

MONITORED COMPRESSION THERAPY: USING SMART TECHNOLOGY TO OPTIMIZE

THE TREATMENT OF LOWER EXTREMITY SWELLING

By

James Skelly

Bachelor of Science in Electrical Engineering

University of Nevada, Las Vegas

2020

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Engineering – Electrical Engineering

Department of Electrical and Computer Engineering

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

December 2021

©Copyright 2022 by James Skelly

All Rights Reserved

ii

Thesis Approval

The Graduate College
The University of Nevada, Las Vegas

November 5, 2021

This thesis prepared by

James Skelly

entitled

Monitored Compression Therapy: Using Smart Technology to Optimize the Treatment of
Lower Extremity Swelling

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Engineering – Electrical Engineering
Department of Electrical and Computer Engineering

R. Jacob Baker, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Vice Provost for Graduate Education &

 Dean of the Graduate College
Sarah Harris, Ph.D.
Examination Committee Member

Brendan Morris, Ph.D.
Examination Committee Member

Dustin Hines, Ph.D.
Graduate College Faculty Representative

iii

ABSTRACT

Chronic Venous Insufficiency (CVI) and Venous Stasis Ulcers (VSUs) are symptoms

which stem from diabetes – a disease effecting over 34 million people in the United States alone

as of 2020. This Thesis details the design of a pressure-sensing garment used to enhance the

treatment of CVI. The garment uses small force sensors (four levels: the insole of the foot, the

lower leg, the lower calf, and the upper calf) to sense the pressure applied by a compression

stocking. The sensed data is transmitted wirelessly via Bluetooth to a smartphone application that

was developed to display the data and interface with the electronics. The data is displayed on the

smartphone application and can be monitored by the patient and/or nurse to ensure that the proper

pressure gradient is applied to the leg. The gradient starts at around 30-50 mmHg at the foot and

decreases linearly to about 6 mmHg just below the knee. The proper application of this pressure

gradient best promotes blood flow and is predicted by medical experts to potentially cut healing

time for VSUs from 6 months to as little as just 60 days.

iv

ACKNOWLEDGMENTS

 First and foremost, I would like to thank my parents Kami and Jim Skelly, who have spent

countless dollars supporting and feeding me, countless hours encouraging and praying for me, and

nearly twenty-four years believing in me. Without your endless support and guidance, I would be

nowhere near where I am today physically, academically, professionally, or spiritually. I would

also like to thank my brother, Ryan Skelly, for keeping me young and for being an extra voice of

reason when I get into heated sports debates with my dad and uncle. Mom, dad, and Ryan, I love

you.

 I would like to thank Dr. Baker for the wide variety of opportunities I have been provided

in my nearly 4 years in his research group. Dr. Baker has been a role model for me as an engineer

and an educator ever since I first took his Circuits I course in the spring of 2017. His passion for

teaching, and his mastery of the subject matter which he teaches, have inspired me to challenge

myself to be the best engineer that I can be–to never fear testing out ideas I may have, to embrace

opportunities when they come my way, and to seek and value knowledge and gained experience

in all my engineering-related endeavors. I would also like to thank Dr. Harris for always going

above and beyond to help me both inside and outside of the classroom. Dr. Harris has a special,

kind heart and puts her students at the top of her enormous and impressive list of priorities.

 I would like to thank the rest of my advisory committee for being a part of this defense and

for their time and investment in my education – Dr. Brendan Morris and Dr. Dustin Hines. A

special thanks to Dr. Morris for always being available to answer questions I may have had about

a class I was taking, or about the future of my education and career. I would also like to thank Dr.

Todd Meyrath for the enormous impact he has had on my education in electrical engineering, and

for the practical experience I gained working for him at Vorpal. Todd has also been incredibly

v

helpful in the process of applications for PhD programs and has offered priceless career advice to

me in exchange for nothing.

 A special thanks to my colleague and friend Francisco Mata. Francisco and I have worked

as partners tirelessly on countless projects. I could not be more grateful to have worked in the same

research group as someone with such impeccable work ethic. Francisco doesn’t leave until the job

is done, and he only knows how to give 100% effort in everything he does. His effort and his desire

to learn are contagious and have rubbed off on me, both in academia and elsewhere. I would also

like to thank Dr. Sachin Namboodiri from the bottom of my heart for never even hesitating to drop

what he is doing to help me with a project, an assignment, or a question I may have had about any

number of things. Sachin has had an immeasurable impact on my education, and I could never

thank him enough for his efforts. Another special thanks to Daniel Senda for being a great

colleague and a great friend. Daniel taught me how to solder surface mount components, helped

me with my consulting work, and has been a great study partner throughout several courses we

have taken together. I would like to thank Jazmine Boloor for her friendship and constant

encouragement throughout my time in this group. Jazmine always provides me with helpful

feedback on projects, presentations, and emails, and she even let me use half of her shelving at her

desk to store parts for my projects for at least a year and a half. Lastly, I would like to thank the

rest of the past and present members of the Baker group for guidance, support, and friendship

throughout my time in the group.

vi

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS ... iv

TABLE OF CONTENTS .. vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS/ACRONYMS ... xiii

LIST OF CONVERSION FACTORS ... xv

CHAPTER 1: INTRODUCTION .. 1

1.1 THE PROBLEM ... 1

1.2 THE PROPOSED SOLUTION ... 5

CHAPTER 2: SYSTEM DESIGN OVERVIEW ... 6

2.1 PROTOTYPE BUILD .. 6

2.2 TESTING AND RESULTS .. 10

2.3 FROM SENSOR TO SMARTPHONE ... 14

2.4 CHAPTER 2 SUMMARY .. 16

CHAPTER 3: SENSING .. 17

3.1 SENSING FORCE .. 17

3.2 AMPLIFYING THE SENSOR OUTPUT VOLTAGE ... 20

3.3 FORCE SENSOR CANDIDATES ... 22

vii

3.4 FORCE SENSOR/AMPLIFIER CIRCUIT BOARD DESIGN ... 26

3.5 FORCE SENSOR HOUSING MECHANISM .. 28

3.6 CHAPTER 3 SUMMARY .. 29

CHAPTER 4: DATA PROCESSING ... 30

4.1 THE MICROCONTROLLER (PIC18LF26K22) .. 30

4.1.1 THE ADC (ANALOG-TO-DIGITAL CONVERTER) ... 30

4.1.2 DATA PROCESSING .. 34

4.1.3 UART COMMUNICATION .. 39

4.1.4 HARDWARE IMPLEMENTATION ... 42

4.2 THE BLUETOOTH MODULE .. 44

4.2.1 CONFIGURATION WITH AT-COMMANDS .. 45

4.2.2 DATA TRANSMISSION AND RECEPTION ... 48

4.3 CHAPTER 4 SUMMARY .. 51

CHAPTER 5: THE SMARTPHONE APPLICATION... 52

5.1 INTERFACE AND LAYOUT .. 52

5.2 RECEIVING AND DISPLAYING DATA ... 56

5.3 CHAPTER 5 SUMMARY .. 63

CHAPTER 6: POWERING THE SYSTEM .. 64

6.1 POWER SOURCE .. 64

6.2 VOLTAGE REGULATION ... 65

6.3 POWER CONSUMPTION AND BATTERY LIFE ... 67

viii

6.4 CHAPTER 6 SUMMARY .. 73

CHAPTER 7: FUTURE WORK AND CONCLUSION ... 74

7.1 FUTURE WORK AND IMPROVEMENTS .. 74

7.1.1 MAIN MCU/BLE CIRCUIT ... 74

7.1.2 SENSOR/AMPLIFIER CIRCUIT AND SENSING MECHANISM 78

7.1.3 SOFTWARE ... 80

7.1.4 POWER AND BATTERY LIFE ... 81

7.1.5 OTHER IMPROVEMENTS ... 83

7.2 CONCLUDING REMARKS .. 86

APPENDIX A: SCHEMATICS ... 88

APPENDIX B: SINGLE UNIT COST BREAKDOWN .. 90

APPENDIX C: MASS PRODUCTION (1000+) UNIT COST BREAKDOWN 91

APPENDIX D: MICROCONTROLLER (C LANGUAGE) SOURCE CODE 92

APPENDIX E: MIT APP INVENTOR BLOCKS VIEW ... 98

REFERENCES .. 99

CURRICULUM VITAE ... 102

ix

LIST OF TABLES

Table 2.1 List of Parts for Prototype Build... 9

Table 2.2 Test Data Results Analysis and Error Metrics.. 13

Table 6.1 Current Draw Distribution for Major System Components 68

Table 6.2 Buck-Boost Efficiency for Constant 16.2 mA Load, Input Voltage Swept 72

Table 7.1 Imperial SMD Package Types and Dimensions ... 75

Table 7.2 Changes in LSB Voltage with Different ADC Resolutions, VDD = 3.3V 76

Table 7.3 List of BLE Modules, Typical On-Currents, and Cost ... 83

Table B.1 Cost Breakdown by Part for One Single Unit .. 90

Table C.1 Cost Breakdown by Part for One Single Unit in Mass Production 91

x

LIST OF FIGURES

Figure 1.1 Illustration of Compression Assisting a Varicose Vein [4] 1

Figure 1.2 20 Year Obesity Trends in the USA [3].. 2

Figure 1.3 Compression Gradient for Best Promotion of Blood Flow [4] 3

Figure 2.1 Compression Sensing Garment, Prototype Rev. 1 .. 6

Figure 2.2 Mechanical Pressure Gauge and Smartphone Interface for Pressure Readings 11

Figure 2.3 Pressure Comparison Test Results for Each Sensor Level on Prototype Build 12

Figure 2.4 Block Diagram Overview of System .. 15

Figure 3.1 The Wheatstone Bridge Circuit .. 17

Figure 3.2 Force Sensor Diaphragm Deformation for Force Sensing [8] 18

Figure 3.3 Wheatstone Bridge Circuit with External Amplifier Connected 20

Figure 3.4 Ideal Force vs. Voltage Plot with Zero Bias, Gain of 100, VDD = 3.3V 21

Figure 3.5 Comparison of Size, Force Application Between Sensors [8],[9] 23

Figure 3.6 Model and Dimensions of HSFPAR003A [8] .. 24

Figure 3.7 Model and Dimensions (in mm) of HSFPAR303A [9] .. 25

Figure 3.8 Force Sensor/Amplifier Circuit Schematic from DipTrace 26

Figure 3.9 Force Sensor/Amplifier Board Version 1 (Right) and 3D Model (Left) 27

Figure 3.10 Force Sensor Housing Mechanism 3D Model, Hidden Lines Showing 28

Figure 4.1 Visual Representation of Analog-to-Digital Conversion and the LSB Voltage 31

Figure 4.2 Data Processing Sequence .. 34

Figure 4.3 Conditional Statement to Take Care of Bias Voltage ... 36

Figure 4.4 Function to Calculate Force Applied from Sensed Voltage 37

Figure 4.5 Function to Calculate Pressure from Applied Force ... 39

file:///C:/Users/james/OneDrive/Desktop/Fall%202021/Thesis/Paper/Files/Final/J_Skelly_Thesis_Final_Formatted.docx%23_Toc88231823
file:///C:/Users/james/OneDrive/Desktop/Fall%202021/Thesis/Paper/Files/Final/J_Skelly_Thesis_Final_Formatted.docx%23_Toc88231824
file:///C:/Users/james/OneDrive/Desktop/Fall%202021/Thesis/Paper/Files/Final/J_Skelly_Thesis_Final_Formatted.docx%23_Toc88231826

xi

Figure 4.6 Illustration of UART Connection Between MCU and BLE Module 40

Figure 4.7 UART Initialization Function ... 41

Figure 4.8 Complete Task Function, Completes Task According to Received Character 42

Figure 4.9 Main MCU/BLE Printed Circuit Board 3D Model... 43

Figure 4.10 HM-10 Bluetooth Low Energy Module and Pinout [6] .. 44

Figure 4.11 HM-11 Bluetooth Low Energy Module and Pinout [6] .. 45

Figure 4.12 AT Commands Syntax for Configuring Bluetooth Module 46

Figure 4.13 AT Commands Acknowledgement Message Format ... 47

Figure 4.14 Visual Diagram of Serial and Wireless Communication .. 48

Figure 4.15 Example of FSK Signals for Transmitting “1” or “0” .. 49

Figure 5.1 Smartphone App Home Screen and Technician Mode Screen, Designer View 52

