

APPLICATION OF AN ASYNCHRONOUS FIFO

IN A DRAM DATA PATH

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Electrical Engineering

in the

College of Graduate Studies

University of Idaho

by

James B. Johnson

December 2002

Major Professor: R. Jacob Baker, Ph.D.

ii

AUTHORIZATION TO SUBMIT

THESIS

This thesis of James B. Johnson, submitted for the degree of Master of Science with a major

in Electrical Engineering and titled “Application of an Asynchronous FIFO in a DRAM Data

Path,” has been reviewed in final form. Permission, as indicated by the signatures and dates

given below, is now granted to submit final copies to the College of Graduate Studies for

approval.

Major Professor _____________________________________Date___________

 R. Jacob Baker

Committee

Members _____________________________________Date___________

 Jim Frenzel

 _____________________________________Date___________

 Larry A. Stauffer

Department of

Electrical

and Computer

Engineering Chair _____________________________________Date___________

 Joseph J. Freely

College of

Engineering

Dean _____________________________________Date___________

 David E. Thompson

Final Approval and Acceptance by the College of Graduate Studies

 _____________________________________Date___________

 Charles R. Hatch

iii

Abstract

 As CMOS dynamic random access memory (DRAM) processes and voltages

continue to scale, DRAM array access latency remains relatively constant. Faster logic

resulting from process scaling is offset by timing latency associated with constant die size for

new generation array densities. The benefits of process scaling are also countered by rising

interconnect resistance and voltage scaling. All totaled, the benefits of process scaling are not

fully realized and DRAM array access have remained fairly constant for sub-micron

processes.

 However, system designers are demanding higher sustained bandwidth from DRAM

devices. This forces the DRAM circuit designer to find ways to increase data bandwidth from

the DRAM outputs while still suffering from limited improvements in array timing.

Therefore, next generation devices have adopted data prefetch architectures. By prefetching

larger amounts of data on each read access, data throughput at the DRAM output for data

serialization can be sustained at a higher rate.

 This thesis confronts the problems associated with sustaining data throughput in the

DRAM read data path while at the same time attempting to keep data prefetch sizes low.

Because initial read data latency is separated from data throughput for consecutive read

accesses, a discussion of the relationship between read data latency and array access latency

is necessary before introducing a circuit topology for mitigating the throughput problem with

minimum impact on read latency. The chosen method is to place an asynchronous FIFO in

the data path between the secondary flip-flops of the DRAM array and the synchronous data

output serializer. A method for evaluating the performance of the FIFO is established that

can be generally applied for other asynchronous FIFO applications.

iv

Acknowledgments

None of the work contained in this thesis would have been possible without the help

and support of many people who have contributed to my education and those who have

encouraged and supported me throughout my education. I would like to acknowledge the

efforts of my thesis committee in their review of this document. I would especially like to

acknowledge the hard work of the excellent professors from University of Idaho. Without

their hard work, none of my accomplishments, or those of my peers, would be possible.

I would like to single out Dr. Jake Baker for his untiring devotion to providing help

and direction to his students. His example and motivation have encouraged me to continue to

pursue the career and education directions I have chosen.

Finally, I would like to thank my boss, Brent Keeth. His trust and contributions with

many great innovations encouraged me to experiment and take the risks necessary to further

our vocation.

v

Dedication

This thesis is dedicated to my wife, Cassandra. I thank her for tolerating my absence for the

long hours required to pursue a degree.

vi

Table of Contents

Authorization to Submit Thesis ii

Abstract iii

Acknowledgments iv

Dedication v

Table of Contents vi

List of Figures ix

List of Tables xi

List of Graphs xii

1. Introduction 1

2. Overview of DRAM Read Data 4

 2.1 DRAM Interface Signals 9

 2.2 DRAM Data Bandwidth Requirements 12

 2.3 Data Prefetch Architecture 13

3. Read Latency Timing for High Speed DRAM 19

 3.1 Read Latency 19

 3.2 Source-synchronous Interface 21

 3.3 Read Latency Programming 26

 3.4 Read Latency Programming Through Channel Tuning 27

vii

4. Timing Domains in the Read Data Path 30

 4.1 Array to Synchronous Interface 30

 4.2 Data Path FIFO 36

 4.2.1 FIFO Design Choices 36

 4.3 Latch Controller Design 41

 4.3.1 Four-phase Latch Controllers 42

 4.3.2 Simplified Four-phase Latch Controller 44

 4.3.3 Semi-decoupled Four-phase Latch Controller 48

 4.3.4 Asymmetric C-elements 49

 4.4 Final Data Path FIFO Design 51

5. FIFO Architecture 54

 5.1 FIFO Controller 55

 5.2 FIFO Output Sequencer 58

 5.3 FIFO Performance Analysis 62

 5.3.1 FIFO Throughput 63

 5.3.2 Latch Controller Forward Latency 65

 5.3.3 Latch Controller Reverse Latency 67

 5.3.4 Reverse Latency of the Simplified Latch Controller Interface 70

 5.4 FIFO Throughput as a Function of Clock Frequency 72

 5.4.1 Array Access versus Read Latency Requirements 72

 5.4.2 Data Limited Operation of the FIFO Pipeline 75

 5.4.3 Hole Limited Operation of the FIFO Pipeline 76

 5.4.4 FIFO Performance Boundaries 77

6. Conclusion 82

References 84

Appendix A 87

viii

 A.1 Delay Locked Loop Operation in a DRAM Application 87

 A.2 Basic DLL Operation 88

 A.3 Simple DLL Timing Theory 90

ix

List of Figures

Figure 1.1 DRAM 1T1C Cell 1

Figure 2.1 DRAM I/O Logic Path 5

Figure 2.2 I/O Devices Connecting Digit Lines to I/O Lines 7

Figure 2.3 Helper Flip-flop Circuit 9

Figure 2.4 Top-level View of DRAM Device 10

Figure 2.5 SDRAM vs. DDR-DRAM Data Bus Transition Timing 13

Figure 2.6 Read Command with a Data Burst Length of Four 15

Figure 2.7 Prefetch Bus Sizing for 8-bit DQ Bus 16

Figure 2.8 Consecutive Read Command 17

Figure 3.1 Read Latency Definition 20

Figure 3.2 Clock, Data and Command/Address Memory Controller Connections to

 DRAM Devices 21

Figure 3.3 Data Bus and DQS Signal Skew Diagram 22

Figure 3.4 tac and tdqsq Definition 23

Figure 3.5 Closed Data Eye for Capture Across Two Bytes of the Data Bus 24

Figure 3.6 Load Mode Register Command 27

Figure 3.7 Channel Training Read Command and LFSR Circuit 28

Figure 4.1 DRAM Internal Timing Domains for Read Access 31

Figure 4.2 Read Data Path Architecture 34

Figure 4.3 Traditional FIFO Architecture 37

Figure 4.4 Self-timed FIFO 38

Figure 4.5 Two-phase Handshake Protocol 39

Figure 4.6 Two-phase Latch Controller for Simple Transmission Gate Latch 39

Figure 4.7 Four-phase Signaling Protocol 40

Figure 4.8 Controller Interface for Four-phase Signaling Protocol 41

x

Figure 4.9 C-element Circuit Designs 44

Figure 4.10 Simple Four-phase Latch Control Circuit 45

Figure 4.11 STG of Simplified Four-phase Controller 46

Figure 4.12 STG Marking After Reqin+ and Reqout+ Firings 47

Figure 4.13 Initial Marking of Semi-decoupled Four-phase STG 48

Figure 4.14 STG Marking Sequence Illustrating Lt+ and Ackout- Concurrency 49

Figure 4.15 Asymmetric C-element Symbolic Notation 50

Figure 4.16 Semi-decoupled Latch Control Circuit 50

Figure 4.17 Data Path Synchronization Architecture 52

Figure 5.1 Top Level FIFO Architecture 54

Figure 5.2 FIFO Controller 56

Figure 5.3 DQ Latch Set 58

Figure 5.4 FIFO Timing Diagram for a Single DQ 59

Figure 5.5 FIFO Output Sequencer 61

Figure 5.6 Semi-decoupled Latch Controller 64

Figure 5.7 Transistor Implementation of Semi-decoupled Latch Controller 64

Figure 5.8 STG Markings for Latch Controller Forward Latency 65

Figure 5.9 STG Marking Sequence for Reverse Latency Timing Analysis 69

Figure 5.10 SPICE Simulation Results for FIFO Pipeline Operation at Fast Operating

 Corner 80

Figure 5.11 SPICE Simulation Results for FIFO Pipeline Operation at Slow Operating

 Corner 81

Figure A.1 tAC Timing Parameter Definition 87

Figure A.2 Top Level DLL Block Diagram 88

xi

List of Tables

Table 3.1 Read Latency Settings 27

Table 4.1 C-element Truth Table 43

Table 5.1 Output Latch Controller Truth Table 57

xii

List of Graphs

Graph 5.1 Upper bounds on Operating Frequency for FIFO Pipeline 79

1

1. Introduction

Dynamic Random Access Memory (DRAM) components incorporate several primary

circuit principles and topologies that are a standard part of electrical engineering curricula.

We find primary use of the principle of charge sharing as well as common circuits such as

charge pumps, assorted digital logic and signaling interface circuits all used in the storage

and retrieval of digital information [1]. The advantage that DRAM has over other storage

medium is that the density and manufacturability of the device is based on the 1T1C storage

cell shown in Figure 1.1. The density and cost advantages of the 1T1C cell are offset by the

performance impact of refresh and digit line sensing necessary in order to access the stored

charge in the capacitor of the 1T1C cell.

Wordline

Digit Line

(DL)

Storage

Capacitor

Figure 1.1 DRAM 1T1C Cell

 Recent advances in processor performance have lead to higher demands from the

memory interface. DRAM circuit designers must consider power, area, process and voltage

scaling challenges when designing devices that meet unceasingly increasing bandwidth

requirements. Performance limitations of the 1T1C based memory array have lead to

specification changes such as increasing data prefetch sizes from the memory array in order

to allow increased data bandwidth from the output of the memory device. Changes in device

specifications for data prefetch depth are not keeping pace with output bandwidth

requirements, thereby forcing DRAM design engineers to improve circuit design

2

methodologies and computer aided design (CAD) tools in order to meet performance

challenges.

Combined with these design challenges are consideration of standards setting bodies

and legacy operational specifications. Standard setting bodies consider a set of specifications

that ensure a commonality between devices designed by different manufacturers. Because the

specifications require consensus, compromises that lead to obstacles for improving

performance are often a side affect of the standards setting process. Conflicting agendas and

variations in manufacturers capabilities in design and manufacturing of DRAM devices

further complicate the advancement of the art of DRAM design.

This thesis will focus on one aspect of a problem encountered in furthering the

performance capabilities of a DRAM device. The problem relates to accessing stored data in

the memory array and the timing of the transfer of that data to the external data bus of the

DRAM device. We mention the standards setting process and legacy specifications of

DRAM devices because the problem we will consider is related to the maintenance of the

DRAM standard in relation to timing of read data from memory to the processor otherwise

known as read latency. DRAM operation will not be a focus of this work. We will focus on

DRAM operation only as it applies to the problem described in this paper. An overview of

DRAM data path operation for accessing read data will be presented in Chapter 2.

The first part of this work will examine the read data timing specification and how

increasing clock frequency has lead to the requirement for a clock alignment circuit such as a

delay locked loop (DLL) [2,3,4] as part of the common set of circuits used in the design of

synchronous DRAM. We will also see that the prefetch architecture required for meeting data

throughput requirements at the data outputs has further forced us to consider data pipelining

techniques for maintaining data throughput from the array to the data outputs. Timing

properties of the DLL circuit and the relationship between internal read latency and column

access timing are examined in relation to the application of an asynchronous pipeline used

for providing high data throughput to the outputs. A brief treatment of the operation of the

DLL circuit is presented in Appendix A of this thesis. If one is unfamiliar or requires a

3

refresher in DLL circuit operation turn to the appendix and review this material before

continuing to the first section.

4

2. Overview of DRAM Read Data Path

 There are many references available that discuss the operation of DRAM memory

array core read and write operations [1]. Most of these references only delve into the

operation of the memory core and supporting circuitry and often overlook the logic interface

necessary to control the data input and output operations. This oversight is understandable

considering that prior to the introduction of synchronous dynamic memories, the logic

operations necessary for controlling the data path between the physical edges of the memory

core to the I/O pads were rather trivial. With the introduction of synchronous memory, many

of the control and timing responsibilities for transferring data between the memory device

and the processor in a computer system have migrated from the memory controller logic to

the memory device. Additionally, as memory clock frequencies have increased so too has the

complexity of the control and timing problems for controlling the data I/O logic path between

the memory core and the data I/O pad. Figure 2.1 provides an illustration of the section of

DRAM logic that is the focus of this paper. Figure 2.1 will also provide the necessary

background and terminology for a more detailed discussion.

5

Secondary Flip-Flops

Data I/O Logic

I/O

Bond

Pad/

Data

Driver

I/O

Bond

Pad/

Data

Driver

I/O

Bond

Pad/

Data

Driver

I/O

Bond

Pad/

Data

Driver

I/O

Bond

Pad/

Data

Driver

I/O

Bond

Pad/

Data

Driver

DRAM Core Arrays

D
a
ta

I/
O

 L
in

e
s

Column Address Decoder

Row

Address

Decoder

Column Address

Bus

Row Address Bus

Data Bus

Figure 2.1 DRAM I/O Logic Path

 In this section, we will examine a potential design for the data path of a dynamic

memory device. There are many variations possible for DRAM data path design but in this

case we will examine the design in very general terms without being distracted with specific

circuit considerations or topologies. This chapter will provide a frame of reference necessary

for more detailed discussion about read latency and the role of the command decoder and

DLL in maintaining proper read latency. Starting in Chapter 4, we will examine in detail

solutions relating to data throughput issues when interfacing a data prefetch architecture from

the DRAM array core to a high-bandwidth serial data output structure.

6

In Figure 2.1, we see the block on the top of the diagram labeled “DRAM Core

Arrays.” Here we are including the row and column decoders necessary for accessing the

1T1C memory cell as well as the sense-amplifiers used for detecting the logic state indicated

by charge in the storage capacitor. Before a specific bit can be transferred out of the arrays, a

row must be open by strobing the wordline connected to the gates of the access transistor

shown in Figure 1.1. This causes charge sharing between the capacitance of the precharged

digit lines (DL) connected to the drain of the access device and the storage capacitor

connected to the source of the access device.

When a memory array is first accessed, the wordline or row interconnect line is

driven to turn on the access transistor that was shown for the 1T1C cell of Figure 1.1. The

charge stored in the capacitive storage device is then transferred to the digit line. At this

point, sense amplifiers, that are part of the memory array core, sense the stored charge

relative to a reference voltage and drive digit line pairs to CMOS levels. The voltage

separation of the digit line pairs is then transferred through I/O transistors to data I/O lines

labeled in Figure 2.1. Figure 2.2 illustrates these connections in more detail. The wordline

connected to the gate of the access device in Figure 1.1 must be driven to a voltage higher

than VDD. This is required because the n-channel device cannot pass a voltage between the

drain and source higher than Vgs-Vt before it turns off. The full CMOS level on the DL lines

is then transferred to the I/O lines through the I/O devices during a column access. The

column (page) access occurs enough time after the wordline (row) access so that full CMOS

levels are restored to the digit lines and the memory cell.

Figure 2.2 is a diagram depicting the connecting circuits responsible for detecting the

logic state stored in the memory cell. Before a wordline in one of the arrays is fired high, the

ISO device for the opposite array must go low in order to isolate the digit lines from the array

opposite from the accessed array. The opposite array also has precharge devices (not shown)

holding the opposing digitlines at a voltage of VCC/2 on the inside of the ISO devices. The

ISO device gates are driven to a level above VCC in order to allow a full VCC level to be

transferred through the n-channel device. After the sense amplifiers have been fully engaged,

a full CMOS level is driven back into the memory cell. This serves the purpose of refreshing

7

the memory cells until a write might occur. When the memory cell is accessed, the voltage

difference between the DL and DL_ lines is sensed with one line connected to its respective

data line through the access device enabled by the decoded wordline and the other data line

held at the precharge value of VCC/2 since its wordline holds its access device off.

