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Abstract — The goal of this research is to
review logic synthesis methods and techniques
that are available for different uses/mediums to
provide a background on some of the available
methods. The following sections will introduce and
review ESPRESSO, PALMINI, and
Quine-McCluskey methods of logic minimization,
as well as examine different takes on reversible
and scalable logic synthesis methods. The
presented methods will be described, examined,
and compared/contrasted among themselves to
convey optimal usage for each. This paper will
also analyze the future of logic synthesis and
introduce upcoming potential ideas that are
currently being researched and tested.

Index Terms — Logic Synthesis, PALMINI,
ESPRESSO, Quine-McCluskey, Scalable Logic
Minimization

I. INTRODUCTION

The age of technology has opened the doors to
an abundance of electronic/computer designs. It is
intuitive to assume that the application of each of
these designs may need to be described in different
terms/languages. Logic synthesis is the process of
automatic production of logic components, in
particular digital circuits, thus synthesizing a design
in terms of logic gates and components [1]. The
functionality of transforming code from HDL into a
netlist (a schematic, text file, ext.) that can present the
hardware through logic gates that are connected by
wires is a powerful tool that can allow for better
optimization and performance in many systems. It is
the means by which a register transfer level (RTL) of
a design can be transformed into a netlist/gate

specification [2]. Thus, efficient methods to do so
have been relevant for quite some time.

The concept of logic synthesis has been studied
for decades, and pioneering methods of minimization
have paved the way for new and improved ones to
come to light. The following sections of this paper
will introduce and examine different synthesis
methods and ideas, as well as compare/contrast them
to each other.

II.    ESPRESSO LOGIC MINIMIZATION

A heuristic logic synthesis tool that has been
studied with several different derivatives is called
ESPRESSO logic minimization. The ESPRESSO
algorithm provides a simple method to optimize
minimization through the use of binary encoding [3].
Furthermore, this method of synthesis provides an
efficient support system for a large number of inputs
and outputs, allowing for compatibility with a wide
range of electronic and computer designs [2].

The ideology behind the ESPRESSO logic
minimization method surrounds data coding,
specifically binary encoding that is proceeded by data
decoding after an algorithm of minimization is
performed. The main steps in this method are
expansion, irredundant covering, and reduction [2].
Expansion turns any implicits into prime implicits by
building onto its original form. The irredundant
covering phase then analyzes the prime implicits to
remove any that are redundant - thus, “covering”
those implicits that can be minimized and sorting
them out [3]. Moreover, the actual sorting is done in
the reduction phase. In this phase, the implicits are
given weights, with the heaviest weight being given
to the larger ones. These larger weights are then the
first to be sorted, as they are the most likely to be



overlapping another term [3]. This loop is iterated
until the initial input is minimized to its smallest
form, and it has a fairly high accuracy rate [3].

It is important to note that there have been
several different derivatives of the ESPRESSO logic
minimizers. This fast, two level minimization has
many different versions. The family includes notable
releases including the ESPRESSO-II, ESPRESSO
Signature, ESPRESSO-Exact, and ESPRESSO-MV
algorithms that have helped shape this heuristic
approach to minimization [2]. As assumed with the
title of it, this is an approximate method to
minimization. Though this algorithm allows for a
large number of variables, it comes at the cost of its
speed and accuracy [3]. For smaller inputs, the
method can usually accurately reach a minimal
solution fairly quickly, but the con associated with
having a larger input number, (100+), is a larger
delay time and therefore a larger runtime [3]. Though
this delay is introduced, it is not unreasonable for its
use in many scenarios that do not prioritize time. For
example, the algorithm was run with a
Sum-of-Products input that has 3172 terms (12741
literals), and the result was accurately displayed after
sixteen CPU seconds (in 1984) [4].

III.     PALMINI LOGIC MINIMIZATION

Like the ESPRESSO method discussed in
the previous section of this paper, the PALMINI logic
minimization technique is an approximate method for
synthesis. It should be noted that the PALMINI
minimizer was introduced in the 1980s - much of its
study was conducted decades ago [5]. Other methods
of logic synthesis have since come about that prove
to be more efficient in a variety of cases.
Nonetheless, it paved the way for other techniques
and shows importance in the history of logic
synthesis. Thus, the study of the methodology and its
implementation is presented and analyzed in this
section.

PALMINI relies on the concept of minimal
implicits. Moreover, the methodology of this
algorithm surrounds the creation of the “graph of
incompatibility of implicants” [6]. The
incompatibility was tested through the analysis of the
implicits - those with two or more differing minterms
were considered to be incompatible [6]. These

incompatible minterms were then used to solve the
graph coloring problem, where the nodes of the graph
correspond to minterms.

