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ABSTRACT 

In this work, a highly-sensitive global-shutter CMOS image sensor with on-chip memory 

that can capture up to 16 frames at speeds higher than 200kfps is presented. The sensor 

fabricated and tested is a 100 x 100 pixel sensor, and was designed to be expandable to a 1000 x 

1000 pixel sensor using the same building blocks and similar architecture. 

The heart of the sensor is the pixel. The pixel consists of 11 transistors (11T) and 2 

MOSFET capacitors. A 6T front-end is followed by a Correlated Double Sampling (CDS) 

circuitry that includes 2 capacitors and a reset switch. The 4T back-end circuitry consists of a 

source follower, in-pixel current source and 2 switches. The pixel design is unique because of the 

following. In a relatively small area, 15.1um x 15.1um, it performs CDS that limits the noise 

stored in the pixel memories to less than 0.33mV rms and allows the stored value to be read in a 

single readout. Moreover, it has in-pixel current source, which can be turned OFF when not in 

use, to remove the dependency of its output voltage to its location in the sensor. Furthermore, the 

in-pixel capacitors are MOSFET capacitors and do not utilize any space in the upper metal 

layers, therefore, they can be used exclusively for routing. And at the same time it has a fill 

factor greater than 40%, which important for high sensitivity. 

Each pixel is connected to a dedicated memory, which is outside the pixel array and 

consists of 16 MOSFET capacitors and their access switches (1T1C design). Fifty pixels share a 

line for their connection to their dedicated memory blocks, and, therefore, the transfer of all the 

stored pixel values to the on-chip memories happens within 50 clock cycles. This allows 

capturing consecutive frames at speeds higher than 200 kfps. The total rms noise stored in the 

memories is 0.4 mV. 
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For the readout, 2 pipeline 100 MHz 12-bits ADCs were selected. Before the reading of 

each stored frame, the floating common lines inside the memory blocks are reset to remove any 

dependency on previous readings. Each memory block has its own output buffer which consists 

of a source follower, a current source and 2 switches. Fifty memory blocks share a line for their 

connection to the ADC. The total rms noise that is read from the ADC is 0.33mV. 

The readout time is 8ms, and it is fast enough to ensure that the memories are not having 

a significant voltage drop due to leakages. The calculated leakage during this time is negligible 

but the testing results indicate that it can become significant when the memories are exposed to 

light. Therefore, the memory blocks have to be covered from light for high irradiance conditions. 

The ADCs selected for the readout circuitry were tested for input referred noise and were 

proved to have a significant amount (0.7mV rms). This increases the total input referred noise to 

38e-, compared to the expected 15e-. The resulting SNR of the presented sensor is 43.9 dB and 

the Dynamic Range (DR) is 57.5dB.  

The image sensor was proved to operate at 200kfps and for exposure times as low as 1us. 

Its sensitivity is close to the expected value, and specifically 22.3uV/e-. The linearity of the 

sensor is within േ1.9% and the nonuniformity error for 50% saturation is 4.1%. The latter can be 

reduced with software calibration.  

The fast, low noise and highly sensitive image sensor presented in this work was proved 

to be able to operate as expected and therefore it can be expanded to a Mpixel sensor, due to its 

unique characteristics. The ADCs noise will be removed and a light blocking layer will be 

applied above the memories. The resulting sensor will have the same SNR but the DR will be 

greater than 63dB. 
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CHAPTER 1: INTRODUCTION 

Engineers around the world use video cameras to analyze high-speed phenomena in 

numerous fields such as aerodynamics, computer imaging, high energy physics, hydrodynamics, 

material science research, mechanics, nanotechnology and military/defense research [1, 2, 3]. 

The human eye has an exposure time of about 100ms [4], which makes it insufficient to capture 

shorter lasting phenomena or unblurred images of small fast-moving objects. Therefore, high-

speed cameras are needed in order to capture one or more instances of them and then visualize 

them at a slower rate. 

The most common types of image sensors are CCD (Charged Coupled Device) and 

CMOS (Complementary Metal Oxide Semiconductor). To capture an image, these sensors can 

either use a Global-Shutter, capturing an entire frame all at once, or Rolling-Shutter, where the 

sensor is exposed in a progressive motion.  Most CCD sensors employ Global-Shutter, while 

there are many CMOS sensors having rolling shutter [5, 6]. The basic schematics of CCD and 

CMOS sensor architectures can be seen in Figure 1. 

In CCD, the signal from each pixel is serially transferred to a single Analog-to-Digital 

Converter. The number of the pixels and the rate at which the individual pixels can be transferred 

and then digitized sets the frame rate limit., which is the rate that a camera can capture 

consecutive pictures (video). A CMOS sensor can use one converter per column, which reduces 

the number of pixels digitized per converter and consequently increases the frame rate. However, 

the entire array must still be converted one row at a time. To achieve higher frame rates, each 

individual row is able to begin next frame’s exposure once completing previous frame’s readout. 

These exposure delays between lines can create Rolling Shutter artifacts, such as wobble, skew 
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(Figure 2), spatial or temporal aliasing, and make the use of a Global-Shutter scheme necessary 

for high speed imaging. 

 

Figure 1: Basic architectures of CCD (left) and CMOS (right) [7] 

 

 

Figure 2: Rolling Shutter skew artifact [5] 
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A CMOS image sensor can also be used in Global Shutter mode. Each pixel transfers 

simultaneously its charge to a memory, usually within the pixel, where it waits to be digitized. 

This eliminates the overlapping capability of the sensor and reduces the frame rate in half [7]. 

Sony, Blackmagic Design, Aja, RunCam and On Semiconductors are just some of the CMOS 

Global Shutter cameras available in the market and some can achieve frame rates up to 120 

frames per second [8, 9, 10, 11, 12]. 

One way to increase the frame rate of the sensor is to store a small number of frames on-

chip before reading them out. This mode is known as Burst mode, while the traditional reading 

out each frame before capturing the next one mode is called Continuous. In both cases the frame 

rate is limited by RC delays and slew rate. But when operating at Continuous mode the values to 

be read have to pass through the readout circuitry, and this will reduce the frame rate 

dramatically. In addition, more pixel lines in a sensor working in continuous mode would lead to 

a smaller frame rate, because more pixels would have to be read through the read out circuitry. 

The number of pixels of an image sensor is important because they affect the detail the 

camera can resolve, which is usually called resolution. For example, a 1Mpixel camera focusing 

on a 1m x 1m scene can ideally resolve a up to 1mm detail. However, higher resolution usually 

comes with a cost of lower frame rate as discussed earlier. Converting the received light 

information and storing it locally in each pixel for some frames could increase the frame rate 

dramatically but will also affect the light to electrons conversion efficiency and this will 

eventually reduce the Signal to Noise Ratio (SNR) and the Dynamic Range (DR) of the sensor. 

Some approaches on how the frame rate can be increased, and how this affects the 

resolution and the noise of an image sensor are discussed in the following chapter. 
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CHAPTER 2: LITERATURE REVIEW 

To increase the output date rate of an image sensor, several papers have suggested 

parallel output circuits architectures [13] or column-parallel ADCs [14, 15, 16, 17]. However, the 

improvements at the frame rates are limited by the RC delays of the pixels output wires, slew 

rate and converter reading times. The readout speed of these approaches is limited to 10 

Gpixels/s [18]. At this speed, the maximum achievable frame rate for a 1Mpixel sensor is 10kfps, 

for a 2Mpixel sensor is 5kfps and so on. 

Conventional burst image sensors use the CCD technology, and have the on-chip 

memory next to each pixel [19, 20, 21]. These sensors can achieve very high frame rates without 

reducing the number of pixels (100 stored frames for 81kpixels at 1Mfps in [20]), at the cost of a 

small fill factor. A 709kpixels CMOS image sensor having 180 CCD memory cells in pixel is 

presented in [22] and is reported to achieve 5Mfps in burst mode and 1,180fps in continuous 

mode, again at the cost of a small fill factor (11%). The main drawback of this approach is the 

small fill factor, because the photosensitive active area in the pixel is getting relatively smaller, 

which results in less electrons produced from the photons hitting the silicon. This could be a 

problem for high speed photography or video because the light available in small exposure times 

is limited and it is important to use it efficiently. 

Microlenses can be used to “boost” the fill factor to about 70%, at the cost of making the 

sensor more dependent on the lens aperture and the angle of incident photons [23]. Backside 

Illumination (BSI) is another technology that can be used to increase the fill factor to near 100% 

[24], and it can be used in both CCD and CMOS image sensors. This technology can be really 

useful for high-speed burst image sensors with in pixel memory, but the costs and complexity 
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associated with it are high. Moreover, problems due to signal leakages from pixels to memories 

and mechanical problems due to wafer thinning have to be addressed. 

Two high-speed (up to 20Mfps in Burst mode) global-shutter 100kpixels CMOS image 

sensors, having 128 on-chip memories per pixel, spatially separated from the active area of the 

image sensor, in a 0.18μm CMOS with pinned photodiode process, have been fabricated and 

tested in [18] and [25] by the same team of authors. The pixel design (Figure 3) enables in-pixel 

Correlated Double Sampling (CDS) in a single readout which is very useful for high speed 

imaging. Moreover, multiple pixel output wires per column (4 pixels share a line) are used in 

these works, resulting in 32 output wires per column (Figure 4). Finally, pixel source followers 

use in-pixel current sources to drive the signals to the memories, instead of in-column current 

sources. The use of in-column current sources would give different voltage drops on the pixel 

output wires depending on the distance between the pixel and the current source and this would 

lead to image shading. On the other hand, when using in-pixel current sources the reference 

current does not flow in the pixel output wires and therefore the output signal is not related to the 

different parasitic resistances of those wires. 

The main drawback of [18] and [25] is that the two capacitors used for the in-pixel noise 

reduction circuit create a capacitive voltage divider that reduces the voltage swing at the output 

of the pixel, which effectively reduces the conversion gain of the pinned photodiode and 

consequently increases the input referred noise. To reduce this effect, the coupling capacitor 

must be much larger than the sampling and hold capacitor, which has to be large itself to keep 

the reset thermal noise small. Moreover, both capacitors have to be linear, so that the output can 

be linear too. Another problem is that the 32 lines per column, together with the relatively big in-

pixel capacitors and the triple well process used for the source followers, plus the rest of the 
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Figure 3: Pixel designs in [18] and [25] 

 

Figure 4: Block diagram of sensors developed in [18] and [25] 
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in-pixel circuitry, limit the fill factor of the pixel to 37% in [18] and 55% in [25], even if the 

pixel used is relatively big (32um in both papers). The increase in the latter is mainly because 

two metal layers were used for the connections between the pixels and the on-chip memories 

compared to only one in [18]. 

The problems described above limits the applicability of [18] and [25] for high-speed 

Mpixel sensors, because more pixels would mean extra lines per column, resulting in much 

smaller fill factors. However, a large fill factor and consequently high light sensitivity is crucial 

for high-speed applications, because in order to capture high speed phenomena, short exposure 

time is needed, and the light collected in that time is usually small. Moreover, because of the 

large pixel used, the distances between the pixels and the memories would be unnecessarily large 

for Mpixel sensors, increasing the delays and consequently reducing the frame rate. 

In [26], another architecture for in-pixel CDS in a single readout is proposed and tested to 

pixels as small as 4.8um (Figure 5). Similar to [18] and [25], the sampling and hold capacitor can 

be much larger than the floating diffusion capacitance, keeping the reset thermal noise small. The 

difference is that the coupling capacitor is now after the sampling and hold capacitor and there is 

no voltage divider effect. The coupling capacitor does not have to be much larger than the 

sample and hold capacitor, and as long as it is much larger than the parasitic capacitances, the 

requirement to be linear is relaxed. This could be very useful for high speed imaging, where a 

large fill factor is usually necessary, because the size of the capacitor does not have to be very 

big. However, in [26], only the pixel architecture is presented and tested. Therefore, the pixels 

functionality is not tested as part of a complete image sensor, with specific number of pixels at 

specific speeds and exposure times. Moreover, the sizes of the capacitors and the other devices 

used in pixel to give the presented results are not given, neither the resulting fill factors. Finally, 
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there are no in-pixel current sources for the source followers. The source follower after the 

floating diffusion (M3) is using a pulse signal to turn it ON or OFF, which could create delay 

problems and noise in large image sensor architectures. The pixel output source follower 

depends on an in-column source follower which would result in voltage drops that depend on the 

distance between the pixel and the source follower. 

 

 

Figure 5: Pixel design in [26] 
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CHAPTER 3: MOTIVATION 

High-speed imaging is necessary to capture high speed phenomena. Global-shutter image 

sensors are able to capture those phenomena without any rolling shutter artifacts and with 

acceptable blur if the integration (exposure) time is set so that the motion blur is below a 

specified limit. The conversion efficiency from photons to electrons can be crucial for high speed 

applications because of the limited photons available per pixel and is process dependent but also 

depends on the fill factor of the pixel. Conventional burst mode sensors use the CCD technology 

and on-chip memory at the cost of small fill factors, which may make them unsuitable for low 

light high speed applications.  

In Figure 6, we see that CCD image sensors can achieve frame rates up to billions of 

frames per second when they operate in burst mode. The ultra-high speed cameras come in three 

categories; rotating mirror (RM CCD), beam-split optical paths (ICCD) and on-chip memory 

[27].  

The ultra-high speed cameras using on-chip memory have either a small fill factor, or a 

little higher fill factor but they are not scalable to Mpixel size sensors. Kirana camera has a fill 

factor of 11% [28], while the other 2 sensors (small red dots) are based on the pixel and sensor 

architecture described in CHAPTER 2 ([18], [25]) , which result in a small fill factor, compared 

to the pixel size. The large pixel they use, makes them a bad fit for Mpixel expansion.   
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Figure 6: The state of high-speed imaging [27], and the sensor presented in this work 

 

The cameras using rotating mirrors are using a rotating mirror to spread the light from the 

captured scene to a series of sensors mounted on a drum at extremely high rates, while the 

cameras that use beam-split optical paths, they first split the image into multiple paths and then 

use image intensifiers to increase the light available in each path. One problem with these 

cameras is that each of the multiple sensors they use, will have different characteristics and will 

be seeing a slightly different field of view. This creates the need of a stationary film to be used as 

reference for each different sensor [29, 30]. Moreover, image intensifiers create significant 

blurring, and the rotating mirror tends to create vibrations. The calibration of these sensors are 

very challenging [30]. 
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CMOS image sensors shown in Figure 6 achieve speeds up to 200kfps for 65kPixels 

sensors, while their speed is limited to 20kfps for a Mpixel sensor. The record length is now 

thousands to million frames compared to less than 100 of frames recorded by the CCD cameras. 

Shimadzu’s FTCMOS shown in graph can capture 128 frames at up to 5 Mfps speed at the cost 

of reduced number of pixels (100 kPixels) and consequently small resolution, and the same specs 

apply for its newer, more light sensitive, FTCMOS2 version of it [31]. The scalability of this 

sensor (number of pixels) is hard if not impossible because of the 1-to-1 connection between 

pixels and memories, and because the camera is based on the work presented in [18] and [25] 

and is expected to have all the discussed problems.  

From the above, it is clear that there is no available product to achieve more than hundred 

thousand frames per second capture speed using the CMOS technology and its discussed 

advantages, while allowing a sensor with a large number of pixels and consequently high 

resolution or large Field of View (FOV). This sensor could be used to provide high resolution 

information to an incident around a single event, which could be used for fragment size and 3D 

shape determination of fast moving objects. 

In this work a Low-Noise Highly-Sensitive Global-Shutter image sensor with on-Chip 

Memory is designed in standard CMOS with pinned photodiode process and tested for high-

speed applications. This sensor can be expanded to a Mpixel sensor operating at hundreds of 

kiloframes per second in burst-mode. 
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CHAPTER 4: IMAGE SENSOR DESIGN 

4.1 CONVENTIONAL 4T PIXEL 

The image sensor is using a Pinned Photodiode (PPD) light-sensitive element. The 

pinned photodiode structure uses a shallow p+ layer on top of an n-well layer of a traditional pn 

junction photodiode. The n-well is “sandwiched” between the p+ layer on top and the p epi layer 

underneath. The top p+ layer and the underlying p epi are connected using a surrounding p-well 

and both p+ and p epi are grounded. A transfer gate (TG) and floating n+ in p-well diffusion 

(FD) are added to the basic pinned photodiode (PPD) structure to implement charge transfer 

from the PPD to a FD storage node. A cross-section of a 4T Pixel using X-Fab’s PPD device is 

shown in Figure 7. 

The main advantages of the PPD as compared to a standard pn junction are reduced dark 

current, lower noise, and increased quantum efficiency. Another advantage of the PPD is the 

inherent gain associated with the charge transfer from the PPD to the Floating Diffusion (FD) 

which is important for low light or high-speed applications. Conversion gain is inversely 

proportional to the parasitic capacitance of the FD node and is calculated according to equation 

(1) [32].  

