

250 ps.

ADDsyncADDasynADDdelta ttt −= (38)

ADDasynADDasynADDdeltaADDsync tpsttt +=+= 250 (39)

Equation (40) is the difference for one addition between the asynchronous adder system

and the synchronous adder system, where equation (41) and (42) define the asynchronous

and synchronous system delays respectively. The asynchronous system delay is equal to

the delay of the adder plus the asynchronous overhead and a static delay, tK associated

with the environments. The synchronous system delay is the same as the asynchronous

minus the overhead delay.

SYSsyncSYSasynSYSdelta ttt −= (40)

KeadASYNCoverhADDasynSYSasyn tttt ++= (41)

KADDsyncSYSsync ttt += (42)

Substituting equations (41) and (42) into (40) gives equation (43).

)()(KADDsyncKeadASYNCoverhADDasynSYSdelta tttttt +−++= (43)

Finally substituting equation (39) into (43) yields the results below.

pstt

ttpstttt

eadASYNCoverhSYSdelta

KADDasynKeadASYNCoverhADDasynSYSdelta

250
250

−=

−−−++=

pspspstSYSdelta 580250830 =−= (44)

Equation (44) and the results in Table 11 for the difference per addition between the

asynchronous and the synchronous adder systems are approximately equal. This

demonstrates that the difference in execution time is understood, and contributed to the

overhead delay of the asynchronous communication.

 75

CHAPTER 5 - CONCLUSIONS

 Two experiments were used to evaluate the adder designs. In the first experiment

the static synchronous adder computation delay, which is set to the worse case delay of

the synchronous adder is compared to the asynchronous computation delay distribution

for 10,000 random input permutations. The 10,000 random inputs are assumed to be an

evenly distributed random representation of all possible input permutations. In this

experiment the asynchronous adder’s average computation delay from the random inputs

outperforms the synchronous design by more than 250 ps. Comparing the adders as

standalone blocks, however doesn’t account for the asynchronous adder’s overhead delay

associated with an asynchronous design. The asynchronous overhead delay includes the

delay for completion detection, and the asynchronous communication with the

environment.

In a second experiment the adders are implemented into an adder system. In the

adder system an input and output environment provide the binary numbers and capture

the results for each addition. In this experiment to compare the performance of the two

adder designs, 32 consecutive additions are performed. For the 32 consecutive additions

the synchronous design outperforms the asynchronous design by more than 500 ps per

addition. In order for the asynchronous design to have better performance than the

synchronous, either the difference between the synchronous design worse case delay and

the asynchronous average delay must be larger, or the asynchronous overhead delay must

be smaller.

 76

Using the carry-select adder (CSA) architecture for the synchronous adder design

required 50% more transistors than the asynchronous adder design. Both designs were

designed independently to give each design the opportunity to outperform the other.

With the larger number of transistors, the synchronous design has an unfair advantage.

Using an architecture for the synchronous that has a more comparable number of

transistors might yield different results.

A final observation, for a larger bit adder the asynchronous adder system will

outperform the synchronous adder system. For example doubling the number of bits in

the adders from sixteen to thirty-two, the computation time for the synchronous design

would double. The asynchronous system computation time would increase, but not

double. For the asynchronous system the asynchronous overhead delay would remain

mostly unchanged with only the completion detection delay increasing slightly. At the

point that the asynchronous overhead delay is less than the difference between the

asynchronous adder average computation and the synchronous computation delay, the

asynchronous adder design begins to demonstrate a performance advantage. For the 16-

bit adder system designs the synchronous outperforms the asynchronous by

approximately 850 ps with the asynchronous average computation delay 250 ps faster

than the synchronous design. Using these numbers a 64-bit asynchronous adder system

would outperform a 64-bit synchronous adder system using the corresponding adder

designs presented in this thesis.

The goal of this thesis was to show a high-speed performance advantage between

asynchronous and synchronous design technologies. It is demonstrated that neither

design technology clearly outperforms the other. Choosing between an asynchronous or

 77

synchronous design implementation for high-speed performance completely depends on

the design specifics and the implementation.

 78

REFERENCES

[1] D. Johnson and V. Akella, “Design and Analysis of Asychronous Adders,” IEE
Proceedings on Computers and Digital Techniques, vol. 145, pp. 1-8, Jan. 1998.