As mentioned previously, PALMINI
optimizes graph coloring to perform logic synthesis,
and it can do so in an exact way and in an
approximate way [5]. An example an approximate
methods graph of incompatibility of implicants is
illustrated in the graph of incompatibility of
implicants in Figure 1, where three colors are chosen.
The given function is:

y  = {x1, x2, x3, x4}={0000, 0011, 0100, 1111}

and thus the matching of the nodes creates the graph
shown [5].

Figure 1 - The Graph of Incompatibility of Implicants
for the Above Problem

Through color matching the minterms, the output will
correspond to:

y = {x1, x2, x3, x4}={0-00, -011,  11-1}

Thus, the original set has been minimized using the
PALMINI technique. Note that the dashes in the
output function represent don’t cares. Also note that
the lines on the graph correspond to different nodes
in the logic system.

The nodes on the graph can represent
different parts of the network, such as the minterms,
disjoint product implicants, minimum implicants or
minimal product implicants [5]. This can then be
denoted as SOP or POS format [5].



IV.     SCALABLE LOGIC SYNTHESIS

Scalable logic synthesis methods allow for a
set of logic data to be represented in a much larger
network. Thus, allowing for the “scalability” of the
data to a different size, which is especially useful in
current times when logic-based devices are constantly
changing and expanding. The following paragraphs
will analyze peephole optimization and Boolean
resubstitution as methods of scalability.

Peephole optimization presents a method of
scalability that surrounds looping through sectioned
parts of a logic network and examining patterns that
they may have [7]. This can be done using a sliding
window technique, which loops through different
parts of the netlist and analyzes the categories
dependendent on its movement. These components
can then be replaced as necessary to help with
optimization [8]. This is an exhaustive technique -
thus it will continue running as long as it still
assumes it has optimization left to do [7].

Boolean methods of logic synthesis
introduce many methods of optimization that have
been designed to be scalable. Boolean methods for
logic synthesis, in particular, are closely examined
because of their ability to provide very accurate
results (at the price of the system's monetary cost and
complexity) [9]. Furthermore, Boolean methods of
minimization can be costly because of their reliance
on full networks (including don’t-cares) - scalability
can minimize this cost because of its nature to work
with smaller pieces of networks rather than the entire
network [9].

Several methods of scalable Boolean
methods have been proposed, all based on the general
concept listed above. One example is the
resubstitution - the theory behind this method lies in
its transformative nature. This method surrounds
finding the Boolean difference between two nodes so
as to find commonalities that can lead to covered
terms [10]. Boolean resubstitution allows for a new
representation of a component in a logic network that
is based on existing components in the network.
These methods are distinguished by their number of
operators, denoted by k, which are tools that aid in
the remodeling of the logic network [7]. Thus,
minimizing the network in a way that is scalable to
larger systems.

Another AIG-based implementation uses a
resubstition algorithm to express the same network
with a smaller amount of nodes [11]. The algorithm is
written so as to analyze the original system to a
proposed better (smaller) system. If the system is
deemed better in terms of synthesis, it is the new
version of the system that the algorithm will compare
to. Figures 2a and 2b show this occurring. The first
figure of the two shows eight nodes. The second of
the two shows the system after it run through an AIG
resubstiution algorithm.

Figures 2a and 2b - Showing AIG resubstitution

It is clear that the new system has one less node than
the first - this occurred by covering the g and p node
with the f node [11]. The system is clearly better
minimized because it has less nodes.

Another method of scalable Boolean
simplification consists of an And-Inverter Graph
(AIG) optimization. This can make use of a waterfall
based model, as seen in Testas article [10]. Using this
model within this optimization tool guarantees that
once a successful move is shown, no other moves
will be tried. In this model, there is a tradeoff
between runtime and accuracy. Moreover, as the
system will run faster within this model, it may not



always pick the optimal quality of results.
Nonetheless, this particular study listed the waterfall
model as a “good tradeoff” between the speed and
quality of results for the application in question [10].
The methodology behind this gradient-based AIG
system is that it studies actions such as rewriting,
refactoring, and resubstituting and places a weight on
each action. Low weights (which are all but
rewriting) are looped through until the gain of the
network is greater than one. When the gain exceeds
one, the AIG engine enters the method. There is a
“cost budget” associated with the gradient that
decides the amount of actions that can be performed
(say, k iterations) [10]. Thus, the gradient-based AIG
method will loop through optimization steps until the
gain gradient is greater than one.

V.     REVERSIBLE LOGIC SYNTHESIS

Reversible logic synthesis revolves around
gates that have the same number of inputs and
outputs. With this type of logic synthesis, the 1:1
ratio of features creates the possibility of unused pins
- these are referred to as garbage [12]. It is integral to
the design of a reversible logic system that each of
the gates used within it is also reversible, so as to
keep the 1:1 (or k:k) ratio [12]. There are significant
reasons for the optimization of reversible logic, the
most clear of which relating to energy dissipation. In
fact, there is research suggesting that in order for
energy dissipation to not occur, the circuit must be
built from reversible gates [12]. The main goal in the
optimization of reversible logic synthesis is to
minimize the number of these garbage signals.