                                                                                     𝐶𝐺 ൌ  
𝑞

𝐶ி
                                                                 ሺ1ሻ 

Where q is the elementary charge (1.602 x 10-19 coulombs) and CFD is the capacitance at the 

input of the charge detection node (input of the source follower). 
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Figure 7: X-Fab 4T PPD pixel cross-section [33], including the different parasitic elements that are used 
for the Floating Diffusion (FD) capacitance calculations 

 

4.1.1 FLOATING DIFFUSION CAPACITANCE 

The FD capacitance can be calculated using the following equation: 

               𝐶ி ൌ 𝐶ை,்ீ  𝐶,்ீ   𝐶ை,ோௌ்   𝐶,ோௌ்   𝐶ௐ  𝐶ௌி,ீ    ሺ1 െ 𝐴ௌிሻ ൈ 𝐶ௌி,ீௌ            ሺ2ሻ 

 

The capacitances used to calculate the FD capacitance are described below.  

CO,TG is the Transfer Gate overlap capacitance and is equal to (CO x WTG) , where WTG is the 

dimension of the Transfer Gate’s edge that overlaps the source of the TG, and CO is the NMOS  

gate to source/drain overlap. 

CJ,TG is the transfer gate diffusion capacitance and is equal to (CJA,TG + CJSW,TG) , where CJA,TG is 

the bottom area capacitance of the  Transfer Gate’s source implant (CJA x L x W), CJSW,TG is the 

sidewalls capacitance of the same implant (CJA x (2LTG x WTG)). 

CO,RST is the RST Gate overlap capacitance and is equal to (CO x WRST). 
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CJ,RST is the RST Gate diffusion capacitance and is equal to (CJA,RST + CJSW,RST + CJGE,RST), 

where CJGE,RST is the gate edge diffusion capacitance (CJGE x WRST). 

CW is the parasitic capacitance related to the metal wires. 

CSF,GD is the gate to drain capacitance of the Source Follower (SF). Since the SF operates in 

saturation when electrons are read from the Pinned Photodiode, the gate to drain capacitance is 

equal to (CO x WSF) [34]. 

CSF,GS is the gate to drain capacitance of the SF, and is equal to (2/3 x COX x WSF x LSF), when 

operating in saturation [34]. 

As can be seen in equation (2), the input capacitance of the SF is equal to (CSF,GD + (1 – 

ASF) x CSF,GS, where ASF is the gain of the SF. To get this formula we can use the following 

equations as described in [34]:                  

           

                                          𝑄ூே ൌ 𝛥𝑣ூே  ൈ 𝐶ீ  ሺ𝛥𝑣ூே െ 𝐴ௌி  ൈ  𝛥𝑣ூேሻ  ൈ  𝐶ீௌ                               ሺ3ሻ 

                                                       𝐶ூே ൌ  
𝑄ூே

𝛥𝑣ூே
ൌ  𝐶ீ   𝐶ீௌ  ൈ  ሺ1 െ 𝐴ௌிሻ                                       ሺ4ሻ 

 

From the above, it is clear that in order increase the Conversion Gain we have to reduce 

the FD capacitance. And since, the capacitances related to the RST switch and the SF NMOS 

cannot be reduced, assuming that we are using minimum size devices, the easiest way to increase 

our gain is through careful design of the Transfer Gate.  
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There are 3 predominant designs for the transfer gate (TG) of the pinned photodiode:  the 

bottom, the u-shaped and the central (see Figure 8). The central TG design is the best as far as 

lagging and conversion gain is concerned but it may reduce the fill factor and have more 

parasitics than u-shaped TG. For small pixel sizes (less than 10um x 10um active area), lagging 

is not an issue. Transfer times of 60 ns and less have been demonstrated in [35] for large 50um 

pixels with virtually no image lag. 

In our case, where the number of photons is small, the conversion gain is one of the most 

important factors, when it comes to deciding the pixel design, because it provides noise free gain. 

However, we also want to keep the fill factor as high as possible and at the same time keep the 

parasitics low. Hence,  the u-shaped TG will be the choice for this work. 

X-FAB, the foundry that will be used for the image sensor presented in this work, has a 

special device, called ne3tx, to be used as a transfer gate when laying out the PPD. 

Unfortunately, they have not released a model for this specific device in their PDK yet, so 

extracting the layout to get a value for the FD node capacitance is not an option. However, the 

method described in the previous pages can be used to calculate the FD capacitance, and has be 

proved to be accurate according to previous XFAB customers . To calculate the diffusion 

capacitances of the TG, only the bottom and sidewalls capacitances are added up, and the gate 

edge capacitance is omitted. This is because, according to the foundry, the junction is to p-

substrate, so it is expected to be small. Moreover, previous customers of the foundry that used 

the same process and the same transfer gate, have verified that the estimation method described 

above is giving a capacitance which is very close to the capacitance they measured after testing. 
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Figure 8: Bottom, u-shaped and central transfer gate pixel designs (left to right) 

 

The diffusion capacitances are nonlinear and depend on the bias of the junction node. The 

capacitance at different bias voltages can be calculated using the following formula [34]                                  

                                                                          𝐶  ൌ  
𝐶

ቂ 1 െ 𝑉
𝑉

 ቃ
                                                               ሺ5ሻ 

where Cj0 is the zero-bias  capacitance of the junction, which is the capacitance when the voltage 

across the junction, VD, is zero. Vbi is the area or sidewall junction potential, and m is the area or 

sidewall grading coefficient. 

In the FD capacitance calculations, the capacitances that depend on the bias are CJ,TG and CJ,RST.  

Table 1 summarizes the FD capacitance and the corresponding conversion gain for three 

different transfer gate designs. It also gives the capacitance and the resulting gain at 2.3V, which 

is closer to where our FD will be operating. The fill factor for a pixel 15.1um x 15.1um with 

10um x 10um active area, which are the sizes for the pixel that will be used for this work, is also 

calculated for the three different gates, assuming that the active area is only limited by the choice 

of transfer gate and the resulting wiring. 
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Table 1: FD capacitance for various transfer gate designs, and the expected fill factor for a 15.1um x 
15.1um pixel with 10um x10um active area 

 

As can be seen in the table above, the U-shaped Transfer Gate has the largest conversion 

gain together with the largest fill factor. And since image lag is not expected to be a problem for 

a small pixel size, it is selected for the pixel in this work.  

 

4.1.2 NOISE IN CONVENTIONAL 4T PIXEL OPERATION 

Figure 9 shows the schematic of a conventional low noise CMOS image sensor read out 

chain. The timing diagram of this read out chain and the noise mechanisms affecting it are shown 

in Figure 10. During the integration (exposure), the PPD accumulates electrons generated by the 

incident photons. During the readout, the pixel is connected to the column through a Row 

Selection switch and the Reset switch is turning ON in order to set the potential of the Floating 

Diffusion node (Sense node (SD) in this figure) higher than the pinning voltage of the PPD. The 

higher the difference in potential between the VRST and the pinning voltage of the PPD, the faster 

the transfer of the electrons in the transfer stage later on. The voltage level at the Floating 

Diffusion node, after the reset, is sampled at the end of the read out chain and then the Transfer 

Gate, which controls the barrier between the PPD and the FD node, goes ON to start the charge 

 TG 

 Bottom U-shaped Central 

Zero bias CFD [fF] 13.560 5.034 5.344 

Conversion gain [uV/e-] 11.799 31.785 29.942 

CFD @2.3V [fF] 10.868 4.525 4.998 

Conversion gain @2.3V [uV/e-] 14.722 35.362 32.010 

Fill Factor [%] 39.9 41.6 41.1 
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transfer of the accumulated electrons from the PPD to the FD. After this transfer is completed, 

the voltage level at the FD node is sampled again at the end of the chain. The reset and transfer 

samples are then differentiated and this is called Correlated Double Sampling (CDS). 

 

Figure 9: Schematic of conventional low noise CMOS image sensor readout chain [36] 

 

Figure 10: Timing diagram of the read out chain of a conventional low noise CMOS image sensor 
and the noise mechanisms affecting it [36] 

 

With CDS, the kT/C noise at the FD node because of the reset, is canceled. And this is 

important, because this noise is high due to the small capacitance at the FD node. Moreover, in 

state-of-the-art CMOS image sensor the dark current in PPD has been reduced to a few e- / s, so 

it can be neglected for exposures below hundreds of ms [36].  
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4.2 IMAGE SENSOR ARCHITECTURE 

A conventional 4T pixel CMOS image sensor with conventional readout architecture 

does not allow high frame rates for high pixel count (Mpixel) sensors. Moreover, to capture high 

speed phenomena without any rolling shutter artifacts a Global Shutter sensor is needed. To 

understand better the need for the Global Shutter scheme, the following example is given.  

Assume that a 1000x1000 (1Mpixel) image sensor is read by 1000 parallel 2.5 

Msamples/second ADCs and a Rolling Shutter scheme is used. Then the row readout time would 

be 400ns ( = 1 / 2.5M) and the exposure of the last row would start 400us after the exposure of 

the first row. This would make the sensor useless for capturing high speed phenomena that need 

only a few us exposure times. For example, a 3,000 m/s moving object would have moved 1.2m 

between the exposure of the first and last row. The above ignores completely the need of CDS, 

which could double the time difference between the exposure of the first and last row. 

If for the same sensor architecture described in the previous example, a Global shutter 

scheme is used, the maximum achievable frame rate would be limited by the speed of the ADC, 

and the RC delays of the pixels output wires. Assuming that the readout speed in each column is 

again 2.5 Msamples/second, the frame rate is limited to 2.5M / 1000 = 2.5kfps. Even for a sensor 

readout speed of 10 Gpixel/s, using the most advanced readout techniques, the maximum 

achievable frame rate is 10G/1M = 10kfps for a Mpixel image sensor. 

From the above, it is clear that a global shutter scheme is needed, but a high frame rate 

cannot be achieved using conventional readout schemes. In order to increase the frame rate to 

hundreds of thousand frames per second, on-chip memory has to be used. In this work each pixel 
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has a dedicated on-chip memory block that has 16 analog memories, which are used to save 15 

consecutive frames at a very high frame rate and a frame for calibration purposes. 

These memories will be on-chip but outside the pixel area. That way the fill factor of the 

pixel is not reduced. Moreover, fifty pixels share one metal line, resulting in 2 lines per column 

for a 100x100 image sensor. The control signals are global, meaning that all pixels integrate the 

light and store the related information simultaneously, but since 50 of them share a line, they 

transfer their locally stored light information to the analog memories at 50 different time slots. 

The reason we choose to connect multiple pixels on a single line is space (fill factor). The 

limiting factor of how many pixels connect to one line is time (frame rate).  

When reading from memory, first the common lines in each memory block are reset, to 

avoid dependency on previous readings due to charge sharing. Similar with the pixel array, 50 

memory blocks share a line, and from there the stored values are read by the ADC. 

It should be noted that the shared line used to read from the pixels is different from the 

shared line used to read from the memories. In this design, the blocks that share a line from the 

pixel also share a read-out line. That way, the chip can operate easily in both continuous and 

burst mode as needed. 

In Figure 11, the architecture of the image sensor developed in this work is shown. Each 

ADC sees a pair of 50 pixel/memories set, that work in parallel when writing from pixels to on-

chip memories, and in series when reading from memories. That way, the architecture can be 

expandable to a Mpixel size sensor, where the time between frames will be the settling time 

needed to write from the 50 pixel sets to their dedicated memories.  A 1000 x 1000 pixel 
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architecture would consequently use 40 ADCs (both up and down) and each column would have 

10 lines connecting pixels to memories. More about that will be discussed in CHAPTER 8. 

 

 

Figure 11: Image sensor architecture in this work 
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4.3 ON-CHIP CAPACITORS 

Capacitors are used in-pixel to allow Global Shutter Behavior and Correlated Doubling 

Sampling. Moreover, capacitors are used for the dedicated to each pixel memory blocks that are 

used  to save up to 16 frames at very fast frame rate. All this capacitors are chosen to be linear, 

for a large operation swing and at the same time be area efficient. Since the top metal layers have 

to be used for the routing of signals, the power supplies and the connection between pixels, 

memories and ADCs, Metal Insulator Metal (MIM) capacitors are not be the capacitors of choice 

for pixels and memory blocks. However, they are used for the ADCs, where the physical design 

is not that tight, because of their higher linearity. 

Table 2 summarizes the different options for MIM and MOSFET capacitors that are 

available in the 180nm process that is used for this work. The capacitance is calculated for a 2um 

x 2um device size. Figure 12 illustrates the capacitance of the capacitance of the different 

available capacitors. In green are the capacitors used in-pixel and for the memory blocks. 

Capacitor Type Capacitance (fF) Leakage Current (fA) 

Single MIM 5.36 0.2 
Single MIM (high) 11.05 20 

Double MIM  10.72 0.2 
Double MIM (high) 22.10 20 

Triple MIM 16.08 0.2 
Triple MIM (high) 33.14 20 

Accumulative MOS  (1.8V) 33.20 0.516 
NMOS (1.8) 33.84 - 

Accumulative MOS  (3.3V) 20.00 0.386 
Low threshold MOS (3.3V) 21.16 - 

Table 2: Capacitance and leakage current for a 2um x 2um capacitor in the used 180nm process 
and the drain leakage currents for 2um width devices  

(in bold are the capacitors used for the pixels and the memory blocks) 
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Figure 12: Capacitance of different 2um x 2um capacitors in the used process (in green are the 
capacitors used for the pixels and the memory blocks) 

 

The capacitors chosen for this work are 3.3 MOSFET devices, and as can be seen from 

the table and graph above, the have less capacitance only from high capacitance triple MIM and 

the 1.8 MOSFET devices. The high capacitance triple MIM capacitor has a relatively high 

leakage current (about 3mV voltage drop for a 60fF capacitor in 10ms), but the main reason it is 

not selected is because it fully occupies 3 metal layers that can be used for routing. The leakage 

levels for the MOSFET capacitors are negligible (below the noise level for 10ms readout time). 

The reason that the 1.8 V devices are not selected for this work is that they cannot hold values 

higher than 1.8 V. In pixel capacitors have to hold values higher than 1.8 V. Memory block 

capacitors, although they are designed to hold values less than 1.8V they may see values higher 

than that, because of fast transients, user errors, or ESD events. Hence, the safest and more area 

efficient choice for capacitors are the 3.3 V accumulative MOSFET and low threshold MOSFET 

capacitors. 
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The variation of the gate capacitance of the devices used in the pixel and in the memory 

blocks with respect to the gate-source (VGS) voltage can be seen in Figure 13. As can be seen, 

in-pixel capacitances will be around 67fF, analog memories will be around 60fF, and they will 

all be linear for the range of operation. 

 

Figure 13: Variation of the gate capacitance with gate-source (VGS) voltage. 

(in-pixel: SH capacitor {yellow}, CC capacitor {green} | memory blocks: analog memory {red}) 

 

The reason that we used the accumulative MOSFET for the in-pixel coupling capacitor, is 

because we want it to operate in the linear, or close to linear range from lower values. As can be 

seen in the figure above, for 200mV VGS the CC capacitor is already at more than 90% of its 

linear capacitance value. This capacitor, since it has an NWEL, it is surrounded by a guard ring 

to avoid latch-ups. The NMOS capacitors do not have this need for guard ring, and are the 

capacitors of choice for the in-pixel Sample and Hold capacitor and the analog memories. 
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4.4 PIXEL DESIGN 

A 5-T (5 transistors) PPD pixel (Figure 14) separates the exposure from the transfer 

period and allows Global Shutter behavior. However, it cannot eliminate the reset noise because 

of the lack of the CDS operation. Therefore, a 5-T pixel is not a good choice for a low noise, 

Highly Sensitive image sensor. 

 

Figure 14: Xensium-FT CMOS imagers 5-T pixel [37] 

 

To reduce the noise in a global shutter scheme, CDS is necessary and it has to be in-pixel 

for a global shutter operation. In-pixel CDS has been presented in [18], [25] and [26] and 

discussed in CHAPTER 2. In this work, a pixel that allows Global Shutter operation and in-pixel 

CDS is used. The schematic of this pixel can be seen in Figure 15. The presented pixel 

incorporates two stages: the Reset and the Exposure stage. The timing diagram of the pixel 

operation can be seen in Figure 16. The advantages of this pixel compared to pixels presented in 

previous work will be discussed at the end of this chapter, after its operation and noise reduction 

ability have been explained, and its physical design has been justified. 
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Figure 15: Schematic of the Pixel used in this work 

 

 

Figure 16: Timing diagram of the pixel operation 

 

During the Reset Stage, the photodiode is reset by turning the transfer gate (TG) ON, 

while the reset FD switch (RSTFD) switch is also ON. That way, the photodiode will not be 

holding any electrons at the beginning of the electrons integration stage that will follow, just 

after TG turns OFF. 



27 
 

During the Exposure (integration) Stage, TG is OFF and the PPD is collecting the 

electrons generated by the incident photons. The SS and X1 switches are turned OFF until just 

before the end of the this stage, so that the previous value stored from the previous exposure is 

not lost before sampling the reset value and the signal value of the current exposure. 