[2] Kwen-Siong Chong, Bah-Hwee Gwee, and Joseph S. Chang, “Low-voltage

Asynchronous Adders for Low Power and High Speed Applications,” IEEE
International Symposium on Circuits and Systems, vol. 1, pp. 873-876, May 2002.

[3] M. Renaudin and B. El Hassan, “The Design of Fast Asynchronous Adder

Structures and Their Implementations Using DCVS logic,” Proceedings of the
1994 IEEE International Symposium on Circuits and Systems, vol. 4, pp. 291-294,
1994.

[4] Mark A. Franklin and Tienyo Pan, “Performance Comparison of Asynchronous

Adders,” Proceedings IEEE International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pp. 117-125, November 1994.

[5] D. J. Kinniment, “An Evaluation of Asynchronous Addition,” IEEE Trans. VLSI

Systems, v4, no. 1, pp. 137-140, 1996.

[6] Fu-Chiung Cheng, Stephen H. Unger, and Michael Theobald, “Self-Timed Carry-

Lookahead Adders,” IEEE Transactions on Computers, vol. 49, no. 7, pp. 659-
672, July 2000.

[7] Gustavo A. Ruiz, “Evaluation of Three 32-Bit CMOS Adders in DCVS Logic for

Self-Timed Circuits,” IEEE Journal of Solid-State Circuits, vol. 33, no. 4, pp.
604-613, April 1998.

[8] Jan M. Rabaey, Digital Integrated Circuits, A Design Perspective, Prentice Hall,

1996.

[9] Inseok S. Hwang and Aaron L. Fisher, “Ultrafast Compact 32-bit CMOS Adders

in Multiple-Output Domino Logic,” IEEE Journal of Solid-State Circuits, vol. 24,
no. 2, pp. 358-369, April 1989.

[10] Kan M. Chu and David L. Pulfrey, “A Comparison of CMOS Circuit Techniques:

Differential Cascode Voltage Switch Logic Versus Conventional Logic,” IEEE J.
Solid-State Circuits, vol. Sc-22, no. 4, pp. 528-532, August 1987.

[11] Pius Ng, Poras T. Balsara, and Don Steiss, “Performance of CMOS Differential -

Circuits,” IEEE Journal of Solid-State Circuits, vol. 31, no. 6, pp. 841-846, June
1996.

 79

[12] Ivan Sutherland, Bob Sproull, and David Harris, Logical Effort: Designing Fast
CMOS Circuits, Academic Press, 1999, pp 215.

[13] Kan M. Chu and David L. Pulfrey, “Design Procedures for Differential Cascode

Voltage Switch Circuits,” IEEE J. Solid-State Circuits, vol. Sc-21, pp. 159-164,
December 1986.

[14] Chris J. Myers, Asynchronous Circuit Design, John Wiley & Sons, 2001.

[15] R. J. Baker, H.W. Li, and D. E. Boyce, CMOS: Circuit Design, Layout, and

Simulation, IEEE Press, 1998.

[16] Fu-Chiung Cheng, “Practical Design and Performance Evaluation of Completion

Detection Circuits,” Proceedings of International Conference on Computer
Design, pp. 354-359, October 1998.

[17] Steven M. Nowick, Kenneth Y. Yun, Peter A. Beerel, and Ayoob E. Dooply,

“Speculative Completion for the Design of High-Performance Asynchronous
Dynamic Adders,” Proceedings of The Third International Symposium on
Advanced Research in asynchronous Circuits and Systems, pp. 210-223, April
1997.

 80

APPENDIX A

4-Bit CLA Topology Schematics

 81

Figure 1 4-Bit Single Level CLA Topology Evaluation Schematic.

Figure 2 4-Bit MCC CLA Topology Evaluation Schematic.

 82

Figure 3 4-Bit Multi-level CLA Topology Experiment Schematic.