Figure 5.2 BACK Button Logic from Technician Screen, Blocks View 53

Figure 5.3 Home Screen Breakdown by Section (Left – Disconnected, Right – Connected) . 54

Figure 5.4 Connecting to a Device Using CONNECT Button and Device List 55

Figure 5.5 Character Array Variable Declarations for Data Labels ... 57

Figure 6.1 3.7V, 380mAh Li-Po Rechargeable Battery ... 64

Figure 6.2 Drainage of 3.7V Li-Po 380mAh Battery Over Time, ILOAD = 50mA 65

Figure 6.3 4-Switch Mode Operation for LTC3531 Buck-Boost Regulators [7] 66

Figure 6.4 Efficiency vs. VIN for LTC3531 Buck-Boost SPS [7], ILOAD = 100 mA 67

Figure 6.5 Efficiency vs. Load Current for Different Input Voltages LTC3531 [7] 69

Figure 6.6 Battery Current Out vs. Battery Voltage, ILOAD = 16.2 mA.................................... 71

Figure 7.1 Pie Chart of Current Draw Distribution by System Component 82

Figure 7.2 Schematic Snippet Showing Unused ADC Input Channel Pins on MCU 85

xii

Figure A.1 Main MCU/BLE PCB Schematic ... 88

Figure A.2 Force Sensor/Amplifier PCB Schematic .. 89

Figure D.1 MCU C Code for Data Reception, Processing, Transmission 97

Figure E.1 Blocks View for Home Screen Design, MIT App Inventor 98

xiii

LIST OF ABBREVIATIONS/ACRONYMS

ADC Analog-to-Digital Converter

ASCII American Standard Code for Information Interchange

BLE Bluetooth Low Energy

BOM Bill of Materials

CVI Chronic Venous Insufficiency

DAC Digital-to-Analog Converter

DC Direct Current

DIP Dual In-line Package

EMI Electromagnetic Interference

EUSART Enhanced USART

FHSS Frequency-Hopping Spread Spectrum

FM Frequency Modulation

FSK Frequency-Shift Keying

FSR Force Sensing Resistor

FVR Fixed Voltage Reference

GPIO General Purpose Input/Output

GUI Graphical User Interface

IC Integrated Circuit

IDE Integrated Development Environment

LED Light Emitting Diode

LSB Least Significant Bit

MCU Microcontroller Unit

xiv

MD Doctor of Medicine

MIT Massachusetts Institute of Technology

NC Not Connected

PC Personal Computer

PCB Printed Circuit Board

RN Registered Nurse

SBC Single Board Computer

SMD Surface Mount Device

SMT Surface Mount Technology

SOC System-on-Chip

SOIC Small-Outline IC

SPI Serial Peripheral Interface

SPS Switching Power Supply

SSOP Shrink Small-Outline Package

TSSOP Thin-Shrink Small-Outline Package

UART Universal Asynchronous Receiver and Transmitter

UMC University Medical Center

USART Universal Synchronous/Asynchronous Receiver and Transmitter

USB Universal Serial Bus

VSU Venous Stasis Ulcer

xv

LIST OF CONVERSION FACTORS

CURRENT

1000 mA = 1 A

1000 µA = 1 mA

VOLTAGE

1000 mV = 1 V

1000 µV = 1 mV

RESISTANCE

1000 Ω = 1 kΩ

1000000 Ω = 1 MEGΩ

PRESSURE

7500.62 mmHg = 1 N/mm2

DATA

8 bits = 1 bytes

210 bytes = 1 kilobytes (KB)

220 bytes = 1 megabytes (MB)

230 bytes = 1 gigabytes (GB)

1

CHAPTER 1: INTRODUCTION

1.1 THE PROBLEM

 Venous stasis disease effects as many as 20 million people in the United States alone every

year [4], and of those 20 million around 2.5 million (1 out of every 8) suffer from Venous Stasis

Ulcers (VSUs). The ulcer itself is typically a red rash of irritated skin which eventually develops

into a painful open wound. Some VSUs are treated with leg elevation and compression therapy

(see Fig. 1.1 below), while in severe cases, surgery is necessary. Though any of these methods

could be used on a case-by-case basis, compression therapy is the standard of care in the United

States healthcare system. Compression therapy works because the compression of the fatty layer

of skin on the patient’s leg pushes the blood that has pooled up in artificial veins back into the

deep venous system. Once blood is back into the deep venous system, it has no problem flowing

back to the heart. Even after ulcers have healed, medical professionals recommend lifelong

maintenance of compression therapy, which has proven to reduce to the risk of the recurrence of

ulceration. The area most affected by venous skin ulcers is the lower leg, from the top of the foot

to the middle of the shin, though the entire lower leg from below the knee to the foot is susceptible.

Figure 1.1 Illustration of Compression Assisting a Varicose Vein [4]

2

 Venous stasis disease is also commonly known as chronic venous insufficiency, or CVI.

Per Cleveland Clinical medical professionals, “chronic venous insufficiency (CVI) is a condition

that occurs when the venous wall and/or valves in the leg veins are not working effectively, making

it difficult for blood to return to the heart from the legs. CVI causes blood to ‘pool’ or collect in

these veins, and this pooling is called stasis,” [1]. Figure 1.1 above shows what a normal vein

looks like while it conducts the flow of blood back to the heart, alongside a varicose or enlarged

vein with abnormal blood flow and pooling. As Dr. Debra Jaliman puts it in her article regarding

varicose veins, “any condition that puts excessive pressure on the legs or abdomen can lead to

varicose veins. The most common pressure inducers are pregnancy, obesity, and standing for long

periods,” [2].

Figure 1.2 20 Year Obesity Trends in the USA [3]

 Shockingly, according to data collected in July of 2020 [3], over two-thirds (about 69%)

of adults in the United States are considered overweight. That translates to over 225 million adults

in the US alone that are overweight or obese. Of the overweight portion of the population, over

3

52% are considered obese. That means 36.5% of the US adult population is considered obese, or

more than 1 in every 3 adults. Of the younger population in the US, more than 12.7 million children

ages 2 to 19 are obese, or 17% of American children. Aside from the physical difficulties obesity

poses, people who are obese have a greatly increased risk for a variety of chronic diseases and

other health complications, including diabetes and, of course, venous stasis (or CVI). The plot of

the obesity trends in the United States from 1996 through 2016 is shown on the previous page in

Fig. 1.2. A brief analysis of the overall trend of the country (pink trace) is quite convincing that

the problem of obesity in the country does not seem to be vanishing any time in the near future.

Since CVI and diabetes are directly linked to obesity, it is safe to say they are here to stay for a

while as well.

Figure 1.3 Compression Gradient for Best Promotion of Blood Flow [4]

While health officials and experts continue to promote good health and attempt to reverse

the trends of Fig. 1.2, medical experts are consumed with the issue of treatment and prevention of

the resulting physical complications. As mentioned previously, compression therapy is the

standard of care for VSUs. Again, compression therapy pushes the blood that has pooled up in

4

spider or varicose veins back into the deep venous system so that it can properly flow back to the

heart. The fastest healing times for VSUs are achieved when an increasing gradient of pressure is

applied to the patient’s leg, with the lowest pressure at the knee and the highest pressure at the

foot, as seen in Fig. 1.3 above. The highest pressures, applied at the ankle and foot area, should

nominally be between 30-50 mmHg and decrease linearly down to around 6 mmHg just below the

knee [4]. Medical experts predict that the application of such a gradient could decrease the time

required for ulcers to heal from up to 6 months down to as little as 60 days, while also assisting in

the prevention of recurrence.

Though this method of applying a linear pressure gradient works very well in promoting

the best blood flow, applying a known amount of absolute pressure to the leg, or to anything for

that matter, is not such a trivial task. Modern treatment consists of the application of passive wraps

and compression sleeves to the patient’s leg with no knowledge of exactly how much pressure is

being applied to the leg. Though this is the standard of treatment, “no study has shown that

application of wrapped compression garments can obtain specific pressures with accuracy or

precision, and none have shown that those providers applying bandages can reliably adjust for

specific situations,” [4]. A pilot study conducted at UMC proved this delivery of inaccurate levels

of pressure. Results of the study showed that registered nurses (RNs) and residents both applied

high pressures (often above 100 mmHg) when applying passive bandages and wraps. Some RNs

practice placing their own finger under the wrap to assure they do not apply too much pressure,

and ironically these same RNs overtightened even more often, while also neglecting to apply any

sort of gradient. The overpressure application results in longer healing time, as the high pressure

applied does not allow blood to flow back to the heart as it should. The RNs themselves were

5

stunned by the results, making such comments as, “I can’t believe I’ve been doing this incorrectly

for so long,” [4].

1.2 THE PROPOSED SOLUTION

 From section 1.1, knowledge of the pressure being applied to the leg is desired, if not

essential, to the effective treatment and prevention of VSUs. The proposed solution to the problem

is a thin pressure-sensing garment to go underneath a compression sleeve or wrap to sense the

amount of pressure being applied to the leg by the wrap. Since the pressure sensors directly contact

the skin, the pressure applied to the sensors is theoretically near equal to the pressure applied to

the leg itself, with the difference in the actual and measured pressures being negligible. The sensing

device optimally has sensors at four levels: the upper calf, the lower calf, the lower leg, and the

insole of the foot. Pressure sensors at different levels allows for the assurance of the application of

the correct gradient. The sensed pressure values are processed by a microcontroller and transmitted

wirelessly to a smartphone via Bluetooth, and the data is viewable on a smartphone application.

The smartphone application can also be used to send commands to the microcontroller and request

different data that is not displayed on the home screen of the application. The chapters to follow

detail the design of a power-efficient fully functional prototype of the proposed solution which is

capable of accurately sensing pressure applied to a patient’s leg with a maximum error of around

5 mmHg, a typical error of around 2.5 mmHg, and lasting roughly 8 hours running continuously

on a single battery charge.

6

CHAPTER 2: SYSTEM DESIGN OVERVIEW

2.1 PROTOTYPE BUILD

 The prototype of the proposed solution which was built is displayed in the image below in

Fig. 2.1. The prototype has sensors at the upper calf, lower calf, and lower leg, but excludes the

sensor at the insole of the foot, since the Velcro calf sleeve does not cover the foot. The entire

system is powered by a 3.7V, 380mAh Lithium-Polymer rechargeable battery that can power the

system for about 4 hours. The main circuit board contains power regulation circuitry to regulate

the battery voltage to 3.3V to power the microcontroller and the Bluetooth module with 3.3V DC.

There are 3 wires routed from the main board to each of the sensing devices for a total of 9 wires.

The red wires are 3.3V power to the sensors and amplifiers on the sensing devices. The black wires

are the circuit ground. The yellow wires connect the output of each sensing device to the

microcontroller’s on-chip ADC input channels for data conversion and processing.

Figure 2.1 Compression Sensing Garment, Prototype Rev. 1

7

The table below provides a bill of materials (BOM) or parts list for the prototype build

described previously. The part pictures are not to scale. Part dimensions are discussed later in the

chapters concerning these parts.

PART DESCRIPTION PART PICTURE QUANTITY

MAIN MCU/BLE PCB

1

Consists of the regulator circuit, the MCU, the

Bluetooth module, programming pins, and connections
out to each of the sensor/amplifier boards.

(Microcontroller Unit – MCU)

HM-10 BLUETOOTH LOW ENERGY MODULE

1

Receives serial data from the MCU and transmits that

data wirelessly to the phone. (Bluetooth Low Energy –

BLE)

BLUETOOTH STATUS LED 0805 (BLUE)

1

Indicates Bluetooth connection status.

(Blink – Disconnected | Solid – Connected)

LTC3531-3.3 BUCK-BOOST REGULATOR IC

1

Regulates VDD at 3.3V from battery voltage.

LFT4022T-100M-D 10µH INDUCTOR

1

Used for energy storage in the buck-boost voltage

regulator circuit.