Much of the remodeling of circuits in
reversible logic applications surrounds making a k:n
ratio into a k:k ratio. This can be done through a
variety of methods. An approach of reversible logic
synthesis that focuses on not only reducing the
number of garbage signals, but also the total delay of
the system, was explored by Portland State
University researchers [12]. The methodology of the
method presented surrounds taking into consideration
arbitrary circuits. These circuits may or may not have
the one-to-one ratio that is necessary for reversible
circuits, so it is to be analyzed and remodeled (if
necessary) to a reversible layout [12].

Binary reversible gates present a method of
representing networks in a reversible manner. Since
there is only one classic gate - the NOT gate - that is
traditionally known as a one-to-one gate, methods for
representing the AND, OR, XOR, NAND, ect. gates
is integral creating basic logic networks.. Three well
known reversible gates are the Feynman gate (also
called the Controlled-Not (CNOT) gate), the Fredkin
gate, and the Toffoli gate (also called the 3:3
Feynman gate or Controlled-Controlled Not
(CCNOT) gate) [12]. It should be noted that the NOT
gate is integral to the design of networks - all of the
classic gates can be represented through an placement
of these reversible gates and NOT gates. Again, this
is due in part to the classic design of the NOT gate
having a 1:1 design, as it is already a reversible gate.

Starting with discussion on the Feynman
gate, this gate is a k:k logic tool that allows for
fanning out, as the P input takes the form of A and
the Q output takes the XOR of its two inputs.. To be
more specific, if inputs A and B are 0 and 1,
respectively, outputs P and Q are 1 and 1; if inputs A
and B are 1 and 1, respectively, outputs P and Q are 1
and 0 [12]. The truth table and a general block
diagram for this 2:2 implementation of the 2:2
Feynman gate is shown in Table 1 and in Figure 3
below.

Table 1 : Truth Table for the 2:2 Feynman Gate

Figure 3: Block Diagram of the Feynman 2:2
(CNOT) Gate



The Fredkin and Toffoli gates are standard
3:3 reversible gates. The logic behind the Fredkin
gate is simple - it just involves two multiplexers. The
[12] research describes this gate as a “permutation
gate” - it permutes the input data through the
multiplexers. The use of a control input aids the
system in making logic decisions, and this input is
also propogated though to an output of the gate [12].
The simplicity of the design of the gate allows for a
wider range of its usage. Similarly, the Toffoli gate
allows for two inputs to propagate through the gate
(thus, Fredkin is a one-through gate and Toffoli is a
two-through device). This allows for the change in
only one of the three inputs, which can be used in
designs in conjunction with the Fredkin (and NOT
gates) to create a wide range of networks, as they can
perform most logic functions in some capacity.

The truth table of the 3:3 Fredkin and
Toffoli gates are shown in tables 2a and 2b,
respectively. Note that there are inputs that are
identical to the outputs, as these are the ones that
“permutate” through the logic gate [12]. Also note
the similarities in the first five binary number inputs -
they produce the same outputs in both of the gates
given the same inputs (which again, could be used to
its advantage from the design perspective).

Tables 2a and 2b: Truth tables for the Fredkin (a)
and Toffoli (b) Gates

Thus, the two gates differ only by their 101,110, and
111 inputs. As shown by the table, the input/output
relationships for the Fredkin gate can be

characterized by the following three output equations
[13]:

P = A

Q = A’B + AC

R = AB + A’C

Similarly, the input/output relationships for the
Toffoli gate can be characterized by the following
three output equations [14] :

P = A’

Q = B’

R = C XOR B

Again, notice the passing of one input to output in the
Fredkin vs the passing of two inputs to output in the
Toffoli.

The use of these reversible logic gates is
powerful in the creation of remodeled circuits that
lack the dissipation of power. One important feature
that makes these gates useful is that they are their
own inverses (similar to the NOT gate), thus allowing
what is known as Forward and Backward Synthesis
modes [12]. This allows for the cascade of two of the
same gate to produce an identity function, which can
be useful in many logic processes. This is a process
that is specific to reversible logic gates (as opposed to
standard logic), making them all the more powerful
in the right instances [12].

VI.    SPECTRAL TECHNIQUES

Spectral methods allow for a logic synthesis
technique that allow for minimization in a different
space of representation. The authors of [2] relate this
to the Fourier transform - a way of working with
things in a different space. The spectral coefficients
can be used for this. The examination of the
autocorrelation coefficients in Boolean functions can
be used in the adaptation of a minimization technique
[16]. To do this, the network will be analyzed to
decide whether or not decomposition is possible with
this technique. Then, the spectral techniques are used
to search for related subfunctions [16].