For example, if the wordline for DL is turned on and there is excess charge stored in

the storage cell, then the voltage on DL will increase because of the charge sharing between

the capacitor and the digit line. Conversely, if there is a lack of charge in the storage cell,

then the voltage on DL will decrease as charge is shared between the previously precharged

capacitance of the DL and the storage capacitor. The sense amplifier will compare the change

in voltage caused by charge sharing between the storage cell and the capacitance of the DL

line with the precharge voltage (VCC/2) stored on an opposing DL line from a row that has

not been accessed.

IO IO_ CSEL

Sense Amplifier

DL

DL_

I/O

Devices
Sense Amplifier Array 1Array 0

ISO0_ ISO1_

Figure 2.2 I/O Devices Connecting Digit Lines to I/O Lines

There are logic circuits external to the memory arrays that control the timing of data

line precharging, row decode/wordline drive and logic for controlling the timing of the sense

amplifier enable signals. We should also note that this description might seem like a trivial

treatment of the intricacies of accessing and controlling a memory array. For our purposes,

we will not delve into the specifics of memory array access. We only want to give

perspective as to where the data we will talk about in future sections originates.

8

Referring to Figure 2.1, we see the signals labeled “Data IO Lines.” This section of

the diagram represents interconnect and logic that extends from the edge of the memory array

to the secondary flip-flops. The purpose of this logic is to provide an interface to the

secondary sense amplifiers that are in turn used for quickly driving data to full CMOS levels

in the array peripheral logic. The drive capabilities of the array sense amplifiers shown in

Figure 2.2 are necessarily weak because of the large parasitic capacitance associated with

array interconnect and the density of the circuits involved. When viewing Figure 2.2, the

interconnect labeled IO and IO_ are analogous to the connections labeled “Data IO Lines” in

Figure 2.1.

Referring to Figure 2.2, when a column access occurs, the signal CSEL is driven high

to turn on the n-channel I/O devices. The CSEL signal is generated by the column address

decode logic. Care in sizing the I/O devices relative to the digit line capacitance is important

in order to allow sufficient transfer of charge to the I/O lines while still providing a low

resistance path from digit lines to I/O lines.

After charge is transferred from the DL to the IO lines, further sensing is necessary.

Like the DL signals, the IO signals are precharged prior to sensing. Precharging the IO

signals is necessary for fast data detection by the secondary flip-flops. The DLs are driven to

full CMOS levels but the I/O devices cannot pass a full VDD level. Also, the parasitic on the

IO lines is large which further delays the page access. Therefore, secondary flip-flops are

employed at the interface of the array cores to the device peripheral logic. The block labeled

“Secondary flip-flops” in Figure 2.1 represents this section of the array logic. The circuits in

this block can be direct current sensing amplifiers or a another set of sense amplifiers with

more drive capability relative to the array sense amplifiers [1]. The sense amplifier style of

secondary flip-flops is often referred to as “helper flip-flops.” Figure 2.3 is an example

topology of a helper flip-flop (HFF) circuit.

9

VDD

IO_ IO

Enable

OutOut_

Figure 2.3 Helper Flip-flop Circuit

The HFF circuit is a set of enabled cross-coupled inverters. While the enable signal is

low, the latching mechanism is shut off while the IO signals transition after an array access.

As the IO signals transition, the enable signal is driven high. When the enable signal is driven

to a high voltage, the access devices used to transfer charge from the IO signals to the HFF

circuit are shut off and tail current flows to ground through the tail device. Very little IO

signal voltage separation is required because the cross-coupled inverters act with positive

feedback to latch the correct data. The ability of the HFF circuit to detect a small signal input

on the IO lines is one advantage of the HFF circuit. Another advantage of this circuit is the

small area of silicon consumed. This small size can allow the HFF circuit to be drawn to

pitch with the array IO lines.

2.1 DRAM Interface Signals

At this point, we have examined how data is transferred from the 1T1C memory cell

to the edge of the memory array. Data is now physically located at a point in the chip just

prior to synchronization for serial output. This will lead us into a discussion of how we can

pipeline data from array accesses and maintain the required data throughput to feed the

10

synchronous circuits that generate output data. Notice in the preceding discussion that any

mention of a clock signal to synchronously access the memory array is missing. Accesses to

the memory array are performed asynchronously while all command and data I/O from the

external world are synchronized with a system clock. Figure 2.4 is an external, top-level view

of the signals into and out of a DRAM memory device.

DRAM Device

C
o

m
m

a
n

d
 B

u
s

S
y
s
te

m
 C

lo
c
k

(C
L

K
)

A
d

d
re

s
s
 B

u
s

D
a

ta
 B

u
s
 (

D
Q

)

D
Q

S

Figure 2.4 Top-level View of DRAM Device

In Figure 2.4, we see that there is a command/address clock, CLK, which is used to

time the arrival of commands and addresses to the DRAM device. On the data side, there is a

second clock, DQ Strobe (DQS), associated with the timing of data driven to and from the

DRAM device. When data is to be written to the device, the DQS signal arrives center

aligned to the data signals. By center aligned, we mean to say that the strobe is timed relative

to the data to optimize the reliable capture of data into the device. The CLK signal is driven

similarly aligned to the command and address signals but is unidirectional from the clock

source to the DRAM device. In the case of the DQS signal, it is said to be “bi-directional.”

This means that the DQS signal is sourced with the data both when read data is driven from

11

the DRAM and when write data is driven to the DRAM. This implies that the DRAM device

must be capable of driving the DQS signal timed with read data in a prescribed manner. We

will examine the timing and function of the DQS signal as a clocking signal in Chapter 3.

Also, we will see that the CLK signal is not totally divorced from data bus timing. The CLK

signal is used to provide a continuous timing reference for cycle-based timing of read and

write operations.

The command bus consists of several control signals that, when combined and

latched with the CLK signal, indicate an operation for the DRAM to perform. For example,

most current DRAM command busses consist of a row address strobe (RAS), column address

strobe (CAS), write enable (WE), chip select (CS) and clock enable (CKE). For instance, the

RAS and CAS signals are used to indicate the application of a valid address for row and

column accesses respectively. The WE pin indicates whether a valid CAS signal is for a

column read or write access. The CS signal validates a command to a particular device. CKE

is used for entering low power operating modes by shutting off clock distribution paths

internal to the DRAM. Furthermore, certain combinations of the command signals allow

access for programming optional modes of operation for the DRAM. The command bus

centralizes all operational communication between the chipset and the DRAM device.

This brief description of an array access gets us to the point where data is entering the

area of the DRAM device that is relevant to the focus of this thesis. An important point to

note is that going forward we will refer to the portion of the data path extending from the

edge of the memory array to the I/O pads as “data path.” In the DRAM design world, the

term “data path” often refers to the section of the memory array extending from the access

device of the 1T1C cell to the data I/O interconnect lines that carry data to the edge of the

memory array including the secondary flip-flops. Again, it is important to note that early

DRAM designs did not require much logic for transferring data to the data I/O pads.

Therefore, the logic from the access device through the secondary flip-flops was essentially

the “data path.” We will see that increasing complexity and performance requirements in

synchronous DRAM (SDRAM) interfaces has lead to more complex circuits for controlling

data transfer between the secondary flip-flops and the data I/O pads.

12

2.2 DRAM Data Bandwidth Requirements

System designers have demanded an increase in data bandwidth from DRAM

devices. One alternative involves increasing the physical data bus width while keeping

frequency constant. The cost of this improvement is born by the system builders because of

the increase in pin count of application specific integrated circuits (ASIC) and the increase in

the number of routed signals for inter-chip interconnect. Because of cost issues, system

designers tend to avoid this option.

Another method for increasing data bandwidth is to increase DRAM clock frequency.

This method allows the physical bus width to remain constant with a linear increase in data

bandwidth proportional to the increase in clock frequency. Implementing technology changes

for increasing DRAM clock frequency has resulted in increasing research and development

costs for DRAM manufacturers. Current system bandwidth improvements have relied more

on increasing the DRAM clock frequency and less on increasing physical data bus width.

Although in some applications increasing both the bus width and the operating frequency has

resulted in drastic performance improvements.

Another recently implemented design change for higher performance memory has

been the introduction of double-data rate DRAM (DDR-DRAM). Previous SDRAM designs

have driven data on the positive edge of the system memory clock. With DDR-DRAM, the

data from the DRAM is driven on both the positive and negative edge of the system clock as

shown in Figure 2.5. This method of data delivery results in a doubling of serial data

bandwidth relative to standard SDRAM. DDR-DRAM increases data bus performance but

still introduces problems for the system designer as it becomes more difficult to close timing

budgets as the bit valid times become increasingly narrow.

13

Read

Command

Command

Bus

System

Clock

Address

Bus

Column

Address

D0 D1 D2 D3

SDR DQS

DDR Data

Bus

(DQ)

Read

Latency

D0 D1 D2 D3

Bit Valid Time

Bit

Valid

Time

DDR DQS

SDR Data

Bus

(DQ)

Figure 2.5 SDRAM vs. DDR-DRAM Data Bus Transition Timing

2.3 Data Prefetch Architecture

 As the serial data bandwidth requirements increase for DRAM data buses, there is a

drastic impact on the data path design and the I/O interface. We must first consider that

minimum array access times have remained fairly constant, as process and voltage have

scaled [5]. The reason access times have remained constant is that process improvements are

partially countered by the accompanying voltage scaling. But also consider that the physical

size of memory arrays as well as array density also increase at a similar rate compared to

process scaling thus keeping die sizes for new memory generations fairly constant. Also, the

parasitic impedances associated with the address and data interconnect in the array are

becoming more resistive as process scales which also offsets some of the performance gains

14

of the scaled transistors. When all of these effects are considered, the array access delay has

remained relatively constant as process and voltage scales.

This leaves us with the burden of having to increase the serial bandwidth of the

DRAM output data bus while the array access delay remains constant. If we were able to

decrease the array access delay at the rate which serial data bandwidth was increasing, then

no changes would be required in the data path. The obvious solution to this problem has been

to increase the data “prefetch” size from the memory array in order to feed data to the high

bandwidth data bus. We use the term prefetch to describe the operation of accessing data

from the memory array that is not immediately output from the device. When a read

command is issued to the DRAM, data is accessed from a column or columns from a

previously accessed row. This data must reach the output data path before the expected read

latency has expired.

Data prefetch requirements in the DRAM can be traced to microprocessor

architecture. Modern processors rely on fast data caches in order to maintain optimal bus

utilization rates [6]. Most processors prefetch data from main memory in order to fill cache

lines; thereby, taking better advantage of data locality. This has led to the exclusive use of

burst mode operation from SDRAM devices.

With the development of SDRAM, burst mode operation of array accesses became

standard for DRAM. Burst mode operation is when a single array access command involves

multiple columns of array data. For example, in Figure 2.6 we see a timing diagram showing

the issuance of a read command and address to the DRAM command/address bus. When the

expected read latency has expired, data is driven on the data bus DQ pins. Notice that data

changes occur with each clock edge following a single access. In this example, we say the

burst length is four since four serial data bits are output from each DQ pin on the data bus.

The implication of burst mode operation is that a single column address actually accesses

multiple columns in the array.

15

Read

Command

Command

Bus

System

Clock

Address

Bus

Column

Address

D0 D1 D2 D3

DQS

Data Bus

(DQ)

Read

Latency

Figure 2.6 Read Command with a Data Burst Length of Four

A numerical example of the impact of a prefetch architecture on the data path is as

follows. Say that we have a data bus that is 16 bits wide. Let us also consider that the

memory array has 512 columns in each row. If we are to support a burst of 4 bits from each

DQ on the data bus, we must prefetch 64 bits of data from the memory arrays. This also

means that a single column address will access 4 columns in the array giving us an 8-bit

address space to access 128 possible starting addresses. Figure 2.7 is a repeat of Figure 2.1

only the values from our preceding example are assigned to the bussing.

16

Secondary Flip-Flops

Data Bus (32)

Data I/O Logic

I/O

Bond

Pad/

Data

Driver

(DQ)

I/O

Bond

Pad/

Data

Driver

(DQ)

I/O

Bond

Pad/

Data

Driver

(DQ)

I/O

Bond

Pad/

Data

Driver

(DQ)

I/O

Bond

Pad/

Data

Driver

(DQ)

I/O

Bond

Pad/

Data

Driver

(DQ)

DRAM Core Arrays

D
a

ta

I/
O

 L
in

e
s
 (

3
2

p
a

ir
s
 =

 6
4

)

Column Address Decoder

Row

Address

Decoder

Column Address

Bus (7)

Row Address Bus

I/O

Bond

Pad/

Data

Driver

(DQ)

I/O

Bond

Pad/

Data

Driver

(DQ)

(8)

Figure 2.7 Prefetch Bus Sizing for 8-bit DQ Bus

The complications do not end with data bus width requirements. Maximum system

clock frequency will also impact the size of the prefetch bus in the data path. Remember that

array column access delay has remained relatively constant, as each new array density has

been developed. When we increase the serial data frequency we reach two potential

limitations. The first limitation arises from read data delay. This is the delay encountered

between a read command and when data is driven on the data bus. As the clock period

decreases, so does the number of clock cycles that pass between the issuance of a read

command and when data is available. We define the read access delay measured in clock

cycles as read latency. We will pursue a more rigorous examination of read latency in the

next chapter.

17

The second limitation is the minimum cycle time of the column access. Column cycle

time is limited by the time required to cycle precahrge and evaluation of the IO lines. There

is also logic overhead related to cycling the column address decoder. Note the distinction

between the delay of the first column access (read latency) and the period between

consecutive column accesses (column cycle time). Figure 2.8 illustrates two consecutive read

commands with a read latency of 3 cycles and a burst length of 4. With a burst length of 4,

the minimum column cycle time for continuous data is 2 clock cycles.

Command

Bus

System

Clock

Address

Bus

DQS

Read

Latency

Data Bus

Read0 Read1

Addr. Addr.

D0_0 D0_1 D0_2 D0_3 D1_0 D1_1 D1_2 D1_3

Column Cycle

Time

Figure 2.8 Consecutive Read Commands

If we are required to supply a DDR data bus with a minimum burst length, BL, of 4

bits per access, then we know each access would occupy 2 system clock cycles. If we

consider a minimum column cycle time, CCT, of 5ns then the maximum clock frequency,

fcm, at which the DRAM can operate is determined by:

MHz
nsCCT

BL
fcm 400

52

4

2
=

!
=

!
= (2.1)

However, if we increase the minimum burst length to 8 and apply Equation 2.1, the DDR-

DRAM can potentially operate at 800 MHz. The downside of this change is that the burst

18

length may not meet processor cache line granularity requirements. Another disadvantage is

that larger burst lengths can lead to larger column prefetch sizes. Larger column prefetch

sizes can lead to higher power consumption and a significant increase in die area occupied by

data path logic.

 In this chapter, we have examined the architecture of the DRAM data path. This

section has followed data flow from the storage capacitor in the 1T1C memory core through

the sense amplifiers, column decoder and helper flip-flops. The goal of this section is to

provide us with a concept of where data originates following a read command. In Chapter 3,

we will better define read latency and discuss the source synchronous signaling protocol.

After we have visited these topics, we will start our discussion of the research performed for

this thesis beginning in Chapter 4.

19

3. Read Latency Timing for High-speed DRAM

 In this chapter, we will continue laying the groundwork that will allow us to discuss

the solutions for maintaining data throughput in the DRAM data path. The previous sections

have described the principles of an array access and burst mode operation of the DRAM data

bus. We have also described how continually increasing bandwidth requirements of the data

bus combined with relatively constant array access times has led to a prefetch architecture for

current SDRAM designs. So far, our discussion has focused on the asynchronous access of

the DRAM array. This section will focus on the synchronous portion of a DRAM read

access. After we examine the synchronous portion of the read access, we will be fully

equipped to study the circuits used to interface the asynchronous access circuitry with the

synchronous output circuitry.