Just before the end of the Exposure Stage, we sample first the reset value and then the 

signal generated by the incident photons during the exposure period. To sample the reset value, 

the RSTFD switch goes OFF and the SS, X1 and RSTPIX switches go ON. The reset value of 

the FD including it kTC noise is sampled on the sampling capacitor CSH, while the right side of 

the coupling capacitor CC is held at a fixed DC voltage. Since SF1 (source follower 1) is 

operating in saturation during the transfer of the reset signal, the noise at the node at the right of 

CC (R) will be given by the following equation [26]                                                 

                                                             𝑉,ோெௌ,ೃ  ൌ  ඨ
𝑘𝑇

𝐶𝐶  𝐶𝑝
                                                               ሺ6ሻ 

where Cp is the parasitic capacitance at node R. 

After the reset signal is sampled, RSTPIX goes LOW and TG goes ON. The FD node 

goes down because the removal of the potential barrier between PPD and TG (TG LOW) now 

allows the collected electrons to transfer from PPD to FD and reduce its potential. The output of 

the source follower follows this movement and the same movement is also seen by the R node at 

the right of the coupling capacitor. The noise at node R will be given by the following equation                        

                                               𝑉,ோெௌ,ೃ ൌ  ඩ
𝑘𝑇

 𝐶𝑆𝐻  
𝐶𝐶 ൈ  𝐶𝑝
𝐶𝐶  𝐶𝑝  

ൈ
𝐶𝐶

𝐶𝐶  𝐶𝑝
                                     ሺ7ሻ 
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In the presented design CSH and CC are 67fF, while the parasitic capacitance at node R 

is about 5fF. Hence, the total kTC RMS noise at the node before the second source follower 

(node R) is about 0.33mV (330uV) at room temperature. In that we have to add the flicker noise 

from the first and second source followers, which have input referred flicker noise 

10uV*um/√Hz and 804.5Hz corner frequency. Their RMS flicker noise is calculated to be 55uV 

and 16uV respectively. Assuming the source followers have gain close to 1 and since 
ௌு

ௌுା
ൌ 

0.93, the total noise at node R is ඥ330ଶ  ሺ55 ∗ 0.93ሻଶ   16ଶ ൌ 334𝑢𝑉, which is very close to 

the calculated thermal noise.  For a Conversion Gain of 35uV/e-, the noise from the pixel 

operation is equal to the charge of about 10e-. 

From the above, it is clear that the output of the pixel will not include the kTC noise of 

the FD reset value, which would be high because the parasitic capacitance of the FD node is on 

purpose small, and the threshold variations of the first source follower. In-pixel CDS can be 

performed in a single read out. However, the drawback of a single read out is that the threshold 

voltage variations of the second source follower will not be cancelled out. That is why the reset 

value at the input of the second source follower will also be stored in one of the on-chip 

memories for calibration purposes. 

Pixel source followers have in-pixel current sources with switches to turn them off when 

not in use. The use of in-pixel current sources for the source followers that drive the signals to 

the memories instead of in-column current sources, ensure that the output will not be affected by 

the distance between the pixel and the current source. The source follower design has been done 

carefully, so that the image sensor has good linearity and can operate at high frame-to-frame 

speeds, both for the design presented in this work and the proposed Mpixel expansion.  
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The switches are necessary for the operation of the 10 kpixels sensor but will be even 

more important for the Mpixel expansion. All source followers 1 (output of the FD) are on at the 

same time during the writing to the on-chip memories operation of the sensor, and more 

specifically they turn ON, just before the sampling of the reset and the signal from the PPD in 

pixel. The current through each current source is 5.77uA and the total current drawn from them 

operating together is 57.70mA (10 kpixels). The current from 1 million pixels storing their 

values together would be 5.77A. This value maybe high and could be reduced by using 

techniques that will be discussed in CHAPTER 8. 

 After the signal values are stored, all pixels in a row start transferring their stored values 

to their dedicated memory blocks, and this happens simultaneously row by row. All the pixels 

from one every fifty rows (2 rows for the 10kpixel or 20 rows for the Mpixel expansion) transfer 

their values at the same time. The current through each of the current sources for the pixels 

output source followers is 99.18uA, and the total current drawn from them operating together is 

19.84mA for the 10kpixels sensor and 1.98A for the Mpixel expansion. More about the Mpixels 

expansion in CHAPTER 8. 

The linearity of the in-pixel source followers is affected by this switching operation 

minimally, as can be seen in Figure 17 and Figure 18. The gain of the in-pixel source followers 

could be closer to one if a triple well process was used, but the benefits of the increased linearity 

would be of no use since the fill factor of the pixel would be drastically decreased, because of the 

use of deep NWELL devices to eliminate the body effect. 

The total gain of the pixel is expected to be                  

                      𝐴௫ 
𝑉
𝑉

൨  ൌ  𝐴ௌிଵ  ൈ 𝐴ௌிଶ  ൈ  
𝐶𝐶

𝐶𝐶   𝐶
ൌ 0.915 ൈ 0.93 ൈ 0.93 ൌ 0.79             ሺ8ሻ 
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or in terms of electrons                      

                                𝐴௫ 
𝑢𝑉
𝑒ି ൨  ൌ  𝐴௫ 

𝑉
𝑉

൨  ൈ  𝐶𝐺 ൌ 0.79 ൈ 35
𝑢𝑉
𝑒ି ൌ 27.65

𝑢𝑉
𝑒ି                        ሺ9ሻ 

where CG is the calculated Conversion Gain for the designed pixel. 

 

Figure 17: Output vs Input of the in-pixels source followers with or without switches 

 

 

Figure 18: Gain vs Input of the in-pixels source followers with or without switches 
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The transient response of the source followers used in pixel can be seen in the following 

figures. The switches, the parasitic resistances, the parasitic capacitances of lines and devices and 

the capacitances of the devices have been used as their load. 

 

Figure 19: Transient response of SF1 

 

From Figure 19, for 12 bits accuracy (difference from the settling value less than 1.8/212), 

the settling time from the input of SF1 to the input of SF2 is less than 16ns for the transfer of the 

reset and the signal values. In this work, SS and X1 turn of together and remain ON at least 

220ns. RSTPIX goes HIGH together with SS and X1 and remain ON for 100ns, and during this 

time the CC cap is holding the reset value from both sides. After that, TG turns ON for 100ns to 

transfer the signal. 
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Figure 20: Transient response of SF2 using distances from the presented image sensor 

 

From Figure 20, the settling time from the input of SF2 to the dedicated pixel memory is 

less than 14ns. In this work the clock for these transfers has a period of 70ns. The total time 

needed to transfer all 50 rows of pixels to the memories is 70ns x 50 = 3.5us. These transfers can 

start immediately after SS and X1 switches are turned off, and have to finish because they turn 

ON again. If we allow some extra time (20ns) before and after the transfers, the minimum period 

of a frame is 3.5us + 0.22us + 0.02us = 3.74us. Hence, with the current setup of signals, the 

maximum achievable frame rate of the presented sensor is 267 kframes per second, for an 

exposure smaller than 3.5us.  
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This frame rate can be even higher for the 10 kpixel sensor if we make the clock for the 

transfers between pixels and memory blocks faster, 50ns period, which will still be slow enough 

for 12 bit settling. The resulting frame rate for a 50ns transfer clock would be 360 kframes per 

second, for an exposure smaller than 2.5us. 

However, a 70ns transfer clock would allow enough settling time even for the propose 

Mpixel expansion of the sensor, and this is why it is used in this work. As can be seen in Figure 

21, the settling time from the input of SF2 to the dedicated pixel memory is less than 45ns for the 

Mpixel sensor. For this simulation the projected capacitances and resistances for the architecture 

presented in CHAPTER 8 have been used. Therefore, the sensor presented in this work is 

expected to be able to operate at frame rates higher than 200 kfps, even for the million pixels 

design.  

 

Figure 21: Transient response of SF2 using Mpixel sensor distances 
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The simulated settling times in Figure 20 and Figure 21 are calculated for the worst case, 

which is the delay from the last row of the pixels to the last row of the memories. And this is 

because the height of 50 pixels (15.1um x 50 = 0.755mm) is bigger than the height of 50 

memories (26um x 50 = 1.3mm). For example, the distance between the first row of pixels to the 

first row of memories for the bottom half of pixel/memory sets of the Mpixel would be 0.755mm 

x 10 = 7.55mm, while the distance between the last rows would be 1.3mm x 10 = 13mm.  

In the settling time simulations, the capacitances of the 50 devices at the beginning and 

the 50 devices at the end of the lines are included. The ON resistances of the switches used in the 

simulated paths, the analog memory at the end of the path and the parasitic resistances and 

capacitances of the paths are also included in the simulations.  

 

 

Figure 22: Pixel array’s repeating element layout in Cadence 
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The layout of a set of 4 pixels is used as the repeating element of the designed pixel array 

and can be seen in Figure 22. The pixel size is 15.1um x 15.1um, the active PPD area is 10um x 

10um, and the resulting fill factor is 41.6%. The size of the pixel was chosen to be small, so that 

more pixels can fit per given area, while the RC delays remain small, but big enough so that the 

resulting fill factor remains above 40%. All the routing is above the non-active pixel areas and 

consequently the fill factor is not affected. 

A u-shaped transfer gate has been chosen to minimize the floating diffusion capacitance, 

and consequently increase the conversion gain, keeping the fill factor high at the same time. A 

pinned photodiode with the lowest available pinning voltage has been selected to allow fast 

charge transfer, which is crucial for high speed applications, at the cost of a smaller full well 

capacity, which is not important for low light (short exposure) applications, because of the 

limited number of the collected photons due to the small integration time.  

Six metal layers have been used for routing, so that there is more space between the metal 

lines and the subsequent coupling capacitances are small enough for high speed operation. 

Moreover, the active area is minimally shaded, since metal lines can be stacked above the non-

active pixel areas. The ability to stack metal lines, because of the multiple metal layers used, will 

keep the coupling capacitances small enough, so that the sensor can be expanded to a Mpixel 

sensor operating at hundreds of thousands frames per second, and at the same time will keep the 

active pixel area minimally shaded. 
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This pixel design in this work is unique because of the following: 

 It is relatively small (15.1um x 15.1um), while achieving the following: 

o Low noise, by performing in pixel CDS using big enough capacitors to limit the 

RMS noise at the input of its output source follower at about 10e- 

o Its output voltage does not depend on the distance between its output source 

follower and a column current source, since all pixels have dedicated, in-pixel, 

current sources 

o The active area of the pixel is 10um x 10um, to allow the accumulation of enough 

electrons in low-light and short exposure conditions and a fill factor greater than 

40% 

 It uses low threshold voltage, high area efficient capacitors that allow large voltage swing 

at their not voltage dependent (linear) area of operation. These capacitors are MOSFET 

capacitors and do not take up space from the upper metal layers (MIM, Metal Insulator 

Metal capacitors). These layers are used exclusively for the connections between pixels 

and on-chip memory blocks, for control signals and power supplies 

 NMOS source followers are built in a twin well process to keep size to minimum. A 

triple well process would drastically reduce the fill factor of the 15um pixel used 

 In-pixel current sources are driven ON only when needed, so that they can be strong 

enough to allow fast transfer times even for Mpixels sensor parasitic capacitances and 

resistances and at the same time they are not creating excessive voltage drops  

 The process dedicated capacitors (MOSVC) that are used as coupling capacitors and have 

an NWELL, are surrounded by a guard ring to avoid latch-ups. All other in-pixel devices 

do not have an NWELL. This guarantees reliable operation and space efficiency 
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4.5 MEMORY BLOCKS 

The sensor will have the ability to take 16 consecutive pictures. In order to do that, 16 

storage capacitors per pixel are needed on chip. For the reasons explained in section 4.3 about 

on-chip capacitors, the capacitor of choice in this work for the memory blocks is an NMOS 

MOSFET 3.3V device operating in strong inversion (Figure 23 and Figure 13). Its capacitance at 

the operation region will be 60fF. 

 

 

Figure 23: The variation of the gate capacitance with gate-source (VGS) voltage [34] 

 

Each memory block consists of 16 1T1C (1 Transistor – 1 Capacitor) elements, each of 

which has an NMOS switch and an NMOS capacitor, the required input and output access 

switches, a reset switch, and a source follower driven by a current source designed inside the 

block. Similarly to the pixel, a switch turns OFF the source current source when not in use. The 

schematic of the memory block can be seen in Figure 24 and the layout in Figure 25.  
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Figure 24: Memory Block schematic 

 

 

Figure 25: Memories array’s repeating element layout in Cadence (4 Memory Blocks) 
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Every memory block is dedicated to a specific pixel and 50 blocks share a line for their 

connection to the pixels they read from, resulting into 2 lines per column connecting pixels to 

memories. Pixel operation signals are global, meaning that all pixels integrate the light and store 

the related information simultaneously in-pixel. But, since 50 of them share a line (to keep pixel 

fill factor high), they transfer their locally stored light information to the analog memories at 50 

different time slots. In 50 cycles all pixel values are transferred from in-pixel memories to their 

dedicated memory blocks memories. First frame pixel values are saved in the first memory of 

each memory block, second frame values are saved in the second and finally last frame is saved 

to the sixteenth memory of each block. 

Each memory block is also connected to a shared line through a source follower that is 

designed to drive the transfer of the values from the read memory to the input of the ADC. 

Similar with the connection between pixels and memory blocks, the same fifty memory blocks 

that share a line with the pixels, share a line with the ADC. This allows the sensor to operate 

easily in both burst mode, which is the main mode of the camera, and continuous mode, which is 

a nice feature. 

When reading from memory, the lines that holds the 16 1T1C (1 Transistor – 1 

Capacitor) elements in each memory block are reset globally before accessing the next memory, 

in order to cancel any dependency on previous readings. This is important because the parasitic 

capacitance of the common line in each block is expected to be about 13fF, which is relatively 

high, compared to the size of the analog memories themselves. The stored values that are read 

from each memory and transferred to the ADC are changing their values when their access 

switch turns ON for frame reading, because of the charge sharing of the accessed analog memory 
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and the parasitic capacitance of the connecting line. The value at the input of the source follower 

will be:                                                 

                                                 𝑉 ,ௌிଷ ൌ  
𝐶  ൈ 𝑉௦௧ௗ  𝐶  ൈ 𝑉௦௧

𝐶   𝐶
                                       ሺ10ሻ 

where Cmem is the analog memories capacitance (60fF), Cpar is the parasitic capacitance of the 

line connecting the memories in each memory block (20fF), Vstored is the value at the read 

memory and Vreset is the potential of the line after reset and before reading from the memory. 

The resulting gain because of the charge sharing with the parasitic capacitance when 

reading from memory is given by the following formula:                                                 

                                            𝐴,ௗ ൌ  
𝐶

𝐶  𝐶
ൌ  

60
60  13

ൌ 0.82                                    ሺ11ሻ 

 

The gain of the source followers used inside the memory blocks can be seen in the 

following figure. 

 

Figure 26: Gain vs Input of the memory block source follower with or without switches 
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Therefore, the total gain added to the camera because of the memory block is calculated 

to be:                       

                                    𝐴௬  ൌ 𝐴,ௗ  ൈ  𝐴ௌிଷ ൌ 0.82 ൈ 0.95 ൌ 0.78                              ሺ12ሻ 

The complete system gain (before ADC) is now:                     

                                 𝐴௦௬௦௧ 
𝑉
𝑉

൨  ൌ  𝐴௫  ൈ  𝐴௬ ൌ 0.79 ൈ 0.78 ൌ 0.62                           ሺ13ሻ 

Or                            

𝐴௦௬௦௧ 
𝑢𝑉
𝑒ି ൨  ൌ 𝐴௫ 

𝑢𝑉
𝑒ି ൨  ൈ  𝐴௬ ൌ 27.65 ൈ  0.78 ൌ 21.57

𝑢𝑉
𝑒ି  

 

The transient response of the source follower used in the memory blocks can be seen in 

Figure 27 (pink is the input of the SF, green is the input of the ADC and grey is the switching 

signal) . The presented response is for the worst case scenario, or more specifically for the 

memory block with the greater distance from the ADC. The switches, the parasitic resistances, 

the parasitic capacitances of lines and devices and the capacitances of the devices have been used 

as load. For 12 bits accuracy, the settling time to transfer a memory value from the memory 

block to the input of the ADC is less than 95ns. Hence, the ADC can operate at 10MHz and the 

readout from all the 16 frames of all the memory blocks of the presented images sensor can be 

done in 10,000/2 x 16 x 100n = 8ms. 

The transient response of the memory blocks source follower in the case of the proposed 

1 Mpixel expansion can be seen in Figure 28. The settling time in this case is  about 130ns. 

Therefore, the ADCs could operate at 8MHz and the readout time will be 50ms (= 125ns x 

1Mpixels / 40 ADCs x 16 frames). 
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Figure 27: Transient response of SF3 using distances from the presented image sensor 

 

 

Figure 28: Transient response of SF3 using distances from the proposed Mpixel expansion 
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Note that the source followers in the memory blocks are directly connected to the input of 

the ADC. This is not a problem for the 10kpixel design, but it would make the design of a 

Mpixel expansion of this sensor much easier if a low capacitance buffer was used just before the 

ADC. That way, the small source followers inside the memory blocks would not have to drive 

the large input capacitance of the ADC but the smaller capacitance of the added buffer. 

All the devices in the memory block are 3.3V NMOS devices. For the access devices in 

the blocks, this means that 1.8V values can easily be passed, which would be impossible if 1.8V 

NMOS devices were used instead, and it is something necessary since they are within the 

operational swing. Moreover, the leakages when the access devices are OFF are much smaller 

for the 3.3V devices compared to the 1.8V devices. 