PIC18LF26K22 MICROCONTROLLER

1

Processes all data and all user commands, transmits

requested data to the BLE module.

PASSIVES: CAPACITOR 0603, VALUES VARY

7

Various capacitors used for decoupling at the

microcontroller and regulator ICs.

8

PASSIVES: RESISTOR 0402, VALUES VARY

8

Various resistors used for current limiting and gain

setting of the amplifier.

TENERGY 3.7V 380MAH LIPO BATTERY

1

Powers all the electronics in the system, lasts for about

4-5 hours in the prototype setup and is rechargeable.

2 X 100 MIL RIGHT ANGLE MALE HEADER

1

Mounted to the main control board for easy connection

to the battery’s power and ground wires through the

connector.

COPPER WIRE, RED, STRANDED

3

Connects 3.3V VDD from the main control board to

each of the sensor/amplifier boards to power the
sensors and amplifiers.

COPPER WIRE, BLACK, STRANDED

3

Connects ground of the sensor/amplifier boards to the

ground of the main control board.

COPPER WIRE, YELLOW, STRANDED

3

Connects the amplified output of the sensor/amplifier

board to its ADC input channel on the microcontroller

board.

SENSOR/AMPLIFIER PCB

3

Consists of the force sensor, amplifier, and a number of

passives. Circuit is used to sense an applied force and

amplify the signal prior to ADC conversion. Also

contains through holes around the rim for soldering the
base of the pogo pins.

9

SENSOR MECHANISM HOUSING PCB

3

Consists of holes for soldering the tops of the pogo

pins and one centralized pad for the turret to be

soldered to. No copper pours or traces are on this

board, is simply for mechanical stability while sensing.

TERM TURRET SINGLE L=1.79MM

3

Makes physical contact with the force sensor actuator,

assuring that force is not applied at a damaging angle.

HSFPAR303A FORCE SENSOR

3

Force sensor which outputs a linear voltage difference

for linear changes in force applied to the actuator.

Output signal amplitude is small and needs to be

amplified.

MAX4208 INSTRUMENTATION AMPLIFIER

3

Very low offset instrumentation amplifier with settable

gain, used to amplify the sensor output voltages prior

to ADC conversion on the MCU.

GOLD-PLATED COPPER POGO PIN CONN.

9

Connected between the sensor/amplifier PCB and the

mechanism housing PCB to provide spring action

between the two boards. Assures no pressure reading
when no pressure is being applied.

VIVE LOWER LEG COMPRESSION WRAP

1

Holds the battery, the main board, and all the sensor

boards using Velcro for position adjustability. Velcro
straps at three levels for tightening and loosening on

the patient’s leg.

Table 2.1 List of Parts for Prototype Build

10

 The prototype build is only used for testing the operation of the sensors and proof of

concept for the final build. Chapter 7 extensively discusses the tradeoff decisions and

improvements that could be made at each different stage of the system. However, it is important

here to introduce a few key improvements that need to be made in order for the design to effectively

solve the problem posed in section 1.1. First, medical professionals prefer for there to be foot

coverage since the highest pressures need to be applied to the top of the foot and ankle area [4].

The prototype build does not cover the foot. Simply adding another sensing mechanism and three

more wires from the main board poses no difficulty, but the garment itself needs to be improved

to cover the foot while still being adjustable in size (cannot be a sock for compliance reasons).

Next, the sensing mechanism needs to be designed smaller; both the height and the diameter need

to decrease significantly. In order for the pressure to be properly sensed, the height of the sensing

device should be minimized. The area of the PCB should also be minimized for the sake of the

patient’s comfort and compliance. Other key improvements are related to device aesthetics, such

as hiding the battery and wired connections, or at least making them less noticeable or visible.

2.2 TESTING AND RESULTS

Though plenty of improvements are necessary for the production of an effective, market-

ready device, preliminary testing shows the prototype build performs well against a blood pressure

cuff for measurement comparison. The blood pressure cuff used is a Greater Goods

Sphygmomanometer Manual Blood Pressure Monitor Kit which uses a hand pump to both

pressurize the cuff and read the pressure back to the user in units of mmHg. Since the prototype is

designed to also read pressure in units of mmHg, the pressure measurement of the hand pump

gauge can be directly compared to the pressure measurement of the prototype which is displayed

https://careorganix.com/products/greater-goods-sphygmomanometer-manual-blood-pressure-monitor-kit-includes-travel-case-bulb-cuff-for-upper-arm-clinical-accuracy?variant=37417945890994¤cy=USD&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic&gclid=CjwKCAjwzOqKBhAWEiwArQGwaIbt6TsbTpPT57aEbciJHEGJUypUqOJgnKFKkbZ-Py-nqvoRGyYrPBoCka8QAvD_BwE
https://careorganix.com/products/greater-goods-sphygmomanometer-manual-blood-pressure-monitor-kit-includes-travel-case-bulb-cuff-for-upper-arm-clinical-accuracy?variant=37417945890994¤cy=USD&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic&gclid=CjwKCAjwzOqKBhAWEiwArQGwaIbt6TsbTpPT57aEbciJHEGJUypUqOJgnKFKkbZ-Py-nqvoRGyYrPBoCka8QAvD_BwE

11

on the smartphone application home screen once the device is connected to the phone via

Bluetooth. To perform the pressure comparison tests, the prototype sleeve was wrapped loosely

around a human leg, and the blood pressure cuff was wrapped snug around the leg as well, on top

of the prototype sleeve and covering just one sensor at a time. Three separate plots were generated

(one for each sensing mechanism) comparing the pressure read by the gauge with the pressure

displayed on the smartphone application. The left side of Fig. 2.2 below shows the mechanical

pressure gauge from the sphygmomanometer and the right side of the figure shows the smartphone

with pressure values ready to be sensed.

Figure 2.2 Mechanical Pressure Gauge and Smartphone Interface for Pressure Readings

The data was obtained visually and noted in an excel file at 2 mmHg decrements starting

at an initial pressure of 40 mmHg and letting air out little by little to decrease the pressure applied.

12

A best fit line (red) was generated using least squares fit of the data coming from the smartphone

display for each sensor. The following plots were obtained:

Figure 2.3 Pressure Comparison Test Results for Each Sensor Level on Prototype Build

13

In the plots above, the blue data points represent the reading on the pressure gauge, and the orange

data points represent the reading on the smartphone display from the prototype. The pressure gauge

readings (blue data points y-value) are always equal to reference pressure value (ticks on the x-

axis) because the point at which the pressure reading from the smartphone is noted is directly

dependent upon the pressure reading on the gauge in multiples of 2 mmHg. Thus, the gauge

pressure is literally the reference pressure (line with a slope of 1, y = x), and the testing is used to

check just how close or “accurate” the prototype pressure reading is to the gauge pressure readings

over a span of about 40 mmHg, the sensing range of interest for treating VSUs.

SENSOR LEVEL BEST FIT SLOPE AVERAGE ERROR IN-SAMPLE ERROR

Upper Calf 0.9676 + 5.0 mmHg 25.1 mmHg

Lower Calf 0.9146 + 2.5 mmHg 7.3 mmHg

Lower Leg 0.8325 – 0.2 mmHg 3.1 mmHg

Table 2.2 Test Data Results Analysis and Error Metrics

 The table above gives some metrics for analyzing the plots of Fig. 2.3 shown previously.

These metrics include the slope of the best fit line, the average error, and the in-sample error. The

slope (also called rate of change) of the best fit line gives an idea of how accurately the sensing

device measures changes in applied pressure. (Recalling that the reference line has a slope of 1)

The closer the best fit line slope is to a value of 1, more accurately the sensing device measures

changes in applied pressure. Thus, from the data, we can see that the sensor at the upper calf most

accurately senses the changes in applied pressure, while the sensor at the lower leg is the least

accurate at sensing changes. The second metric is the average error. This metric gives insight about

the magnitude of the offset or actual difference (on average) between the gauge pressure and the

sensing device pressure readings. The average error is found by simply subtracting the reference

14

pressure or the expected pressure value from the obtained or actual pressure value to obtain a

difference. The differences from each measurement are then averaged or summed and then divided

by the total number of data points. Note that if, on average, the actual pressure value is less than

the expected pressure value, the average error will be negative. If the actual pressure value is

greater than the expected pressure value, the average error will be positive. The final metric in the

table is the in-sample error. The in-sample error is a different way to measure error in which the

sign of the error is neglected by squaring the difference between the expected and actual pressure

readings. The average of these squared differences is then obtained and called the in-sample error.

The plots obtained from testing show that the prototype sensing units have linear behavior

over a repeated number of trials and across three independently constructed sensing units. The

trend of the sensed data matches the reference trend very closely for all three sensing levels,

proving that each of the three sensing devices can accurately sense changes in pressure in the range

of interest. The current problem of overpressure application by residents and RNs in the medical

field proved to show pressures applied to the leg exceeding 100 mmHg in many cases. Since the

maximum pressure applied should not exceed ~50 mmHg, this is more than a 100% percent error

in the pressure applied by wound care professionals. With the sensing device beneath the

compression wrap having a maximum error of 6 mmHg, the worst case for overpressure

application would be 56 mmHg applied to the patient’s leg, or a 12% error. Thus, even the first

revision of the sensing device at the very worst reduces the error in some cases by at least 88%.

2.3 FROM SENSOR TO SMARTPHONE

This section provides an overview for the data path from the sensing performed by the

force sensor to the display of the processed data on the smartphone application. Figure 2.4 shows

15

a block diagram overview of the entire system. The direction of the arrows provides a guide for

which direction the data can travel between two components of the system. For example, data

travels from the force sensor to the amplifier, but not the other way around. There are two arrows

(one in each direction) between the MCU (Microcontroller Unit) and the BLE (Bluetooth Low

Energy) module, as well as between the BLE module and the smartphone. This indicates that data

can travel in either direction between the two components of the system. The arrows do not

necessarily indicate a wired connection. For example, the BLE module and the smartphone

communicate wirelessly.

Starting from the left side of the figure, force is first applied to the sensor’s actuator, and

the output voltage of the sensor is then amplified by an instrumentation amplifier. The amplified

voltage is converted from analog to digital by the on-chip ADC of the microcontroller. The

microcontroller processes the data and performs mathematical operations on the voltages to

calculate the force applied to each sensor in Newtons, and the associated pressure in mmHg. The

MCU then sends the data serially to the Bluetooth module using UART (Universal Asynchronous

Receiver/Transmitter), and the Bluetooth module finally transmits the received data wirelessly to

the smartphone application for the user to view and analyze.

Figure 2.4 Block Diagram Overview of System

16

2.4 CHAPTER 2 SUMMARY

 Chapter 2 provides a detailed overview of the system, including a comprehensive parts list

from the prototype build with descriptions of each component, along with test results and data

analysis.

• Section 2.1 breaks down the hardware component of the prototype build and provides a

brief discussion of future improvements for the device, which is later expanded upon in

Ch. 7.

• Section 2.2 details the testing process for determining the accuracy of the device pressure

readings against a blood pressure cuff (sphygmomanometer). Plots are given to provide a

visual aid for the accuracy of the device measurements, along with calculated error metrics

for each plot.

• Section 2.3 is a brief overview of the path data takes from the applied force at the sensing

mechanism to the pressure displayed on the smartphone application. Data transfer and

processing are expanded upon in Ch. 4.

17

CHAPTER 3: SENSING

3.1 SENSING FORCE

 By definition, pressure is the force applied to an object per unit area over which the force

is applied, or

𝑃 = 𝐹
𝐴⁄ (3.1)

where P is pressure, F is force, and A is the area over which the force is applied or distributed.

From equation (3.1) it is apparent that in order to determine pressure, it is important to first

determine the precise value of an applied force, and then determine exactly what area that force is

distributed over. Thus, the first task for the system is to sense the force being applied to the leg at

each of the four sensor levels. The system uses the HSFPARx03A force sensor (manufactured by

Alps Alpine) to sense force using a Wheatstone bridge circuit, see Fig. 3.1 below.