3.1 Read Latency

 Read latency for a DRAM is defined as the delay between a column read command

received at the DRAM command/address pins and the time when data is driven from the

DRAM data I/O (DQ) pins. For a synchronous DRAM, this time is specified as the number

of clock cycles between the clock edge at which the read command is clocked into the

DRAM and the clock edge when data is driven on the DQs. Figure 3.1 is an illustration of

how DRAM read latency is specified for a synchronous DRAM.

20

Read

Command

Command

Bus

System

Clock

Address

Bus

Column

Address

D0 D1 D2 D3

DQS

Data Bus

(DQ)

Read Latency = 3

Figure 3.1 Read Latency Definition

 Notice in Figure 3.1 how DQ data and the data strobe, DQS, are edge aligned to the

DRAM clock as it is driven from the DRAM. The clock edge alignment of the data is

accomplished using a clock alignment circuit such as a delay locked loop (DLL). The role of

the DLL in maintaining read latency will be discussed later in this section. Aligning the read

data to a clock edge at a predetermined number of clock cycles following a read command

serves two primary purposes. First, having predictable data latency is useful for testing the

DRAM during manufacturing. Predetermined data latency simplifies DRAM testing because

it makes it possible to predict when data should be driven by several DRAM tested in

parallel; thus, freeing tester resources and resulting in shorter test times. Second, the memory

controller can have the option of counting the number of clock cycles following a read

command and grossly estimate the arrival time of the data. In actual operation, the memory

controller captures DRAM data with each transition of the DQS signal. This signaling

standard for data transfer is often referred to as ‘source synchronous’ timing. Figure 3.2 is an

illustration of one possible connection between memory devices and a memory controller

chip in a memory sub-system. This illustration will help us conceptualize the discussion to

follow.

21

DRAM

D
Q

C
A

Memory Controller

Command

/Address

Bus

Data Bus

DRAM

D
Q

C
A

DRAM

D
Q

C
A

DRAM

D
Q

C
A

D
Q

S

D
Q

S

D
Q

S

D
Q

S

Data

Strobe
C

lk

C
lk

C
lk

C
lk

S
y
s
te

m

C
lo

c
k

Clk

Figure 3.2 Clock, Data and Command/Address Memory Controller Connections

to DRAM Devices

3.2 Source-synchronous Interface

In current generation Synchronous DRAM, the DQS signal is timed to transition

synchronously with the data driven from the DRAM. This is referred to as a ‘source-

synchronous’ signaling protocol. Figure 3.1 shows how the data strobe, DQS, is aligned to

the clock along with the data. When data arrives at the inputs to the memory controller

following a read command, there is a period during which the data signals across the data bus

share a temporal alignment synchronized to the memory clock. Figure 3.3 demonstrates this

idea. We see that the data transitions for each of the bits across the bus are not perfectly

aligned. There is a valid bit overlap period across the bus when all of the data bits have a

common temporal relationship. We say the bits across the data bus have a common temporal

relationship when the data bits in a data word generated at the sending device appear in

parallel for a period of time at the receiving device. This temporal alignment is known as a

22

data valid window. In the case of Figure 3.3, the data burst length is 4 and in each bit time of

the burst there is a valid window when the members of the data bus share a valid transition

period. The critical timing parameters specified for the width of the data valid window are

referenced to a transition of the DQS signal. The reason critical timing parameters are

referenced to the DQS signal is because DQS is the clock for the source synchronous

interface; although, at low clock frequencies, some systems are known to use the main

system clock for data capture.

D0 D1 D2 D3

DQS

Data Bus

(DQ)

Clock

tac

Figure 3.3 Data Bus and DQS Signal Skew Diagram

Current DDR-DRAM standards [7] call for a timing specification, tac. In Figure 3.3,

tac is labeled as the time between an edge of the system clock and the time data is valid on the

data bus. As long as tac is much less than the clock period, this specification allows us to

specify a cycle-based latency for read and write data on the data bus. The tac timing

parameter has historically been a manageable fraction of a clock cycle. As clock frequencies

have increased, and tac has become a larger portion of the clock period, the use of a DLL to

align data to the system clock with minimum tac has become necessary. However, at very

high frequencies, some of the weaknesses in DLL designs and clock distribution networks

that can cause short-term timing jitter out of the DLL have become significant. Most of the

jitter problems can be traced to coarse timing adjustment of the DLL delay line, a lack of

supply noise immunity for the delay elements and inadequate power bussing and voltage

regulation of DLL circuitry. Design improvements have minimized some of these problems

23

[8] but the DLL will always contribute some jitter on the data bus. We will more closely

examine the role of the DLL in data bus timing later in this chapter.

As frequency continues to increase, process variations, geometric mismatches, data

pattern sensitivity due to simultaneous switching operations (SSO) and channel limitations

causing inter-symbol interference (ISI) have become significant contributors to data bus

skew. Many of these problems continue to be overcome by advances in system signaling

technology; thereby, allowing continued increases in clock frequency.

Because the DDR interface, coupled with decreasing clock periods, has significantly

reduced the data valid window, a new trend may be developing where the tac specification is

actually allowed to increase as a fraction of the clock period. At the same time the timing

specification, tdqsq measuring the variation in timing between the data bus and the DQS signal

has been tightened. Figure 3.4 illustrates the relationship between these timing parameters.

This trend allows us to continue to increase system clock frequency by taking advantage of

the source synchronous interface for data transfer. Also, small swing signaling technologies

such as SSTL2 [9] have contributed to increasing the channel bandwidth. These trends still

do not relieve the memory controller interface logic from the task of centering the DQS pulse

in the middle of the data valid window for data capture.

t
ac

Clock

Data Valid

Window

t
dqsq

DQ Bus

DQS

Figure 3.4 tac and tdqsq Definition

24

There are various methods that have been proposed for capturing data at very high

speeds [10, 11, 12]. In this discussion, we are interested in clock to data timing

methodologies and not solving signal integrity problems. Some of these methods involve on-

chip timing compensation circuits that serve the purpose of optimizing the alignment of the

source synchronous data strobe and the center of the data valid window. This alignment can

be derived using multiple delay line taps from a DLL selected by the results of channel

initialization using training patterns (patterns generated as cyclic redundancy codes using

linear feedback shift registers) [12]. Other proposals have suggested that individual members

of the data bus can be independently phase aligned using individual delay lines controlled by

the capture of expected data patterns [13].

It is possible to conceive of a situation in which the skew across the data bus is large

enough to not allow a temporal word alignment of the data bus signals. In this case, the ‘data

eye’ is closed so that capture with a single DQS signal is not possible. Turning on the

persistency of an oscilloscope and measuring the toggling signals across the data bus gives us

a picture of the data eye. If there are periods where members across the data bus do not share

a temporal commonality, then the eye is considered closed. Figure 3.5 is an example of a

closed data eye.

t
ac(max)

Clock

D2DQ Bus

DQS

D2DQ Bus

DQS

D1 D3

D3D1D0

t
ac(min)

Byte 1

Byte 0

Figure 3.5 Closed Data Eye for Capture Across Two Bytes of the Data Bus

25

Physically wider data busses have a greater chance for a closed data eye because of

data bus skew caused by on-chip clock skew, process gradients across a die, clock jitter,

package parasitics and system level interconnect differences over a wide data path. For this

reason, separate DQS signals may be assigned to groups of signals that are subsets of the

overall system memory bus. These subsets usually represent separate memory chips or even

subsets of separate memory chips. This means there is possibly more than one DQS signal

routed per memory chip to service the entire width of the DQ bus. For instance, a single

DRAM with a 32-bit wide data I/O bus may require 4 DQS signals to service each byte. This

is because at high frequencies, the data skew across the 32 I/Os may be large because of

differences in process characteristics across the die. Also consider data-dependent switching

characteristics affecting power supply rails supplying I/Os at different locations in the

DRAM die (SSO is in this category). We also have to be concerned with trying to route a

single DQS signal on memory modules and internally to the memory chip. Not only are there

on-die characteristics that can affect the width of the data valid window for the data I/Os, but

factors external to the DRAM including differences in signal terminations and PCB routing

geometries. We also need to consider electrical phenomenon such as signal cross talk,

transmission line effects and inductive noise that in turn causes power supply noise. By

routing DQS to service a subset of the overall data bus, the DQS signal will have a tighter

timing relationship to the data valid window. That is because DQS is driven from the same

area of the DRAM die or simply from the same DRAM that is sourcing the data. Also,

subdividing the I/O bus for multiple DQS signals simplifies the routing problems at the

system level by providing timing margin for a certain level of routing mismatch between

subsets of signals across the overall system bus.

After data and DQS are driven from the DRAM I/O, the DQS signal is delayed

relative to the data signals in order to center the strobe in the middle of the data eye at the

receiving end of the channel [14]. The data strobe alignment shown in Figure 3.1 is

accomplished with the use of a controlled delay line on the system printed circuit board

(PCB), or by using Phase-locked loops (PLL) or DLL capture clock circuits at the system

26

and/or chip level [14]. There are other methods outside the scope of this work that can be

implemented in on-chip logic that can center align a source-synchronous clock with the data

valid window [15].

We have mentioned that the DQS signal is bi-directional. This means that the signal

is driven from all devices connected to the data bus. In Figure 3.1, the DQS signal is not

driven for a period before it begins to transition synchronized with data transitions. This

signal state is often referred to as tristate or hi-z state. Depending on the signaling technology

used, the DQS signal may begin to transition before the first data valid window. This period

of the DQS signal burst cycle is called the preamble of the DQS burst. The preamble is used

to ‘wake-up’ the bi-directional bus and allow the receiving chip to recognize when a

transition occurs on DQS.

3.3 Read Latency Programming

 There several methods in which Read latency can be established for a DRAM. The

most common method requires that the memory controller load a predetermined latency

value, expressed in clock cycles, into an operating mode register in the DRAM. Design,

testing and characterization of the DRAM during manufacturing establish the range of

latency values that can be programmed into the latency register. Referring back to Figure

2.4, the buses labeled command and address are used to write the latency value to the DRAM

mode register. This command is referred to as the ‘load mode register’ (LMR) command. We

make an assumption that command and address bus timing relative to clock timing is

maintained to data sheet specifications so that commands issued from the memory controller

are received by the DRAM. Figure 3.6 is a timing diagram showing bus activity for a LMR

command. Table 3.1 is an example of binary values used for read latency programming.

These values are assigned by two of the address bits latched from the LMR command. Other

bits on the address bus are used to program the device for such things as burst length, output

drive impedance, write latency, etc.

27

Load Mode

Register

Command

Bus

System

Clock

Address

Bus

Register

Programming

Read Latency B1 B0

 4 0 0

 3 1 1

 2 1 0

 1 0 1

Table 3.1 Read Latency

Settings

Figure 3.6 Load Mode Register Command

3.4 Read Latency Programming Through Channel Tuning

 Another possible method for programming read latency involves sending test patterns

from the DRAM after a modified read command is issued from the controller to the DRAM.

Performing this operation allows the memory controller to detect read latency while at the

same time worst-case noise and ISI conditions are induced on the data bus. As previously

mentioned, pseudo-random test patterns are easily generated using linear feedback shift

registers (LFSR) [21] so that a cyclical redundant code can be generated and detected using

low cost circuits. By seeding the LFSR to start the pattern in a predetermined state, the

memory controller can detect the transmission of this state after issuing a modified read

command. By counting the number of clock cycles between the read command and the start

of the test pattern, the controller can determine the cycle based read latency of a read access.

After determining the read latency, the controller can then continue to use same pseudo-

random pattern to make fine adjustments to center the capture strobe within the center of the

data eye. The memory controller can reverse the channel initialization so that the DRAM can

program the correct write latency and optimize the DRAM internal data capture point. All of

this assumes that the DRAM command channel can support a command protocol to enter a

28

channel training mode after power is applied. Figure 3.7 is an example of a read training

pattern.

Command

Bus

System

Clock

Address

Bus

DQS

Read

Latency

Data Bus

Member

Read

Prog.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

FF FF FF

clock

FF

Linear Feedback Shift

Register

output

Figure 3.7 Channel Training Read Command and LFSR Circuit

Figure 3.7 illustrates a 15-bit pseudo-random pattern generator and the pattern that is

generated from this circuit. LFSR circuits in general generate a maximal length code of (2
 n
 -

1) bits instead of a 2
n
 bit pattern because an all zeros case in the register will lock the LFSR

output low (the same thing happens for the all ones case if we use an xnor gate as the output).

Notice some of the properties of the pseudo-random pattern. We see that there is a test of the

maximum bandwidth of the data channel during cycles t4-t7. There are also regions in the

pattern where a relatively steady state is maintained on the data bus for several bit periods

such as t0-t3 and t12-t14. The pseudo-random pattern will maximize ISI [16] on the data

channel so that the memory controller can establish optimal capture points for the data. We

could also induce SSO and cross talk across the data bus with appropriate shifting of

individual members of the data bus while generating the serial test pattern. Minor

29

adjustments can be made to optimize capture points using individual delay lines for each bit

on the data bus [11, 15] or by providing an independent DLL delay-line tap selection for each

bit across the data bus. If bitwise timing correction is not needed, word-wide adjustments can

be made using PLL or DLL circuits [12] so that the capture clock is centered in the data eye

at the capture latch in the memory controller.

It is possible to avoid active capture clock adjustment if the source-synchronous

interface operates correctly for the signaling technology used. Here, we are concerned with

accuracy of interconnect technologies in matching and controlling interconnect delays

between the memory controller and DRAM. In this work, we will not go into detail about

methods used to capture data. Instead we will be concerned with the DRAM driving read

data and using a DLL to temporally align transitions of the DQS signal, data bus and system

clock. Read latency and variations in internal timing compensation to maintain correct read

latency contributes to variations in the required data throughput from the array to the

synchronization circuits. The material presented in this chapter will serve as background

information for evaluating the method that is presented in the next chapter for buffering data

between the array and the output synchronization circuits.

30

4. Timing Domains in the Read Data Path

 This section introduces the research done for constructing a read data path

architecture intended for high-frequency DRAM. We will examine circuit methodologies that

will help us maintain data throughput between the array and synchronization circuits despite

variations in timing because of programmable read latency, process variations between

manufacturing lots and changes in voltage and temperature (PVT). Also of particular interest

is pipelining data between the HFF circuits and the synchronous output circuitry. There are

three distinct timing domains internal to the DRAM read data path. We will first identify the

three timing domains and then begin to examine methods for transferring data between them.

4.1 Array to Synchronous Interface

 Moving forward from our discussion of read latency programming, we will now

focus on the portion of the data path where the data from the asynchronous array meets the

synchronous output circuits. Figure 4.1 shows timing representative of read accesses from the

array. Figure 4.2 is a block diagram that illustrates the major circuit blocks in our data path

architecture and gives reference for the signals shown in the timing diagram of Figure 4.1. At

the top of Figure 4.1 is the command clock domain. The command clock is the external clock

delayed by the clock input buffer and any associated buffers and interconnect that route the

clock to the command capture latches and the command decoder. Notice in Figure 4.2 that

the command clock is also the input clock to the DLL. We try to minimize clock skew

between the clocks distributed to the DLL and command decoder.

The command decoder synchronously generates column accesses to the array. All

commands entering the command decoder must be decoded immediately following

synchronous capture in the command latches. Implementation of the command decoder in

this work employed skew tolerant logic clocking methods [17] combined with

precharge/evaluate type latches. Using multiphase clocks with phase relationships established

31

for the maximum frequency specification, we are able to avoid any clock period dependency

for array accesses while still providing synchronous outputs from the command decoder. We

will not discuss specific design issues related to this circuit so as not to be distracted from our

focus on the methods developed for maintaining data throughput for fixed read latency at

high clock frequencies.