The access devices used in the 1T1C memories will have a negative VGS when OFF, and 

their VDS will be less than 1V. Since their off-state leakage is reported to be less than 10fA for 

VGS = -0.5V and VDS = 3.3V for a 10um wide device, our access devices (0.42um width) are 

expected to have an off-state leakage much less than 0.42fA. In this current we could also 

include the PN junction current between the n+ NMOS implant and the PWELL, which is 

calculated to be around 0.21fA at 27oC. Note that it would be important to keep the operating 

temperature low, because for high temperatures the leakages could increase to 92fA @125oC. 

Since our readout time is 8ms the maximum voltage drop due to leakages for this time 

will be (leakages are in the opposite direction)    

                    𝑑𝑉ௗ௨ ௧ ௦ ൌ  
𝐼  ൈ  𝑡௫

𝐶௦௧
ൌ  

ሺ0.42 െ 0.21ሻ𝑓 ൈ  8𝑚
60𝑓

ൌ 28𝑢𝑉              ሺ14ሻ 

which is well below the noise and consequently will not affect the operation of the sensor. 
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The kTC noise at the analog memories is calculated to be 0.26mV rms. Hence, the total 

rms noise sampled at the analog memory is                                      

                                             𝑉,ோெௌ,ಾ  ൌ  ටሺ𝑉,ோெௌ,ೃ𝐴ௌிଶሻଶ   ሺ𝑉,ோெௌ,ೖ
ሻଶ                                  ሺ15ሻ 

                                                              ൌ  ඥሺ0.33 ൈ 0.93ሻଶ   0.26ଶ ൌ 0.4𝑚𝑉 

The kTC noise introduced in the system when resetting the common line inside the 

memory block is 𝑉,ோெௌ,ೌೝ
 = 0.564mV, but the total noise that is read from the memories 

because of the charge sharing between the memory capacitance (Cmem) and the parasitic 

capacitance of the common line (Cpar) is  given by the following equation 

               

                                 𝑉,ோெௌ,ௌிଷ  ൌ  
ටሺ𝑉,ோெௌ,ಾ  ൈ  𝐶ሻଶ   ቀ𝑉,ோெௌ,ೌೝ

 ൈ  𝐶ቁ
ଶ

𝐶  𝐶
                  ሺ16ሻ 

                                                 ൌ  
√ଶସమା .ଷమ

ଷ
ൌ 0.344𝑚𝑉 

The noise that is seen by the ADC is finally                                            

                                                                       𝑉,ோெௌ,்ை் ൌ  𝑉,ோெௌ,ௌிଷ  ൈ  𝐴ௌிଷ                                ሺ17ሻ 

                                                                                    ൌ  0.344 ൈ  0.95 ൌ  𝟎. 𝟑𝟑𝐦𝐕 

The input referred noise is then given by the following formula                                           

                                                         𝑉,ோெௌ,௨௧ ௗ  ൌ   
𝑉,ோெௌ,்ை்

𝐴௦௬௦௧
                                         ሺ18ሻ 

                                   = 0.53 mV  

                         = 15.30 e- 
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4.6 DIGITAL BLOCKS 

The digital blocks that are used in the presented image sensor are shift registers, buffers 

and inverters. Shift registers are used to select the required row, column, or frame that we want 

to write to or read from. The main block of the shift registers consists of a positive edge D Flip-

Flop with Reset and Set and a low active D-Latch with Reset as seen in Figure 29. Using N of 

these blocks in series the required functionality of an N-bit shift register is achieved. A 16-bit 

shift register created using these blocks can be seen in Figure 30. 

 

Figure 29: Schematic of the building block of the shift registers in Cadence 

 

 

Figure 30: Schematic of a 16-bit shift register in Cadence 
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The following shift registers are used in this design: 

 Row Select Shift Registers 

4 50-bit shift registers, 2 for the pixel array (writing) and 4 for the memory (2 for writing 

and 2 for reading). 2 lines, one per set of 50 rows, are written or read at a time. 

 Frame Select Shift Register 

1 16-bit shift register for selecting a memory (frame) in the memory blocks 

 Column Select Shift Registers 

2 100-bit shift registers. 2 columns, one per ADC, are read at a time 

The shift registers are controlled by the following signals: 

 RSTSHIFT: reset the shift register (asynchronous – active Low) 

 SET: “starts” the shift register (asynchronous – active low) 

 SHIFT_IN: the shift register “starts” at the next rising edge (synchronous) 

 UPDATE: the output updates when Low (asynchronous – active low) 

 RSTDEC: when Low it turns the current output Low (asynchronous – active low) 

 

One or more shift-registers can share the clock (CLK) and the control signals. Note that 

UPDATE and RSTDEC signals do not affect the “shifting” process, just the outputs of the 

register. Using the RSTDEC signal it is ensured that the following line does not turn ON before 

the previous one is fully OFF. This is important when writing values from the pixels to the 

memories, because each memory has to store the value of only one pixel and this value should 
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not be affected by the previous or following writing operations. When reading from the 

memories this is not important because the values are now sampled by the ADCs. Using the 

UPDATE signal the writing or reading of some lines and columns can be skipped. This feature is 

important for bigger sensors, e.g. the proposed Mpixel expansion of the sensor, since the writing 

and reading times can be decreased by skipping lines and columns (trade resolution for speed). 

For example, if only one out of two lines and one out of two columns are read, the reading time 

can be increased by 4. 

The global digital signals and the outputs of the shift registers are buffered according to 

the resistance and the capacitance of their load. For example, the buffers that drive the output 

switches of the pixels and the output switches of the memory blocks are 4 times bigger than the 

buffers driving the input switches of the memory blocks. This is because the width of the first 

switches is 2um, while the width of the latter switches is 0.42um, therefore the capacitance of the 

driven load is smaller, since the resistance is the same in both cases (resistance of metal wires) 

and the capacitance is mainly the capacitance of the gates driven. 

The row select shift registers are designed having the same pitch as the pixels, so there is 

one buffer per output. The frame select shift register has only 16 outputs and these are buffered 

at the beginning of every of the 100 rows of memories. 

Finally, because the column select shift registers drive PMOS switches, inverters have 

been used to drive them ON when the output of the shift register goes high. PMOS 1.8 V 

switches have been used in this case, instead of NMOS 1.8 V switches, because the latter cannot 

pass the high values (as high as 1.5 V) that need to be read from the memory blocks. NMOS 

3.3V switches could also be used but the use of 3.3 V switches could create unpredictable 

problems in a 1.8 V power domain. 
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4.7 ANALOG TO DIGITAL CONVERTER (ADC) 

The image sensor uses two 12-bits 100MHz pipeline ADCs, which are IP block of 

Alphacore Inc. They have been chosen to have enough resolution and speed so that they are not 

limiting the performance of the image sensor. 

The ADC consists of the following sub-blocks: self-bias, non-overlap clock generator, 

clock buffers, four pipelined sub-stages with 2.5 bits per stage, and at last a 4-bit flash ADC. The 

0.5-bit in the pipeline sub-stages is for redundancy calibration, to overcome an offset in sub-

ADCs up to Vref/8. The 4-bit flash ADC at the last stage is used to save power and also simplify 

the design. The outputs of the ADC are 16 and give samples at both at the rising and the falling 

edge of the clock. These outputs are added up in a certain way for calibration purposes and then 

one out of two samples are discarded. That way a 12-bit calibrated value is attached to every 

memory read.  

The ADCs in the current work are using a 10 MHz clock, and sample the values read 

from the memories both at the rising and the falling edges of the clock. Each ADC is connected 

to 100 lines (2 lines per memory column) and reads the values stored in the memories one-by-

one. The quantization rms noise of the 12-bit ADC is 1.8V / ( 212 x √12 ) = 0.13mV, which is 

lower than the 0.26mV noise seen at the input of the ADCs, because of the noise in the pixels 

and memories, and is not expected to limit the performance of the sensor. 

Moreover, the linearity of the sensor has been simulated and it is expected to have a 

linear performance when its negative input is tied at Vref = 0.9V and it positive input is swinging 

between 1.8V and ground. The operational swing of the voltage at the input of the ADC is 
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expected to be between 1.5V and 0.6V, hence the ADC is a great fit for reading the stored values 

in the memory blocks. 

The layout of the 12-bit pipeline ADC in Cadence can be seen in Figure 31. 

 

Figure 31: Layout of the 12-bit pipeline ADC in Cadence 

 

For the power tracing, the power and ground lines have been designed very wide and 

multiple metal layers are used to minimize the voltage drops. Moreover, multiple supply pairs 

have been used and the free space has been filled with decoupling capacitors, so that the effect of 

the bondwires inductance is minimized. Finally, the signals and reference traces have designed 

as similar as possible for both ADCs, to keep their performance uniform. Small shifts can always 

be fixed later using software calibration. 

 

4.8 INPUT / OUTPUT (I/O) PADS  

 The I/O pads will be standard cells with ESD protection, provided by the foundry. The 

following things have been considered for the proper selection of the number of power pads to be 

used in this work. 
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 DC characteristics: bond wires and on-chip power rails generate a resistive voltage drop. 

DC voltage drops will be reduced by: 

o Distributing supply pairs evenly around high current input/output cells 

o Having many supply pairs bonded out 

o Using 6-layer metal 

 Electromigration: a long-term reliability hazard that occurs if a high current density flows 

in metal interconnections and displaces metal atoms. A metal track that suffers 

electromigration will eventually break and the device will fail. The limit for the I/O cells 

used in this work is 35mA. 

 AC characteristics: voltage transients are generated when the output drivers and internal 

core logic cells switch states 

o More supply pairs reduce the effect the bond wires 

o Separate analog and digital supplies for the core 

 PCB and final device test considerations 

o Poor PCB layout can dramatically increase parasitic inductances 

o Test environment is generally worse than the application environment, so more 

supply pins are needed 

To avoid the damage of the image sensor by ESD stress, ESD protection devices are used 

on all the pads. The basic ESD protection scheme is two-fold: to safely discharge the ESD 

current via a low-impedance shunting path and to clamp the voltage on an I/O pin to a sufficient 

low level [38]. The protection devices and interconnects can withstand the discharge current 

without damage, and the current path for the ESD discharge is designed to have the lowest 

impedance for an ESD shock compared to all possible parasitic discharge paths.  
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The image sensor in this work uses a common ESD ground rail that runs through all the 

pads of the chip. The ESD power rail is cut into two areas. The upper part runs through all of the 

pads around the pixels and the memory and the lower part is for the ADC pads. This is because 

the ADC is using 1.8V logic compare to the 3.3V logic used for the rest of the sensor.  

The following power supply signals and references have been used in this work: 

Pixel and Memory 

 VDD3: Analog power supply for the pixel and memory arrays 

 VDD_P: Analog power supply for the pixel reset (FD and in-pixel memory) 

 VDD_M: Analog power supply for the memories reset 

 VSS: Common analog ground for the supplies above, and substrate connections in the 

pixel and memory arrays area 

 DVDD3: Digital power supply for the row decoders and buffers, and I/O cells core rail 

 DGND: Digital ground for the row decoders and buffers, and substrate connections for 

the areas outside pixel and memory 

 AGNDM: Isolated ground for noise isolation and latch up protection. It also the ground 

used for substrate in the ADCs area 

 REF 1 to 3: References for the in-pixel (1 and 2) and memory source followers 

ADCs 

 AVDD / AGND: Analog power supply  and ground 

 AVDDL: Digital power supply for the ADCs and the column decoders and buffers 

 AGNDL: Digital power ground for the ADCs and the column decoders and buffers 

 VREFP, VREFN and VCM: Positive and negative references, and common mode voltage 
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ESD protection and I/O buffers 

  VDDOR: Power supply for the I/O cells input/output buffers and ESD protection 

structures for the pixels and memory area 

 VDDOR_ADC: Power supply for the I/O cells input/output buffers and ESD protection 

structures for the ADCs area 

 GNDOR: Common ESD ground and ground for the above, and substrate connections for 

the I/O cells 

 VDD_ADC: Power supply for the I/O cells core rail for the ADC area 

A summary of the I/O signals and supplies used in this work can be seen in Table 3. The 

digital I/O signals are  

Number of signals Signal Type Description 

9 Power supply Analog and digital supplies 

6 Power ground Ground for the supplies and/or substrate 

6 Voltage reference Used for current sources and ADCs 

4 Analog I/O 
Direct access to 2 pixel-to-memory 

columns and the inputs of the 2 ADCs 

27 Control signal 
Shift registers, global signals for pixel or 

memories, ADCs enable, access switches 

4 Clock Shift registers and ADCs 

34 Digital output 
Outputs of the ADCs plus 2 used for input 

buffers parametric testing 

90 TOTAL 

 

Table 3: Summary of I/O signals and supplies in the image sensor chip 
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4.9 THE IMAGE SENSOR  

The image sensor presented in this work is built in a 0.18um CMOS with pinned 

photodiode process with 6 metal layers. It has 10,000 15.1um x 15.1um pixels, with a 41.6% fill 

factor, in a 100 x 100 configuration, and it is able to capture a total of 16 frames at speeds up to 

267 kframes per second, for an exposure smaller than 3.5us. This is achieved by storing the 

frame values on-chip, using an array of 10,000 memory blocks (15.1um x 26um each), one per 

pixel, containing 16 NMOS capacitors used as memories. The stored values are read after all 16 

frames have been transferred to the memory blocks by two 12-bit pipeline ADCs, which have 

been selected to be fast and low noise, so that they do not limit the performance of the image 

sensor.  

The full chip layout can be seen in Figure 32. Its dimensions, including the pad ring, are 

3010um x 6554um. The total number of the I/O pads used in this design are 278, of which 31 are 

digital inputs, 34 are digital outputs, 4 are analog inputs/outputs and 209 are power supplies. An 

increased number of power supply pairs has been used to ensure that the voltage drops are low 

and uniform between pixels and memories. Moreover, multiple metal layer power supply rings 

have been created around the core of the sensor for all the different supplies, analog and digital, 

as well as the reference voltages. Bellow these rings, MOSFET capacitors have filled all the 

available space to provide the required decoupling capacitance needed to reduce transient 

switching spikes. High current input/output cells have been distributed equally around the core to 

ensure that the decoupling capacitors can handle the local transient spikes. Finally, Metal 

Insulator Metal (MIM) capacitors have been used in the ADCs area together with the MOSFET 

capacitors to increase the decoupling capacitance available even further. 
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Figure 32: Full test chip layout in Cadence 

 

The readout time of the image sensor is 8ms, which is fast enough to ensure that the 

leakages at the designed on-chip memories will be below the noise level for the whole readout 

time. 
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A picture of the image sensor ass seen in the microscope can be seen in the following figure. 

 

Figure 33: The image sensor as seen in the microscope 

 

The expected performance of the presented image sensor is summarized in the following 

section. 
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4.10 EXPECTED PERFORMANCE  

The specifications of the presented image sensor and its expected performance are 

summarized in the following table. 

 

Process technology 0.18um CMOS with pinned photodiode 

Die size 3010um x 6554um 

Pixel size 15.1um x 15.1um 

Active PPD area 9.6umH x 10.6 umV 

Fill factor 41.6 % 

Quantum Efficiency @ 550nm 88 % 

# of pixels 10,000 (100x100) 

# of frames in burst mode 16 

# of pixel sharing an output line 50 

# of parallel outputs 2 

# of PADS 278 

Minimum integration (exposure) time 1 us 

Shortest delay between frames 3.74 us 

Maximum frame rate 267 kfps 
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Table 4: Summary of the image sensor performance 

 

The Dynamic Range (DR) is defined as the input saturation divided by the absolute 

sensitivity. The Signal-to-Noise Ratio (SNR) is defined as the square root of electrons available 

to the active area in saturation [39]. The maximum theoretical DR and SNR can be calculated 

using the full well capacity electrons instead of the electrons available in saturation, and for the 

current sensor they are 83.41dB and 53.01dB respectively. 

 

Conversion gain 35 uV/e- 

Full well capacity 200,000e- 

Absolute sensitivity (rms) 0.57mV / 16.39 e- 

Input (FD) saturation 800mV / 22,857 e- 

DR 62.89 dB 

SNR 43.59 dB 

Readout Time 8 ms 

Memory Leakage @ 27o C Bellow noise level 

Image Lag @ 267 kfps  Below measurement limit 

Spectral sensitive range 425nm – 700nm 
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The maximum SNR is limited by the shot noise, which is associated with the random 

arrival of photons at any image sensor and it is the natural fundamental limit on noise 

performance [40]. The time between the arrival of photons is governed by Poisson statistics and 

consequently the uncertainty in the number of photons collected during a given exposure time is 

given by [40]:                                                                    

                                                                                 𝜎௦௧ ൌ  √𝑆                                                                 ሺ19ሻ 

where σshot is the shot noise and S is the signal, both expressed in electrons. 