Figure 3.1 The Wheatstone Bridge Circuit

18

The Wheatstone bridge circuit consists of two resistive voltage dividers. From the figure,

it should be noted that 3 of the 4 resistors are of equal value, RF, while the fourth resistor has a

variable resistance, RG. This variable resistor can be replaced with a variety of materials so that

the Wheatstone bridge circuit can be used to sense many different interesting metrics. However,

in the HSFPARx03A family of force sensors, the variable resistor is simply a piezo-resistive

element whose resistance decreases when a force is applied to the sensor. The figure below is from

the device datasheet and shows how the diaphragm deforms with applied force. This deformation

of the diaphragm as force is applied results directly in a linear decrease in resistance for RG.

Figure 3.2 Force Sensor Diaphragm Deformation for Force Sensing [8]

 In the circuit of Fig. 3.1 on the previous page, before any force is applied to the sensor,

ideally, the voltage at point B is equal to the voltage at point C. The path from point A to point C

to point D makes up a resistive voltage divider where point C would have a voltage of VDD/2.

The path from point A to point B to point D makes up a separate resistive voltage divider in parallel

with the first, where point B would also have a voltage of VDD/2, assuming RG has a resistance

equal to RF before any force is applied to the sensor. These voltages can be calculated using the

19

voltage divider equation, since the two voltage dividers are connected in parallel. Calculating the

voltage at point C first,

𝑉𝐶,𝑖𝑛𝑖𝑡 = 𝑉𝐷𝐷 (
𝑅𝐹

𝑅𝐹+𝑅𝐹
) = 𝑉𝐷𝐷 (

𝑅𝐹

2𝑅𝐹
) = 𝑉𝐷𝐷/2 (3.2)

Calculating the voltage at point B, let RGi be the resistance of RG before any force is applied. Then,

𝑉𝐵 = 𝑉𝐷𝐷 (
𝑅𝐹

𝑅𝐺𝑖+𝑅𝐹
) (3.3)

Assuming, for proof of the concept, an ideal system where the initial resistance RGi is equal to that

of RF, then

𝑉𝐵,𝑖𝑛𝑖𝑡 = 𝑉𝐷𝐷 (
𝑅𝐹

𝑅𝐹+𝑅𝐹
) = 𝑉𝐷𝐷 (

𝑅𝐹

2𝑅𝐹
) = 𝑉𝐷𝐷/2 (3.4)

Thus, it is proven by equations (3.2) and (3.4) that initially, VB and VC are equal. Since VOUT is the

difference between VB and VC, the initial value of VOUT is calculated as

𝑉𝑂𝑈𝑇,𝑖𝑛𝑖𝑡 = 𝑉𝐵,𝑖𝑛𝑖𝑡 − 𝑉𝐶,𝑖𝑛𝑖𝑡 = 0𝑉 (3.5)

Taking another look at equation (3.3), the only variable is RG, the piezo-resistive element.

Recalling that the resistance RG of the piezo-resistive element decreases as the force applied

increases, the operation of the sensor is characterized by the increase in output voltage as force is

20

applied to the sensor. Since VC is fixed, any increase in the voltage VB directly results in the same

increase in the voltage VOUT. A linear force-voltage relationship is observed based on the

sensitivity of the force sensor (3.7mV/V/N) and the initial output voltage with no force applied to

each sensor.

3.2 AMPLIFYING THE SENSOR OUTPUT VOLTAGE

The output voltage signal VOUT from the sensor of Fig. 3.1 is a small signal relative to the

supply voltage, with a sensitivity of just 3.7mV/V/N. To obtain the optimal results from the ADC,

the signal output is amplified using an instrumentation amplifier. The MAX4208 [11]

instrumentation amplifier is chosen for this application because of its very small input offset

voltage (±20µV max). Other standard operation amplifiers can have input offset voltages in the

10’s of millivolts range, which in this case would dominate the small signal output of the sensor.

Figure 3.3 below shows the Wheatstone bridge circuit of the force sensor from Fig. 3.1, but with

the outputs of the bridge circuit connected to the inputs of the instrumentation amplifier. Resistors

R1 and R2 form a voltage divider whose output is fed back to the amplifier to set the gain.

Figure 3.3 Wheatstone Bridge Circuit with External Amplifier Connected

21

Figure 3.4 below shows what the force-voltage relationship would look like with VDD =

3.3V, an amplifier gain of 100, and a bias voltage (the voltage output VOUT of the sensor with 0N

force applied) of 0V. A bias voltage of 0V is only obtained if the initial resistance of the piezo-

resistive element RGi is equal to that of RF. For this application, the bias for the force sensors used

is typically observed to be less than 0V due to mismatch between the piezo-resistive element and

the other resistors in the bridge circuit. However, for the sake of explanation and proof of concept

for the sensor’s operation, the bias is assumed to be 0V.

Figure 3.4 Ideal Force vs. Voltage Plot with Zero Bias, Gain of 100, VDD = 3.3V

 The HSFPARx03A family of force sensors has two different types of force sensor:

HSFPAR003A and HSFPAR303A. Moving forward, each sensor will only be referred to by the last

four characters of its part number. Each of the two sensors has a force range with a minimum of

0N and is capable of sensing forces as small as 0.01N. The 003A has a maximum force rating of

8N, while the 303A has a maximum force rating of 7N. Regardless which sensor is used, the gain

of the amplifier should be selected such that its output voltage will not rail (reach the power supply

voltage level) so long as the force applied to the sensor is within the necessary force range for the

22

application. It is also important to be mindful of the ADC’s least significant bit voltage (or LSB

voltage) when deciding how to set the amplifier gain. The LSB voltage of an ADC is the minimum

resolution of the ADC’s digital output signal. The ADC on the PIC18LF2X/4XK22 family of

microcontrollers (the MCUs used in the design of this device) is a 10-bit ADC. The LSB voltage

of an N-bit ADC can be calculated by

 𝑉𝐿𝑆𝐵 = 𝑉𝐷𝐷
2𝑁⁄ (3.6)

where VDD is the supply voltage to the microcontroller and N is the number of bits. Thus, from

equation (3.6), the relationship of the LSB voltage to the number of bits is made clear. The

resolution of an ADC gets better (the LSB voltage gets smaller) as the number of bits, N, increases.

The operation of the ADC and the importance of the LSB voltage will be further discussed in Ch.

4. Since the device is designed to accurately sense pressures up to around 40mmHg (0.5N/cm2),

the gain of 100 above is practical. The gain could be decreased if it were desirable to allow for

higher pressures to be sensed during ambulatory states for the patient.

3.3 FORCE SENSOR CANDIDATES

The most efficient method of correctly determining absolute pressure is to first measure

force and then calculate pressure from force and area. Absolute pressure is opposed to relative

pressure, where a pressure is measured “relative” to some other reference of the same medium, be

it air, water, etc. As mentioned previously, the first challenge is to correctly sense the force being

applied. With the challenge of force sensing comes the secondary challenge of keeping the cost

low. Many force sensors exist that have large, robust casings around them and are fairly simple to

23

power up and use. However, finding force sensors that are simple to use, robust, accurate, and

inexpensive is a difficult task. Since the device uses a total of four sensors per unit, the cost of a

sensor is four times more important. Nonetheless, the force sensors detailed in this section are

relatively cheap (less than $10 per unit) and provide a linear increase in output voltage with linear

increases in applied force.

Figure 3.5 below shows what the each of the x03A force sensors looks like, along with the

principle of their operation. It is important to note that the manufacturers specify how a force needs

to be applied by a body whose surface area is greater than that of the sensor’s actuator. The 003A

has a much smaller actuator area than the 303A, so a much smaller body can be used to apply force

to the sensor. It is also important to note that the 303A device is simply the 003A, but with a casing

built around it for overforce protection, and a rubber actuator to provide a larger surface area for

force application. Though either device would work well in the sytem, each has its own pros and

cons, and requires different external hardware in order to properly operate.

The left side of Fig. 3.5 shows the 003A with a block applying a force to its actuator.

According to the device datasheet, applying a force at an angle greater than 5° can damage the

Figure 3.5 Comparison of Size, Force Application Between Sensors [8],[9]

24

sensor due to the delicacy of the very small, low profile actuator. This is the main drawback of the

003A. Despite this one issue, the 003A boasts a number of benefits. One major benefit is the

extremely small size of the sensor. The figure below shows the dimensions of the sensor, including

both the body and the actuator. The sensor also has surface mount pads beneath it so it can easily

be reflow soldered to a PCB for ease of high-volume manufacturing, and signals can be routed

directly into the PCB and out through a connector for further processing on the MCU.

The 303A similarly has some benefits, but many more drawbacks than its counterpart.

Because it has a protective casing surrounding the sensing device and a larger actuator, an obvious

downside to the 303A is its larger area and taller profile. The larger area means that it requires a

larger PCB to mount to, and the taller profile means that the mechanical apparatus surrounding the

sensor (discussed in detail later in this chapter) needs to be taller or thicker. Further, the device

casing does not come with the convenient surface mount pads for routing signals out of the sensor.

Rather, the signals are routed out with a long flex PCB which requires an external connector to

access the signals. This connector adds cost, and the 303A (around $9 per unit) is already nearly

twice as expensive as the 003A (around $5 per unit). Not only is cost an issue with the 303A, but

the flex PCB also adds to the total length of the sensor. Since the sensing device needs to be in the

Figure 3.6 Model and Dimensions of HSFPAR003A [8]

25

center of the PCB it is mounted to, the entire length of the flex PCB proportionally adds to the

required radius of the board that houses the sensor. Lastly, the 303A cannot be soldered to a board,

but rather needs to be epoxied or ahered to the board using a different means than soldering, since

it is a plastic case with no exposed pads for soldering.

Figure 3.7 Model and Dimensions (in mm) of HSFPAR303A [9]

 Figure 3.7 above shows a model of the 303A along with dimensions of the device. No

dimensions are shown for the actuator, but it is measured to have a diameter of about 2 mm.

26

Though a plethora of drawbacks are mentioned for the 303A, there are still some benefits of the

device. One of the benefits is that the surrounding case and overforce protection mechanism protect

the sensing device (the 003A inside) from damage. The rubber actuator also prevents forces applied

at an angle from harming the actual actuator of the 003A inside. Aside from these benefits, the

003A has the 303A beat in terms of cost, size, and ease of production.

3.4 FORCE SENSOR/AMPLIFIER CIRCUIT BOARD DESIGN

 To limit the size of all the boards used in a single unit of the compression sensing device,

the amplifier is placed on the same circuit board as the force sensor. Each of the four force sensors

in the system and their associated amplifier circuits have their own individual boards. Thus, the

device consists of 5 total PCBs: 4 force sensor/amplifier boards, and 1 main board consisting of

the voltage regulation circuitry, the microcontroller, and the bluetooth module. Figure 3.8 above

shows the schematic of the force sensor/amplifier circuit board. The board consists of the sensor,

Figure 3.8 Force Sensor/Amplifier Circuit Schematic from DipTrace

27

the amplifier, the external passive components required for stability (and to set the gain of the

amplifier), and a 3-pin 0.1” header to connect power, ground, and the voltage output of the sensor

up to the main board. The first revision of the circuit board can be seen in the figure below. The

left side of the figure shows the 3D model of the board from the DipTrace 3D Viewer, while the

right side of the figure shows the actual fabricated PCB.

Figure 3.9 Force Sensor/Amplifier Board Version 1 (Right) and 3D Model (Left)

 The PCB was designed with a round shape to avoid any sharp edges that may irritate the

patient, since four of these PCBs are going to physically contact the leg. The board has a physical

diameter of 21mm and a thickness of 1.6mm. The sensor (component S1 in the PCB) used for this

revision of the board is the HSFPAR303A, discussed in depth in the previous section. The

connector which is required for the 303A is also present on the board (component U2, the “2”

being blocked by a via). Resistors R1 and R2 are the gain-setting resistors, while R3 and R4 set the

reference voltage for the amplifier. The amplifier can also be seen as component U1, and J2 is the

3-pin header connection for power, ground, and the amplifier’s output voltage.