Clock

Tree

Output

Clock

(DLL)

QED

DRDY(f)

DRDY(s)

Data

from

HFF(s)

Data

from

HFF(f)

D0 D1 D2

Command

Clock

D0 D1 D2 D3 D4

Column

Access

Command Clock

Domain

Array Access Timing

Over Fast and Slow

Corners

Output Clock Domain

Figure 4.1 DRAM Internal Timing Domains for Read Access

We should clarify what is meant by ‘high frequency’ when we discuss clock

frequency for a DRAM. In this work, we define a high frequency clock by comparing the

input and output delays internal to the DRAM with the clock period. The input delay is

defined as the clock delay through the input clock buffer and interconnect leading to the

DLL. The output delay is defined as the data path delay measured from an output clock edge

through the data output register and DQ pad driver to the external data pin. The sum of these

delays is the same as the IO model delay in the DLL feedback loop (Appendix A). If the total

IO delay is equal to the clock period plus synchronization overhead for passing the QED

signal between the command clock domain and output clock domain, then we can say we are

32

operating at high frequency and consideration of the methods described in this work become

necessary. At very high clock frequencies the IO delay can be multiple clock periods in

length making the problem of transferring control and timing information between clock

domains even more difficult. In this work we will not examine the output synchronization

logic but instead focus on buffering data between the array and synchronization logic.

 Referring back to Figure 4.1, the timing of data from the HFF circuits has two

important specifications. The first timing specification is the latency of the read access from

the array. This is the time it takes for the first set of prefetched data to be passed through the

HFF circuits following a read command. The second timing specification is the cycle time of

a read access. The required column cycle time is a function of the data prefetch depth, burst

length and clock frequency. When designing the data path, we try to make the data bus word

width as narrow as possible in order to save area on the die. Therefore, we design the data

path to the minimum width based on the minimum burst length and the minimum possible

column cycle time. This relationship can be expressed as follows:

min

min

max

2 CCTf

BL
Col

cm !!
=

(4.1)

min

max

min

min 2 CCTf
Col

BL
DW cm !!== (4.2)

where Colmax is the maximum number of column cycles per specified burst length, DWmin is

the minimum data path width required to support the data prefetch depth BLminis the

minimum burst length, fcm is the maximum clock frequency and CCTmin is the minimum

possible column cycle time that can be achieved.

Equation 4.1 tells us how many column accesses are possible to service the minimum

specified burst length at a minimum clock period. For example, if CCTmin = 4ns, fcm=

200MHz and the BLmin= 4 then, applying Equation 4.1, Colmax= 2.5. This tells us we can

complete 2.5 column accesses within the time required for a burst length of 4 at maximum

33

clock frequency. Applying Equation 4.2, we find that Dwmin=1.6. We must round this

number up to the next highest integer in order find the minimum possible data path width,

which is also the data prefetch depth, given the maximum frequency and minimum burst

length. If we cannot meet the minimum column cycle time, CCTmin, then we must adjust the

minimum data path width to accommodate the minimum possible column cycle time. This in

turn would increase the data prefetch depth and increase the required area for our data path.

 In Figure 4.1, the signal labeled ‘Column Access’ is used to indicate a column access

to the array. If we can cycle the column multiple times within the time required for a

minimum burst length at maximum clock frequency, then this signal could potentially cycle

more than one time per read command. In our example, the column access signal cycles one

time per read command. The command decoder labeled in Figure 4.2 synchronously

generates the ‘Column Access’ signal. This means that each read access prefetches the entire

required data depth to accommodate the minimum burst length.

The DRDY signal is used to indicate new data on the data bus. This signal is driven

from the HFF circuits and is timed to coincide with data from the HFF circuits. In the

architecture of Figure 4.2, the data bus is bi-directional. The DRDY signal must be treated as

a data signal since it is driven from more than one location. This means that the DRDY signal

is driven from a tri-state driver the same as a data signal. The DRDY signal is ‘bundled’

with the data on the data bus so that data and DRDY signals have similar transition timing.

34

Clock Tree
Data Output Register and Serializer

HFF Bank0 HFF Bank1

Data FIFO

Synchronous Command Decoder

Data

DRDY

Output Synchronization

Logic and Burst Length

Counter

Output Clocks

DLL

DLL Output

ClockDLL Feedback

Clock

Output

Data

Clock Tree

Reference

Clock

Command/Address

Capture Latches
Clock Input Buffer

Clock

Command Decoder

Clock
Command Bus

Command/Address

Data Output Pad Drivers

Pad Driver

Control

Signals

FIFO Sequencer Logic

QED

Done

FIFO Output

Timing

Clock

AckReq

Column Access

(Read)

Data

Command

Reference

Clock

QED Timing

Signal

Command

Clock

Domain

Output

Clock

Domain

Array

Access

Timing

Domain

DQs

Output

Data

Timing

Domain

Figure 4.2 Read Data Path Architecture

Data from the HFF circuits must precede the expiration of the internally timed read

latency indicated by the QED signal transitioning from low to high. The QED signal is

synchronized to the output clock domain and is used to enable the DQ output pad drivers. In

Figure 4.1, DRDY(s) shows the timing for data from the array while operating at a low

voltage, high temperature corner. DRDY(f) represents timing of data from the array at a high

voltage, low temperature corner. At the slow corner, we receive a single access before the

QED signal transitions. This is desirable timing at the slow corner because when speed bin

testing of memory devices, we want to take advantage of the fastest possible read data

latency at a given frequency under worst-case operating conditions. If we were able to cycle

the array more than once before synchronizing the output data, then we are not taking full

35

advantage of the array read access time. While operating under fast corner voltage and

temperature conditions, more than one array access cycle could occur before synchronizing

the output data. In Figure 4.1 there are four accesses before the QED signal transitions as

indicated by the pulsing of the DRDY(f) signal.

Process corners can also affect the timing depicted in Figure 4.1. If a memory

subsystem has multiple devices from different manufacturing lots operating at different

process corners, then the slowest device in the system would determine the overall read

latency. We could potentially have some devices completing a single access in the required

internal read latency time while other devices complete multiple accesses in the same amount

of time similar to the case depicted in Figure 4.1.

Also in Figure 4.1, the QED signal is synchronized to the data output clock generated

by the DLL and passed through the clock tree. The timing of the QED signal is dependent on

the programmed read latency. Therefore, QED is timed to occur after a fixed number of

clock cycles following a read command. Note that the synchronization and sequencing of the

QED signal are two independent operations. This is because control for sequencing the QED

signal is solely in the output clock domain. However, timing the transition of the QED signal

occurs through synchronization between the command clock domain and the output clock

domain. The QED signal transferred to the DQ output synchronization circuits serves as a

catalyst for synchronizing the data from the array access with the distributed DLL output

clock. The block labeled ‘Output Synchronization Logic and Burst Length Counter’ in Figure

4.2 synchronizes the QED signal between the command clock domain and the output clock

domain. In this research, we use timing properties and circuits related to the DLL for

properly timing and synchronizing the QED signal to the DQ output register. The variation in

timing of the QED signal relative to the DRDY signal has a direct impact on data throughput

requirements through the data FIFO labeled in Figure 4.2.

36

4.2 Data Path FIFO

Returning to the data prefetch architecture, we know that we are required to prefetch

either the entire required burst length or multiple fractions of the burst length in order to

accommodate the high bandwidth serial data stream at the DRAM DQ outputs. We have also

seen that PVT variations can affect the rate at which data is output from the array so that the

number of consecutive data accesses that occur before the expiration of the read latency can

vary. In order to accommodate the prefetch depth and the varying number of data accesses

that occur at various read latencies, we must be able to buffer the data between the array

interface and the data output latches. The best way to accomplish this task is by using a first-

in-first-out (FIFO) buffer. A common application of a FIFO is to provide constant data

throughput between two locations in a data path that might differ in their bandwidth or

latency requirements. Referring to Figure 4.2, we see that the data FIFO is used to buffer data

between the array timing domain and the output clock timing domain. This timing is separate

from the synchronization timing of the QED signal but is not totally unrelated. The timing

diagram in Figure 4.1 shows how the timing of the data access from the array is sandwiched

between the column access command and the data output timing indicated by the QED signal

transitioning synchronously with the data output clock. The timing of the QED signal

determines when data is used at the output of the FIFO while the column access timing

determines when data is loaded into the inputs of the FIFO.

4.2.1 FIFO Design Choices

 FIFOs can be designed in various configurations. One common configuration uses

counters that act as pointers to storage locations in the FIFO. A first counter acts as a write

pointer and indicates the location for the next data load in the data storage array. A second

counter acts as the read pointer and indicates the storage location of the next output data

request. Figure 4.3 is a block diagram of such a FIFO. Additional logic must be added to the

architecture in Figure 4.3 in order to make certain that the pointer value has settled so as not

to write data into storage locations loaded with previously valid write data.

37

Counter

Value

Counter

Value

Output DataData Storage Array

Counter

Counter

Write

Read

Address

Decoder

Address

Decoder

Write

Pointer

Read

Pointer

Input Data

Write Timing

Control Logic
Enable

Figure 4.3 Traditional FIFO Architecture

 The block labeled ‘Write Timing Control Logic’ in Figure 4.3 is used for timing the

valid outputs from the write address decoder. The enable signal routed to the write address

decoder is in the decode tree for all of the decoder outputs. This ensures that the address

decoder is not transparent as the outputs from the write counter transition. If multiple

transitions occur on the counter output, any timing skew between the transitions across the

counter value bus will result in transitions through more than one write address in the address

decoder. The address decoder enable signal must be timed to allow timing margin to the

maximum address decoder delay for the worst-case address transition. Another method to

avoid multiple write pointer transitions is to make the counters gray code style counters. In a

gray code counter only one signal transitions on each count [18]. Gray code counters require

more area than binary counters but offer better write performance since we do not have to

consider counter output skew.

 Another FIFO architecture [19,20,22] and the one chosen for this work is a self-timed

FIFO. This style of FIFO was made popular by the Turing award winning paper

Micropipelines [19] written by Ivan Sutherland. A block diagram of this type of FIFO is

illustrated in Figure 4.4. This FIFO uses speed-independent asynchronous logic for

generating control signals. There has been a great deal of research and several papers

38

[23,24,25] published on methods for improved asynchronous FIFO control logic.

Sutherland’s work describes a two-phase signaling protocol (also referred to as transition

signaling) in which data is transferred between latches using a handshaking communication

scheme.

DataDataDataData

F
IF

O
 C

o
n

tro
lle

r

Data

Latch
Data

Ack

F
IF

O
 C

o
n

tro
lle

r

Data

Latch

Ack

Req
Req

F
IF

O
 C

o
n

tro
lle

r

Data

Latch

F
IF

O
 C

o
n

tro
lle

r

Data

Latch

Ack

ReqReq

Ack
Req

Figure 4.4 Self-timed FIFO

Figure 4.5 is a qualitative look at how the transition signaling protocol is

implemented. The transition signaling protocol is not level sensitive but instead

communicates with signal transition events. The problems with transition signaling is that the

circuits implementing such control tend to consume large area and any logic that is a function

of pipeline status requires conversion to level sensitive signaling. In Sutherland’s

implementation, complex latch circuits are required in order to simplify the latch controllers.

If simple transmission gate latches are used, then a conversion from two-phase to four-phase

handshaking is required at the latch controller. Figure 4.6 shows Sutherland’s

implementation of a two-phase latch control circuit that can use simple transmission gate

latches. The latch control circuit requires a Muller-C element (to be discussed shortly), an

39

XOR gate and a toggle circuit [19, 26]. Because the toggle circuit operates on the principle of

the transition protocol, this circuit can be prohibitively large for use in deep pipelines.

Data Data

Start

Finish

Start

Finish

Request

Acknowledge

Figure 4.5 Two-phase Handshake Protocol

C

T
O

G
G

L
E

L
A

T
C

H
D

a
ta

 I
n

D
a
ta

 O
u
t

Req

Ack

Ack

Req

En_

En

In Out

A

B

Y

Figure 4.6 Two-phase Latch Controller for Simple Transmission Gate Latch

40

The four-phase handshaking protocol (also referred to as return-to-zero signaling) is

an alternative to the two-phase protocol. Figure 4.7 is an example of the sequence of this

protocol. When the request signal on the input of a controller transitions from low to high,

data is captured in the latch. The controller then transitions the acknowledge signal back to

the previous stage to indicate receipt of the data in the latch. The previous FIFO controller

then removes the valid request signal after receiving the acknowledge signal. When the

request signal to the controller returns to zero, the controller then resets the acknowledge

signal to zero. This describes how a four-phase controller arbitrates a request from the

previous controller in a FIFO. The request input (Reqin) and acknowledge output (Ackin,

this name indicates an acknowledgment of input data) at the controller arbitrate data that is

input to the controller latches.

Data Data

Start

Finish

Request

Acknowledge

Return

to 0

Return

to 0

Start

Finish

Return

to 0

Return

to 0

Figure 4.7 Four-phase Signaling Protocol

 This same protocol is followed on the output of the controller. After the controller

captures data in the latches, the controller then sends a request signal to the next controller in

the FIFO. When the next controller captures the data, an acknowledge signal is sent back to

the controller indicating the data has been received. After receiving the acknowledgement of

the output data, the controller resets the request output and is then prepared for future data

transfers from the previous controller in the FIFO. The request output (Reqout) and the

41

acknowledge input (Ackout, this name indicates an acknowledgment of output data) at the

controller arbitrate the data that is output from the controller latches. Figure 4.8 further

illustrates the connections necessary for the four-phase signaling protocol.

Previous

Controller
Controller

Next

Controller

Reqout

Ackout

Reqin

Ackin
Ackin

Reqin

Ackout

Reqout

Figure 4.8 Controller Interface for Four-phase Signaling Protocol

 There has been work done in the area of four-phase latch controllers that use edge

triggered storage registers [26]. Using transparent latches as shown in Figure 4.6 cuts out the

master-slave combination and eliminates half the required transistors [27].

4.3 Latch Controller Design

 Now that we have established the signaling protocols for self-timed FIFOs, we will

now look at controller designs for the four-phase protocol. There are several reasons for

deciding to use the four-phase protocol in this application. The first requirement is that our

latch controllers have a small footprint. Two-phase latch controllers tend to use more area

because they do not have the advantage of using logic levels to indicate status of the

controller inputs and outputs. Instead, in the case of transition signaling, the control logic

must store previous states in order to ascertain the current state upon the event of a transition

[19]. This is a conversion from the two-phase protocol to four-phase protocol. By using

return-to-zero signaling, the logic levels automatically indicate the status of the inputs and

outputs of the controller.

42

 Another, not so obvious requirement is that the input FIFO controller interfaces to the

asynchronous signal DRDY that does not adhere to the request/acknowledge communication

loop. Referring back to Figure 4.2, we see that the DRDY signal is generated similarly as a

data signal on the read/write data bus from the HFF banks. Because the DRDY signal is

generated from multiple locations, there is no simple way for the logic level of the signal to

be indicated between all of the signal sources. Therefore, a transition signaling methodology

does not fit well with the current architecture. Also, because the HFF banks only store data

momentarily between array accesses, the DRDY signal must be bundled with the data and

complete a transition cycle within the time of an array access cycle as shown in the timing

diagram of Figure 4.1. Therefore, the DRDY signal resembles a Reqin signal to the first

controller of the FIFO. The circuits used to time the DRDY signal must be designed to cycle

in accordance with the four-phase signaling interface. This means that the width of the

DRDY pulse must be long enough so that it is not removed before the acknowledge from the

first controller is generated. This causes the open-loop DRDY signal to appear as a closed-

loop signal to the first controller in the FIFO. We will revisit the environment of the FIFO

after we discuss the design of the latch controllers for our current FIFO design.

4.3.1 Four-phase Latch Controllers

 In Figure 4.6, there is a symbol that resembles an and gate with a “C” imprinted on it.

This gate is known as a Muller-C gate or a “concurrency element.” This gate is very

important for modern asynchronous design, particularly where parallel processing is involved

[28]; thus, the name concurrency element. The C-element is a two state circuit that can have

multiple inputs. In the case shown in Figure 4.6, there are two inputs A and B. Ignoring the

inversion bubble on input B, when A and B are in the same state, the output, Y, assumes that

state. For example, if A=B=0 then Y=0. Table 4.1 is a truth table showing the operation of

the C-element.