An issue that was present in past decades
surrounded finding the spectra of larger logic



functions - methods were proposed that could
compute these spectra so that these methods could be
used [17]. Since Boolean functions can notoriously
have very large equations that describe them, a
transformation that minimizes its complexity is
necessary [16]. Many transform domains exist and
have been proposed - Walsh and Reed-Muller are the
most popular. Both techniques make use of matrix
multiplication to find the spectral data [17]. The
Walsh transformation, in particular, was proposed for
a variety of different spectral techniques. This
method takes the Walsh function, which is defined by
the following equation:

𝑊 =  − ∑ 𝑤𝑖 * 𝑥𝑖

where i is the bit position and x and w are the
function vectors [17]. Once this is computed, it can
be used to find the Walsh transform of a given
function f(x), where [17]:

𝑓(𝑤) =  ∑  [ 𝑊 * 𝑓(𝑥) ]

Once the information regarding the spectra
of the Boolean function is obtained, it is examined for
patterns. These patterns can surround the similarity,
difference, or logic-based analysis of the terms.
Additionally, don’t care values can be transformed
into a domain that can compare and minimize them.

VII.    QUINE-MCCLUSKEY EXTENSIONS

Quine-McCluskey minimization is an
exhaustive minimization technique that is well known
by most undergraduate electronics and computer
engineering students. However, the classic method
behind this technique does not suit digital circuits
very well - even simple ones such as adders and
parity checkers, due to the XOR gate [15].
Extensions to the way Quine-McClusky is typically
implemented, such as the inclusion of the XOR gate
and the application of reversible gates, can allow for
the method to be better suited to a wide range of
applications.

The inclusion of the XOR gate can allow for
the Quine-McCluskey method of minimization to be
implemented into a wider range of applications. As

described by Turton [15], a proposed technique for
this includes similar notation to that of what is
already used, allowing for simplicity in usage. The
idea behind this proposal surrounds the comparison
of two minterms in the minimization process. For the
case of four term minterms: if the comparison
between exactly two terms of the minterm are
identical, and the two terms that are different are
compliments of each other, then the XOR is present
in the function [15]. To illustrate this more clearly,
the following two minterms can be examined:

Minterm 1 = A’BCD’

Minterm 2 = A’BC’D

Notice that the first two terms in both of the minterms
are identical. This satisfies the first of the two criteria
for there to be an XOR present. The second two
terms are different, but only by compliments of each
other. Thus, both of the criteria are met and an XOR
can represent these two minterms.

Another extension on the Quine-McCluskey
algorithm surrounds reversible logic (see section of
paper on reversible logic synthesis). In this
application, the Quine-McCluskey algorithm is
executed, and then the common terms in the prime
implicants are found. Then, the number of terms that
can be covered is found, and the algorithm repeats
until none can be found. At this point, the XOR
operation is performed on the expression, ending the
algorithm. Not only does this method allow for its
implementation in reversible logic networks, but the
study also found that the speed and accuracy of the
method were improved in comparison to similar
methods [1].

VIII.   FUTURE OF LOGIC SYNTHESIS

The future of logic synthesis surrounds the
same idea that it did decades ago: finding the optimal
solution for logic networks. Recent times have
introduced many new ideas for logic synthesis. The
rapid advancement and seemingly ever-growing
nature of the semiconductor industry, the
advancement of system-on-chip integrated circuits



(SoC IC) has seen exponential growth [18]. The chips
on these systems are generally designed to be very
small - so as to not take up much area on the device it
is attached to (say, a cell phone). This leads to the
observation that the optimal logic performance is
absolutely necessary. The authors of [18] have
created a method called Progressive Automated
Logic Synthesis (PALS) that is specifically designed
for these very small chips [18]. In general, much of
the future of logic synthesis will revolve around
methods to enhance the semiconductor industry that
deals with small real estates.

Another new method for logic synthesis,
presented in January, 2022, surrounds the idea of
approximating logic synthesis using Boolean Matrix
Factorization [19]. This done through an algorithm
that approximates the input circuit. The proposed
method took into account scalability, versatility, and
optimal runtime. It does not, however, account for
reversibility, so it cannot be used in reversible logic
circuits. All in all, this is a method that is designed
for hardware metrics that have an unstrict
requirement on a full range of accuracy [19]. This
offers another option for designs that can list
accuracy as a design tradeoff.

IX.     CONCLUSION

This paper has reviewed and analyzed
several different logic synthesis techniques.
ESPRESSO, PALMINI, and Quine Mccluskey
methods were explored, as well as methods relating
to reversible and spectral logic techniques. The
general/practical uses of the techniques were
discussed, and the optimal applications were
references.
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