28

3.5 FORCE SENSOR HOUSING MECHANISM

 The force sensor/amplifier board discussed in the previous section is paired, using low-

profile brass pogo pins, with a second PCB (containing no electrical components) of identical

dimensions to form a spring-loaded housing unit for the force sensor. The motivation and

philosophy behind building such a unit lies in the need to protect the sensor from damage and to

assure that the sensor is sensing the correct applied force. The housing unit provides the force

sensor with protection from damaging forces applied at any angle greater than 5° by limiting the

forces applied to the sensor to only be applied by the turret pin in the mechanism of Fig. 3.10

below (5). The mechanics of the unit also guarantee that the sensor reads no pressure before a

compression wrap is applied to the leg. When no pressure is being applied, the spring force of the

pogo pins is plenty strong enough to lift the top PCB (4) completely so that the turret pin is not

contacting the sensor. From the figure below, the force sensor pictured is the HSFPAR303A (3)

and the force sensor PCB (1) is pictured with no other components on the board for the best

visibility of the mechanism itself. The spring-loaded pogo pins (2) are evenly spaced 90° around

the circular PCB.

Figure 3.10 Force Sensor Housing Mechanism 3D Model, Hidden Lines Showing

29

3.6 CHAPTER 3 SUMMARY

 Chapter 3 breaks down the force sensing using schematic diagrams and equations to show

how applied force is converted into an analog output voltage that can be processed and converted

into a pressure reading.

• Section 3.1 introduces the Wheatstone bridge circuit and the piezoresistive elements of the

force sensor. Equations are used to prove that the sensor output voltage is 0V when no

force is applied and increases linearly as force is applied to the sensor.

• Section 3.2 gives the motivation for the use of an instrumentation amplifier at the output

of the force sensor.

• Section 3.3 compares characteristics and parameters of two candidates for the force sensor

used in the device, the first being the HSFPAR003A [8], and the second being the

HSFPAR303A [9].

• Section 3.4 provides an overview and analysis of the schematic and PCB design for the

board containing the force sensor and amplifier circuitry.

• Section 3.5 discusses the need for a housing mechanism around the force sensor and

provides a 3D model view of the mechanism designed to both protect the force sensor from

damage and to allow it to accurately measure applied force.

30

CHAPTER 4: DATA PROCESSING

4.1 THE MICROCONTROLLER (PIC18LF26K22)

 The main control board for the system is comprised of three major components: the

microcontroller, the Bluetooth module, and the buck-boost regulator. The microcontroller is

discussed in depth in this section, while the Bluetooth module is discussed in depth in the next

section. The buck-boost regulator and supporting components are discussed in detail in Ch. 6 on

power consumption and battery life. The role of the microcontroller in the system can be broken

down into three sequential tasks. The first task is to receive the data from each of the four force

sensors, discussed in detail in Ch. 3. The second task is to process the data from the force sensors.

The data processing includes calculation of the force applied given both the sensor output voltage

and the sensitivity of the sensors (3.7mV/V/N), and the calculation of the pressure from the

calculated force and predetermined area. The final task is to retransmit the processed data serially

to the Bluetooth module, so that it can then be transmitted wirelessly to the smartphone application,

discussed in detail in Ch. 5.

 4.1.1 THE ADC (ANALOG-TO-DIGITAL CONVERTER)

 The microcontroller (PIC18LF26K22) used in the system has a built-in 10-bit Analog-to-

Digital Converter (ADC) with 19 input channels [12]. The system uses only 5 of the input

channels: 4 for the force sensor outputs, and 1 for the battery voltage. These extra ADC input

channels go unused and therefore a different, lower pin-count microcontroller could replace the

PIC18LF26K22 in the system to decrease the size of the main control PCB. This section will focus

on the operation of the on-chip ADC of the microcontroller, and the conversion of the analog

31

output voltages from the sensors into meaningful data for the user to view on the smartphone

application. Considerations include the ADC’s resolution, quantization error when digitizing the

sensor/amplifier output voltages, and the speed of the ADC.

 The resolution of an ADC is typically described in terms of the LSB voltage or Least

Significant Bit voltage of that ADC. Simply put, the LSB voltage of an ADC is the minimum

magnitude of voltage change on the digital output. While the analog input signal can take on any

value (a continuous range of values), the ADC digitizes the analog signal, and the digitized signal

can only take on a finite number of discrete values between the positive and negative reference

voltages of the ADC (usually VDD and ground). The LSB voltage is simply the magnitude of

voltage between these discrete values in the digitized signal. Figure 4.1 below shows what the

digitization of a sinewave might look like. Note that in the figure, the digital representation of the

analog waveform follows the behavior of the signal but is not equal to the signal at every point.

This error between the original analog signal and the digital representation of the signal is called

the quantization error. The quantization error can be minimized by using a high-resolution ADC,

or an ADC with a very small LSB voltage.

Figure 4.1 Visual Representation of Analog-to-Digital Conversion and the LSB Voltage

32

 The LSB voltage of an ADC is a function of the number of bits of the ADC, and the positive

and negative ADC reference voltages. Typically, the positive reference voltage is VDD, and the

negative reference voltage is ground. If the positive reference is VDD and the negative reference

is ground or 0V, then the LSB voltage is calculated by

𝑉𝐿𝑆𝐵 =
𝑉𝑅𝐸𝐹+ − 𝑉𝑅𝐸𝐹−

2𝑁 =
𝑉𝐷𝐷

2𝑁 (4.1)

where N is the number of bits of the ADC. The PIC18LF26K22 on-chip ADC is a 10-bit ADC,

and the power supply voltage of the chip is nominally 3.3V. Using these values, the LSB voltage

of the ADC can be calculated using the equation above.

𝑉𝐿𝑆𝐵 =
𝑉𝐷𝐷

2𝑁 =
3.3𝑉

210 = 3.22𝑚𝑉 (4.2)

What this means conceptually is that there are 210 different discrete levels that the digitized signal

can take on, evenly spaced by 3.22mV, or the LSB voltage. This also means that the

sensor/amplifier board’s output signal must vary by at least 3.22mV in order for the ADC output

to change at all. Using this LSB voltage, along with the gain of the amplifier and the sensitivity of

the force sensors, the minimum sensible change in pressure for the system can be calculated.

 The theoretical minimum sensible change in pressure is calculated using a gain of 20 V/V

and an area of 346.36 mm2, the area of the PCB of Fig. 3.9. The gain of the amplifier and the

supply voltage can be factored into the sensitivity of the force sensors by

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑉𝐷𝐷 ∗ 𝐺 = (3.7𝑚𝑉 𝑉 𝑁)⁄⁄ ∗ 3.3𝑉 ∗ 20 = 244.2𝑚𝑉/𝑁 (4.3)

33

The unit of Volts from the supply voltage cancels with the unit of Volts from the force sensor’s

sensitivity to yield a simpler sensitivity value of 244.2mV/N for the sensor/amplifier board. This

means that for every 1N of force applied to the sensor apparatus, the ADC will see a 244.2mV

change in the output voltage of the sensor/amplifier board. From eq. (4.2), the on-chip ADC can

sense changes in voltage as small as 3.22mV. Thus, dividing the simplified sensitivity value of eq.

(4.3) by the LSB voltage of eq. (4.2), the smallest sensible change in applied force is obtained.

(244.2𝑚𝑉 𝑁)⁄

(3.22𝑚𝑉 𝐿𝑆𝐵⁄)
≅ 75

𝐿𝑆𝐵

𝑁
= 0.0133

𝑁

𝐿𝑆𝐵
 (4.4)

From the equation, the smallest change in force that can be sensed by the system is theoretically

0.0133 N. This force value is converted to a pressure value when it is divided by the area of the

force sensor/amplifier PCB, or

0.0133𝑁

346.36𝑚𝑚2 = 3.84 ∙ 10−5 𝑁

𝑚𝑚2 (4.5)

Using the conversion factor from mmHg to N/mm2, the minimum sensible pressure change in

mmHg is calculated: 1 N/mm2 = 7500 mmHg. Therefore,

(3.84 ∙ 10−5 𝑁

𝑚𝑚2) ∗ (7500
𝑚𝑚𝐻𝑔

𝑁 𝑚𝑚2⁄
) = 0.285 𝑚𝑚𝐻𝑔 (4.6)

To be effective, the device needs to sense pressure changes around 1mmHg accurately. From eq.

(4.6), the smallest sensible change in pressure is slightly less than 1/3 mmHg.

34

 4.1.2 DATA PROCESSING

 To obtain a pressure reading from an applied force requires a sequence of data processing

steps. The sequence of steps is displayed in Fig. 4.2 below, where each box represents a different

state for the data, and each arrow represents the processing that takes place between two states.

Figure 4.2 Data Processing Sequence

First, the force sensor’s output voltage is amplified using the instrumentation amplifier, discussed

in detail back in Ch. 3. Once amplified, the signal is sent to one of the input channels of the MCU’s

on-chip 10-bit ADC. (1, Fig. 4.2) The ADC converts the analog voltage into a digital value

between 0 and 1023, where 0 corresponds to 0V and 1023 corresponds to a voltage of 1 LSB less

than the supply voltage, or VDD – 1LSB. (2, Fig. 4.2) The corresponding voltage VADC,OUT for

any digital output value can be obtained by multiplying the digital output value by the LSB voltage,

or

𝑉𝐴𝐷𝐶,𝑂𝑈𝑇 = 𝐴𝐷𝐶𝑂𝑈𝑇 ∗ 1 𝐿𝑆𝐵 (4.7)

where ADCOUT is a unitless value between 0 and 1023. From eq. (4.1), the LSB voltage is simply

VDD divided by 2N, where N is the number of bits of the ADC. Since the on-chip ADC has 10

bits, the LSB is calculated by dividing VDD by 210, or 1024.

35

 Once the voltage corresponding to the ADC output is obtained, (3, Fig. 4.2) the applied

force can be calculated using the sensitivity value of the force sensor, calculated using eq. (4.3).

The sensitivity value of 244.2 mV/N means that if a 244.2mV change in output voltage is sensed,

then 1N of force is applied to the sensor. Thus, taking VADC,OUT and dividing by the sensitivity

value would theoretically yield the applied force in Newtons. However, the MAX4208

instrumentation amplifier used in this system has an output voltage offset of VDD/2 to allow for

the amplification of both positive and negative voltages without the need for a negative voltage

reference. This results in

𝑉𝐴𝐷𝐶,𝑂𝑈𝑇 = (𝑉𝐷𝐷 2)⁄ + ∆𝑉𝐹𝑜𝑟𝑐𝑒 (4.8)

where ΔVForce is the change in amplifier output voltage resulting from the force applied.

Rearranging eq. (4.8),

∆𝑉𝐹𝑜𝑟𝑐𝑒 = 𝑉𝐴𝐷𝐶,𝑂𝑈𝑇 − (𝑉𝐷𝐷 2)⁄ (4.9)

where now multiplying ΔVForce by the sensitivity value (244.2mV/N) yields the force applied to

the force sensor in Newtons.

Ideally, when no force is applied to the sensor at all, the ADC output should be VDD/2

(corresponding to a digital value of 512), assuming the initial force sensor output in eq. (4.10),

ΔVForce,init is 0V. However, due to mismatch in the piezo-resistive elements of the force sensor, the

initial force sensor output voltage is nonzero, typically slightly negative. This poses a pair of issues.

The first issue is that the initial force sensor output, ΔVForce,init, is different for every sensor

36

depending on the mismatch of the piezo-resistive elements. Datasheets for the sensors give a range,

but do not give an exact value because the exact value is unknown. The second issue is that the

initial force sensor output gets amplified by the instrumentation amplifier, resulting in an even

larger offset. Thus, this bias voltage cannot be ignored, and needs to be factored into calculation.

The ADC output voltage value including the initial sensor voltage is then calculated by

𝑉𝐴𝐷𝐶,𝑂𝑈𝑇 = (𝑉𝐷𝐷 2)⁄ + (∆𝑉𝐹𝑜𝑟𝑐𝑒 ± ∆𝑉𝐹𝑜𝑟𝑐𝑒,𝑖𝑛𝑖𝑡) (4.10)

Clearly, in order to obtain accurate readings, the value of ΔVForce,init needs to be known. A small

conditional statement is used in software to assist in the elimination of this problem. Figure 4.3

below shows an if statement used in the MCU program which checks which number of cycle the

program’s while loop is currently on.