 83

APPENDIX B

generateSource PERL Code

 84

#!/usr/local/bin/perl

$debugMode = shift;
$randomData = shift;
$basename = shift;
$numsources = shift;
$tinc = shift;
$trisefall = shift;
$num = shift;

print "\n\n Generates piece-wise linear sources that have all combinations of possible inputs or a
specified number of random test inputs. \n\n";

if($debugMode eq "d") {
 print "* * * * Debug ON * * * * \n\n";
}
if($randomData eq "") {
 print "Generate All Combinations of inputs or Random Data? all/rand \n";
 $randomData = <STDIN>;
 chomp($randomData);
}
if($basename eq "") {
 print "Enter the generic source name: \n";
 $basename = <STDIN>;
 chomp($basename);
}
if($numsources eq "") {
 print "Enter the number of sources (or bits) to generate: \n";
 $numsources = <STDIN>;
 chomp($numsources);
}
if($tinc eq "") {
 print "Enter the data cycle time (time between each element in test vector) : \n";
 $tinc = <STDIN>;
 chomp($tinc);
}
if($trisefall eq "") {
 print "Enter the rise & fall time for data: \n";
 $trisefall = <STDIN>;
 chomp($trisefall);
}

print "Generate differential pwl sources? y/n ";
$diffsource = <STDIN>;
chomp($diffsource);
print "\n";

if($randomData eq "rand") {
 if($num eq "") {
 print "Enter the number of random inputs to generate: \n";
 $num = <STDIN>;
 chomp($num);

 85

 }
 generateRandomData();
}

elsif($randomData eq "all") {
 $num = (2**$numsources);
 generateAllCombo();
}

else {
 die "\n\n ERROR no data generated. Data type incorrectally specified. \n\n";
}

writeSourceFiles();

print "\n Generate Binary Addition expected results file? y/n ";
$resultsource = <STDIN>;
chomp($resultsource);
print "\n Generate .measure file? y/n ";
$createmeasfile = <STDIN>;
chomp($createmeasfile);
print "\n Enter trig signal for measurements: ";
$trigvar = <STDIN>;
chomp($trigvar);
print "\n Enter targ signal for measurements (enter all to measure all binary outputs): ";
$targvar = <STDIN>;
chomp($targvar);

if($resultsource eq "y") {
 if ($numsources == 1) {
 print "\n Can't generate Binary Sum results file with only 1 source\n\n";
 }
 else {
 generateSumResults();
 writeSumResultsFile();
 }
}

sub generateRandomData {

 for($count = ($num - 1); $count >= 0; $count--) {
 $total = $count;
 for($i = $numsources-1; $i >= 0; $i--) {
 $random = int(rand(32001));
 $temp = $random % 2;
 $random = 1 if ($temp > 0);
 $random = 0 if ($temp == 0);
 $A[$count][$i] = $random;
 }
 }

 if($debugMode eq "d") {
 for($count = 0; $count < $num; $count++) {
 for($i = $numsources-1; $i >= 0; $i--) {

 86

 print "$count $i ";
 print $A[$count][$i];
 print " ";
 }
 print "\n";
 }
 print "\n";
 }
}

sub generateAllCombo {
 $max = (2**$numsources) - 1;
 for($count = $max; $count >= 0; $count--) {
 $total = $count;
 for($col = $numsources-1; $col >= 0; $col--) {
 $temp = $total/(2**$col);
 if($temp >= 1) {
 $A[$count][$col] = 1;
 #print "setting 1 \n";
 $total = $total - (2**$col);
 }
 else {
 #print "setting 0 \n";
 $A[$count][$col] = 0;
 }
 }
 }
 if($debugMode eq "d") {
 for($count = 0; $count <= $max; $count++) {
 for($col = $numsources-1; $col >= 0; $col--) {
 print $A[$count][$col];
 print " ";
 }
 print "\n";
 }
 print "\n";
 }
}

sub writeSourceFiles {
 $col = 0;
 $source = $basename . $col;
 $dsource = $basename . $col . "i";
 while ($col < $numsources) {
 open(OUTFILE, ">$source") || die "Can not create file \n";
 $sourcenode = $basename . "<" . $col . ">";
 print OUTFILE "V",$source," ",$sourcenode," gnd pwl(0n 0v";

 if($diffsource eq "y") {
 open(OUTFILED, ">$dsource") || die "Can not create differential pwl file \n";
 $sourcenode = $basename . "_" . "<" . $col . ">";
 print OUTFILED "V",$dsource," ",$sourcenode," gnd pwl(0n vcc";
 }

 $td = 2;
 $td2 = $td + $trisefall;