 

For the absolute sensitivity, the quantization noise of the ADC is added to the input 

referred noise calculated using equation (18). The reason why only the quantization noise of the 

ADC is added is because the other ADC noises in simulations are much smaller than the 

quantization noise. To find the input referred noise of the ADC using simulations, a DC value 

was used as input and the outputs of the ADC were collected and plotted as a histogram. Since 

the noise is approximately Gaussian, the standard deviation of the histogram is the input referred 

noise [41]. A detailed description of how to calculate the standard deviation and consequently 

the input referred noise of the ADC is given in [42]. 
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CHAPTER 5: CAMERA DEVELOPMENT 

5.1 CAMERA ASSEMBLY 

The image sensor chip is directly wire-bonded onto a Printed Circuit Board (PCB) as 

seen in Figure 34. Because of the high number of chip pads, 4 PCB pad tiers have been used per 

side. The wirebonds are covered with transparent glob top epoxy, but the sensor is not covered 

by glass. The sensor is protected by the lens mount that was designed and 3d printed exclusively 

for this sensor. A special design was necessary because its bottom opening had to be large 

enough to fit both the sensor and the wirebonds. Moreover, the c-mount opening of the lens 

mount was designed to be above the active area of the sensor, which in this case is different than 

the center of the sensor. At the bottom of the mount an Anti-Reflection (AR) coated high 

efficiency window, with a 425nm - 700nm wavelength range, is glued on it to protect the sensor 

from physical damage and dust. 

            

Figure 34: The image sensor on the PCB 
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Figure 35: The camera PCB 

 

                

Figure 36: The camera PCB with the lens mount, the FPGA and the lens attached  
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The PCB designed to host the image sensor can be seen in Figure 35. It includes all the 

necessary low-dropout  (LDO) regulators, protections, decoupling capacitors, test points and 

headers, and it is designed to accept a separate FPGA module board that will plug directly into 

the headers on the underside of the board. The FPGA module is based on Xilinx Spartan 6 with 

on board DDR2 SDRAM and Flash memory, PLL and power management LDO’s. This module 

will provide the digital signals and clocks to the camera board, and will read the camera outputs. 

It will also provide power to the camera board. Through this module the camera assembly is 

connected to a PC using a USB cable. 

Finally, the camera board is generating a clock signal that can be used as input to the 

LED board that will be used for testing the exposure and speed performance of the sensor and 

will be presented in CHAPTER 6. It is also generating a trigger signal than can be optionally 

used to start the operation of the LED board. The transfer of these signals between the two 

boards, together with the common ground, an external trigger signal and a signal used to count 

full LED cycles, is happening using a 6 wire flat cable. 

 

5.2 FPGA CODE AND SOFTWARE DEVELOPMENT 

The heart of the camera developed in this work is the image sensor presented in 

CHAPTER 4. The signals needed by this sensor in order to operate are provided by a XEM6010 

module, which is a USB 2.0 integration module based on Xilinx Spartan-6 FPGA (Field 

Programmable Gate Array). Moreover, this module is programmed to read the outputs from the 

ADCs and transfer them safely to a PC. 
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The FPGA code is written in Verilog and it is simulated to verify the behavior of the 

signals needed by the sensor. Then the code is synthesized, placed and routed, and specific 

FPGA pins are assigned to all output and input signals. Functional and timing gate level 

simulations are performed to ensure that the actual hardware design performs within the required 

specifications. Finally, a programming file is generated. This file is used to configure the FPGA 

when running the camera software. 

 

To enable the control of the FPGA (i.e. start the exposure, reset the FPGA) and allow the 

transfer of the read images from the FPGA to the PC, FrontPanel SDK is used, and it provides 

three essential components as seen in Figure 37. For the software application, an API and a 

robust driver to communicate with the FPGA module over USB or PCI Express is provided. For 

the FPGA module, it provides a device firmware to manage FPGA configuration and 

communication, and small FPGA IP blocks that are integrated with the HDL code to make 

communication simple. 

 

Figure 37: Front panel components used to accelerate the camera design [43] 
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The camera software is written in C++ and it has the following functionalities: 

 Sets the exposure time and frame rate for the sensor 

 Triggers the capture of a series of 16 images 

 Shows the 16 frames captured 

 Calibrates the first 15 frames based on the 16th reference frame 

 Allows continuous operation 

 Calculates the frame rate and shows the missed frames for the continuous operation 

 Saves the resulting images 

 Resets the FPGA 

The Graphical User Interface (GUI) for the camera software can be seen in the following 

figure. 

 

Figure 38: Camera GUI 

 

The images shown in the GUI are 8 bit images. When the user saves the image, the 

software saves the 8 bit image in bmp format, as well as the 12 bit image information in csv 

format. 
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CHAPTER 6: TESTING 

6.1 PERFORMANCE PARAMETERS 

There are many parameters that can be used to evaluate the performance of an image 

sensor.  We can classify these parameters into three main categories: 

1. Image Sensor Layout:  

pixel count, pixel pitch, image format,  

2. Pixel Physics:  

Quantum Efficiency, Fill Factor, Full Well Capacity, Conversion Gain, dark current, 

image lag  

3. Image Sensor Readout:  

Signal-to-Noise-Ration (SNR), Dynamic Range (DR), linearity, power consumption, bit 

depth, frame rate, spatial nonuniformity 

 

The parameters in the first category are straightforward and depend on the number and 

size of pixels as well as the number of rows versus the number of columns. These parameters can 

be used when creating a complete imaging system including the lenses. The minimum feature 

size of an object under inspection (resolution), the Field of View (FOV) of the camera and the 

minimum sensor spatial resolution (in line pairs per mm) for a given contrast, are just some of 

the image quality metrics that depend both on image sensor layout parameters and the selected 

lens. 
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The parameters in the second category depend on the device physics and the pixel layout. 

Quantum Efficiency (QE)  is process dependent and is the percentage of electrons 

generated by the photons hitting the active area of the pixel and depends on the wavelength of 

the incident photons. For the process used in this work the QE is 64% at 450nm, 88% at 550nm 

and 74% at 600nm. 

The Fill Factor (FF) will affect the total number of electrons generated, since the active 

area of the pixel is a fraction of the pixel size. Fill factor is defined as the percentage of the 

unshaded active pixel area out of the total pixel area. 

The Full Well Capacity (FWC) depend on the active area size. A rough estimate for the 

process used is 2,000e-/um2, which results in a FWC for the presented sensor of 200,000e-. 

The Conversion Gain (CG) depends on the FD capacitance and is calculated as 

described in CHAPTER 4. It is defined as the uV change of the FD potential for every electron 

transferred from the PPD. 

The dark current is the small leakage current that flows in the PPD even if no light is 

available as a result of many different physical phenomena that occur in the PPD [44]. Dark 

current is negligible in the presented sensor because of the small exposure times. 

Image Lag is the result of incomplete charge transfer from the PPD to the floating 

diffusion. This is not expected to be a problem in the presented work because of the large 

differential between the reset diode voltage (2.3 V) and the pinned diode voltage (<0.96 V), and 

because of the large reset time for the PPD (RSTFD and TG are ON for at least 100ns before 

every new frame). Transfer times of 60 ns and less have been demonstrated in [35] for large 

50um pixels with virtually no image lag. 
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The parameters in the third category depend on the complete image sensor design. 

The Signal-to-noise Ratio (SNR) is equal to the square root of electrons available to the 

active area in saturation. The Dynamic Range (DR) is equal to the input saturation divided by 

the input referred noise [39]. 

The linearity of the sensor can be expressed as the percentage difference between the 

mean gray values minus the dark values for different irradiation levels and the least-squares 

linear regression line that has the minimum deviation from the measured values. 

The power consumption is the power consumed by the whole camera assembly.  

The bit depth is the number of bits of available information per pixel. This can be as 

high as the number of bits of the ADCs, but most of the times it is less than that to reduce the 

noise seen in the image and to reduce transfer times. 

The frame rate is the reciprocal of the time difference between the start of exposure 

between two consecutive frames. The maximum achievable frame rate is equal to the reciprocal 

of the exposure time.   

The spatial nonuniformity, is a metric used to describe how much the outputs of the 

image sensor vary from pixel to pixel, when the sensor is exposed to a uniform light source or 

not exposed to light at all.  Sometimes these nonuniformities are called “Fix Pattern Noise” 

(FPN), but this term will not be used in this work since it can be misleading, because 

inhomogeneities are spatially constant with no temporal variation and thus are correctable [45]. 

 

 



67 
 

6.2 TESTING METHODS 

The following testing methods will be used to characterize the sensor. The setup 

presented in section 6.2.1 and the methods presented in sections 6.2.2 and 6.2.3 are based on the 

EMVA 1288 standard for the characterization of image sensors and cameras as seen in [39]. In 

sections 6.2.4 and 6.2.5, the setup and methods for testing the sensor exposure and frame speed 

are presented. 

 

6.2.1 SETUP FOR SENSITIVITY, LINEARITY, NOISE AND NONUNIFORMITY 

For the measurement of sensitivity, linearity, noise and nonuniformity, a setup with a 

light source and the required lenses that irradiates the image sensor without a mounted lens 

homogenously is used.  

 

The setup can be seen in Figure 39 and includes the following components: 

 High power, 3.2 W, white LED 

 High power LED driver 

 Optical lenses 

 Optical bandpass filters 

 Photodiode power sensor 

 Power and energy meter interface for the power sensor 

 Optomechanical components 
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Figure 39: Optical setup for testing sensitivity, linearity, noise and nonuniformity 

 

Three bandpass filters were used for the testing of the sensor, with a central wavelength 

(CWL) of 450nm, 550nm and 600nm, and a Full Width Half Maximum (FWHM) of 

10nmേ2nm. The bandpass filters are needed for 2 reasons. First, because the photodiode power 

sensor has a different response for light at different wavelength, and consequently the power 

meter interface used to measure the current created by the sensor needs to know the wavelength 

of the light to translate the current it reads to power. Second, the image sensor also has different 

response to different wavelength (QE specification). So, in order to fully characterize it, light 

needs to have a limited width of wavelengths. 
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However, because the bandpass filter keep only a portion of the light, the light is not 

enough for testing the sensor at 3us exposure. That is why the sensor is tested for 300us exposure 

when using the bandpass filters. But, since we want to characterize the sensor performance at 3us 

also, we will use the unfiltered full light to create enough light and we will make an estimate of 

the light power seen at the surface of the sensor under test. Besides, important performance 

parameters like the Dynamic range and the Signal-to-Noise Ratio will be measured accurately 

since they do not depend on the measured number of photons at the sensor surface. 

 

6.2.2 METHODS FOR SENSITIVITY, LINEARITY AND NOISE 

Exposure time is kept constant for the image sensor throughout each test performed in 

this section, and what is changing is the irradiance by changing the LED source current. Fifty 

equally spaced irradiation values that create image values between the minimum (dark) and the 

maximum digital gray values are used. At each irradiation level two images are captured. For 

dark conditions, hundred images are captured, instead of two, for better calculation of the 

temporal variance, and because they will also be used to characterize the spatial nonuniformity 

of the sensor for no light. For all other lighting conditions, it is sufficient to capture only two 

images since the noise is stationary and homogenous [39]. 

The measurements are performed at room temperature and the image information used is 

both the whole 12-bit information from the ADCs and the 8-bit images saved by the software. 

The offset of the image sensor under test is set so that it is as small as possible but also large 

enough to ensure the values from the camera with no light are above 0 for 99.5% of the pixels.  
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A physical model of the camera and the mathematical model of a single pixel can be seen 

in Figure 40. All noise sources, except for the photon (shot) noise which is equal for all cameras, 

depend on the specific construction of the image sensor and the camera electronics.  

 

 

Figure 40: (a) Physical model of the camera and (b) Mathematical model of a single pixel [39] 

 

The mean number of photons that hit a pixel area A during the exposure time texp can be 

computed from the measured irradiance E on the sensor surface in W/m2 by                                                    

                                                               𝜇 ൌ  
𝐴𝐸𝑡௫

ℎ𝑣
ൌ  

𝐴𝐸𝑡௫

ℎ𝑐
𝜆

                                                          ሺ20ሻ 

or by using the values for the speed light c = 2.99792458 x 108 m/s and Planck’s constant h = 

6.6260755 x 10-34 Js, the mean number of photons that hit a pixel area A are 

                           𝜇ሾ𝑝ℎ𝑜𝑡𝑜𝑛𝑠ሿ ൌ  50.34 ൈ 𝐴 ሾ𝜇𝑚ଶሿ  ൈ  𝑡௫ ሾ𝑚𝑠ሿ  ൈ 𝜆 ሾ𝜇𝑚ሿ  ൈ 𝐸  
𝜇𝑊
𝑐𝑚ଶ ൨       ሺ21ሻ 

 where λ is the wavelength of the light. 
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A fraction of the photons that hit the surface of the sensor is converted into electrons. 

This quantity is the product of the Quantum Efficiency (QE) and the Fill Factor (FF) of the 

sensor. Therefore the quantum efficiency of the sensor is given by                                                  

                                                           𝑄𝐸 ሾ%ሿ  ൌ  
𝜇

𝐹𝐹 ൈ  𝜇
 ൈ 100                                                       ሺ22ሻ 

The electrons are converted into a voltage, amplified and finally converted into a digital 

signal y by an Analog-to-Digital Converter (ADC). This process is assumed to be linear and can 

be described by the following equation                   

                                                       𝜇௬ ൌ 𝐾ሺ𝜇   𝜇ௗሻ ൌ  𝜇௬,ௗ  𝐾𝜇                                              ሺ23ሻ    

where μy,dark is the output of the sensor for no light in Data Numbers (DN), and K is the overall 

system gain. 

The number of electrons fluctuate statistically, and according to the laws of quantum 

mechanics the probability is Poisson distributed. Therefore, the variance of the electrons 

generated (𝜎
ଶ) is equal to the mean of the electrons (μe) as seen in the following equation (shot 

noise) 

                                                                                   𝜎
ଶ  ൌ  𝜇                                                                   ሺ24ሻ 

Due to the linear signal model, as described by equation (23), all noise sources add up. 

The noise sources related to the sensor read out circuitry can be described by a signal 

independent normal distributed noise source with variance 𝜎ௗ
ଶ. The variance of the noise added 

by the ADC is 𝜎
ଶ ൌ ଵ

ଵଶ
𝐷𝑁ଶ. And since all noises add up linearly, the total temporal variance of 

the signal y, 𝜎௬
ଶ, is given by 

                                                                       𝜎௬
ଶ ൌ 𝐾ଶሺ𝜎ௗ

ଶ  𝜎
ଶሻ   𝜎

ଶ                                                 ሺ25ሻ 
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Using equations (23) and (24) the noise can be related to the measured mean digital 

signal by the following equation 

                                                          𝜎௬
ଶ ൌ 𝐾ଶ𝜎ௗ

ଶ  𝜎
ଶ  𝐾൫𝜇௬ െ  𝜇௬,ௗ൯                                        ሺ25ሻ 

In equation (25), the first and second terms can be treated as an offset, and then from the 

linear relationship between the variance of the noise, 𝜎௬
ଶ, and the mean output value of the 

system, 𝜇௬ െ  𝜇௬,ௗ, the overall system gain, K, can be determined from the slope, and the dark 

noise variance, 𝜎ௗ
ଶ, from the offset.  

The method described above is known as the photon transfer method [39]. To find the 

system gain (K) graphically, the light induced variance, 𝜎௬
ଶ െ 𝜎௬,ௗ

ଶ , is plotted against the light 

induced mean, 𝜇௬ െ 𝜇௬,ௗ. A least squares linear regression line is created by using the 

measurements between 0 and 70% of the saturation level. The saturation point is the first point in 

the photon transfer curve to be greater than the following 2 points when scanning from the right 

to the left. 

The slope of the linear regression line is calculated using a matrix approach. The matrix 

formulation can be written as 

                                                                                   𝒀 ൌ 𝑿𝜷  𝜀                                                              ሺ26ሻ 

                                        𝒀 ൌ  ൮

𝑌ଵ
𝑌ଶ
⋮

𝑌

൲ , 𝑿 ൌ ൮

1
1
⋮
1

  

𝑥ଵ
𝑥ଶ
⋮

𝑥

൲ , 𝜷 ൌ ൬
𝛽
𝛽ଵ

൰ , 𝜀 ൌ  ൮ 

𝜀ଵ
𝜀ଶ
⋮

𝜀

൲ 

where Y is a (n x 1) vector of the response variables, X is a (n x 2) matrix called the design 

matrix, and β is a (2 x 1) vector of unknown parameters [46]. 
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For the linear regression line to be used for the photon transfer curve plot, no intercept 

will be used, and X and β are written in matrix notation as follows 

                                                                       𝑿 ൌ ൮ 

𝑥ଵ
𝑥ଶ
⋮

𝑥

൲ , 𝜷 ൌ ሺ𝛽ଵሻ                                               ሺ27ሻ 

The normal equations obtained in the least squares method are given by 

                                                                                   𝑿𝑻𝒀 ൌ  𝑿𝑻𝑿𝜷                                                          ሺ28ሻ 

and the unique solution to the normal equations is given by 

                                                                                𝜷 ൌ  ሺ𝑿𝑻𝑿ሻି𝟏𝑿𝑻𝒀                                                     ሺ29ሻ 

 An example Photon Transfer curve is given in the EMVA 1288 standard and can be seen 

in Figure 41. 