Figure 4.3 Conditional Statement to Take Care of Bias Voltage

If and only if the program is on the first cycle through the while loop (right when the device

first powers up), the ADC output voltage at that moment is saved and used as the bias for the

sensor connected to that ADC input channel for the duration of time until the MCU is reset or

powered down. This bias voltage is given by

𝑉𝑏𝑖𝑎𝑠 = (𝑉𝐷𝐷 2⁄) ± ∆𝑉𝐹𝑜𝑟𝑐𝑒,𝑖𝑛𝑖𝑡 (4.11)

37

Note how the bias is simply two of the three terms on the right-hand side of eq. (4.10). Rearranging

eq. (4.10) and using the bias, we can obtain a more accurate form of eq. (4.9), or

∆𝑉𝐹𝑜𝑟𝑐𝑒 = 𝑉𝐴𝐷𝐶,𝑂𝑈𝑇 − 𝑉𝑏𝑖𝑎𝑠 (4.12)

Eq. (4.12) is the equation that is used in software to calculate the force applied for a given ADC

output voltage, VADC,OUT. The software implementation of eq. (4.12) is shown in the figure below,

where the 0.2442 has a unit of Volts per Newton (V/N) and corresponds to the force

sensor/amplifier sensitivity value of eq. (4.3).

Figure 4.4 Function to Calculate Force Applied from Sensed Voltage

In the function VoltageToForce above, the bias variable value is obtained via the software method

described previously in Fig. 4.3 and can be solved for using eq. (4.11). The voltage variable value

is obtained using eq. (4.7) in software. The function takes in the float-valued voltage and the float-

valued bias and outputs the applied force corresponding to the calculated ADC output voltage.

Once the force is obtained, the corresponding applied pressure value is obtained by

dividing the force by an area (4, Fig. 4.2) specifically the area over which the force is being applied.

38

In the case of the sensor apparatus, the area is theoretically the area of the circular PCB shown in

Fig. 3.9. This PCB has a diameter of 21 mm. To find the area, the area of a circle formula can be

applied using half the diameter (10.5 mm) as the radius. Since medical pressure readings use

mmHg (millimeters of Mercury) as their unit, whatever unit results from the division of force by

area will need to be converted into units of mmHg. The area of the PCB, APCB, is calculated first

by

𝐴𝑃𝐶𝐵 = 𝜋 ∙ 𝑟2 = 𝜋 ∙ (10.5 𝑚𝑚)2 = 346.36 𝑚𝑚2 (4.13)

With the calculated area of the PCB, the pressure applied to the patient’s leg for a given applied

force can be calculated by dividing the area of the PCB by an applied force, or

𝑃𝐴𝑃𝑃 = 𝐹𝐴𝑃𝑃(𝑁) 𝐴𝑃𝐶𝐵(𝑚𝑚2)⁄ (4.14)

where PAPP is the pressure applied to the patient’s leg and FAPP is the force applied to the sensing

mechanism. This quotient yields units of N/mm2, which can easily be converted to mmHg through

a conversion factor.

1 𝑁 𝑚𝑚2 = 7500.62 𝑚𝑚𝐻𝑔⁄ (4.15)

Equations (4.14) and (4.15) describe the operation of the code block or function presented in Fig.

4.5 below. The function takes in a float-valued force from the VoltageToForce function described

previously and a predefined area which is a global constant float value in the program. The

39

function then divides force by area and multiplies the quotient by the conversion factor. The

conversion factor is that of eq. (4.15), and the N/mm2 from both the conversion factor and the

quotient cancel out to yield a pressure value with units of mmHg, which the function returns.

Figure 4.5 Function to Calculate Pressure from Applied Force

The ForceToPressure function is the final step for data processing before it is ready to transmit

to the Bluetooth module. The pressure value that is returned by the function will be displayed on

the main page for the smartphone application, discussed in detail in Ch. 5.

 4.1.3 UART COMMUNICATION

 Voltage, force, and pressure values obtained using the methods described in section 4.1.2

are all transmitted to the Bluetooth module via the MCU’s built-in UART, or Universal

Asynchronous Receiver-Transmitter. UART is a means of wired serial communication between

two devices. In the case of this system, the UART enables communication between the

microcontroller and the HM-10 Bluetooth Low Energy module [6]. In UART communication,

each device has a receiver pin and a transmitter pin. The transmitter (Tx) of one device is connected

to the receiver (Rx) of the other, and vice versa. Though the UART can be configured for full

duplex (data can be both transmitted and received over the same channel simultaneously), for this

40

application, data never needs to be both transmitted and received simultaneously. Either the

microcontroller is sending data to the Bluetooth module, or the Bluetooth module is sending

commands to the microcontroller via user inputs, but never both simultaneously.

Figure 4.6 Illustration of UART Connection Between MCU and BLE Module

 Figure 4.6 above shows a zoomed-in, modified version of the system overview of Fig. 2.1.

This version is modified to show how the receiver pin of the MCU is connected to the transmitter

pin of the BLE module, and vice versa. The UART is a very convenient way to transfer data from

one device to another serially without the burden of following any strict protocol. The

microcontroller simply needs to be configured such that the UART is enabled to both transmit and

receive data, but as mentioned previously, it will not need to both transmit and receive

simultaneously. The microcontroller has several registers used for configuring different

peripherals on the chip, including the ADC, the DAC, interrupts, and other peripherals. The same

goes for the UART. The configuration registers contain different bits for the user to manipulate in

41

order to configure the UART to their specific needs. For example, in Fig. 4.7 below, bits are

set/cleared to select synchronous/asynchronous mode, enable the transmitter and receiver, disable

the ADC channel functionalities of the pins containing the receiver and transmitter, select whether

the Baud rate is high or low, and set the data direction of the transmitter and receiver pins. Note

that this peripheral can be set into synchronous mode, though it was previously referred to as a

UART (Universal Asynchronous Receiver-Transmitter). This MCU actually has what is known

as a EUSART [12], which is an Enhanced Universal Synchronous/Asynchronous Receiver-

Transmitter. However, since this application only uses the asynchronous functionality and does

not use the enhanced features, for simplicity, this peripheral is referred to as UART, and will be

for the remainder of the paper.

Figure 4.7 UART Initialization Function

 The MCU sends data to the Bluetooth module via UART so that it can then be transmitted

wirelessly to the user’s smartphone. The MCU also receives data from the Bluetooth module in

the form of characters, one byte at a time. The ASCII character table provides each character (all

42

uppercase and lowercase letters, various symbols, digits 0-9, and more) with a number between 0

and 255. This means that each character can be represented by its 8-bit binary code. The

smartphone application (discussed in detail in Ch. 5) provides the user with an interface containing

convenient buttons for various tasks. For example, if the user wants to check the battery life of the

device at any time, they can simply click the button labeled “Battery Life.” What then happens is

the smartphone sends a byte of data representing some character (say the letter ‘a’) to the Bluetooth

module, which then sends that same byte via UART to the microcontroller. The microcontroller is

programmed with a function called CompleteTask which then takes in the received character (ch)

and completes the task assigned to that character, in this case printing the current battery

percentage. The first several lines of this function are shown below in Fig. 4.8.

Figure 4.8 Complete Task Function, Completes Task According to Received Character

4.1.4 HARDWARE IMPLEMENTATION

 As mentioned at the beginning of Ch. 4, the main PCB for the system contains the

microcontroller, the Bluetooth module, and the regulator circuitry. It also contains a number of

other peripherals for those circuits, including a Bluetooth connectivity status LED, 2 x 100-mil

43

spaced male headers for connecting the battery, 6 x 100 mil-spaced programming pins for the PIC

programmer to connect to during programming, 12 x 100 mil-spaced pins for the wires to be routed

out to power and receive data from the sensor boards, and a number of passives, including

decoupling capacitors, the inductor for the buck-boost regulator, and resistors for current limiting,

battery voltage monitoring, etc.

Figure 4.9 Main MCU/BLE Printed Circuit Board 3D Model

 The left side of the figure above is the top side of the PCB, containing the Bluetooth

module, the battery and programmer header pins, the Bluetooth connectivity status LED, and the

header pins for routing wires out to the sensor/amplifier boards. The top portion of the board does

not have any copper pour where the Bluetooth module antenna will be to reduce EMI. The right

side of the figure is the bottom side of the PCB, which contains the buck-boost regulator circuitry,

and the microcontroller and its decoupling capacitors. Copper is poured everywhere that traces

and components are not located: the top layer pour is connected to VDD, and the bottom layer

pour is connected to ground.

44

4.2 THE BLUETOOTH MODULE

 The HM-10 Bluetooth module is a 34-pin surface-mount module containing an on-board

BLE microcontroller (CC2541 2.4-GHz Bluetooth Low Energy SOC). The MCU is equipped with

both wired serial UART and wireless Bluetooth communication capabilities. The module can both

receive serial data via UART and then transmit it wirelessly to a BLE receiver or receive data

wirelessly via BLE protocol and then transmit it serially via UART. From Fig. 4.10 below, the

pinout shows that many the pins are NC (or not connected). Additionally, there are 12 GPIO pins,

only one of which is needed for the system’s Bluetooth connectivity status LED. The only pins

that need to be used by the system are the VCC, GND, UART_TX, UART_RX, and PIO1 pins.

Since this is the case, a smaller Bluetooth module with lower pin count is desirable for the system.

Figure 4.10 HM-10 Bluetooth Low Energy Module and Pinout [6]

45

An alternative Bluetooth module with the same on-board MCU is the HM-11 module. The HM-

11 module has just 16 pins but operates identically to the HM-10 in all aspects necessary for the

design of this system. When using the HM-11 in the system, the pins used are the same as those

used with the HM-10 (VCC, GND, UART_TX, UART_RX, and PIO1). The HM-11 has the same

width as the HM-10, but the vertically height is a little more than half that of the HM-10, making

it desirable for managing the size of the main MCU/BLE board. Figure 4.11 below shows the HM-

11 and its pinout.

Figure 4.11 HM-11 Bluetooth Low Energy Module and Pinout [6]

 4.2.1 CONFIGURATION WITH AT-COMMANDS

 Configuration for both the HM-10 and the HM-11 modules is performed using AT

commands. The configurable settings on the modules follow a “Get-Set” format, where to “Get”

data from the module is to read a value out, or check the status of a particular setting, and to “Set”

data is to write a value to the module or reconfigure a particular setting. Some parameters are both

“Gettable” and “Settable”, and others are only “Gettable” (read-only) or only “Settable” (write-

46

only). The AT commands follow a particular syntax, where each command is made up of three

distinct parts, not separated by any spaces. The three-character sequence “AT+” begins every AT

command. The “AT+” is followed by the name of the chosen parameter. The final part of the

command is what tells the module whether the user wishes to “Get” or “Set” the chosen parameter.

If the “Get” is to be used, the command terminates with a question mark. If the “Set” is to be used,

the command terminates with a parameter value. The syntax is better described by the diagram in

Fig. 4.12 below, showing the sequence of characters used to form both “Get” and “Set” commands.

Note that “Get” and “Set” commands are identical up until the way they terminate (both start with

“AT+” followed by a parameter name).

Figure 4.12 AT Commands Syntax for Configuring Bluetooth Module

The device datasheet for the chosen Bluetooth module contains tables which provide the

user with a comprehensive list of all the available settings and their access type (“Get,” “Set,” or

both). These tables also assign a single digit to each parameter value to simplify the AT commands

that are sent to the device and limit the possibility of user input errors. If the module receives a

correctly transmitted AT command, it will acknowledge the command and respond with the

acknowledgement (“OK+”), followed by the command type (“Get” or “Set”), and terminating with

the corresponding number of the parameter that was read or written. The format for the

acknowledgement message is shown in Fig. 4.13. The table in the datasheet also tells the user the

47

default value of each parameter. For example, the Baud rate parameter has a list starting at the

default value (9600, parameter number 0), ranging up to 230400 (parameter number 8) and down

to 1200 (parameter number 6). Other common Baud rates are also included in the list (such as

19200, parameter number 1 and 115200, parameter number 4).

