Stacking Power MOSFETs NMOS Configuration

By Kendrick De La Pena

Updated: 06/09/2014

Test 2

- NMOS Configuration
- MOSFET:
- STP8NM60
- Calculated Capacitance Values:
- 50pF, 100pF, 150pF, 200pF
- Max Voltage:
- 2500 V
- Changes:
- Replaced diodes with 10k Resistors
- Used Cgs and Cgd values according to datasheet instead of behavior model

Test 2 - Calculations

$$
\begin{array}{lll}
\text { Cgs } & =440 \mathrm{pF} & \begin{array}{l}
\mathrm{Vd} \\
\mathrm{Cgd}
\end{array} \\
& =10 \mathrm{pF} & =500 \mathrm{~V} \\
\mathrm{Vgs} & =20 \mathrm{~V} \\
\mathrm{Av} & =25
\end{array}
$$

To ensure the MOSFETs turn on, increase C2 to 50 pF

Test 2 - Simulation \& Values

*Values reflect components available

Test 2 - Chip

- Use same board as Test 1 Chip
- As a result, axial lead resistors and a radial lead capacitor were used to fit the previous spots

Test 2 - Setup

Test 2 - Sample 1 Results

- Vin $=500 \mathrm{~V}$
- Switching $=400 \mathrm{~V}$, or 80.0%
- Voltage Across (Difference):
- M1: 465 V (-45)
- M2: $343 \mathrm{~V}(-122)$
- M3: 236 V (-107)
- M4: 140 V (-96)
- M5: 49 V (-91)
- The waveform oscillates only from when switching to the high voltage
- The oscillation may be cause by the extra length from the lead resistors

Test 2 - Sample 2 Results

- Vin = 752 V
- Switching = 560 V , or 74.5%
- Voltage Across (Difference):
- M1: 700 V (-52)
- M2: $515 \mathrm{~V}(-185)$
- M3: 356 V (-159)
- M4: 216 V (-140)
- M5: 82 V (-134)
- The results follow suit of the previous sample
- The initial difference between Vin and M1 are larger than the last test

Test 2 - Sample 3 Results

- $\operatorname{Vin}=1.001 \mathrm{kV}$
- Switching $=660$ V, 65.5%
- Voltage Across (Difference):
- M1: 958 V (-43)
- M2: 698 V (-260)
- M3: 478 V (-220)
- M4: 292 V (-186)
- M5: 115 V (-177)
- As with the last test, the switching voltage got worse, but at a faster rate for this test

Test 2 - Conclusion

- Overall, resistors worked better than the diodes
- As mentioned, the additional length from the lead resistors caused a delay substantial enough to distort the wave
- The problem will be fixed by fabricating a new board with pads for resistors instead of diodes