 

Figure 41: Example Photon Transfer curve as seen in EMVA 1288 standard [39] 



74 
 

The temporal dark noise, excluding the quantization effects, is calculated using the 

following equation 

                                                                    𝜎ௗሾ𝑒ିሿ  ൌ  ටሺ𝜎௬,ௗ
ଶ െ 𝜎

ଶሻ 𝐾ൗ                                          ሺ26ሻ 

or including the effects of quantization by 

                                                                          𝜎ௗሾ𝐷𝑁ሿ  ൌ  ට𝜎௬,ௗ
ଶ                                                        ሺ27ሻ 

If 𝜎௬,ௗ
ଶ   0.24, then the temporal noise is dominated by the quantization noise and 

cannot be estimated reliably. In that case, the upper limits of the dark temporal noise are 0.4/K 

electrons or 0.49 DN. 

The temporal variance of the signal, 𝜎௬
ଶ, that is used in Photon Transfer curve plot can be 

calculated for each of the irradiation level as the mean of the squared difference of the two 

images captured at this level as described by the following equation 

                                                   𝜎௬
ଶ ൌ  

1
2𝑁𝑀

 ሺ𝑦ሾ𝑚ሿሾ𝑛ሿ െ 𝑦ሾ𝑚ሿሾ𝑛ሿሻଶ

ேିଵ

ୀ

ெିଵ

ୀ

                              ሺ28ሻ 

where M is the number of rows and N is the number of columns. 

The variance of the signal for no light,  𝜎௬,ௗ
ଶ , is calculated as follows 

                                 𝜎௬,ௗ
ଶ ൌ  

1
𝐿𝑁𝑀

  ሺ𝑦ௗ
ሾ𝑚ሿሾ𝑛ሿ െ  𝜇௬,ௗሾ𝑚ሿሾ𝑛ሿሻଶ

ேିଵ

ୀ

ெିଵ

ୀ

ିଵ

ୀ

                   ሺ29ሻ 

where L is the number of images capture with no light (100 images for this work), and 

𝜇௬,ௗሺ𝑚, 𝑛ሻ the average dark pixel value.  
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To calculate the Quantum Efficiency (QE) of the sensor we first create another plot, 

Sensitivity plot, with the mean number of photons hitting each pixel on the x-axis and the 

difference between the mean output at each irradiation level and the mean output at dark. An 

example Sensitivity curve is given in the EMVA 1288 standard and can be seen in Figure 42. 

 

 

Figure 42: Example Sensitivity curve as seen in EMVA 1288 standard [39] 

 

Similar to the Photon Transfer curve, a linear least regression line, using again the no-

intercept model, is created by using the data points in the range between the minimum value and 

70% saturation (𝑖. 𝑒. 0.7ሺ𝜇௬,௦௧ െ 𝜇௬,ௗሻ). The slope of this line is the responsivity, R, of the 

sensor and relates the mean outputs to the mean incident photons as follows 

                                                                            𝜇௬ െ 𝜇௬,ௗ ൌ 𝑅𝜇                                                       ሺ30ሻ 
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Quantum Efficiency can now be calculated using the following equation 

                                                                              𝑄𝐸 ൌ  
𝑅

𝐾 ൈ 𝐹𝐹
                                                             ሺ31ሻ 

where FF is the Fill Factor of the pixel. 

 Quantities in photons can now be translated to electrons and vice versa by using equation 

(22), in which we can substitute the product QE x FF by the calculated R/K parameter, which in 

this work it will be named Effective Quantum Efficiency (EQE) and will be given by the 

following equation 

                                                                                 𝐸𝑄𝐸 ൌ  
𝑅
𝐾

                                                                   ሺ32ሻ 

The Absolute Sensitivity threshold of the sensor is given by the following equation 

                                                        𝜇,ሾ𝑝ℎ𝑜𝑡𝑜𝑛𝑠ሿ  ൌ  
1

𝐸𝑄𝐸
൬ 

𝜎௬,ௗ

𝐾
  

1
2

 ൰                                  ሺ33ሻ 

and the Saturation Capacity of the sensor, μp,sat, is the number of photons that correspond to the 

number of photons at the saturation point that was found during the Photon Transfer curve 

method described before (μp,sat). 

The Maximum SNR is calculated using the following equation 

                                                                𝑆𝑁𝑅௫ ൌ  ටμ,௦௧  ൈ EQE                                                     ሺ34ሻ 

or 20log10(𝑆𝑁𝑅௫) in dB and log2(𝑆𝑁𝑅௫) in bits. 
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The measured SNR is calculated using the measured mean and the variance of the output 

values according to the following equation 

                                                                           𝑆𝑁𝑅 ൌ  
𝜇௬ െ  𝜇௬,ௗ

𝜎௬
                                                    ሺ35ሻ 

The theoretical SNR is given by the following equation 

                                            𝑆𝑁𝑅ൣ𝜇൧  ൌ  
𝐸𝑄𝐸 ൈ  𝜇 

ඥ 𝜎ௗ
ଶ    𝜎

ଶ 𝐾ଶ⁄    𝐸𝑄𝐸 ൈ 𝜇
                              ሺ36ሻ 

The ideal SNR is given by the following equation 

                                                                    𝑆𝑁𝑅ൣ𝜇൧  ൌ  ඥ𝜇                                                                   ሺ37ሻ 

These values, together with SNR values that include the spatial nonuniformities (DSNU 

and PRNU) and will be described in section 6.2.4, are plotted in a single plot as seen in the 

following figure. 

 

Figure 43: Example SNR graph as seen in EMVA 1288 standard [39] 
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The Dynamic Range (DR) of the sensor can be calculated as the ratio of the signal 

saturation to the absolute sensitivity threshold as shown in the following equation 

                                                                              𝐷𝑅 ൌ  
μ,௦௧

μ,
                                                                ሺ38ሻ 

 

To characterize the Linearity performance of the sensor, a plot of the mean output values 

for each irradiation level minus the mean dark values of the sensor is made, similar to what can 

be seen in Figure 44. To calculate the maximum and minimum percentage linearity errors, a 

percentage least squares linear regression line is created. This is different than the absolute 

regression method presented before, and this is because the quantity that needs to be minimized 

here is the percentage error instead of the absolute error.   

The least squares percentage regression method is described in [46], and the normal 

equations are given by 

                                                                                 𝑿𝑻𝑫𝟐𝑿𝜷 ൌ  ሺ𝑫𝑿ሻ𝑻𝑫𝒀                                            ሺ39ሻ 

and the unique solution to the normal equations is given by 

                                                                               𝜷 ൌ  ሺ𝑿𝑻𝑫𝟐𝑿ሻି𝟏𝑿𝑻𝑫𝟐𝒀                                           ሺ40ሻ 

 

The difference between the least regression line and the actual data gives the percentage 

error, as seen in Figure 44 (b). 
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Figure 44: Example linearity plots as seen in EMVA 1288 standard [39] 

(a) linearity plot from data and the linear regression line (b) percentage deviation from linear regression 
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6.2.3 METHODS FOR SPATIAL NONUNIFORMITY 

The spatial nonuniformity measurements are performed using the same setup that was 

used for sensitivity, linearity and noise, as described in section 6.2.1. 

To calculate nonuniformities, the temporal noise must be suppressed, so that it becomes 

much smaller than the spatial noise. This can be achieved by averaging a large number of 

images. In this work, 100 dark images and 100 images captured at 50% saturation will be 

averaged. All spatial variances will be denoted with the symbol s2 to distinguish them easily 

from the temporal variances that are denoted with the symbol σ2. 

The means of the means of the hundred M x N dark and 50% saturation images, 〈𝑦ௗ〉 

and 〈𝑦ௗ〉 respectively, are given by 

         𝜇௬,ௗ ൌ  
1

𝑀𝑁
 〈𝑦ௗ〉ሾ𝑚ሿሾ𝑛ሿ

ேିଵ

ୀ

ெିଵ

ୀ

 ,        𝜇௬,ହ ൌ  
1

𝑀𝑁
 〈𝑦ହ〉ሾ𝑚ሿሾ𝑛ሿ

ேିଵ

ୀ

ெିଵ

ୀ

                ሺ41ሻ 

and the spatial variances are given by 
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                           ሺ43ሻ 

The DSNU (dark signal nonuniformity) and PRNU (photo response nonuniformity) 

values as defined by the EMVA 1288 standard are based on spatial standard deviations and are 

given by the following equations 
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                           𝐷𝑆𝑁𝑈ଵଶ଼଼ ൌ  
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𝐾
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ଶ
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 ሾ%ሿ              ሺ44ሻ 

The DSNU is defined as the dark spatial standard deviation and is expressed in electrons 

(e-) by dividing with the overall system gain K. The PRNU is defined as the 50% saturation 

spatial standard deviation relative to the mean value and is expressed in %. 

The spatial nonuniformities are illustrated by plots of horizontal and vertical profiles of 

the DSNU and PRNU as seen in the following figure. 

 

Figure 45: Example horizontal profiles (a) and vertical profiles (b) of spatial nonuniformities as seen in 
EMVA 1288 standard [39] 



82 
 

Each plot contains the following four plots: 

 Mean: Average of rows (columns) 

 Max: Maximum of all rows (columns) 

 Min: Minimum of all rows (columns) 

 Middle: Middle row (column) 

 

Defect pixels can be detected using logarithmic histograms for PRNU and DSNU. Before 

evaluation of PRNU ,a high pass filter is applied to the original mean image by subtracting a 5x5 

box-filtered image as seen below 

                                            𝑦ᇱ ൌ 𝑦 െ  5R x y,       with   5R ൌ 
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 / 25                        ሺ45ሻ 

This method suppresses low frequency spatial variations of the light source without 

reducing the variance of the white noise significantly. For the proposed 5x5 box filter, the 

reduction is standard deviation is only 4% (39). No high pass filtering is performed with the 

DSNU mean image. 

Example logarithmic histograms for DSNU and PRNU can be seen in Figure 46. The 

blue line represents the modeled normal probability density distribution of the pixels, 

corresponding to the calculated spatial variances (the variance of DSNU has been divided by 

0.96 to account for the high pass filtering). 
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Figure 46: Example logarithmic histograms for DSNU (a) and PRNU (b).  

 

Different thresholds can be used for spotting defect pixels. For example, pixels with a 

deviation from the mean greater than 4 times the standard deviation (4σ) could be defined as 

defect. The exact position of these defect pixels in an image can be recorded and a map of defect 

pixels can be created.  This map can be used to replace the values of these pixels by the values of 

the 8 pixels surrounding them or using some other defect pixel correction technique. 
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6.2.4 SETUP FOR TESTING EXPOSURE AND FRAME RATE 

The presented image sensor is designed to operate at frame rates higher than 200 kfps and 

with exposures as low as 1us. To verify these specifications of the sensor, an LED Chaser board 

has been designed and fabricated.  

The LED circuit consists of six 4017 decade counters in a cascade configuration. Their 

outputs are connected to 49 high intensity LEDs. The clock is provided by an external pin, and 

the LEDs are turning ON and OFF, one at a time (in sequence 1 to 49 as seen in Figure 48), for 

every clock cycle. After LED 49 turns off, LED 1 turns ON and this “chasing” keeps going on.  

The schematic and layout of the board fabricated, as designed in Altium, are shown in Figure 47 

and Figure 48 respectively. 

 

Figure 47: Schematic of the LED Chaser in Altium 
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Figure 48: Layout of the LED Chaser board in Altium 

 

Except for the continuous chasing functionality, the board has some more features that 

are useful for the image sensor testing that will be described in section 6.2.5. It can be triggered 

externally for the start of its operation. It can operate in reduced mode, where only 25 of the 49 

LEDs are rotating. And, finally, it has an output pin that goes high once per chasing cycle, which 

can be used for measuring times greater than the time provided by one LED chasing cycle. 

The testing setup (Figure 49) for the speed and exposure measurements, includes the 

LED Chaser board and the camera under test with a C-mount lens mounted on it. The lens f-

number and focus and the distance between the 2 boards are adjusted so that the captured images 

are focused and include all the LEDs. 
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Figure 49: Test setup for measuring exposure and frame speed 

 

The bottom picture in Figure 49 shows also the box that has been designed to protect the 

users from the high intensity LEDs while testing. The power cables (one per board) and the six 

wire flat cable that is used to connect the camera board with the LED board (clock, triggers, 

cycles counting and ground) are not shown in these pictures. 

The clock for the LED board will be provided by the camera board using a flex cable. 

Moreover, the external trigger pin of the camera will be transferred through the same cable. That 

way the camera and the LED board can be triggered at the same time. A software trigger form 

the camera is also provided. Finally, the cycles counting pin of the LED board is connected to 

the camera, so that the camera can track the number of the LED cycles. 
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6.2.5 METHODS FOR TESTING SENSOR EXPOSURE AND FRAME RATE  

The sensor exposure and frame rate can be measured using the setup presented in section 

6.2.4. The two boards should be facing each other, and be at the closest possible distance that 

allows the selected lens to focus properly and the captured images to include all the LEDs. 

To measure the Exposure of the image sensor we set the clock period of the LED board, 

TLED to be smaller the Exposure, E. The number of the LEDs that are ON (Bright) in the 

captured image, B, can be used to measure the exposure, which will be within the range given by 

the following equation 

                                                       ሺ𝐵 െ 1ሻ ൈ  𝑇ா    𝐸 ൏ 𝐵 ൈ  𝑇ா                                              ሺ46ሻ 

For example, if 3 LEDs are on and TLED is 1us (1 MHz), the exposure will be between 2 

us and 3 us. For a smaller clock period of 200ns (5 MHz), if 15 LEDs are ON, the exposure will 

be between 2.8 us and 3 us. 

To test the Frame Rate of the image sensor, fsensor, the LED board should operate in its 

reduced mode, in which only 25 out of the total 49 LEDs are rotating, and the LED clock 

frequency, fLED, has to be set higher than the frequency of the sensor according to the following 

equation 

                                                                            𝑓ா ൌ  25 ൈ  𝑓௦௦                                                    ሺ47ሻ 

If the Frame Rate is accurate, the exact same LEDs should be bright in all frames. 

However, this would also be the case if the frame rate was 𝑓௦௦ / 2. That is why one more test 

must be performed. The frequency of the LED board is set equal to the expected frame rate. If 

the expected frame rate is correct then there should be only one LED advancement from frame to 
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frame. If the frame rate is half of the expected value, then there would be a two LED 

advancement between consecutive frames. 

The response of the image sensor can also be measured using the LED board. The LED 

Chaser should operate in its triggered mode, and both the LED and the camera board should be 

triggered externally. The trigger could either be software (capture button) or hardware (trigger 

switch). The frequency of the LED board should be chosen to be as small as possible to increase 

measurements accuracy, but the ratio of the Exposure time over the LED clock period should 

always be kept bellow 50, to ensure that the image captures the ON time of the LEDs in one 

cycle only, otherwise all LEDs would be bright and the response time would not be possible to 

be measured. 

Finally, the synchronization of more than one cameras can be tested by using the LED 

board. Again, the LED frequency should be chosen according to the exposure of the cameras to 

be tested. The cameras have to be focused on the same LED board, and the exact same LEDs 

will be bright if the cameras are synchronized. Alternatively, two set of cameras – LED boards 

can be used and the mismatch in the captured images will be the synchronization error. 

 

6.2.6 OTHER TESTS  

Two more tests will be performed to measure the on-chip memory leakages and the inter-

frame nonuniformity of the image sensor. The setup presented in 6.2.1 will be used. 

To measure the leakages of the sensor, the reading procedure will be delayed by 10ms 

and 20ms and the mean values of the frames will be compared. To suppress the temporal noise 

10 images will be captured for each delay, and the sensor will operate at 50% saturation level 
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throughout this test. Ten images will be enough here because mean values of whole images will 

be used instead of individual pixel values. The resulting memory leakage rate will be given in 

DN/ms using the following equation 

                                                               𝑄  
𝐷𝑁
𝑚𝑠

൨  ൌ  
𝜇௬,ఛ

 െ  𝜇௬,

𝜏ௗ
                                             ሺ48ሻ 

where 𝜇௬,ఛ
 is the mean output of the sensor in Data Numbers when the readout is delayed by 𝜏ௗ. 

The leakage rate can also be given in units of uV/ms by multiplying the amount of 

leakage calculated in (48) by VLSB, which is 439uV for a 12-bit 1.8V ADC. To refer this leakage 

back to where it occurs, the on-chip memory, we have to divide 𝑄 with the gain added to 

the camera because of the memory blocks, as given in equation (12). The resulting leakage in the 

memories will be 

                                            𝑄  
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൨                                 ሺ49ሻ 

 

To measure the nonuniformity of the image sensor for all the captured frames, a similar 

method to what was used to measure intra-frame (within the same frame) nonuniformity of the 

sensor will be used. 

