SACHIN P NAMBOODIRI

Las Vegas, Nevada - 89119 | sachinpnamboodiri@gmail.com | (484) 560-3265 | Webpage: Sachinpn

EDUCATION	
- PhD in Electrical Engineering	December 2020
University of Nevada, Las Vegas, USA with GPA of 3.9/4	
 Master of Science in Computer Engineering, 	December 2015
Villanova University, USA with GPA of 3.87/4	
 Bachelor of Technology in Electronics and Communication Engineering, 	May 2012
Amrita Vishwa Vidyapeetham University, India with GPA of 7.6/10	
TECHNICAL SKILLS	
EDA tools: Cadanca Virtuasa MadalSIM Viliny ISE Altara	

EDA tools: Cadence Virtuoso, ModelSIM, Xilinx ISE, Altera

HDLs: Verilog, VHDL

Packages/Simulation Tools: MATLAB, Spectre, NI Multisim, LTspice, Labview, and HFSS

Programming Languages: C/C++

Printed Circuit Board design and Layout tool: Eagle

Assembly level programming language: PIC, 8085, 8086

Architectures and Hardware: PIC16F877A microcontroller, W65C02 processor, NIOS II soft processor, USB protocol and architecture

EXPERIENCE

Research assistant, University of Nevada, Las Vegas

Geiger Mode SiGe Receiver for Long-Range Optical Communications (funded by NASA)

- Development of a novel high speed Geiger-mode integrated optical receiver for space based LiDAR missions
- Characterizing avalanche photodiode (APD) & silicon photomultiplier (SiPM) in TowerJazz 180nm SiGe BiCMOS process
- Implementation of current-mode Readout ICs (ROICs) for 500Mb/s count rate and 24µA 1.35mA input range
- Design of heterojunction bipolar transistor (HBT) based transimpendence amplifiers (TIA) and current conveyors
- Design of time to digital converters (TDC) with tunable resolution of 500ps to 700ps
- Testing and debugging in the lab that includes PCB design and lab equipment experiences

Research and Development, Villanova University

The design and implementation of multiple parallel integrated neural amplifiers in submicron CMOS using area-efficient pseudo resistors for RC filtering. (Done in collaboration with the University of Pennsylvania)

- This system focuses in developing brain computer interface (BCI) with sensing and actuation to drive prosthetic limbs
- Designed a low noise (7μV_{rms}), fully compensated neural front-end amplifiers (OTA) in IBM7RF 180nm process
- Developed an area efficient tunable pseudo resistor useful for low frequency filter applications
- Extensive testing was conducted on the fabricated OTA chips and validated the simulation results

Electrical Engineering Summer Intern, Florida Research Instruments, FL

Worked in the implementation of Non-Invasive Blood Pressure Analyzer circuit.

- Developed a new method for monitoring blood pressure using .tdms files and Labview
- Comparison of the results with the commercial Omron BP meter
- Designed experiments and reference documents to demonstrate in Labview
- Create lab lectures and discussion material of the same for the coursework Biomedical System Design(ECE5255) for Villanova University.

March 2017 – December 2020

August 2013 – December 2015

May 2014 - August 2014

Research Associate, Humanitarian Technology Labs, Amrita University, India

Worked in an IEEE funded project Intelligent Automatic Navigation System for Elderly and Physically Challenged.

- Implemented (LARN) Dijkstra's algorithm in MATLAB and analyzed the performances in both intel i3 and i5 processors
- Hardware testing and verification of the complete system to validate the intelligent navigation
- Worked as teaching assistant for Digital Design using verilogHDL (EC333)

PUBLICATIONS

- **Namboodiri, S. P.**, Arteaga, G., Skelly, J., Mata-carlos, F., Roy, A., and Baker, R. J., "A Current-Mode Photon Counting Circuit for Long-Range LiDAR Applications," in the proceedings of IEEE 63rd International Midwest Symposium on Circuits and Systems, August 9-12, 2020.
- Vinayaka, V., **Namboodiri, S. P.**, Roy, A., and Baker, R. J., "Segmented Digital SiPM," in the proceedings IEEE 62nd International Midwest Symposium on Circuits and Systems, August 4-7, 2019
- Mellott, J. K., Monahan, E., Vinayaka, V., **Namboodiri, S. P**., Roy, A., and Baker, R. J., "Variable Fast Transient Digitizer," in the proceedings of IEEE 62nd International Midwest Symposium on Circuits and Systems, August 4-7, 2019
- V. Vinayaka, **S. P. Namboodiri**, S. Abdalla, B. Kerstetter, F. Mata-carlos, D. Senda, J. Skelly, A. Roy, and R. J. Baker, "Monolithic 8x8 SiPM with 4-bit Current-Mode Flash ADC with Tunable Dynamic Range," in the Proceedings of GLSVLSI '19: 2019 Great Lakes Symposium on VLSI, May 9-11, 2019, Tysons Corner, VA, USA. ACM, New York, NY, USA
- S. P. Namboodiri, H. Zhu, L. Khuon, J. Van der Spiegel and R. Caverly, "Low Cutoff Frequency Integrated Neural Amplifiers Using Symmetrical Pseudo Resistors ", in the Proceedings of 42nd Annual Northeast Bioengineering Conference, Binghamton, NY, April 5-7, 2016.

ACADEMIC PROJECTS	
Design of delta-sigma KD1S ADC using ON's 500nm CMOS process	March 2018-May 2018
 First and second order delta-sigma modulators were designed and analyzed 	
- Incorporation of chopping techniques to achieve high signal to noise ratio (SNR)	
- SNR of 64dB and an ENOB 10.4 bits achieved for second order topology	
Voltage controlled Oscillator (VCO) using AMS's 350nm SiGe BiCMOS process	March 2018-May 2018
 Designed a cross-coupled LC oscillator 	
 Frequency range of 2.3GHz-2.5GHz achieved using varactor 	
- Phase noise of -123 dBc/\sqrt{Hz} at 100kHz frequency offset	
Transimpedence amplifier using AMS's 350nm SiGe BiCMOS process	March 2018-May 2018
- Designed a BiCMOS based TIA with a gain of 105dB and 150MHz Bandwidth	
 Incorporation of tuning circuits to vary the transimpedence gain 	
- Input referred noise of 5pA/Hz _{1/2} is achieved	
Low Voltage Operational amplifier using ON's 500nm CMOS process	March 2017-May2017
 Open loop gain of 80dB with a gain bandwidth product of 1MHz is achieved 	
 Designed with input CMR extending above VDD and ground rail 	
- Employed indirect compensation techniques to attain 90dB CMRR and 70 deg phase	margin
Synchronous Buck converter using ON's 500nm CMOS process	October 2016-December 2016
- Constant supply of 2.5V generated using off chip inductors and capacitors	
 Performance analyzed for voltage and temperature variations 	
 Incorporation of Zero Voltage Switching (ZVS) for better efficiency 	
32-bit Parity Generator in TSMC's 250nm CMOS process	January 2015-May 2015
- Design and analysis of XOR gate performance using different circuit topologies	
 Designed the complete circuit with minimal propagation delay and power 	
 Layout and extraction of the complete circuit 	