Figure 4.13 AT Commands Acknowledgement Message Format

The user can “Get” the current Baud rate setting for the module by sending the string

“AT+BAUD?” to the module via UART. If, for example, the module is set to the default Baud

rate of 9600, the acknowledgement message would read “OK+Get:0” informing the user that

parameter 0 (9600 Baud) is the current Baud rate setting. If the user wishes to change this setting

to, say 19200, the command “AT+BAUD1” should be sent to the module. The corresponding

acknowledgment message would read “OK+Set:1” notifying the user that the Baud rate has been

set to the value associated with parameter value 1, or 19200 (mentioned in the previous paragraph).

Other parameters that are both “Gettable” and “Settable” include the module work mode, the

device name (as it would appear to a user in a list of available Bluetooth devices), the behavior of

the status LED, a pin code for users trying to connect to the device, the usable range of the device,

among others. An example of a parameter that is only “Gettable” or read-only is the device MAC

address. An example of a parameter that is write-only is the RESET command, which restarts or

refreshes the module. Each time AT commands are used to configure or change settings, the device

48

should be reset to update the configuration changes. Until the device is reset, the changes will not

go into effect. On the main MCU/BLE board, the MCU’s UART transmitter is connected to the

BLE module’s receiver, and the MCU’s receiver is connected to the BLE module’s transmitter.

Thus, the MCU can be used to send AT commands directly to the BLE module by simply

transmitting a string via UART.

 4.2.2 DATA TRANSMISSION AND RECEPTION

By default (configured with factory settings) the BLE module can transmit and receive data

both serially through UART and wirelessly through Bluetooth communication. The smartphone

also plays a large role in the wireless communication, as smartphones in general are equipped with

Bluetooth capabilities for both transmitting and receiving data. The operation of the smartphone

application with the Bluetooth module will be discussed further in Ch. 5. The antenna of the

Bluetooth module is used for both transmitting and receiving data. Figure 4.14 below shows how

data takes one of two paths: the first is from the MCU to the BLE module (serially) and then to the

phone (wirelessly), and the second is from the phone to the BLE module and then to the MCU.

Figure 4.14 Visual Diagram of Serial and Wireless Communication

49

 Bluetooth is a wireless communication protocol which uses the frequency band of the

electromagnetic spectrum ranging from 2.4 GHz to 2.4835 GHz to communicate [13]. This broader

frequency band is split up into 79 smaller frequency bands or “channels.” Within each channel, a

specific frequency is assigned for a “1” and a different frequency for a “0”. The difference between

the frequency assigned to a “0” and that which is assigned to a “1” is 740 kHz. This type of

communication (where digital information is transmitted using discrete frequency changes) is also

called frequency-shift keying (FSK). For Bluetooth 4.0 (the Bluetooth version of the HM-10 and

HM-11 modules), the data rate is 1 Mbps (Megabit per second). This means that 1 million bits, or

ones and zeros, are transmitted and received every second via Bluetooth [13]. However, the

frequencies that are used to represent a “1” or a “0” are within the 2.4 GHz to 2.4835 GHz range.

Figure 4.15 Example of FSK Signals for Transmitting “1” or “0”

 Each channel spans a frequency range of 1 MHz. For example, on channel number 38, a

“1” is represented by a 2.44387 GHz signal while a “0” is represented by a 2.44313 GHz signal.

On the next channel over, channel 39, a “1” is represented by a 2.44287 GHz signal, and a “0” is

represented by a 2.44231 GHz signal. The difference between the “1” in channel 38 and the “1” in

50

channel 39 is 1 MHz. Likewise, the difference between the “0” in channels 38 and 39 is also 1

MHz. As mentioned previously, the “1” and the “0” in any given channel are separated by 740

kHz. This leaves a 130 kHz gap above the frequency of the “1” and below the frequency of the

“0” as breathing room in any given channel. Summing the 740 kHz difference between the “1”

and “0” and two 130 kHz gaps for breathing room yields a 1 MHz frequency band for any given

channel.

The Bluetooth device transmitting the data and the Bluetooth device receiving the data

perform what is called frequency-hopping spread spectrum (FHSS) while they communicate [13].

FHSS is a method of RF communication in which the transmitter and receiver devices each follow

a predetermined “schedule” for different channels to communicate across during different time

slots within the full frequency band of the communication protocol, which in the case of Bluetooth

is 2.4 GHz to 2.4835 GHz. Bluetooth time slots for one packet of information to be transmitted

and received are 625 microseconds long. This translates directly to 1600 frequency hops per

second. FHSS is used in Bluetooth so that many devices can transmit and receive data wirelessly

within the same frequency band error-free, and so a single frequency band cannot be tapped into,

and data being transmitted cannot be received by any other device other than the device that was

meant to receive it. Only the two Bluetooth devices that are paired are aware of the frequency-

hopping schedule.

51

4.3 CHAPTER 4 SUMMARY

Chapter 4 gives a detailed breakdown of the data processing techniques used to convert the

applied force into a pressure value displayed on the user’s smartphone. The chapter is broken up

into two larger sections, the first being the microcontroller, and the second being the Bluetooth

module.

• Section 4.1 dives into the PIC18LF26K22 MCU’s peripherals that are used in the system

design, including the ADC and the UART communication channel. Code snippets are

included to show how the processing is implemented in software, and the end of the section

discusses the PCB design and hardware implementation of the MCU’s peripherals.

• Section 4.2 discusses the configuration and operation of the Bluetooth low energy modules

that can be used in the system, namely the HM-10 and HM-11 modules. The two modules

are also compared on the basis of size since the modules are otherwise identical in terms

of operation within this particular system.

52

CHAPTER 5: THE SMARTPHONE APPLICATION

5.1 INTERFACE AND LAYOUT

Figure 5.1 Smartphone App Home Screen and Technician Mode Screen, Designer View

 The smartphone application is designed using the web-based MIT App Inventor and is

compatible for Android devices version 4.3 and later. Android version 4.3 was released on July

24, 2013 [15] and featured Bluetooth Low Energy support for the first time in Android version

history. Since all later versions of Android feature BLE support, the device is compatible with

Androids of all versions 4.3 and later. Figure 5.1 shows the Designer view in the MIT App Inventor

for both screens in the application. The first (left) screen is the home screen (Screen 1), which is

53

the default screen when the application is first opened. The second (right) screen is the “Technician

Mode” screen (Screen 2) which is only meant to be accessed by the nurse or technician who is

working with the patient who owns the device. The Designer view allows the app designer to place

buttons, labels, text boxes, switches, and several other user interface items into the current screen

for the application layout. Logic is then added to each interface item using the Blocks view. For

example, Fig. 5.2 below shows the logic blocks for the BACK button on the Technician Mode

screen. When the button (named btnBacktoScreen1) is clicked, then Screen1, or the Home

Screen, is opened. Blocks like these are what drive the entire operation of the app. Each button

and label in the interface has different logic to perform different tasks when a particular even

occurs, some more complicated than others. The view of all blocks in the entire app design is found

in Appendix E.

Figure 5.2 BACK Button Logic from Technician Screen, Blocks View

 Figure 5.3 (next page) breaks the home screen down into four major segments. The first

segment (1) is the Bluetooth connect/disconnect controls. The CONNECT button pulls up a list

view of all the Bluetooth devices that are within range of the smartphone and allows the user to

select the device they would like to connect to. Once connected, the DISCONNECT button breaks

the connection to whichever device the smartphone was connected to. The second segment (2) is

the connection status and information display. Once the smartphone is connected to a device, the

“Status” bar turns green, and the status changes from “Disconnected” to “Connected.” The

54

“Connection Information” bar will then display the name and MAC Address of the device

connected to the smartphone. The third segment (3) is the direct connect and mode select controls,

along with the battery status display. The DIRECT button allows the user to directly connect to

the last (previous) connected device without viewing the entire list of Bluetooth devices within

range. The MODE button prompts the user to decide if they would like to enter “Technician

Mode,” which provides not only the pressure values for each sensor, but the force and voltage

values as well, along with a few metrics for viewing battery life. The battery status display

currently displays the battery voltage. In future app revisions, this status would be changed to a

percentage rather than a voltage, to give the user a better idea of how much longer they can use

the device before it needs to be recharged. The final segment (4) is the pressure value display. This

is where the pressure values sent from the Bluetooth module are displayed for the user to view and

analyze.

Figure 5.3 Home Screen Breakdown by Section (Left – Disconnected, Right – Connected)

55

Figure 5.4 Connecting to a Device Using CONNECT Button and Device List

 Figure 5.4 shows the process of connecting to a Bluetooth device within range of the

smartphone using the app. When no device is connected, the status bar is gray, and says

“Disconnected.” The DISCONNECT button is unavailable at this time since there is nothing to

disconnect from. Once the CONNECT button is clicked, the list view of nearby devices pops up

for the user to select the device they would like to connect to. In the list view, each device is

characterized by its MAC address, its name, and the signal strength between the smartphone and

the device. The signal strength is in units of dBm or decibel milliwatts [25] and is used as a measure

of absolute signal power. “Signal strengths can range from approximately -30 dBm to -110 dBm.

The closer that number is to 0, the stronger the signal,” [26]. The HM-10 (by default) has the name

HMSoft, and when the smartphone is right next to the device, has a signal strength of -53 dBm,

which is considered to be good. If the signal strength is, “from 0 to -60 [dBm] it’s a good signal

strength. Any value that is -70 [dBm] or less is bad,” [24], and anything lower than -85 dBm is

considered unusable [26]. Once the user selects the HMSoft as their device to connect to, the

smartphone connects, and the status bar turns green and changes the status to “Connected.” The

56

connection information is also updated at this time to show the device name and the MAC address,

or HMSoft – F8:30:02:3D:AD:84. Once connected, the pressure values begin to update from the

sensor readings in real time, and the battery voltage appears in the battery status box, as seen in

Fig. 5.4 (previous page).

5.2 RECEIVING AND DISPLAYING DATA

 In this section, the process by which data is received and displayed on the smartphone

application is discussed. A series of steps are carefully taken in both the microcontroller program

and the smartphone application program in order for data to properly be received and displayed.

The first set of instructions is programmed into the microcontroller C code (full code in Appendix

D). Outside of the main “while” loop, 13 individual empty character arrays are declared: 4 for

the sensor output voltages, 4 for the calculated forces applied to each sensor, 4 for the calculated

pressures for each sensor, and 1 for the battery voltage. In the C programming language, character

arrays are used in place of strings. An empty character array is therefore synonymous with an

empty string. A character array has all the same properties that a string does, and thus, character

arrays can be used as input arguments to functions that operate on strings, such as the printf and

sprintf functions.

Along with the declarations for the empty character arrays is another set of 13 individual

character arrays which are not empty, but instead contain data labels for each of the 13 values of

interest (4 applied force values, 4 sensor output voltage values, 4 pressure values, 1 battery

voltage). These data labels are used to help the smartphone application distinguish between

received values and to determine where to properly display the values it receives. For example,

57

Fig. 5.5 below shows the data labels for the pressure values, the force values, the sensor voltage

values, and the battery voltage as they are initialized in the C code. The sensor number increases

as the sensor location moves further down the leg. The “s1: ” label belongs to the sensor at the

upper calf, while the “s4: ” label belongs to the sensor at the insole of the foot (not included in

prototype build). The same numbering convention applies for the force data labels and the output

voltage data labels. Thus, the labels “s1: ”, “f1: ”, and “v1: ” correspond to the sensor pressure

reading, force reading, and output voltage for the sensor at the upper calf, respectively.

Figure 5.5 Character Array Variable Declarations for Data Labels

 Within the main “while” loop of the program, the output voltage of the sensor/amplifier

unit is converted to digital, processed, and used to calculate the applied force and the associated

applied pressure. These variables are stored as float type values, and their variables are named

appliedPressure[n], appliedForce[n], and resultingVoltage[n], where n is the sensor number minus

1 (if sensor 1 is being referenced, n = 0). Once these values have been obtained, they are appended

to their respective data labels and converted to one large string using the sprintf function. This

function allows multiple data types (in this case a char array and a float value) to be appended and

58

stored as one formatted string [27]. For example, char array sbuf1 is originally an empty char array

of size 40 x 1, initialized in Fig. 5.5 above. Line 122 of the code in Fig. 5.6 below takes the pressure

value measured by sensor 1 (since n = 0) and the contents of char array a (the data label for pressure

at sensor 1) and appends them to the empty char array sbuf1. Say for the sake of the example that

the value of appliedPressure[0] is 1.200 in units of mmHg. The resulting string or char array is

“s1: 1.200” which is now stored in sbuf1. This process is repeated for all the applied pressure

values, applied force values, and sensor output voltage values so that all data of interest is appended

to the appropriate data label.