The means of the means of the hundred M x N dark and 50% saturation images for all F 

captured frames, 〈𝑦ௗ〉 and 〈𝑦ௗ〉 respectively, are given by 
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and the spatial variances for all the captured frames are given by 
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The DSNU (dark signal nonuniformity) and PRNU (photo response nonuniformity) for 

all the captured frames are based on spatial standard deviations and are given by the following 

equations 

                     𝐷𝑆𝑁𝑈ி௨ ൌ  𝑠௬,ௗ,ி ሾ𝐷𝑁ሿ, 𝑃𝑅𝑁𝑈ி௨ ൌ  
ට𝑠௬,ହ,ி
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 ሾ%ሿ              ሺ53ሻ 

 

The spatial nonuniformities for all the frames can be illustrated by plots of horizontal and 

vertical profiles of the DSNU and PRNU similar to the ones shown in Figure 45. For the 

horizontal profiles, nonuniformities will be plotted for the frames being side by side. For the 

vertical profiles, nonuniformities will be plotted for the frames being the one the one below the 

other.  

Finally, the dark and 50% saturation means, and the DSNU and PRNU for each of the 

captured frames will be plotted. The signal variations in different frames and their nonuniformity 

performance can now be seen. 
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6.3 TESTING SOFTWARE 

All images needed for the testing methods described in section 6.2 are captured using the 

software described in section 5.2. All the parameters are calculated, and all the plots are created 

using software that was developed in MATLAB, following the equations and procedures 

described in section 6.2. 

The developed MATLAB code developed is able to read from either of the 8-bit bmp 

images or the 12-bit images information saved in csv format. Moreover, code was developed that 

converts the 12-bit images information to 16-bit png images, which can be used for further 

characterization in software that uses images as input. 

A basic tutorial of a software developed in Python by European Machine Vision 

Association (EMVA), uses images as input, and generate complete EMVA reports can be seen in 

[47]. All the calculations and plots in this work that are related to the EMVA 1288 standard are 

generated exclusively using the developed MATLAB code, but were also cross-checked using 

the python code provided by EMVA. 

A full description of the performance of the image sensor presented in this work, and all 

the generated plots can now be seen in CHAPTER 7. 
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CHAPTER 7: IMAGE SENSOR PERFORMANCE 

The methods described in section 6.2 were used to characterize the performance of the 

image sensor. The results for sensitivity, linearity, noise and nonuniformity are given in section 

7.1. In section 7.2, the sensor is tested for nonuniformity for all the captured frames. In section 

7.3, the leakage measurements for the analog memory are given. In section 7.4, the accuracy of 

the exposure and frame rate of the image sensor is verified. And finally, in section 7.5, the 

performance of the sensor, based on the testing results is summarized and compared to the 

expected performance.  

7.1 SENSITIVITY, LINEARITY, NOISE AND NONUNIFORMITY 

The plots generated using the methods described in section 6.2.2, and EMVA 1288 

standard [39], can be seen in figures 50 to 54. The first four figures show the photon transfer, the 

sensitivity, the linearity and the Signal-to-Noise Ratio curves of the image sensor under different 

testing conditions that will be used for this section and are listed here: 

 Case 1: 450nm light, 300us exposure, 3.3kfps 

 Case 2: 550nm light, 300us exposure, 3.3kfps 

 Case 3: 600nm light, 300us exposure, 3.3kfps 

 Case 4: 425nm - 700nm light, 3us exposure, 200kfps 

The reason that the tests for cases 1 to 3 is at lower frame rate, is because the filtered light 

of the used light source is not enough to generate enough photons to perform the required testing 

from dark to saturation. In case four, light is enough but the incident photons measurement is 

approximate since used power meter can only measure light at a specific wavelength. 
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Figure 50: Photon transfer, Sensitivity, Linearity and SNR curves [Case 1]  

 

 

Figure 51: Photon transfer, Sensitivity, Linearity and SNR curves [Case 2] 
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Figure 52: Photon transfer, Sensitivity, Linearity and SNR curves [Case 3] 

 

 

Figure 53: Photon transfer, Sensitivity, Linearity and SNR curves [Case 4] 
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It should be noted, that since the amounts of photons in case 4 is approximate, because of 

the lack of a direct measuring method, the curves seen in Figure 53 are accurate for extracting all 

the required performance characteristics except for the quantum efficiency. This should not be a 

problem, since the quantum efficiency of the sensor is characterized for different wavelengths in 

cases 1 to 3. 

The following figure shows the percentage deviation of the linearity curves from the 

linear regression lines seen in the four previous figures for cases 1 to 4. 

 

Figure 54: Percentage deviation from linear regression for cases 1 to 4 (a to d respectively)  
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The spatial nonuniformities of the sensor are illustrated by plots of horizontal and vertical 

profiles of DSNU and PRNU in figures 55 to 58. Each sub-figure contains four profiles (mean, 

max, min and middle row or column) as described in section 6.2.3. The PRNU profiles were 

created using images at about 50% saturation. The DSNU profiles are the same for figures 55 to 

57, since the same 100 images where used for dark signal nonuniformities for 300us exposure at 

3.3kfps operation. In Figure 58, the DSNU profile is different, because a different set of 100 dark 

images captured at 3us and 200kfps were used. 

In case 4, only the bottom half of the image sensor is used for all the measurements and 

plots in this section. This is because, as it will be explained in section 7.3, the leakages of the 

memories are very high when the sensor is exposed to a very strong light. Since the light that is 

used for testing the image sensor with 3us exposure needs to be very strong, to characterize the 

performance of the sensor at its full range, the only way to make the sensor functional for the 

required testing is to cover the memories. And because the foundry did not have a special layer 

for this reason, and not any other high accuracy method was used to block the light above the 

memories, this was done in an approximate manner, covering the light above the memories at the 

lens mount level. 

Since the method used to block the light was approximate, not all the memories were 

covered uniformly, and the top memories were partially exposed, degrading their performance 

and consequently the performance of the sensor. Therefore, only the bottom part of the sensor 

was used for all the tests in this section, because the memories corresponding to the bottom part 

of the pixel array were fully covered, hence, their performance was not hurt by the excessive 

light. 
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Figure 55: Horizontal and Vertical profile of PRNU (left) and DSNU (right) [Case 1] 

 

 

Figure 56: Horizontal and Vertical profile of PRNU (left) and DSNU (right) [Case 2] 
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Figure 57: Horizontal and Vertical profile of PRNU (left) and DSNU (right) [Case 3] 

 

 

Figure 58: Horizontal and Vertical profile of PRNU (left) and DSNU (right) [Case 4] 
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Logarithmic histograms for DSNU and PRNU for all the four testing cases can be seen in 

figures 59 to 62. Before the evaluation of the PRNU average image, it was high-pass filtered as 

described in section 6.2.3.  

The blue line, in all plots, is the normal probability density distribution corresponding to 

the dark or 50% saturation measured spatial variance. The pixels outside this line can be 

characterized defected (defect pixel definition depends on the application), but in our case these 

pixels are very limited for the first three cases and almost do not exist in case 4.  

Most of the pixels that deviate more than expected from the mean are at the edges of the 

sensor, which are not usually used for image creation. Moreover, in this work the calibration of 

the images for spatial nonuniformities is very limited and out of scope. 

 

 

Figure 59: Logarithmic histograms for DSNU (up) and PRNU (down) [Case 1] 
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Figure 60: Logarithmic histograms for DSNU (up) and PRNU (down) [Case 2] 

 

 

Figure 61: Logarithmic histograms for DSNU (up) and PRNU (down) [Case 3] 
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Figure 62: Logarithmic histograms for DSNU (up) and PRNU (down) [Case 4] 

 

The results that can be extracted from the figures above and from the calculations 

described in sections 6.2.2 and 6.2.3, as given by the software created for testing, described in 

section 6.3, can be seen in Figure 63 for cases 1 to 3, and Figure 64 for case 4. 

It should be noted that for case 4 (Figure 64), the quantum efficiency calculation and all 

the quantities that are in photons are approximate, since no accurate method for the measurement 

of incident photons at the sensor was available for white light. Moreover, these tests are ideally 

performed with monochromatic light with a FWHM of less than 50nm or white light and an 

appropriate bandpass filter [39]. However, all the other results, like system gain, SNR, DR, 

nonuniformities and linear errors are expected to be accurate. The quantum efficiency of the 

sensor can be extracted from cases 1 to 3. 
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Figure 63: Sensor performance at 450nm, 550nm and 600nm (left to right) [Cases 1 to 3] 
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Figure 64: Sensor performance at 200kfps [Case 4] 
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The calculated Quantum Efficiency in Figure 63 and Figure 64 is the effective QE 

(EQE). It is the product of the QE of the sensor due to the physics of the process used, the fill 

factor and the transmission losses through the protective glass at the bottom of the lens mount. 

The typical transmission percentage through the optical window used on the lens mount for 

mechanical and dust protection of the sensor can be seen in the following figure. 

 

 

Figure 65: Typical transmission percentage of the optical window used for sensor protection 

 

More about how the results above compare to the expected results will be discussed in 

section 7.5. 
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7.2 ALL FRAMES NONUNIFORMITIES 

The nonuniformities for the fourteen first captured frames, for all the four cases described 

in section 7.1, were calculated using the equations given in section 6.2.6. The  calculated DSNU 

and PRNU are given in Table 5. As can be seen, the spatial nonuniformities for all the captured 

frames of the sensor are very close to the values calculated in the previous section for a single 

frame. 

 

Case # 1 2 3 4 

DSNU (DN) 20.8 21.4 

PRNU (%) 4.1 4.5 4.1 3.6 

 

Table 5: DSNU and PRNU for all captured frames 

 

The average outputs, the dark signal and photo response nonuniformities per frame can 

be seen in the following figures. Moreover, the horizontal and vertical profiles of PRNU and 

DSNU for all the captured frames can also be seen.  

In all of these figures it can be clearly seen that frame 7 has lower output averages than 

the other frames. This can be easily detected by naked eye, especially for dark images like the 

one shown in Figure 38. The reason this happens is layout dependent, it has been detected 

(increased parasitic capacitance) and will be fixed in a future tapeout by more careful  layout 

design. However, it can also be easily fixed using software. 
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Figure 66: Averages and nonuniformities for all frames [Case 1] 

 

 

Figure 67: Horizontal and Vertical profile of nonuniformities for all frames [Case 1] 
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Figure 68: Averages and nonuniformities for all frames [Case 2] 

 

 

Figure 69: Horizontal and Vertical profile of nonuniformities for all frames [Case 2] 
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Figure 70: Averages and nonuniformities for all frames [Case 3] 

 

 

Figure 71: Horizontal and Vertical profile of nonuniformities for all frames [Case 3] 
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Figure 72: Averages and nonuniformities for all frames [Case 4] 

 

 

Figure 73: Horizontal and Vertical profile of nonuniformities for all frames [Case 4] 
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7.3 MEMORY LEAKAGES 

In section 4.5 the expected leakages for the memories were calculated to be negligible. 

However, these calculations did not take into account the light that hits the memories and 

increase their leakages. 

In this section, the leakages were calculated using the method described in section 6.2.6 

for the following cases 

 Case A: 300us exposure, 550nm light, 192DN mean image output, irradiance 

1.95uW/cm2 

 Case B: 3us exposure, white light (425nm-700nm), 577DN mean image output, 

irradiance 1,930 uW/cm2 

 Case C: 3us exposure, white light (425nm-700nm), 1360DN mean image output, 

irradiance 5,350 uW/cm2 

 Case D: 3us exposure, white light (425nm-700nm), 1280DN mean image output, 

irradiance 5,000uW/cm2, Covered memories 

 

The testing results, leakage rate versus irradiance, can be seen in Figure 74. In Table 6, 

the results are summarized and some camera specific calculations are made. The readout time for 

the designed camera is 8ms and each frame readout is the 1/16th of this time. The readout time 

for the Mpixel sensor expansion is expected to be about 50ms, so the results in the last 2 rows 

would be 625% higher. 
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The last two cases (last two columns in Table 6) are at about 50% saturation with a 3us 

exposure time. In the first of these two cases (case C), the leakage within the frame is about 4 

DN and it is expected to be more than 8 DN in saturation. On the other hand, the leakage when 

the memories are covered are less than 1 DN, and is expected to remain below 1 DN even for 

saturation. Intra-frame leakage will remain below 2.5 DN for the Mpixel expansion. 

 

Figure 74: Memory Leakage Rate vs Irradiance 

 

Case # A B C D 

Exposed to Light YES YES YES NO 

Exposure (us) 300 3 3 3 

Irradiance (uW/cm2) 1.95 1930 5350 5000 

Leakage Rate (mV/ms) 0.2 1.2 3.4 -0.3 

Readout Leakage (mV) 1.6 9.6 27.2 -2.4 

Intra-frame Leakage (mV) 0.1 0.6 1.7 -0.15 

 

Table 6: Memory Leakages 
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It should be noted that in the first 3 cases, where memories are exposed to light, the 

leakage rates are positive, but in the last case, where memories are covered, the leakage rate is 

negative. This indicates that the main leakage path for exposed memories is from the memory 

node to ground, L2 path in Figure 75, since the DN increases (stored value goes down). On the 

other hand, the main leakage path for exposed memories is from the reset node to the memory, 

L1 path in Figure 75, since the DN decreases (stored value goes up). 

PN junction leakages also reduce the reset node voltage, but since this node is reset 

before each frame readout, these leakages contribute only to the leakages within the same frame 

readout. 

 

 

Figure 75: Main leakage mechanisms in memories 
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7.4 EXPOSURE AND FRAME RATE 

The setup and methods described in sections 6.2.4 and 6.2.5 where used to verify the 

exposure and the frame rate of the image sensor. 

To verify the 3us exposure of the sensor when operating at 200kfps, the LED clock was 

set at 1MHz, 5MHz and 10MHz, and the images captured can be seen in figures 76 to 78. As the 

LED clock goes lower, the LEDs turn ON for a smaller amount of time, i.e. 100ns for 10MHz 

clock, and the amount of light captured by the sensor from each LED is limited. LED operating 

at 100MHz can still be seen by the sensor, but it is easier to be identified as ON or OFF with 

image processing, as can be seen in Figure 79. 

 

Figure 76: LED exposure test 1 - 3us exposure at 200kfps, LED frequency 1MHz 

 

 

Figure 77: LED exposure test 2 - 3us exposure at 200kfps, LED frequency 5MHz 
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Figure 78: LED exposure test 3 - 3us exposure at 200kfps, LED frequency 10MHz 

 

Figure 79: Image in Figure 78 enhanced in MATLAB for clarity 

 

Using figures 78 and 79, for higher accuracy, the calculated Exposure is between 2.9us 

and 3us. This is because the maximum number of LEDs that are ON in any frame are 30, and by 

using equation 46 in section 6.2.5 the resulting exposure is between 2.9us and 3us. 

In Figure 80, the exposure of the image sensor is set to 1us, and it can be seen that up to 

11 LEDs are ON in the captured frames. Hence, the image sensor can operate at 1us exposure 

and it can be set accurately. 

 

Figure 80: LED exposure test 4 - 1us exposure at 200kfps, LED frequency 10MHz 
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To verify that the sensor operates at 200kHz, or more precisely at 198.4kfps because the 

frame period is exactly 5.04us, the LED clock has to be set 25 times faster than that, i.e. clockLED 

= 25x198.4kHz = 4.96MHz, and the LED board should operate in reduced mode, i.e. only 25 out 

of the 49 LEDs are rotating.  

The image of the LEDs operating at 4.96MHz can be seen in Figure 81. In this image it is 

clear that the exact same LEDs are ON in all captured frames. 

 

Figure 81: 25 LEDs rotating at 4.96MHz 

 

To verify that the sensor is not operating in half the expected frame rate, i.e. 198.4/2 = 

99.2 kfps, a final test has to be performed. The LED clock is set equal to the expected image 

sensor frame rate. The captured image when the LED clock matches the frame rate of the sensor 

can be seen in Figure 82. In this image, it can be clearly seen that there is a rotation of exactly 

one LED from frame to frame. Hence, the expected frame rate of the image sensor is verified.  

 

Figure 82: 25 LEDs rotating at speed equal to the frame rate (198.4kHz) 
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To test the response of the image sensor the operation of the LED board is set to Software 

Triggered, and the LED clock is set to 10MHz. The first 2 frames captured by the camera after 

the trigger can be seen in Figure 83. 

 

   

Figure 83: The response of the LED board in Software Trigger mode (clockLED = 10MHz) 

 

In Figure 83 two images can be seen, side by side, because the trigger test was repeated 2 

times. This is because it was noticed that the first LED sometimes it is slightly ON in the 

captured image. Therefore, the sensor response to software trigger is expected to be less than the 

clock period, which is 100ns for this test. 

Summarizing, the image sensor has been verified that it can operate at 200kfps and that 

its exposure can be set accurately. Moreover, the response of the sensor to software trigger was 

measured to be below 100ns. The presented sensor can also be triggered externally, and this is a 

useful feature, because it can be synchronized accurately with the trigger of fast speed events that 

need to be captured by a highly sensitive, global shutter, high speed camera, which is exactly 

what was designed and tested in this work. Finally, more than one of the designed cameras can 

be triggered at the same time to increase the field of view, or the resolution of the captured 

images. 
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7.5 PERFORMANCE SUMMARY 

The image sensor has been tested to operate at frame rates up to 200kfps and with 

exposure times as low as 1us. It has also been verified that the frame rate and exposure times can 

be set accurately. Moreover, the performance of the sensor has been evaluated at both 3.3kfps 

and 200kfps and seems to be independent of the frame rate. 