 87

 $vnew = "0v";
 $vnew_d = "vcc";

 for ($count = 0; $count < $num; $count++) {
 $vold = $vnew;
 $vold_d = $vnew_d;
 if ($debugMode eq "d") {
 print "count $count col $col $A[$count][$col]\n";
 }
 if($A[$count][$col] == 1) {
 $vnew = "vcc";
 $vnew_d = "0v";
 }
 else {
 $vnew = "0v";
 $vnew_d = "vcc";
 }
 unless($vnew eq $vold) {
 print OUTFILE " ",$td,"n ",$vold," ",$td2,"n ",$vnew;
 if($diffsource eq "y") {
 print OUTFILED " ",$td,"n ",$vold_d," ",$td2,"n ",$vnew_d;
 }
 }
 $td = $td + $tinc;
 $td2 = $td + $trisefall;
 }

 print OUTFILE ")\n";
 close(OUTFILE);
 if($diffsource eq "y") {
 print OUTFILED ")\n";
 close(OUTFILED);
 }
 $col++;
 $source = $basename . $col;
 $dsource = $basename . $col . "i";
 }
}

sub writeSumResultsFile {
 $col = 0;
 $resultfile = "sumExpect" . $col;
 $dresultfile = "sumExpect" . $col . "_";
 if($createmeasfile eq "y") {
 $measfile = "delaymeas";
 open(OUTFILEM, ">$measfile") || die "Can not create .measure file \n";
 }
 $numSumfiles = $numsources/2;
 $numSumfiles = ($numsources/2 - 0.5) if($numsources % 2 != 0);
 while ($col < $numSumfiles) {
 open(OUTFILE, ">$resultfile") || die "Can not create file \n";
 $sourcenode = "sumExpect<" . $col . ">";
 print OUTFILE "V",$resultfile," ",$sourcenode," gnd pwl(0n 0v";

 if($diffsource eq "y") {

 88

 open(OUTFILED, ">$dresultfile") || die "Can not create differential pwl file \n";
 $dsourcenode = "sumExpect_<" . $col . ">";
 print OUTFILED "V",$dresultfile," ",$dsourcenode," gnd pwl(0n vcc";
 }

 $td = 2; #always start at 2n
 $td2 = $td + $trisefall;
 $vnew = "0v";
 $vnew_d = "vcc";
 $rise = 0;
 $drise = 0;

 for ($count = 0; $count < $num; $count++) {
 $vold = $vnew;
 $vold_d = $vnew_d;
 if($debugMode eq "d") {
 print "count $count col $col $E[$count][$col]\n";
 }
 if($E[$count][$col] == 1) {
 $vnew = "vcc";
 $vnew_d = "0v";
 if(($createmeasfile eq "y")&&($targvar eq "all")) {
 $rise++;
 print OUTFILEM ".meas tran m",$count,"sum",$col," trig
",$trigvar," td=2n val=1.25V rise=",$count+1," targ Sum<",$col,"> td=2n val=1.25V rise=",$rise," \n";
 }
 }
 else {
 $vnew = "0v";
 $vnew_d = "vcc";
 if(($createmeasfile eq "y")&&($targvar eq "all")) {
 $drise++;
 print OUTFILEM ".meas tran m",$count,"sum_",$col," trig
",$trigvar," td=2n val=1.25V rise=",$count+1," targ Sum_<",$col,"> td=2n val=1.25V rise=",$drise," \n";
 }
 }
 unless($vnew eq $vold) {
 print OUTFILE " ",$td,"n ",$vold," ",$td2,"n ",$vnew;
 if($diffsource eq "y") {
 print OUTFILED " ",$td,"n ",$vold_d," ",$td2,"n ",$vnew_d;
 }
 }
 $td = $td + $tinc;
 $td2 = $td + $trisefall;
 }

 print OUTFILE ")\n";
 close(OUTFILE);
 if($diffsource eq "y") {
 print OUTFILED ")\n";
 close(OUTFILED);
 }
 $col++;
 $resultfile = "sumExpect" . $col;
 $dresultfile = "sumExpect" . $col . "_";
 }

 89

 #Write Carryout file results
 $carryfile = "CoutExpect";
 $dcarryfile = "CoutExpect_";
 open(OUTFILE, ">$carryfile") || die "Can not create file \n";
 print OUTFILE "V",$carryfile," ",$carryfile," gnd pwl(0n 0v";
 if($diffsource eq "y") {
 open(OUTFILED, ">$dcarryfile") || die "Can not create differential pwl file \n";
 print OUTFILED "V",$dcarryfile," ",$dcarryfile," gnd pwl(0n vcc";
 }
 $td = 2;
 $td2 = $td + $trisefall;
 $vnew = "0v";
 $vnew_d = "vcc";
 $rise = 0;
 $drise = 0;
 for ($count = 0; $count < $num; $count++) {
 $vold = $vnew;
 $vold_d = $vnew_d;
 if($C[$count] == 1) {
 $vnew = "vcc";
 $vnew_d = "0v";
 if(($createmeasfile eq "y")&&($targvar eq "all")) {
 $rise++;
 print OUTFILEM ".meas tran m",$count,"Cout trig ",$trigvar," td=2n
val=1.25V rise=",$count+1," targ CarryOut td=2n val=1.25V rise=",$rise," \n";
 }