A B Y
0 0 0

0 1 Yp

43

Table 4.1 C-element Truth Table

 We can extend the concept of the C-element to multiple inputs. In that case we would

wait until all the inputs to the C-element were at the same value before the output would

change to reflect that value. As shown in Figure 4.6, the C-element can have inversions on

the inputs so that the output would assume the value of the true inputs. For example, the C-

element in Figure 4.6 would assume the value of A whenever A !B.

 There are several options for circuit design of the C-element [19,22]. We can use a

dynamic or static design for the C-element circuit. The truth table of Table 4.1 indicates that

whatever the circuit style chosen, the circuit must have a way of storing the previous output

values. Figure 4.9 shows a dynamic C-element and a static version using a weak feedback

inverter to provide current for storing the previous value in the input capacitance of the

output inverter. The dynamic style has performance advantages over the static style because

in the static version, the input transistors must be sized such that the pull-up or pull-down

devices can overcome the current drive from the weak feedback inverter. Therefore, we want

to size the weak feedback inverter such that the devices in the feedback inverter provide the

minimum current necessary to maintain the value on the storage node to overcome leakage

current through the input devices. By keeping the feedback inverter small, we can then make

the input devices smaller presenting lower capacitive loading to any circuits driving the

1 0 Yp

1 1 1

44

devices. Of course, sizing of the input devices must also consider the load of the output

inverter and how large the output inverter must be made to drive its output load.

A

B

Y

Dynamic C-element

A

B

Y

Static C-element

Figure 4.9 C-element Circuit Designs

4.3.2 Simplified Four-phase Latch Controller

 Using a C-element, we can form a simple four-phase latch controller [27] as shown in

Figure 4.10. The simplicity of this type of controller does provide an area advantage over

other implementations. But, as stated in [27], there are disadvantages to using this type of

controller. First, there are timing assumptions on how this latch controller must operate. The

buffer is necessary because we assume that there are several latches that must be driven by

the Lt signal. Because of this, the Ackin signal is naturally delayed back to the previous

controller to help ensure that the previous latch controller does not open its latches before the

present latch controller latches the new data. Notice, however, that the Reqout signal is

driven before the buffer. We can drive the Reqout signal early because the latch does not

have to be closed for the next controller to begin sampling the data as long as the data has

adequately passed through the present set of latches. Therefore, the C-element delay must not

45

be shorter than the data-in to data-out delay of the latches so that the next controller does not

latch invalid data.

C
A

B

Y

L
A

T
C

H

Reqout

Ackin

Reqin

Ackout

D
a

ta
 I

n
D

a
ta

 O
u

t

Lt

Figure 4.10 Simple Four-phase Latch Control Circuit

 Another problem with using the simplified latch controller can be illustrated with a

simple Signal Transition Graph (STG) [22,29]. STGs are a subset of Petri Nets [30] and can

be used to represent the behavior of an asynchronous control circuit by describing the

causality among events. An STG must have particular properties that make all of the possible

markings reachable and also prevent the graph from becoming “dead-locked” which means a

marking is reached that prevents further sequencing of the graph. We will not delve into the

theoretical details behind using STGs [31] for circuit synthesis. Instead we will look at STGs

as an alternative to timing diagrams that will illustrate the sequencing of the circuits designed

in this work.

Figure 4.11 is a STG describing the operation of the simplified four-phase latch

controller of Figure 4.10. The two dots on the STG indicate the initial marking of the graph.

This is to indicate the starting point of the transition sequencing. In this case, the Reqin+

place is fully enabled because the place only has a single input arc to which a token must be

46

passed or initially marked. When all of the input arcs to a place are marked the transition

indicated at the place is said to be enabled and can then fire. In our

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

Figure 4.11 STG of Simplified Four-phase Controller

example, the Reqin transition is enabled and transitions high(+). A token is indicated by the

dot. Since Reqin+ is enabled, we allow that signal to fire therefore passing tokens to all

output arcs of the Reqin+ signal. In this case there is only one output from Reqin+ so a token

is passed to the output transition of the Reqin+ signal which is the second input arc required

to enable the Reqout+ signal. Because all of the input arcs of the Reqout+ place now have a

token, the Reqout+ signal is now fully enabled and can now fire to sequence tokens to all of

the its output transitions. After the Reqout+ signal fires, the Lt+ transition and the Ackout+

transition become enabled. After the sequence described above occurs, we will have the

marking indicated in Figure 4.12. The Lt+ transition is an output from the circuit description

and will fire dependent upon internal circuit delays; however, the Ackout+ transition is a

circuit input and will fire dependent upon environmental delays. This is an example of how

the STG models concurrency. As long as the required properties of the STG are present for

circuit synthesis [31], the STG can be synthesized into a state graph that takes into account

all of the possible firing orders of the events [22]. Because even simple STGs can explode

47

into a very large state space, software tools become necessary for synthesizing the logic that

implements the state graph description. One such tool called FORCAGE is used in [27] and

another popular tool called Petrify [31] is also ideal for STG synthesis applications.

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

Figure 4.12 STG Marking After Reqin+ and Reqout+ Firings

 Looking at the STG describing the simplified four-phase latch controller, we see an

undesirable property of this architecture. When we form several such controllers into a FIFO,

as illustrated in Figure 4.4, we see that at most only alternating stages can hold new data at

any time. This is because Ackout- must transition (and therefore the next latch become

empty) before Lt can go high (the present latch becomes full) [27]. This would mean that two

adjacent latch controllers are holding the same data. Now the area advantage of the latch

controller circuit using the simple TG latch is not realized because the FIFO would have to

have a pair of controllers and latches for each storage location to achieve a specific FIFO

depth.

48

4.3.3 Semi-decoupled Four-phase Latch Controller

 To solve the problem of not being able to fill all of the stages of the FIFO we need to

decouple the input from the output of the latch [27]. We quote copiously from the Furber, et

al. paper [27] because Furber’s work presents a worthy solution for development of a

controller that decouples the input and output of the latch controller. The method used by

Furber is to add an internal variable (A) to the simplified four-phase controller STG as shown

in Figure 4.13. This variable is used to indicate when the input side of the latch controller is

ready to proceed independent of the output side. This allows the latch to close before the next

latch is empty because Lt+ becomes concurrent with Ackout-. We can see this concurrency if

we consider that data has been transferred to the next set of latches on a previous cycle and

Ackout+ remains high because downstream latches are full. Even though the next set of

latches is full, the input side of the current latch controller can cycle to latch new data with

Lt+ firing as shown with the STG marking sequence in Figure 4.14. Figure 4.14 shows how

successive latch controllers can hold unique data in their respective latches. The controller

will proceed with transfer of new data after Ackout- occurs.

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Figure 4.13 Initial Marking of Semi-decoupled Four-phase STG

49

Lt+

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Reqin+

1 2 3

A+

Reqout+

Ackin+ Reqin-

Ackout+

A-

Reqout-

Lt- Ackin-

A-

Reqin+ A+ Lt+

Figure 4.14 STG Marking Sequence Illustrating Lt+ and Ackout- Concurrency

 We will not fully pursue the synthesis of the STG in Figure 4.13 for the semi-

decoupled latch controller. A state graph is formed from the STG description with the logic

to implement the state sequencing derived using binary logic reduction methods [22]. Furber

outlines these methods and uses the synthesis tool FORCAGE [27]. The circuit that is

derived can be constructed from a modified version of the C-element called the asymmetric

Muller C-element.

4.3.4 Asymmetric C-elements

 Asymmetric C-elements are C-elements in which some inputs control only one of the

output trajectories. An example of an asymmetric C-element is shown in Figure 4.15. The

notation used indicates that an input connected to the body of the gate controls both output

trajectories, such as input B in Figure 4.15. An input controls only the rising edge of the

output when connected to the extension labeled “+,” and the falling edge when connected to

the extension labeled “-.” The control circuit derived through syntheses of the STG in Figure

4.13 is constructed of asymmetric C-elements and shown in Figure 4.16 [27].

50

A

B

Y

Asymmetric C-element

C

C Y

A

B

C

+

-

Figure 4.15 Asymmetric C-element Symbolic Notation

C
-

C+

A

L
a

tc
h

e
s

Reqin

Ackout Reqout

Ackin

Lt

D
a

ta
 I

n
D

a
ta

 O
u

t

Figure 4.16 Semi-decoupled Latch Control Circuit

51

4.4 Final Data Path FIFO Design

 Now that we have established the design and operation of the semi-decoupled latch

controller, we will use this controller design in the design of our data path FIFO. One reason

to choose the semi-decoupled controller is that the performance/area ratio is better than the

fully decoupled four-phase controller also introduced in Furber’s paper [22]. We have

already noted the problems with the simplified four-phase latch controller as far as the ability

to fill all of the stages of the FIFO. The simplicity of the semi-decoupled controller design

combined with the capability to use transmission gate style latches fits well with our goals of

a high-performance, small area data FIFO.

 In this section, we will revisit the area of the data path design in which the FIFO is

used and examine the timing environment where the FIFO buffers data between the array

access and the data output register/serializer. Referring to Figure 4.17, we see a recreation of

part of the data path block diagram from Figure 4.2. Figure 4.17 illustrates the 8-bit data path

slices with 4-bit data prefetch architecture developed for this work. We see that data is

supplied from the FIFO output to the inputs of the data output register/serializer. Outputs

from the register/serializer are used to control the pull-up and pull-down transistors for the

DQ pad driver.

As a review, we are buffering data that is accessed from the array at various PVT

dependent latencies. The FIFO is used to bridge the timing differences between the array

accesses, driven by the command clock timing domain, and the QED valid time determined

by the programmed read latency and sequenced by the data output clock driven from the

DLL (refer back to the timing diagram in Figure 4.1).

The data FIFO is designed so that it is deep enough to hold all possible column

accesses that can occur within the longest read latency that can be programmed. In other

words, a column access causes a FIFO load indicated by the DRDY signal. The completion

of the read latency cause the signals Donea_ and Doneb_ to transition indicating that the data

52

has been consumed at the output serialization circuits. When designing the array data path,

we must perform careful characterization of column access

performance using SPICE simulation results. After characterizing the column access timing,

we must consider the longest read latency that the device can be programmed according to

the DRAM specification. The depth of the FIFO must allow all data accesses to be stored

within the column access cycle time from the HFF block. This requires that when the FIFO is

full, the Donea_,b_ signals are toggled before any successive DRDY signals strobe.

Data FIFO
FIFO Output Sequencer

Logic

DLL,

Output Synchronization

Logic and Burst Counter

Data Output Register and Serializer

32

32

Doneb_

Donea_

Column

Access

Command

Clock

QED

DQ0

ACKa_ ACKb_

DRDY

Req
Data

In

Data

Out

Data

Output

Clock

Data

Output

Clock

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7

Figure 4.17 Data Path Synchronization Architecture

 In the next chapter, we will examine in detail the operation of the self-timed FIFO

shown in Figure 4.17. This FIFO is designed to provide correctly timed data at the input of

the data output serializer. The data output serializer is the point in the data path that operates

at the full data output clock frequency. The serializer performs two primary functions. First,

the serializer converts the prefetch data into a single bit stream. Second, the serializer

53

converts the bit states into control signals for separately toggling the pull-up and pull-down

structures in the DQ pad driver. We will not go into detail on the operation of the data output

register/serializer. Instead, we will focus on how the FIFO architecture is designed to buffer

data between the array and the serialization circuit.

54

5. FIFO Architecture

 In this chapter, we will examine the final FIFO design and discuss the requirements

that determine the overall FIFO architecture. Continuing our example data path, the FIFO is

constructed to supply 8 DQ pad drivers with 4-bit prefetch data. The input of the FIFO must

accept 4 bits for each DQ serializer combined with the bundled DRDY signal, while the

output of the FIFO must be synchronously timed to supply new data to the data output

latch/serializer. Figure 5.1 is a top-level block diagram of the FIFO architecture used to

buffer data between 8 DQ pad drivers and a 4-bit prefetch array architecture. Details of the

FIFO operation about to be described would change for variations on prefetch depth and

serializer function.

Donea_ Doneb_

FIFO ControllerDQ3DQ2DQ1DQ0 DQ7DQ6DQ5DQ4

Acka_Req Ackb_

4 4 4 4 44 4

D
a

ta
[3

1
:0

]

4

FIFO Output

Sequencer

DRDY

Lta[2:0]

Ltb[3:0]

QED

Output

Clock

(Clock Tree)

2 2 2 2 2 2 22 2 2 2 2 2 222

HFF Interface

Clock Distribution,

Syncrhonization and

Latency Timing

Circuits

Output Data Register and Serialization Logic

Ltb[3:0] Lta[2:0]

Figure 5.1 Top Level FIFO Architecture

55

 We will first examine the application of the semi-decoupled latch controllers used in

the FIFO Controller block. We will then examine the function of the FIFO Output Sequencer

circuit and how this circuit sequences the output data from the FIFO to the serialization

circuits. Lastly, we will investigate performance metrics for the overall FIFO design.

5.1 FIFO Controller

 The FIFO Controller circuit employs the semi-decoupled latch controllers discussed

in Chapter 4. One advantage of using these controllers is the area saved by being able to use

simple transmission gate latches for the latching mechanism. Another important advantage is

that the input req/ack interface is decoupled from the output req/ack interface so that the

Ackout- and Lt+ transitions are concurrent. This means that a latch controller can latch new

data before the next controller has passed data to a forward set of latches; thus, allowing all

latch stages in a FIFO to hold unique data (see Figure 4.21).

 The FIFO Controller circuit is constructed as two parallel asynchronous FIFOs.

Figure 5.2 is a schematic of the final FIFO design. There are some unusual details to this

design that require some explanation. In each latch controller path there appears to be an

extra controller. The first controller in each path does not have the Lt signal routed out of the

circuit to control a set of latches. The reason for the extra controller is to allow the tri-state

data bus to serve as an implied latch. We cannot, however, control the data bus latch latching

mechanism because the timing of the data bus is determined by the rate at which read

accesses are applied to the device and the timing of the HFF circuits in driving the bus. This

timing is entirely open-loop and determined by PVT as was discussed in Chapter 4. The first

latch controller in each path represents the status of data in the HFF latches. If the data has

not yet been transferred from the HFF circuits to the FIFO, the Reqout signal from the first

latch controller will be high.

 Another unusual aspect of this design is that both latch controller paths have the same

Reqin signal (DRDY) but separate Ackout signals (Donea_, Doneb_). This is because, as will

56

become clearer in the discussion to follow, the timing of data input to each latch controller

path is the same while the data output of each latch controller path differs. One problem with

using the asynchronous FIFO in this application is that the input and output timing is not tied

to the four-phase signaling protocol. We are instead using the four-phase protocol for

transferring data between latch stages internal to the FIFO but allowing an open-loop timing

relationship at the input and output stages of the FIFO. This will require that we characterize

the latch controllers and the memory array accesses to provide the maximum required

throughput to fully buffer data from the array (HFF) to the serializers.

S
D

 L
a
tc

h

C
o
n
tro

lle
r

L
C

0

S
D

 L
a
tc

h

C
o
n
tro

lle
r

L
C

1

Ackout

Reqin

S
D

 L
a
tc

h

C
o
n
tro

lle
r

L
C

2

Reqin

R
0

_
R

1
_

L
ta

2

L
ta

1

L
ta

0

Reset_

Ackout

Ackout

Reqin

S
D

 L
a
tc

h

C
o
n
tro

lle
r

L
C

1

S
D

 L
a
tc

h

C
o
n
tro

lle
r

L
C

2

Ackout

Reqin

S
D

 L
a
tc

h

C
o
n
tro

lle
r

L
C

3

Reqin

R
0

_
R

1
_

L
tb

2

L
tb

1

L
tb

0

Reset_

Ackout

Ackout

Reqin

L
tb

3

S
D

 L
a
tc

h

C
o
n
tro

lle
r

L
C

0

Reqin

DRDY

Reset_

Donea_

Doneb_

Ackout

S
S

LC3

LC4

Path A

Path B

Figure 5.2 FIFO Controller

 The last point of interest in Figure 5.2 is the final latch controller in each path. This

latch controller is a set/reset latch with the reset signal able to override the set signal. Table

5.1 is a logic table indicating the state transitions of the last latch controller. Because the

output stage of each latch controller path does not require a full four-phase interface, a less

57

complex piece of logic can be used to accomplish communication with the last four-phase

controller. Examining path A in Figure 5.2, when the full four-phase latch controller, LC2,

issues a Reqout+ signal, the output of LC3 goes high closing the latches in the last stage.