The sensitivity and noise performance of the presented image sensor is summarized in 

Table 7. The quantum efficiency and the quantities in photons are emitted from the table since 

they depend on the wavelength of the incident light. The performance of the sensor at 

3.3kfps/300us exposure has been averaged from the three tested cases. 

 

SENSITIVITY AND NOISE PERFORMANCE 

Test Case 3.3kfps/300us 200kfps/3us Theoretical 

SYSTEM GAIN (uV/e-) 21.97 23.29 21.57 

INPUT REFERRED NOISE (e-)     

(excluding quantization) 
40.28 36.56 15.30 

ABSOLUTE SENSITIVITY (e-) 41.23 37.5 16.39 

SATURATION CAPACITY (e-) 31,222 27,303 22,857 

SNR (dB) [max] 44.94 44.36 43.59 

SNR (dB) 43.95 43.62 - 

DR (dB) 57.57 57.25 62.89 

 

Table 7: Performance of the Image Sensor 
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It can be seen in table 7, that the expected input referred noise and the absolute 

sensitivity threshold (which includes quantization noise of the ADC) are not close to the 

measured results. Hence, it is assumed that the input referred noise of the ADC is not 0, as the 

simulations were indicating.  

To measure the input referred noise of the ADCs, the memories are tied to the memory 

reset voltage, a single row and a single column switches turn ON, and the ADCs are now reading 

a DC voltage (reset voltage – VGS of the memory blocks source follower). The histogram of the 

output codes of the ADCs should be normal, since the noise is approximately Gaussian, and the 

standard deviation of the histogram will correspond to the effective input rms noise of the ADC 

in terms of LSBs rms [41]. 

The histograms of the ADCs for a DC input voltage can be seen in Figure 84. The 

histograms have been plotted in MATLAB with normalization set to ‘pdf’ to produce an 

estimation of the probability density function. The probability density function for a normal 

distribution with mean μ, standard deviation σ, and variance σ2 is given by the following 

equation [48] 

                                                                       𝑓ሺ𝑥, 𝜇, 𝜎ሻ ൌ  
1

𝜎√2𝜋
𝑒ି

ሺ௫ିఓሻమ

ଶఙమ                                             ሺ54ሻ 

This function is overlaid over the ADCs histograms, and it is verified that the outputs of the 

ADCs are close to normal. 

The standard deviations for ADC 1 and ADC2 were calculated 1.53 LSB rms and 1.67 

LSB rms respectively. Therefore, the rms noise is 0.67 mV rms for ADC1 and 0.73 mV rms for 

ADC2. 
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Figure 84: Histogram of ADCs for a DC input 

 

Adding this input referred RMS noise of the ADC, averaged to 𝑉,ோெௌ, = 0.7 mV 

rms), to the noise of the rest of the sensor at the input of the ADC (equation 17), the total rms 

noise at the input of the ADC is given by the following equation 

𝑉, ூே் ൌ  ටሺ𝑉,ோெௌ,்ை்ሻଶ  𝑉,ோெௌ,
ଶ ൌ  ඥ0.33ଶ  0.7ଶ ൌ 0.774 𝑚𝑉 𝑟𝑚𝑠         ሺ55ሻ 

Therefore, the input referred noise of the sensor in electrons is (see equation 13 for Asystem) 

                   𝑉,ோெௌ ூே் ோாிாோோாሾ𝑒ିሿ  ൌ  
𝑉, ூே்ሾ𝑢𝑉ሿ

𝐴௦௬௦௧ ቂ𝑢𝑉
𝑒ି ቃ

 ൌ  
774

21.57
 ൌ 35.88 𝑒ି                  ሺ56ሻ 

And the sensitivity threshold is  

                       𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ሾ𝑒ିሿ  ൌ  
ට𝑉, ூே்

ଶ   
𝑉ௌ

ଶ

12

𝐴௦௬௦௧ ቂ𝑢𝑉
𝑒ି ቃ

 ൌ  36.36 𝑒ି            ሺ57ሻ 
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The performance of the image sensor, including the input referred ADC noise can be seen 

in Table 8. The theoretical performance is now very close to the measured performance. 

 

SENSITIVITY AND NOISE PERFORMANCE 

Test Case 3.3kfps/300us 200kfps/3us Theoretical 

SYSTEM GAIN (uV/e-) 21.97 23.29 21.57 

INPUT REFERRED NOISE (e-)     

(excluding quantization) 
40.28 36.56 35.88 

ABSOLUTE SENSITIVITY (e-) 41.23 37.5 36.36 

SATURATION CAPACITY (e-) 31,222 27,303 22,857 

SNR (dB) [max] 44.94 44.36 43.59 

SNR (dB) 43.95 43.62 - 

DR (dB) 57.57 57.25 55.97 

 

Table 8: Performance of the Image Sensor including ADC noise in the theoretical column 

(in bold the values that were adjusted) 

 

The spatial nonuniformity and linearity performance of the image sensor is summarized 

in Table 9. The sensor has similar performance for all test cases, and, therefore, the average 

performance for all test cases is given. Dark signal and photon response nonuniformities can be 

reduced with software calibration but this is not part of this work. 
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SPATIAL NONUNIFORMITY AND LINEARITY PERFORMANCE 

DSNU1288 (e-) 364 

DSNU1288 (DN) 18.4 

DSNUALL FRAMES (DN) 21.0 

PRNU1288 (%) 4.1 

PRNUALL FRAMES (%) 4.1 

LINEARITY ERROR [MAX / MIN] (%) 1.9 / -1.8 

 

Table 9: Spatial Nonuniformity and Linearity Performance of the image sensor 

 

The leakage performance of the image sensor, and more specifically the leakages from 

the on-chip memories are given in . The leakage rate is heavily dependent on the irradiance, but 

can be minimized if the memories are covered with a material that blocks the light. In this work 

the light was covered using a blocking surface on the lens mount but it would be much more 

efficiently and accurately covered if a light blocking layer was applied directly on-chip. 

 

LEAKAGE PERFORMANCE 

EXPOSED TO LIGHT YES YES YES NO 

IRRADIANCE (uW/cm2) 1.95 1930 5350 5000 

LEAKAGE RATE (mV/ms) 0.2 1.2 3.4 -0.3 

 

Table 10: Leakage Performance of the image sensor 
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The complete specifications of the image sensor as part of the camera assembly presented 

in this work are summarized in Table 11. Some results have been averaged from the 

measurements for the different test setups. 

COMPLETE CAMERA SPECIFICATIONS 

PROCESS TECHNOLOGY 0.18um CMOS with pinned photodiode 

DIE SIZE (um) 3010 x 6554 

PIXEL PITCH (um) 15.1 

FILL FACTOR (%) 41.6 

PIXELS 10,000 

ON-CHIP MEMORIES 16 

EQE (%) 450nm / 550nm / 600nm 24.5 / 30.3 / 27.4 

MAXIMUM FRAME RATE (kfps)                   

(at full resolution) 
267 

MINIMUM EXPOSURE (us) 1 

SYSTEM GAIN (uV/e-) 22.3 

ABSOLUTE SENSITIVITY (e-) 38 

SATURATION CAPACITY (e-) 30,000 

SNR (dB) 43.9 

DR (dB) 58.0 

READOUT TIME (ms) 8 

SPECTRAL SENSITIVITY RANGE (nm) 425 - 700 

 

Table 11: Camera Specifications 
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CHAPTER 8: MPIXEL SENSOR EXPANSION 

The image sensor designed in this work was optimized to be expandable to a Mpixel 

sensor. The reasons that make the presented sensor unique and allow its expansion can be 

summarized as follow: 

 Small pixel design while achieving the following 

o Low noise. In-pixel CDS reduces noise to 0.33mV rms at the input of the in-pixel 

output source follower (SF2), or 10.3 e- input referred 

o In-pixel current sources make the output voltage independent of the physical 

location of the pixel 

o Fill factor greater than 40% 

 The low threshold voltage and high area efficient MOSFET capacitors used for in-pixel 

CDS and on-chip memories allow large linear voltage swing and do not use any upper 

metal layers that are therefore free to be used for routing 

 Source followers used in pixels and memory blocks are built in a twin well process to keep 

their size minimum 

 In-pixel current sources are switched off when not in use 

 The design (combination of SFs, current sources and switches) allows fast transfers 

between pixels and memories (less than 50ns for Mpixel sensor 12-bit settling) and 

between memories and ADCs (less than 130ns). At the same time, the maximum current 

drawn by the current sources during these transfers is 5.77A for the global shutter operation 

(1M current sources) of the PPD source followers, 1.98A for the operation of the output 
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pixel source followers (20,000 current sources per transfer cycle) and 1.6A for the 

operation of the memory source followers (20,000 per cycle). 

 50 pixels share a line, therefore only 10 lines are needed per column to transfer values 

between pixels and memories. Since 6 metal layers are used for routing over the non-active 

pixel area, the fill factor will not be hurt from shading 

 The choice of 12-bits ADCs with a maximum operating frequency of 100MHz, ensures 

that the quantization noise will not hurt the performance of the sensor 

 

The architecture of the proposed Mpixel expansion can be seen in Figure 85 and the 

resulting layout in Figure 86. The image sensor remains square for maximum optical efficiency 

and the frame rate remains above 200kfps. To achieve the high frame rate, pixel have again a 

dedicated on-chip memory block and all pixels transfer their stored values to the memories in 50 

clock cycles. Since, the calculated 12-bit settling time is expected to be below 50ns, including all 

the parasitic resistances and capacitances, the 70ns clock that was used in the 10kpixel design 

can also be used here.  

The readout time is expected to increase from 8ms to 50ms, since each of the 40 ADCs 

will have to read 500 x 50 memory blocks (was 100 x 50 memory blocks in the 10 kpixel 

design), which equals to 400,000 reads (16 reads from each memory block). Hence, if the 

readout clock is set at 8MHz, the total readout time needed is 400,000 x 1/8M = 50ms. 

The expected voltage drop due to leakage at the last memory during this time, assuming 

that the memories are covered and the leakage rate remains 0.3mV/ms, is calculated to be 15mV, 
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and, therefore, the intraframe voltage drop due to leakage will be 0.94mV. This may be too high 

for the operation of the sensor and therefore means to reduce it will be investigated. 

The following methods to reduce the voltage drop due to leakage, at least at the levels of 

the presented kpixel sensor when the memories are partially covered, will be investigated 

 Reduce the readout time by  

o Reducing the capacitance seen by the memory block source followers. This could 

be achieved by using one, or a combination of the following methods 

 Using a low input capacitance driver for the ADC 

 Use a different switching scheme for the column select switches at the ADC. 

The parasitic capacitance of the 500 switches could be reduced to 104 if a 

group select switch is used for every set of 100 switches 

o Reducing the line resistance 

 Using larger switches 

 Using wider lines. Post-layout simulations should be used to find the 

optimal solution between line resistance and parasitic capacitance   

o Using more ADCs. Doubling the number of the ADCs will reduce the readout time 

by half 

 Replace the access switches of the memories with other devices with less leakages. XFAB 

has NMOS devices with less leakages than the ones used in this work, which were not used 

for this work because they were relative new and also because the presented sensor was 

part of a Multi-Project-Wafer (MPW), so only specific devices were available. The 

leakages of the devices from other foundries will also be researched 
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 Completely block the light from memories directly on-chip. XFAB does not have a light 

blocking layer available, but other foundries do. If the switch to another foundry is not an 

option, others methods to block the light will be investigated 

 Increase the capacitance of the on-chip memories. This could be achieved by using 1.8V 

devices instead of 3.3V devices. The capacitance of those devices is 60% higher for the 

same area and therefore they could reduce leakages a lot. 

 

To reduce the number of the Mpixel sensor pins, serializers will be used to reduce the 

output pins from the ADCs to 32. These serializers should be able to operate at a speed 20 times 

higher than ADC clock. In Figure 86, two 320-to-16 serializers have been used, one at the top 

and one at the bottom of the sensor. Moreover, to further reduce the number of pins, the control 

signals will be limited by using more on-chip logic.  

Multiple multi-layer metal layer power supply rings will be created around the core of the 

sensor for all the different supplies, analog and digital, as well as the reference voltages. Bellow 

these rings, MOSFET capacitors will fill the available space to provide the required decoupling 

capacitance needed to reduce transient switching spikes. High current input/output cells will be 

distributed equally around the core to ensure that the decoupling capacitors can handle the local 

transient spikes. Metal Insulator Metal (MIM) capacitors will be used in the ADCs area together 

with the MOSFET capacitors to increase the decoupling capacitance available even further. 

Finally, all sensor I/O pads will have ESD protection and a common ESD ground ring will run 

through all the pads of the chip. The power supply ring will be separate for the 1.8V ADC areas. 

ESD rails will be bonded out through multiple pads for all the sides of the sensor. 
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Figure 85: Proposed Mpixel Expansion Image sensor architecture 
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Figure 86: Proposed Mpixel Expansion draft layout 
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The complete specifications of the Mpixel sensor expansion are expected to be better 

than the 10kpixel sensor presented in this work, mainly because the input referred noise of the 

ADC will be minimized. The expected specifications are summarized in the following table. 

MPIXEL CAMERA SPECIFICATIONS 

PROCESS TECHNOLOGY 0.18um CMOS with pinned photodiode 

DIE SIZE (mm) 16 x 46 

PIXEL PITCH (um) 15.1 

FILL FACTOR (%) 41.6 

PIXELS 1,000,000 

ON-CHIP MEMORIES 16 

EQE (%) 450nm / 550nm / 600nm 24.5 / 30.3 / 27.4 

MAXIMUM FRAME RATE (kfps)                   

(at full resolution) 
267 

MINIMUM EXPOSURE (us) 1 

SYSTEM GAIN (uV/e-) 22.3 

ABSOLUTE SENSITIVITY (e-) 16 

SATURATION CAPACITY (e-) 30,000 

SNR (dB) 43.9 

DR (dB) 65.46 

READOUT TIME (ms) < 20ms 

SPECTRAL SENSITIVITY RANGE (nm) 425 - 700 

 

Table 12: Expected Mpixel Sensor Specifications 

 



130 
 

CHAPTER 9: CONCLUSION 

In this work, a highly-sensitive, global-shutter image sensor with on-chip memory, built 

in a 0.18um CMOS process with pinned photodiode is presented. The unique characteristics of 

the pixel design and the selected architecture ensure that it can operate at frame rates greater than 

200kfps even if it is expanded to a Mpixel sensor. 

The main contributions of this work are the following: 

 A unique pixel design with in-pixel CDS that limits the noise stored to the in-pixel 

memories to less than 0.33mV rms and allows the stored value to be read in a single 

readout. The capacitors used are MOSFET capacitors and therefore do not utilize any space 

in the upper metal layers that can be used exclusively for routing. Moreover, the in-pixel 

current sources for the source followers remove the dependency of the pixel output to its 

location in the sensor. These current sources can be switched OFF when not in use, and 

therefore the maximum current drawn by the sensor at any time is limited. The source 

followers are NMOS devices built in a twin well process for space efficiency, but at the 

same time they are designed to transfer the pixel values to memories fast, with 12-bit 

settling times less than 50ns even for a Mpixel sensor. The fill factor of the designed pixel 

is greater than 40%, which is important for high sensitivity. But also, the size of the pixel 

has been kept small, 15.1um x 15.1um, which is important for the expandability of the 

sensor. 

 A compact memory block design, 26um x 15.1um, that includes 16 low threshold voltage 

NMOS devices operating in strong inversion. Each memory has its own low leakage access 

device (1T1C design), and the common line has a reset switch so that the dependency on 
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previous readings is removed. Each memory block has its own source follower and current 

source that can be turned off when not in use. The source follower is designed in a twin 

well process for space efficiency, and sized to be able to transfer the stored memory values 

fast to the ADC. The total rms noise at the input of the ADC after the memory block 

operation is 0.33mV. 

 An architecture that allows frame rates higher than 200kfps even for a Mpixel sensor 

expansion, without reducing the sensitivity of the sensor. Memory blocks are placed 

outside of the pixel array so that the sensitivity of the sensor is not reduced. Fifty pixels 

share a line that connects them with their dedicated memory, and 6 metal layers are used 

to ensure that the sensor will not suffer from shading due to routing. 

 Complete sensor characterization for sensitivity, noise, linearity and nonuniformities 

performance. Moreover, a unique setup and methods for verifying the frame rate and 

exposure of the image sensor were presented. Using the same setup, the trigger response 

of the sensor can be tested. A method for testing the leakages of the sensor was also 

presented. The setups and methods for the testing of the sensor are well documented and 

can be replicated. 

 A proposed Mpixel expansion architecture. The architecture is based on the presented and 

tested image sensor. Methods to reduce the voltage drop due to leakage were discussed. 

 

The proposed design in this work has achieved its goal of designing and testing a highly-

sensitive, global-shutter CMOS image sensor with on-chip memory that can operate at frame 

rates greater than 200kfps for exposure times as low as 1us. This work can be the basis of a 

future work that will design and test a Mpixel image sensor operating at the same high frame 
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rates as the presented sensor, but it will also learn from the lessons learned in this work and 

achieve even better performance. The reduction of the voltage drops due to memory leakages 

using the methods presented in this work and the selection of an ADC with negligible input 

referred noise are the main tasks to be completed before moving forward. 
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