 }
 else {
 $vnew = "0v";
 $vnew_d = "vcc";
 if($targvar eq "all") {
 if(($createmeasfile eq "y")&&($targvar eq "all")) {
 $drise++;
 print OUTFILEM ".meas tran m",$count,"Cout_ trig
",$trigvar," td=2n val=1.25V rise=",$count+1," targ CarryOut_ td=2n val=1.25V rise=",$drise," \n";
 }
 }
 }
 unless($vnew eq $vold) {
 print OUTFILE " ",$td,"n ",$vold," ",$td2,"n ",$vnew;
 if($diffsource eq "y") {
 print OUTFILED " ",$td,"n ",$vold_d," ",$td2,"n ",$vnew_d;
 }
 }
 $td = $td + $tinc;
 $td2 = $td + $trisefall;
 if(($targvar ne "all")&&($createmeasfile eq "y")) {
 print OUTFILEM ".meas tran m",$count," trig ",$trigvar," td=2n val=1.25V
rise=",$count+1," targ ",$targvar," td=2n val=1.25V fall=",$count+1," \n";
 }
 }
 print OUTFILE ")\n";
 close(OUTFILE);
 if($diffsource eq "y") {
 print OUTFILED ")\n";

 90

 close(OUTFILED);
 }
 if($createmeasfile eq "y") {
 print OUTFILEM "\n";
 close(OUTFILEM);
 }
}

sub generateSumResults {

 if($numsources % 2 == 0) {
 print "\n Assume Carry-in is 0 or 1? 0/1 \n";
 $AssumeCarry = <STDIN>;
 chomp($AssumeCarry);
 for($count = 0; $count < $num; $count++) {
 $cin = $AssumeCarry;
 for($col = 0; $col < $numsources/2; $col++) {
 $generate = $A[$count][($col*2)] * $A[$count][($col*2+1)];
 $propagate = $A[$count][($col*2)] ^ $A[$count][($col*2+1)];
 $E[$count][$col] = $propagate ^ $cin;
 $carry = $generate + ($propagate * $cin);
 $cin = $carry;
 }
 $C[$count] = $cin;
 }
 if($debugMode eq "d") {
 print "carryin = $AssumeCarry ";
 for($count = 0; $count < $num; $count++) {
 for($col = 0; $col < $numsources/2; $col++) {
 print "$A[$count][($col*2)] + $A[$count][($col*2+1)] ";
 print " = $E[$count][$col] \n";
 }
 print "carryout is $C[$count] \n";
 print "\n";
 }
 print "\n";
 }
 }

 else {
 print "\n Assume using 1st source for Carry-in.....\n\n";

 for($count = 0; $count < $num; $count++) {
 $cin = $A[$count][0];
 for($col = 1; $col < $numsources/2; $col++) {
 $generate = $A[$count][($col*2-1)] * $A[$count][($col*2)];
 $propagate = $A[$count][($col*2-1)] ^ $A[$count][($col*2)];
 $E[$count][$col-1] = $propagate ^ $cin;
 $carry = $generate + ($propagate * $cin);
 $cin = $carry;
 }
 $C[$count] = $cin;
 }
 if($debugMode eq "d") {
 for($count = 0; $count < $num; $count++) {
 print "carryin = $A[$count][0] \n";

 91

 for($col = 1; $col <= $numsources/2; $col++) {
 print "$A[$count][($col*2-1)] + $A[$count][($col*2)] ";
 print " = $E[$count][$col-1] \n";
 }
 print "carryout is $C[$count] \n";
 print "\n";
 }
 print "\n";
 }
 }

}

__END__

 92

APPENDIX C

Adder Test-Bench System Schematics

 93

Figure 1 Ideal 8-Bit Shift Register with Parallel Load.

Figure 2 Asynchronous Adder Input Environment Schematic.

Figure 3 Asynchronous Adder System Schematic.