This signal, Lt2 of LC3, is used as the Ackout input to LC2 and indicates that data is latched

in the last stage. The Reqout- signal transitions from LC2 and is applied to input S of LC3

but LC3 maintains a high state on the output, Lt2, in accordance with Table 5.1. Next, when

LC3 receives a Donea_ transition on its R1_ input, it toggles Ackout- to LC2 and LC2 is then

able to transition Reqout+ in accordance with the STG for the semi-decoupled latch

controller shown in Figure 4.21.

R0_ R1_ S OUT

0 X X 0

X 0 X 0

1 1 1 1

1 1 0 OUTN-1

Table 5.1 Output Latch Controller Truth Table

 The final piece to the FIFO is the set of latches used in each DQ latch circuit. The DQ

latch circuit is indicated in Figure 5.1 as a separate set of latches for each DQ data path

leading to the serializer circuit. The FIFO controller supplies a set of latch control signals,

Lt[x], that close the transmission gate latch when the corresponding signal is ‘1’ and opens

the latches when the corresponding Lt signal is ‘0.’ Each set of latches are composed of two

serially connected sets of latches representing the control paths A and B of the FIFO

Controller. Each serially connected set of latches is further composed of two parallel sets of

latches. Taken together, this means that the input stage and output stage of the latch set for

each DQ is composed of 4 bits. In Figure 5.1, this configuration is represented as a 4-bit

input data path and two 2-bit output data paths. Figure 5.3 illustrates a set of DQ latches.

58

En_

2

2 2 2

222 TG Latches TG Latches TG Latches

TG Latches TG Latches TG Latches

TG Latches2

Lta0 Lta1 Lta2

Ltb3

In Out

En_ En_ En_ En_

En_ En_ En_

TG Latch

4

2

Ltb0 Ltb1 Ltb2

Figure 5.3 DQ Latch Set

5.2 FIFO Output Sequencer

 The FIFO Output Sequencer indicated in Figure 5.1 is used to properly time the

output data from the FIFO to the serializer circuits. In Figure 5.3, we see that the latch

circuits at each DQ are configured to accept 4 bits of data and output data as two sets of 2

bits. Furthermore, the serialization circuit is designed to convert the output of the latch circuit

to a single bit of data driven on each edge of the output clock providing a Double-data rate

(DDR) output. In order to maintain continuous data for the 4-to-1 serialization, we must be

able to change to new data at the input to the serializer without interrupting the data flow out

of the serializer. This is accomplished by alternating between the two sets of 2-bit data from

the output of the latch circuit. While one set of data is actively converted to a serial data

stream, the other set of data is changed following the issuance of a Done(x)_ signal. In a

59

DDR device, using the configuration outlined above, the data must change on the inputs to

the serializer within a single clock cycle. By controlling the Donea_ and Doneb_ signals at

the final FIFO Controller stage (Figure 5.2) we alternate between the two output paths so that

new data is always available to the serializer. The timing diagram and block diagram of

Figure 5.4 illustrates this case.

Data Output

Clock

Data[3:0] A B C D E

DRDY

QED

Donea_

Doneb_

A B C D E

A B C D E

A B C D E

A B C D E

FIFO

Data[1:0]

FIFO

Data[3:2]

DQ(x)

D
a

ta
[3

:0
]

F
IF

O
 D

a
ta

[1
:0

]

F
IF

O
 D

a
ta

[3
:2

]

Lta[2:0]
Ltb[3:0]

FIFO

Controller

Donea_ Doneb_DRDY

DATA VALID

Figure 5.4 FIFO Timing Diagram for a Single DQ

 In Figure 5.4, we see that data access A is loaded into the FIFO when DRDY is true.

This will load the lower two bits into path A and the upper two bits into path B in Figure 5.3.

The FIFO Output Sequencer begins timing the Done(x)_ signals once the QED signal is

synchronously captured in the data serializer. Recall, that the QED signal is used to enable

60

the output driver. The QED signal also properly times the read latency out of the device after

it is passed through the synchronization circuit indicated in Figure 4.24. As long as the QED

signal is valid, the output drivers will be enabled and any data present at the output of the

data FIFO will be output from the data serialization circuits. We must synchronously chang

the data out of the FIFO with the data serializer if we are to properly time consecutive read

data serialization. We see in Figure 5.4 that the QED signal serves the dual purpose of

synchronously timing the Done(x)_ signals to the FIFO with the data output serialization and

synchronously enabling the DQ pad drivers. The QED signal is the common timing

mechanism for timing the serialization of data from the pad driver with the synchronization

of data from the output of the FIFO.

 There are many options for the design of the FIFO Output Sequencer. Because the

FIFO Output Sequencer is a synchronous circuit, the design is greatly simplified compared to

the asynchronous design methods introduced in Chapter 4. A written description of the FIFO

Output Sequencer is as follows:

The QED signal is synchronously captured on the rising edge of the clock inside the

FIFO Output Sequencer. Following the initial capture of QED, the Donea_ signal is pulsed

low after the next falling edge of the clock indicating that the first two data bits have been

output from the data serializer. The data from the outputs of path A are changed to the data

from the next array access (access B in Figure 5.4). One cycle later, on the second falling

clock edge relative to the initial capture of QED, Doneb_ is pulsed low to indicate that the

last two bits from array access A have been output from the data serializer. The upper two

bits of data from array access B are then output from path B in the FIFO providing new data

for the output data serializer. This process continues until the QED signal is invalid.

 Figure 5.5 is an example of logic that would accomplish the written description of the

FIFO Output Sequencer. Working through the logic of Figure 5.5, one can see that the timing

of the Done(x)_ signals shown in Figure 5.4 is achieved. This logic was derived heuristically

through a thorough understanding of the written description. Notice that the Done(x)_ signals

are generated for only a half clock cycle. This is done to allow the fastest possible cycle time

61

through the FIFO. Again referring to Table 5.1, we see that as long as the reset override

signal, R1_ is ‘0,’ then Ackout to the previous semi-decoupled latch controller (LC2 in

Figure 5.2) is also held low. Referring back to the STG of Figure 4.21, we see that Reqout

from LC2 cannot transition to a ‘0’ until the Ackout signal transitions to a ‘1.’ Therefore, the

Done(x)_ signals have a minimum requirement that they remain low only long enough to

ensure that the Ackout- signal is valid at the preceding latch controller, LC2, to achieve

minimum cycle time.

Flip

Flop

I0

Flip

Flop

I1QED

Donea_

Flip

Flop

I2

Flip

Flop

I3

Doneb_

Clock

R_R_

R_R_

Figure 5.5 FIFO Output Sequencer

 Figure 5.5 is only one example of logic that would accomplish the task of sequencing

the data from the FIFO to the serialization circuits. The logic style in Figure 5.5 will work as

long as the clock period is long enough to allow the transfer of signals between the flip-flops

and logic within ! of a clock cycle. The worst-case delay is between the output of flip-flop

I1 through the logic and back to flip-flop I0. Other logic styles can be employed including

multi-phase clocked logic [17] combined with precharge-evaluate logic gates.

62

5.3 FIFO Performance Analysis

 In Chapter 4 we outlined the DRAM internal timing paths following a read command

at the DRAM inputs. There are essentially two separate timing paths that we are concerned

with. The first timing path is the delay in accessing the array column to prefetch data that is

eventually loaded into the FIFO; this being the timing path that generates the DRDY signal.

The second timing path is the synchronization logic path that generates the QED signal. The

QED signal is used to enable the DRAM output drivers and also time the Done(x)_ signals

that indicate the consumption of output data from the FIFO. It is important to note that both

timing paths, although separate and independent, are generated from the same event; that

being the read command issued at the input to the DRAM.

The maximum number of array accesses that can occur at the fastest operating corner

and with the DRAM programmed to the maximum read latency specification determines the

maximum required FIFO depth. As we saw in Chapter 4 (Figure 4.1), the operating corner of

the DRAM determines the number of consecutive accesses that can occur within a given

programmed read latency. In other words, the operating corner and programmed read latency

value determines how many DRDY transitions can occur before the first Donea_ signal

occurs. A first approximation of the number of pipeline stages required for a FIFO is derived

as follows:

min

max

tDRDY

tDone
Pipestages ! (5.1)

where tDonemax is the maximum latency for the first Donea_ signal to occur following a read

command while tDRDYmin is the minimum latency for the first DRDY signal transition. We

will soon show that tDonemax is a function of Latency and output logic path delay.

In our example, Figure 5.2 shows that there are 4 latch controllers (counting the latch

controller utilizing the HFF storage) in path A and 5 latch controllers in path B. We see from

the timing diagram that both paths are loaded with the same DRDY signal; although, path B

63

is required to hold data for one extra clock cycle relative to path A. By adding an extra latch

controller to path B we ensure that both paths are capable of the same throughput.

5.3.1 FIFO Throughput

The performance of the output data path is directly affected by the throughput of the

FIFO. We define throughput of the FIFO as the ability of the asynchronous pipeline to

maintain the required data rate at the FIFO output. This means that for every FIFO load, a

complementary FIFO extraction must occur within the minimum and maximum cycle times

for the pipelined latch controllers, which form the FIFO. The throughput of the asynchronous

FIFO is a function of the number of data items present in the pipeline. When the number of

data items in the pipeline is small, the throughput is low and the pipeline is said to be “data

limited.” Likewise, when the pipeline is nearly full, the throughput is limited because empty

stages, or “holes,” are required to allow data items to flow forward in the pipeline; in this

scenario the pipeline is said to be “hole limited” [32]. Often, latency is sacrificed in an

asynchronous pipeline to achieve greater throughput. Greater throughput is gained by

increasing the number of data items in the pipeline so that a sustainable data rate can be

maintained. In our application, throughput is only an issue in the extreme cases. Unlike

synchronous pipelines, the latency through an asynchronous pipeline is not limited by clock

frequency. Therefore, one great advantage to using an asynchronous pipeline as a FIFO is the

relatively constant latency through the pipeline path. This property is very important in our

DRAM application since we require fast data array access to meet read latency requirements.

 In order to evaluate FIFO performance, we must first take a more detailed look at the

circuits used to implement the semi-decoupled latch controller. Referring back to the circuit

schematic of Figure 4.23, which is repeated in Figure 5.6, we see that the latch controller is

implemented using two asymmetric C-elements. The transistor level implementation of these

devices is shown in Figure 5.7. The transistor implementation also shows the Reset_ signal

that is used to initialize the latch controller states within the FIFO upon power-up.

64

C
-

C+

A

L
a

tc
h

e
s

Reqin

Ackout Reqout

Ackin

Lt

D
a

ta
 I

n
D

a
ta

 O
u

t

Figure 5.6 Semi-decoupled Latch Controller

Ackin

A
Ackout

Reqin

Reset_

Reqout

Lt

C
+

C
-

Figure 5.7 Transistor Implementation of Semi-decoupled Latch Controller

65

5.3.2 Latch Controller Forward Latency

 First, we will look at the forward latency through the latch controller circuit. Suppose

that the FIFO pipeline is empty. In this case, each FIFO latch controller will be in the state

represented by STG marking labeled 1 in Figure 5.8. The forward latency of the data is

separate from the forward latency of the control signals. The data will only see the delay

through a simple TG latch at each stage of the pipeline. Even though the data will arrive at

the output of the FIFO pipeline before the Lt signal of the last stage latches the data, we are

concerned with the forward latency of the control signals because the timing of data loaded at

the input of the pipeline is independent of the timing of the data extracted from the output of

the pipeline. For logically correct operation, we must ensure the control signals at each end

of the pipeline are correctly timed. Once we know the forward latency for each stage of the

pipeline, then we can calculate the forward latency through the entire pipeline.

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Reqin+

A-

Start with

FIFO empty

1 2 3

4 5 6

A-

Lt- Ackin-

Reqout-

A+

Lt+ Ackin+

Reqout+

Reqin_

Ackout+

Figure 5.8 STG Markings for Latch Controller Forward Latency

66

 We will follow the STG markings shown in Figure 5.8 and apply these sequences to

the circuit topology of Figure 5.7 to determine the latch controller forward latency, tFL. First,

the FIFO starts empty until the Reqin+ signal transitions and we move to STG marking 2.

From STG marking 2 the circuit transitions to STG marking 3 with only internal circuit

delay. The delay component to transition from STG marking 2 to marking 3, is indicated as

tRAF, and is derived from the circuit in Figure 5.7 as follows:

BUFINVPDRAF tttt ++= (5.2)

where tPD is the delay through the pull down stack at the input to the inverter driving signal

A, tINV is the delay through the inverter and tBUF is the delay through the buffer driving

Lt/Ackin. The transition of Reqout+ is concurrent with the transition sequence to Ackin+ as

shown below STG marking 3.

 Next, the controller is waiting on signals Reqin- and Ackout+ from adjacent

controllers to enable transition A- to progress from STG marking 3 to marking 4. These two

signals transition concurrently. The Ackin+ signal is slightly slower getting back to the

previous controller than the Reqout+ signal is getting to the next controller. Also, the Reqin-

signal requires the 3-input NAND gate from the previous controller to transition. Therefore,

the transition of A- in STG marking 5 is limited by the transition of Reqin-. We will call the

delay from STG marking 3 to marking 4 tREQINF and it is determined from Figure 5.7 as

follows:

BUFINVPUNANDREQINF ttttt +!+!+= 22 (5.3)

where tNAND is the delay through the 3-input nand gate and tPU is the delay through the p-

channel pullup devices. Of particular interest in this design is that the pulse width of the input

signal DRDY determines when Reqin- occurs on the first controller in both pipelines. Also,

the complex gate itself only delays the Ackin+ transition from the complex gate used as the

last controller in each pipeline of Figure 5.2.

67

 Finally, to get to STG marking 6, requires the A- transition summed with the buffer

delay to drive Ackin- back to the previous controller indicating new data can be transferred

to the current latch controller. STG marking 6 shows that the controller is prepared to accept

new data while the next controller is still holding Lt/Ackout high. This means that the next

controller is still holding the previously transferred data and is not ready to accept new data.

Again, this is the characteristic of the semi-decoupled latch controller that allows all of the

storage locations in the pipeline to hold unique data. The delay to transition from STG

marking 4 to marking 6 is indicated as tRAR and can be calculated from our circuit diagram as

follows:

BUFINVPUNANDRAR ttttt +++= (5.4)

Now we can calculate the total forward latency of the interface between two semi-decoupled

latch controllers by summing the component delays derived from the STG markings in

Figure 5.8 and the circuit schematic of Figure 5.7:

RARREQINFRAFFL tttt ++= (5.5)

5.3.3 Latch Controller Reverse Latency

Another timing parameter of interest is the reverse latency, tRL, through the semi-

decoupled latch controller. Suppose that all of the stages in the FIFO contain unique data. In

that case, each latch controller can be represented by STG marking 1 in Figure 5.9. We

define the reverse latency, tRL, for our semi-decoupled latch controller as the delay from the

time the Ackout- signal transitions until the Lt-/Ackin- signal transitions, thereby, allowing

new data to be captured in the controller latches.

The reverse latency parameter, tRL, is very important in our application because we

need to know how much delay occurs when transferring an empty latch condition, otherwise

referred to as a hole, from the last controller stage in the pipeline to the first controller stage

in the pipeline when the pipeline is full. A lack of holes in the pipeline is the opposite

68

problem of throughput limitation caused by a lack of data in the pipeline. In order to increase

data throughput, in the case of data limited operation, greater latency is required between a

data load operation, indicated by DRDY transitioning, and unloading data from the FIFO,

indicated by the Done(x)_ signals transitioning. Conversely, hole limited operation results in

reduced throughput caused by too much latency between loading and unloading of the FIFO

pipeline. Evaluation of hole limited operation helps to determine the cycle time of the FIFO

and will allow us to further set limits on the operating frequency of this section of the DRAM

data path.

 Before looking further at data limited operation and hole limited operation, we will

evaluate reverse latency, tRL, employing the same method used to determine the forward

latency, tFL in the previous section. First, consider the signal timing for latch controller LC1

in Figure 5.2 when all stages of the FIFO contain unique data. As data is consumed from the

FIFO, a hole percolates back toward LC1. After Ackout- to occurs at the input of LC1 we

advance to STG marking 2 of Figure 5.9. The state of LC1 continues to STG marking 3 after

a delay, tAR derived from Figure 5.7 as follows:

PDINVAR ttt +!= 2 (5.6)

where tINV is equal to the delay through an inverter and tPD is the delay through the pull-down

n-channel transistor stack at the input to the Reqout inverter driver.

69

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Reqin+ Reqout+

Ackin+

Reqin-

Ackin-

Ackout+

Reqout-

Ackout-

Lt+

Lt-

A+

A-

Ackout- Reqout+

Ackout+ A-

Start with

FIFO full

1 2 3

4 5 6

A-

Lt- Ackin-

Reqout-

Figure 5.9 STG Marking Sequence for Reverse Latency Timing Analysis

 Marking 4 in Figure 5.9 occurs after LC2 acknowledges back to LC1 the Reqout+

transition from LC1 (Reqin+ for LC2). We will call this delay tRA and it can be derived from

the circuit in Figure 5.7 by following the Reqin+ to Ackin+ logic path. Remember that

Ackin+ for LC2 is Ackout+ for LC1. The marking for LC2 will be identical to STG marking

6 since LC2 has already had a full reverse latency delay as it passes the hole back to LC1.

Following the path from Reqin+ to Ackin+ gives us tRA as follows:

BUFINVPDRA tttt ++= (5.7)

where tPD is the delay through the n-channel pull-down stack at the input to the inverter

driving signal A, tINV is the inverter delay and tBUF is the delay through the buffer driving Lt

and Ackin.

70

 The last component of the reverse latency delay is the circuit delay from Ackout+ to

Ackin- shown in STG markings 5-6. STG Marking 6 shows the concurrent modeling

capability of the STG. When A- fires, both the Reqout- and Lt-/Ackin- logic paths are

enabled. The delay between Ackout+ to Ackin- is labeled tAA and is derived as follows:

BUFINVPUNANDAA ttttt +++= (5.8)

where tNAND is the delay through the 3 input nand gate, tPU is the delay through the p-channel

device at the input to the inverter driving signal A, tINV is the delay through the inverter and

tBUF is the delay through the buffer driving Lt and Ackin.

 The total reverse latency for a single semi-decoupled latch controller is determined by

the sum of the delays outlined above. Think of this delay as the transition of the latch

controller from a latched or busy state to an unlatched or available state. The delay

parameter, tRL, is calculated as follows:

AAARRARL tttt ++= (5.9)

5.3.4 Reverse Latency of the Simplified Latch Controller Interface

The reverse latency calculated above is only true for the interface between two semi-

decoupled latch controllers. We must also consider the reverse latency between the latch

controllers LC3 and LC2 in pipeline A. Because LC3 is not a semi-decoupled latch

controller, we need to consider the effect that timing of the Lt/Ackin signal from LC3 has on

LC2.

Again, referring to STG marking 1 in Figure 5.9, we see that until Ackout- occurs, the

semi-decoupled latch controller is holding unique data that is ready to be forwarded in the

FIFO pipeline. After Ackout- occurs, the latch controller progresses to marking 3 and is

requesting service from the next controller. Not until Ackout+ occurs on the latch controller

input is the latch controller able to accept new data. This is because the forward latch

71

controller has not acknowledged the current data. The earlier the forward latch controller

acknowledges the new data with Ackout+, the sooner the current latch controller can

transition Lt-/Ackin- to indicate that new data can be passed from the previous controller.

Consider the interface to the simplified latch controller, LC3. The FIFO Output

Sequencer generates the Donea_ signal after the first two bits of the 4-bit burst are consumed.

The Donea_ signal is low for ! of a clock period. Looking at the truth table of Table 5.1, we

see that as long as Donea_ (R1_) is low, the output, Lt/Ackin is low. This means that Ackout

of LC2 is low for ! of a clock period. During this time, LC2 signals a request, Reqout+, to

LC3 but the request is masked by the Donea_ signal. Not until the Lt/Ackin signal of LC3

transitions high, indicating receipt of new data, can LC2 indicate back to LC1 that new data

can be accepted. This is the operation sequence illustrated by STG markings 1-6 in Figure

5.9. Thus, the reverse latency for the LC3 to LC2 interface, tRLS, is as follows:

2

T
tRLS = iff ARt

T
!

2
 (5.10)

where T is the clock period. The reverse latency of this stage is not dependent on tAR from

LC2 as long as ARt
T
!

2
. Equation 5.10 indicates that using the simplified latch controller

compromises performance of the FIFO. We trade performance for area when using the

simplified controller versus using a semi-decoupled controller in this application.

Now that we have established the logic delays for the forward and reverse latencies

through the individual latch controllers, we can proceed to calculation of throughput as a

function of clock frequency. As previously mentioned, the throughput of the FIFO is limited

both when the FIFO pipeline is data starved or, more formally, data limited; and when the

FIFO pipeline is overfed or, more formally, hole limited. In the next section we will examine

the FIFO design used in this work and establish a method for calculating throughput as a

function of frequency that can be applied in a general case.

72

5.4 FIFO Throughput as a Function of Clock Frequency

 The latch controller latencies calculated in the previous section will now serve as

parameters for determining the maximum clock frequency at which the FIFO can operate. As

we previously noted, the throughput of the FIFO is a function of the number of data items

stored in the pipeline at any given time. We will examine two modes of FIFO operation. The

first mode is data limited operation and the second mode is hole limited operation [32]. We

will also apply a third criteria for estimating the maximum clock frequency by determining

whether the minimum delay between the FIFO load timing and the data extraction timing is

greater than the forward data latency of the FIFO. These three criteria will establish a method

for deriving general formulas that are necessary for making correct engineering decisions

when designing a data path similar to the DRAM data path described in previous chapters.

5.4.1 Array Access versus Read Latency Requirements

 First, consider that there is only one data item in the FIFO pipeline at any given time.

On each column access cycle, a data item is removed when the Donea_ signal transitions

low. In this case, the timing margin between loading data from an array access, indicated by

DRDY transitioning high, and the removal of the data, indicated by the Donea_ signal

transitioning low, must be at least equal to the time it takes for the data to flow from the input

of the FIFO pipeline to the output of the pipeline. This timing constraint says that the last

latch controller must transition an Ackin+ signal before Donea_ transitions low in order for

the logic to function properly. We need to consider the Reqin+ to Reqout+ delay, tRR, for

each intermediate stage of the FIFO pipeline and the Reqin+ to Ackin+, tRQA, delay of the

last stage. As long as the last stage transitions its Ackin+ signal before the Donea_ signal

transitions low, the logic in the FIFO pipeline will function properly. If this condition does

not exist then we would acknowledge data at the output of the pipeline before data arrived

meaning the FIFO is data starved and invalid data will be loaded into the output data

serializer. We would also risk logic failure in the FIFO pipeline.

73

Of course, the latency for data to travel through the empty pipeline is assumed to be

much shorter than the logic delay associated with the latch control signals. The data must

arrive at the data output serializer ! of a clock cycle, plus register setup time, before Donea_

transitions low. The following analysis assumes that the array access occurs with enough

timing margin before the internally timed read latency expires. The required timing

stipulation for correct FIFO pipeline operation is expressed below:

RQARRsdDRDYDone ttStt +!"# (5.11)

where tDRDY is the delay from a read command to the DRDY signal transtion; tDone is the

delay from a read command to the Donea_ signal transition; and Ssd is the number of latch

controller stages, excluding the last latch, in the FIFO Controller. The value of tRQA is simply

the delay through the complex gate from the Reqout+ transition driven from the previous

latch controller to the output Lt/Ackin+ transition of the simplified latch controller. We

determine tRR from the circuit diagram in Figure 5.7 by following the logic path from the

transition of the Reqin+ signal to the transition of the Reqout+ signal as shown in Equation

5.12:

INVPDRR ttt !+!= 22 (5.12)

where tPD is the delay through the pull down stack and tINV is the delay through an inverter.

 The parameter, tDone in Equation 5.11 is a function of both the programmed read

latency, L, and the delay through the output data path, which is the delay measured through

the output data register/serializer and the DQ pad driver. We will call the delay through the

output data path toutput. The reason we can establish this relationship is because the read

command is issued at the DRAM inputs relative to the external clock. Recall that the read

latency is also programmed and timed relative to the external clock. Internally, the output of

the DLL circuit is used to back time the output clock that drives the data output

register/serializer by the delay toutput. Therefore, the QED signal, indicated in Figure 5.2, is

timed through the synchronization logic to synchronously enable the DQ pad driver through

74

the data output register. This timing is made possible by the back timed alignment of the

DLL output clock (Appendix A). We can express the delay between the read command and

the synchronous capture of the QED signal at the data output register, tQED, as a function of

read latency:

outputCKQED ttLt !"= (5.13)

where tCK is the clock period. As shown in Figure 5.1, the FIFO Output Sequencer also uses

the QED signal to time the assertion of the Done(x)_ signals. The Donea_ signal is asserted

on the falling edge of the clock following the positive edge capture of the QED signal (Figure

5.5). Therefore, the delay, tDone can be expressed as a function of read latency and clock

period as follows:

outputCK
CK

outputCK
CK

QEDDone ttL
t

ttL
t

tt !"+=+!"=+=)
2

1
(

22
 (5.14)

Equation 5.14 can be simplified to give us the expression for a clock period boundary as a

function of FIFO pipeline forward latency:

2

1

)(

+

+!++
"

L

ttStt
t

RQARRsdoutputDRDY
CK . (5.15)

Now we see that by increasing the latency, which in turn increases the timing margin

between tDRDY and tDone, we can increase the maximum operating clock frequency based on

the latency between the load and unload signals.

One very important aspect to the latency analysis is that the timing parameters are

taken at the slowest operating corner (slow process, low voltage, high temperature) and

minimum read latency. This is important because it forces the minimum delay between the

high transition on DRDY and the low transition on Donea_. Equation 5.15 gives us the

minimum clock period required to meet the forward control signal latency through the FIFO

75

pipeline. The boundary condition established by Equation 5.15 must be met for correct FIFO

operation.

5.4.2 Data Limited Operation of the FIFO Pipeline

 Once we have established a maximum clock frequency from Equation 5.15, we can

now analyze the operation of the FIFO for maximum sustainable throughput. Again, suppose

the FIFO is empty and one data item is passed through the FIFO at any time. This would

require that the data item be extracted before a new item is loaded. The cycle time of the data

load signal, DRDY will be a function of the data prefetch depth and clock period. Therefore,

in order to maintain sustained data throughput, the delay between DRDY and Donea_ must

be at least equal to the time required for the data to flow from the input of the FIFO to the

output of the FIFO:

SFLFLsdCK ttSt
P

+!"!
2

 (5.16)

where P is the prefetch depth. We divide P by 2 because the data path is double data rate so

that two bits are output per clock cycle.

 For the general case, if there are n data items in the FIFO pipeline then the forward

latency of the pipeline must support n data loads. The forward latency condition tests for

open locations to load data given the minimum cycle time ensuring that we do not become

data limited for sustained throughput:

SFLFLsdCK ttSt
P

n +!"!!
2

 (5.17)

Pn

tSFLtFLSsd
tCK

!

+!!
"

)(2
 (5.18)

Equation 5.18 is the expression for minimum clock period for data limited operation.

76

5.4.3 Hole Limited Operation of the FIFO Pipeline

 Now let us imagine that the FIFO pipeline is nearly full. As a new data item is loaded

into the FIFO input, a data item is simultaneously extracted from the FIFO output. As this

occurs, a hole is injected into the output and begins to move toward the input latch controller

stage. In our application, the hole must reach the input stage before a request to load more

data into the FIFO occurs. This condition generally occurs at the fast operating corner (fast

process, high voltage, low temperature) combined with maximum allowable programmed

read latency. Under these conditions, faster consecutive array accesses create a high data

throughput demand at the input of the FIFO while extraction timing remains relatively fixed

by clock frequency, read latency and the output data path delay (tDone).

Analysis of hole limited operation is valid for the short path A of the FIFO Controller

(Figure 5.2) because path B is made longer to compensate for the extra clock cycle of latency

between Donea_ and Doneb_ transitioning during the initial data extraction. Because both

pipelines share the input request signal DRDY, and there is an additional cycle of latency

between extraction of data in path B compared to path A, either path can be evaluated

independently giving the same estimation of data throughput.

The analysis for hole limited operation is very similar to the analysis of data limited

operation examined above. Just as in the data limited analysis, in order to achieve the

minimum FIFO throughput for the hole limited condition, the FIFO reverse latency must

occur within a column access cycle time:

22

CK

RLsdCK

t
tSt

P
+!"! (5.19)

where P is the data prefetch depth, Ssd is the number of semi-decoupled latch stages and tRL is

the reverse latency between two semi-decoupled controllers. The addition of ! tCK represents

the pulse width of the Donea_ signal, which is a performance-limiting factor for reverse

77

latency when using the simplified latch controller as the last stage of the FIFO pipeline.

Simplifying Equation 5.19 gives us:

1

2

!

""
#

P

tS
t

RLsd

CK (5.20)

 We can generalize Equation 5.20 for cases where the pipeline is not full. If n is the

number of unique data items in the FIFO pipeline and S is the total number of latch controller

stages in the pipeline, then the pipeline has S-n holes available for new data. Each of the

available holes can be filled with new data before a hole injected at the output is required to

reach the FIFO input stage. Equation 5.20 is generalized as follows:

22
)(

2

CK

RLsdCKCK

t
tSt

P
tnS

P
+!"!+!#! (5.21)

1)1(

2

!+!"

""
#

nSP

tS
t

RLsd

CK (5.22)

5.4.4 FIFO Performance Boundaries

 Equations 15.18 and 15.22 provide upper-bounds on the operating frequency of the

FIFO pipeline portion of the DRAM read data path, as a function of the number of data items

present in the pipeline. We can express the operating frequency, F, as a function of the

number of data items in the pipeline as follows:

!!
"

#
$$
%

&

''

(+('

+''

'
)=

RLsdSFLFLsdCK tS

nSP

ttS

Pn
Min

t
F

2

1)1(
,
)(2

1
 (5.23)

 Graph 5.1 is a plot of the upper bounds on the FIFO operating frequency. This is a

plot of operating frequency versus data items in the pipeline derived from Equation 5.23 and

Equation 5.15 [32]. The rising portion of the curve represents data limited operation where

78

data throughput rises linearly with the number of items present in the pipeline. The falling

portion of the curve represents data throughput for hole limited operation where data

throughput falls with increasing number of data items in the pipeline. The point at which the

two curves meet is the maximum throughput capability of the FIFO. The third boundary is

the maximum frequency at which the FIFO pipeline can operate based on the minimum

difference in delay between the initial DRDY signal high transition and the initial Donea_

signal low transition. This boundary was determined from Equation 5.15 using a read latency

value, L, of 8 clock cycles. The numbers used to derive the plot in Graph 5.1 come from

actual circuit parameters determined through extensive SPICE simulations of circuits

designed in accordance with work done for this thesis. These simulation results are based on

a 0.11-micron DRAM process operating between 1.45 volts, 100 degrees Celsius and 2.25

volts, 0 degrees Celsius. The hole-limited operating curve is derived from the fast corner

simulations while the data limited curve is derived from slow corner simulations.

 Graph 5.1 is used to determine the limitations of operating at a given clock

frequency. Let us choose an operating frequency of 700 MHz (7"10
8
 Hz) with a read latency

of 8 clock cycles. At this point, we would be just below the calculated maximum frequency

value based on Equation 5.15 of 708 MHz. This is a desirable operating point for the slow

corner case since we are able to maintain data throughput with only one data item in the

pipeline. At this frequency, we also still meet the maximum frequency stipulation based on

clock frequency, read latency and output data path delay established in Equation 5.15. Notice

also that there is still plenty of data throughput left to allow fast corner operation.

As the operating point of the DRAM transitions from a slow corner to a fast corner,

more data items are loaded at the input of the FIFO before the read latency timing expires.

Because read latency timing is a function of clock frequency; and variation in the data output

delay, which directly affects the timing of the Donea_, is very small, changes in operating

corner conditions greatly affect the DRDY signal while having relatively little affect on the

timing of Donea_. Therefore, as we move toward fast corner environmental conditions, the

operational status of the FIFO moves toward hole limited operation.

79

Of course, increasing the number of stages in the pipeline does not correct the

problem of maximum data throughput. If the operation of the FIFO pipeline became hole

limited, additional stages would correct the hole limited problem at the expense of increased

forward latency in the pipeline. This would have the affect of lowering the maximum

operating frequency, according to Equation 5.15, and would increase the slope of the data

limited curve further lowering the maximum operating frequency.

0 1 2 3 4 5
0

5 .10
8

1 .10
9

1.5 .10
9

2 .10
9

2.5 .10
9

3 .10
9

Number of Data Items in FIFO Pipeline

F

r

e

q

u

e

n

c

y

(

H

z

)

Ffl n()

Frl n()

Fmax n()

n

Maximum Throughput

Maximum Frequency

This area, bounded by the plots, is the

valid operating region

Graph 5.1 Upper bounds on Operating Frequency for FIFO Pipeline

Figures 5.10 and 5.11 are SPICE simulation results included here to illustrate the

operation of the FIFO pipeline under various occupancy rates. Figure 5.10 shows operation at

the fast corner and Figure 5.11 shows operation of the FIFO pipeline at the slow corner.

These simulation results show that the elasticity of the pipeline allows various timing

relationships between the DRDY and Done(x)_ signals. In both cases, the operation of the

circuit falls under the boundary conditions shown in Graph 5.1.

80

Figure 5.10 SPICE Simulation Results for FIFO Pipeline Operation at Fast

Operating Corner

81

Figure 5.11 SPICE Simulation Results for FIFO Pipeline Operation at Slow

Operating Corner

82

6. Conclusion

 In this thesis, we have examined some of the issues surrounding the design of

portions of a read data path in a synchronous DRAM. The work done for this thesis was

applied to a very high frequency design and, from simulation results, has shown very good

performance. We have focused on issues surrounding the data path timing in the area of the

HFF and data output serializer interface. There are issues with timing the QED signal from

the read command to the correct DLL output clock phase that were mentioned but not

comprehensively covered. We were able to show that using a FIFO between the HFF circuits

and the data output serializers we are able to provide coherent data according to the output

timing established by the QED signal. When a read command is issued internally in the

DRAM, two timing paths are established. One path is the array access timing where the

DRAM core column access is performed, while the second timing path is the read latency

timing where the data from the column access is delivered correctly timed and delivered to

the DQ pad driver. It is through the data FIFO that the two timing paths are merged back into

a single timing path.

 Future work for DRAM data path improvements should involve methods for

improved clock synchronization and latency timing techniques. Even though this thesis did

not provide detailed analysis of synchronization and clock domain crossing techniques, one

should not lose sight of the importance of these circuits for providing timing control of the

DRAM data path. Consider that the read command is captured and decoded in the

command/capture clock domain while the output synchronization occurs in the DLL output

clock domain. The phase relationship between these two clock domains is arbitrary because

of the constant phase adjustment of the DLL clock according to variations in the I/O model

delay. In the case of this thesis, we have examined the clock domain crossing of data. This is

true because input data to the FIFO was generated from the command clock domain

controlling the cycle timing of array accesses while the DLL clock domain, coupled with the

programmed read latency, determined output timing of the FIFO. Further research should

confront the problem of transferring timing information between the command/capture clock

83

domain and the DLL output clock domain, by virtue of the requirement for a DRAM to have

a fixed, cycle-based read latency.

 The thesis concludes with a comprehensive overview of the engineering behind the

design of the asynchronous FIFO pipeline. We were able to establish preferred design

architectures and develop performance metrics that can be altered and applied to assorted

applications of asynchronous pipelines in a synchronous environment [32]. Future work in

the area of asynchronous FIFO pipeline design could include methods of performance

improvements through circuit architecture such as GaSP controllers [25] or changes to

communication protocol through improvements in sequencing order [24].

84

References

[1] Keeth, B. and Baker, R.J. DRAM Circuit Design: A Tutorial , S.K. Tewksbury and

 J.E. Brewer, Eds., IEEE Press, Piscataway, NJ, 2001.

[2] Kim, J.J., et al., “A Low Jitter, Mixed-mode DLL for High-speed DRAM

 Applications,” in IEEE J. Solid-State Circuits, vol. 35, Oct. 2000, pp 1430-1436.

[3] Maneatis, J.G., “Low-jitter and Process-independent DLL and PLL Based on

 Self-biased Techniques,” in IEEE J. Solid-State Circuits, vol. 31, Nov.

 1998, pp 1728-1732.

[4] Sidiropolous, S. and Horowitz, M., “A Semi-digital Delay Locked Loop with

 Unlimited Phase Shift Capability and .08 to 400 MHz Operating Range,” in Dig. Tech.

 Papers Int. Solid-State Circuits Conference, Feb. 1997, pp. 332-333.

[5] Dennard, R.H., Gaenssien, F.H., et al., “Design of Ion-implanted MOSFETs with

 Very Small Physical Dimensions,” in IEEE J. Solid-State Circuits, S.C.-9.5, Oct.,

 1974, pp 256-268.

[6] Patterson, D.A. and Hennessy, J.L., Computer Organization & Design: The

 Hardware/Software Interface, Morgan Kaufmann, San Francisco, CA, 1994

 pp. 452-527.

[7] JEDEC standard, “Double Data Rate (DDR) SDRAM Specification, JESD-79, May

 2002, Rel. 2.

[8] Lin, F. et al., “Method and System for Delay Control in Synchronization Circuits”

 Patent Pending.

[9] JEDEC standard, “Stub Series Terminated Logic for 2.5V (SSTL_2),” JESD8-9A ,

 (revision of JESD8-9), December, 2000.

[10] JEDEC standard “Double Data Rate II (DDRII) SDRAM Specification,” Final

 Specification Pending.

[11] Dally, W.J. and Poulton, J.W. Digital Systems Engineering, Cambridge University

 Press, 1998, pp. 559-567.

[12] SLDRAM Specification, Micron Technology DRAM Data Book, 1997.

[13] B. Keeth, et al., “Calibration Technique for Memory Devices,” U.S. Patent No.

 6,434,081, 1999.

85

[14] Collins, H.A. and Nikel, R.E., “DDR-SDRAM, high-speed, source-synchronous

 interfaces create design challenges,” EDN Magazine, September 2, 1999, pp 63-72.

[15] Keeth, B. “Distributed High-speed Data Capture Scheme with Bit-to-bit Timing

 Correction,” U.S. Patent No. 6,430,696, 1999.

[16] Couch, L.W., Modern Communication Systems, Prentice-Hall, Upper Saddle River,

 NJ, 1995, pp. 177-185.

[17] Harris, D., Skew Tolerant Circuit Design, Morgan Kaufmann Publishers, San Diego,

 CA, 2001.

[18] Shaw, A.W., Logic Circuit Design, Saunders College Publishing, 1993, page 409.

[19] Sutherland, I.E. “Micropipelines,” in Communications of the ACM, vol. 32, no. 6,

 June, 1989, pp. 720-738.

[20] Dally, W.J. and Poulton, J.W. Digital Systems Engineering, Cambridge University

 Press, 1998, pp. 486-502.

[21] Maxfield, C., Designus Maximus Unleashed!, Newnes, 1998, pp. 219-232

[22] Myers, C.J., Asynchronous Circuit Design, Wiley-Interscience, July, 2001.

[23] Singh, M. and Nowick, S.M., “High Throughput Asynchronous Pipelines for Fine-

 Grain Dynamic Datapaths,” in Proc. of the International Symposium on

 Advanced Research in Asynchronous Circuits and Systems, April, 2000, pp. 198-209.

[24] Renaudin, M., Bachar, E.H. and Guyot, A., “A New Asynchronous Pipeline

 Scheme: Application to the Design of a Self-Timed Ring Divider,” in IEEE J. Solid-

 State Circuits, vol. 31, no. 7, July, 1996, pp. 1001-1013

[25] Sutherland, I.E. and Fairbanks, S., “GasP: A Minimal FIFO Control,” in Proc. of the

 Seventh International Symposium on Advanced Research in Asynchronous Circuits

 and Systems, 2001, pp. 46-53.

[26] Yun, K.Y., Beerel, P.A. and Arceo, J., “High-performance Two-Phase Micropipeline

 Building Blocks: Double Edge-Triggered Latches and Burst-Mode Select and

 Toggle Circuits,” in IEEE Proc. Circuits, Devices and Syst., vol. 143, no. 5, Oct.,

 1996, pp. 282-288.

[27] Furber, S.B. and Day, P., “Four-Phase Micropipeline Latch Control Circuits,” in

 IEEE Trans. on Very Large Scale Int. Sys., vol. 4, no. 2, Jun., 1996, pp. 247-253.

[28] Unger, S.H., The Essence of Logic Circuits, IEEE Press, Piscataway, NJ, 1997, pp.

 246-249.

86

[29] Kovalyov, A. “A Polynomial Algorithm to Compute the Concurrency Relation of a

 Regular STG,” in Hardware Design and Petri Nets, Yakolev, A., et al., Eds., Kluwer

 Academic Publishers, Boston, 2000, pp. 107-126.

[30] Hintz, K. and Tabak, D. Microcontrollers Architecture, Implementation &

 Programming,” McGraw-Hill, 1992, pp. 93-98.

[31] Cortadella, J., et al., Logic Synthesis of Asynchronous Controllers and Interfaces,”

 Springer, Berlin, 2002.

[32] Singh, M., Tierno, J.A., Rylyakov, A., Rylov, S. and Nowick, S.M., “An

 Adaptively-Pipelined Mixed Synchronous-Asynchronous Digital FIR Filter Chip

 Operating at 1.3 GigaHertz,” in Proc. of the Eighth International Symposium on

 Advanced Research in Asynchronous Circuits and Systems, IEEE Computer Society,

 2002, pp. 84-95.

87

Appendix A

A.1 Delay Locked Loop Operation in a DRAM Application

 The delay locked loop (DLL) circuit is used in new generation DRAM devices to

provide accurate alignment of data with the DRAM external clock. In older generation

DRAMs, clock frequencies were relatively low and the delay of the input and output circuits

internal to the DRAM were a small percentage of the clock period. There is a standard timing

parameter that relates the output data from the DRAM to the external data clock called, tAC.

This timing relationship is shown below in Figure A.1.

Data Data Data Data Data

External

DRAM

Clock

DRAM Data

Bus

t
AC

Figure A.1 tAC Timing Parameter Definition

 In early synchronous DRAM designs, the external clock was directly routed internally

through the DRAM and used to capture command, address and data information. The same

internally routed clock was used to drive a synchronous data output latch with the data from

the latch passed through the DQ pad driver to environment external to the DRAM. The

penalty from this design methodology was that by the time the read data was driven from the

DRAM, the clock that drives the output data latch had suffered from internal routing delays.

88

In addition to the clock routing delays, the data suffered further delay through the data output

latch and DQ pad driver circuitry. As long as these delay penalties resulted in data being

driven from the DRAM with less than the delay specified by the tAC timing parameter,

correct system operation was possible.

 As clock frequency has continued to increase, the routing and delay penalties suffered

by the data output from the DRAM has become a larger percentage of the clock period. In

actuality, the routing and delay penalties have become multiple clock cycles long so that

predictable output data timing relative to the external clock is impossible to maintain over

changes in process, voltage and temperature. DLL circuits have become a standard circuit

used to align the data with the external clock in a predictable manner.

A.2 Basic DLL Operation

 Figure A.2 is a top-level block diagram of a simple DLL circuit. We will explain the

function of each of the circuit blocks shown and then provide timing relationships that show

how the DLL provides synchronous alignment of the DRAM output data with the external

clock.

Clock Receiver

and Input Clock

Distribution

Variable Delay Line
DLL Output Clock

Distribution

DLL Clock

Phase Detector

Input/Output

Delay Model

External

DRAM

Clock

Internal DRAM

Input Clock
Delay Line

Control Signals

Delayed Feedback

Clock

DLL Clock

Feedback Clock

Distributed to output

data latches

Figure A.2 Top Level DLL Block Diagram

89

 Referring to Figure A.2, we start at the left of the diagram with the block labeled

“Clock Receiver and Input Clock Distribution.” The external clock signal is applied to the

input clock pad and is immediately distributed to the clock receiver. The clock receiver

detects external clock transitions and, if necessary, converts them to CMOS voltage levels.

The clock is then distributed from the output of the clock receiver to the one of the inputs of

the block labeled “DLL Clock Phase Detector.”

 The DLL Clock Phase Detector is a comparator that provides servo control of the

entire feedback loop through adjustments of the Variable Delay Line. Initially, the DLL is

said to be out of “lock.” This means the phase difference between the Internal DRAM Input

Clock and the Delayed Feedback Clock at the phase detector is some value other than zero.

The phase detector begins to make adjustments to the variable delay line based on the phase

alignment of the two input clock signals. As the phase alignment of the input clocks to the

phase detector approach 0 degrees, the phase detector stops making adjustments to the

variable delay line and the DLL is said to be locked.

 The output of the delay line is then fed to a clock distribution network; or, what is

commonly referred to as a “clock tree.” The outputs of the clock tree are distributed to the

output data latches that serve the purpose of synchronizing the data to the clock before the

data is driven to the DRAM external environment. In Figure A.2, one of the clocks

distributed by the clock tree is routed back through a block labeled “Input/Output Delay

Model.” The feedback clock is delayed by this logic block and fed back to the second input

to the phase detector.

 The Input/Output Delay Model (I/O model) is the part of the DLL circuit that helps

the data achieve alignment with the external DRAM clock. When the clock that is used to

clock the data output latches is fed through this delay block, the phase detector is forced to

remove delay from the Variable Delay Line to compensate for the added delay to the

feedback clock. The phase detector must remove the same amount of delay from the variable

delay line as is added by the Input/Output Delay Model in order to achieve 0 degrees of

phase difference at the phase detector inputs.

90

A.3 Simple DLL Timing Theory

 Now we will establish some simple mathematical timing relationships that prove the

theory of the DLL operation described above. What we need to prove is that the clock that

strobes the data output latches is back-timed relative to the external clock by the sum of the

delay through the data output latch and the DQ pad driver.

 First, let us follow the clock signal from the input through to the output clock

distribution network.

TREEDELAYLINEINCLKOUT tttt ++= (A.1)

where tIN is the input clock delay, tDELAYLINE is the delay through the variable delay line and

tTREE is the delay through the clock distribution delay.

 Now suppose the clock tree and the I/O model are removed from the feedback path.

For the phase detector to achieve phase alignment at its inputs, the delay line would have to

be one clock cycle in length. We will define a clock cycle as tCK. Therefore, the variable

delay line would have a delay equal to tCK. When we add the clock tree and IO model delay

back into the loop, the phase detector will force the delay line to reduce the delay by an

amount equal to the delay added to the loop. The expression for the delay through the delay

line now becomes:

)(DQINTREECKDELAYLINE ttttt +!!= (A.2)

where tIN is the input clock distribution delay from the clock pad to the delay line and tDQ is

the output data path delay through the data output latch and the DQ pad driver. Combining

Equations A.1 and A.2 gives us the following:

91

 DQCKCLKOUT ttt != (A.3)

We now see that the output clock is back timed at the data output latch by the amount of

delay through the data output latch and DQ pad driver, tDQ. This means that when the clock

from the output of the clock tree clocks the data output latch, the data driven from the pad

driver is delayed by an even number of clock cycles and is aligned to the external clock.