Figure 5.6 Appending Processed Data to Data Labels

 At this stage, all data is ready to be transmitted to the Bluetooth module serially. The printf

function is used to send formatted text to any peripheral or location on the MCU [27]. In this case,

the peripheral being used is the UART, since the MCU UART is connected to the BLE module

UART. The Bluetooth module receives the serial data from the microcontroller and transmits

whatever it receives wirelessly via Bluetooth to the smartphone (discussed in detail in Ch. 4). The

printf instructions in the code of Fig. 5.7 (next page) are separated by delays of 20 milliseconds.

59

The delay is used to make sure that the smartphone application receives each string individually.

If the delay time is too short between transmitted strings, an error occurs as a result of the

smartphone application being incapable of distinguishing between two individual strings. It will

count two distinct strings as one big string and cause errors in the logic of the application. Different

delay times were tested, and the shortest delay time to eliminate errors was determined to be 20

milliseconds.

Figure 5.7 Transmitting Data All Serially Through UART

 When the smartphone receives a string, it is looking for a particular data label. The

application is programmed to parse through received strings looking for data labels, and to display

the data in different locations on the application interface based on the received data labels.

60

Continuing the same example, say the smartphone has just received the text contained in sbuf1, or

[“s1: 1.200”]. The quotation marks and square brackets are added to the text by the MIT app

inventor software each time a string is received via Bluetooth. Thus, to get the true length of the

string received, 4 needs to be subtracted from the string length (2 for brackets, 2 for quotation

marks). The variable stringValues stores the full string received from the Bluetooth module

including the added brackets and quotation marks. The global length variable is used to store the

actual length of the string after the value 4 is subtracted for the added brackets and quotation marks.

The global rx_data variable is used to store the contents of the received string, starting at the third

character (after the first bracket and quotation mark) and with the length of the global length

variable. The steps described previously are shown in block logic format in Fig. 5.8 below.

Figure 5.8 Blocks Logic for Receiving a String from BLE Module

 When a string a received and the instructions of Fig. 5.8 have been completed, the

application program enters an IF statement, shown in Fig. 5.9 (next page). The IF statement checks

the received string for a particular data label, described previously. In the case of Fig. 5.9, the IF

statement is looking for the character sequence “s1: ” or the data label corresponding to the

pressure value from sensor 1. Continuing on with the same example where the pressure at sensor

61

1 is 1.200 mmHg, IF the string received contains the data label “s1: ”, then whatever text follows

the data label is set as the text on the “Pressure 1” label. Logic blocks are used to make sure the

value displayed for Pressure 1 does not include any part of the data label or the closing bracket

and quotation marks. This process in the ongoing example would result in a displayed pressure of

1.200 mmHg at the Pressure 1 label in the application interface. The blocks logic for this process

is shown below in Fig. 5.9. This process is repeated in the format of ELSE IF blocks of logic

appended to the blocks of Fig. 5.9. The only difference is that instead of searching for the data

label “s1: ”, the ELSE IF blocks search for “s2: ”, “s3: ”, “s4: ”, and “BL: ”, for sensor 2 pressure,

sensor 3 pressure, sensor 4 pressure, and battery voltage, respectively. The entire Blocks view for

the reception and proper display of the data is given by Fig. 5.10 on the page to follow. The Blocks

view for the entire application is given in Appendix E.

Figure 5.9 Blocks Logic for Extracting and Displaying Relevant Data

62

Figure 5.10 Complete Blocks View for Receiving and Displaying Pressure Data

63

5.3 CHAPTER 5 SUMMARY

Chapter 5 provides an overview of the smartphone application used to view the data obtained

by the compression sensing garment. A breakdown of the app interface is provided along with an

in-depth description of the process of data reception and display.

• Section 5.1 gives a look at the user interface for the application, along with a brief tutorial-

like segment on how to connect to a device, and what the interface should look like when

a device is connected to successfully.

• Section 5.2 details the operation of both the MCU C code to transmit formatted data and

the smartphone application block logic used to receive and display the formatted data in

the proper location on the app interface.

64

CHAPTER 6: POWERING THE SYSTEM

6.1 POWER SOURCE

 The entire system is powered by a 3.7V rechargeable Lithium-Polymer (Li-Po) battery.

The battery has a capacity of 380mAh. This means that the amount of current drawn (in mA) from

the battery multiplied by the amount of time (in hours) for which that current is drawn cannot

exceed 380mA·h. For example, the battery will supply 380mA for 1 hour, or 38mA for 10 hours,

or 3.8mA for 100 hours. Rechargeable Li-Po batteries are a good choice for this application since

they are rechargeable, relatively cheap, and come in a variety of voltages, capacities, shapes, and

sizes. The battery shown in Fig. 6.1 below is small (35mm x 15mm) and lightweight (11g) and

does not heat up to any uncomfortable temperature during normal operation. It is also convenient

to connect because the attached connector fits 100 mil-spaced male header pins snug and makes a

great contact that is not too loose and not too tight. Other similar LiPo batteries are made by the

same manufacturer and other manufacturers in voltages that are multiples of 3.7V (7.4V, 11.1V,

etc.) and capacities as great as 5000mAh and greater. These batteries get more and more expensive

and larger and larger as the capacity and the voltage increases. In the current system, the battery

of Fig. 6.1 can power the system on single charge for around 8 hours while running continuously.

Figure 6.1 3.7V, 380mAh Li-Po Rechargeable Battery

65

6.2 VOLTAGE REGULATION

 The microcontroller is a low-power unit which can operate with supply voltages between

1.8V and 3.6V. The HM-10 and HM-11 Bluetooth modules can operate with supply voltages

between 2.2V and 3.7V. Thus, a solid supply voltage that works for both the MCU and the BLE

module is 3.3V. Though the battery is rated at a voltage of 3.7V, when fully charged, it is typically

at a greater voltage, around 4V. As the battery discharges, the voltage output of the battery steadily

decreases until the battery is nearly completely discharged, at which point the voltage drops more

rapidly and the battery dies. To maintain the proper supply voltage for both the microcontroller

and the Bluetooth module, a voltage regulator with a 3.3V output is used. In the case of Fig. 6.2

below, a buck-boost switching power supply [7] is used to supply a constant 3.3V output while

being powered by a discharging Li-Po battery.

Figure 6.2 Drainage of 3.7V Li-Po 380mAh Battery Over Time, ILOAD = 50mA

 When the battery voltage is greater than the 3.3V desired output, the regulator is in buck

mode, where it bucks the higher input voltage down to the desired output voltage. When the battery

voltage is lower than the 3.3V desired output, the regulator is in boost mode, where it boosts the

66

lower input voltage up to the desired output voltage. The particular buck-boost regulator used in

the design of the system and thus used to generate Fig. 6.2 above is the LTC3531-3.3 DC/DC

converter by Linear Technology. This buck-boost regulator has a third mode of operation called

“4-Switch mode” where 4 on-chip switches connected to the external inductor operate to maintain

the 3.3V output voltage when the input is close to the desired output voltage (Vin is less than

400mV less than 3.3V or Vin is less than 800mV greater than 3.3V). The operation of the regulator

in “4-Switch mode” is given from the datasheet [7] in Fig. 6.3 below.

Figure 6.3 4-Switch Mode Operation for LTC3531 Buck-Boost Regulators [7]

 The LTC3531 family of buck-boost converters can supply 3.3V DC to loads up to 200mA.

However, the input current to the buck-boost is a function of the load current and the voltage being

supplied to the buck-boost, in this case the battery voltage. When the battery voltage is greater

than the desired output voltage, the current pulled from the battery (the buck-boost input current)

is less than the load current. This is when the device is operating in buck mode. When the battery

voltage is near equal to the desired output voltage, the device is in 4-Switch mode and the input

67

and output currents of the buck-boost are nearly the same. When the battery voltage is less than

the desired output voltage, the device is in boost mode and the current supplied to the buck-boost

by the battery is greater than the load current. The lower the battery voltage drops, the more current

the buck-boost has to pull from it in order to maintain the desired output voltage while driving the

load. Thus, the device is most efficient in buck mode and least efficient in boost mode. The

efficiency is plotted against Vin for each of the three operating modes from the device datasheet

and can be seen in Fig. 6.4 below.

Figure 6.4 Efficiency vs. VIN for LTC3531 Buck-Boost SPS [7], ILOAD = 100 mA

6.3 POWER CONSUMPTION AND BATTERY LIFE

 As the battery discharges while powering the circuit, the battery voltage drops steadily, see

Fig. 6.2. The buck-boost needs to pull more and more current from the decreasing voltage source

68

to drive the load while maintaining the desired output voltage of 3.3V. As the buck-boost pulls

more and more current from the battery, the battery dies faster and faster, pulling its output voltage

down even quicker. This is the reason for the voltage drop-off in Fig. 6.2. This cycle repeats until

the battery is dead. With a buck-boost load current of around 50mA (much larger than the actual

current drawn by the system), Fig. 6.2 shows that a full battery lasts for almost precisely 3.5 hours

until it is completely discharged. A battery-monitoring voltage divider is constructed using two

series resistors of 976 kΩ resistance (tolerance of ± 5%) each. Since the input to the divider is the

battery voltage, and the resistance of each resistor in the divider is ideally equal, the output of the

divider is roughly VBATTERY/2. The output of the divider is connected to one of the remaining ADC

input channels on the MCU and the software multiplies the sensed ADC voltage by 2 to provide

the user with a true reading of the current battery voltage at any given time.

COMPONENT CURRENT DRAW (mA) CURRENT DRAW (%)

PIC18LF26K22 MCU 1.45 mA 8.71%

HM-10 BLE MODULE 9.25 mA 55.59%

UPPER CALF SENSOR 1.95 mA 11.73%

LOWER CALF SENSOR 1.98 mA 11.91%

LOWER LEG SENSOR 1.99 mA 11.97%

TOTAL: 16.62 mA 100.0%

Table 6.1 Current Draw Distribution for Major System Components

 Table 6.1 gives a breakdown of the major components of the system and how much current

each component draws during normal operation. The leftmost column gives the name of the

component, the middle column gives the actual DC current value (in mA), and the rightmost

column gives the percentage of the total current drawn by each component. Each of the sensor

boards draw around 2 mA and just under 12% of the total current per sensor. Combined, the 3

69

sensor/amplifier units draw around 36% of the total current. The PIC18LF26K22 is a low-power,

high-performance microcontroller [12] and only draws around 1.5 mA of current during normal

operation, equivalent to less than 9% of the total current. The bulk of current is drawn by the HM-

10 Bluetooth module and the associated Bluetooth connection status LED. When the Bluetooth

module is connected to another Bluetooth device and the LED is ON, the module pulls around

9.25 mA constantly, or over 55% of the total current. Section 7.1.4 gives further analysis on other

BLE modules that can be used to limit this current and will allow the battery to last longer in the

system.

Figure 6.5 Efficiency vs. Load Current for Different Input Voltages LTC3531 [7]

 From Table 6.1, the load current when the system is ON and connected to a smartphone

via Bluetooth is around 16.6 mA. The plot from the buck-boost datasheet seen in Fig. 6.5 above

shows the efficiency vs. load current for different values of VIN, where in this case VIN is the

70

battery voltage. For battery voltages above 3V and load currents above 10 mA, the efficiency is

around 80% or better. Efficiency is “the ratio of total output power to total input power, expressed

in percent,” [23]. In other words, the efficiency metric is used to determine how much of the input

power is being converted into output power delivered to the load circuitry and not burned up in

the power supply. From the plot of Fig. 6.6 (next page), an experimental value can be determined

for the efficiency in the system. For example, let the battery voltage be 3.6V and the load current

is 16.2 mA. In Fig. 6.6, the current drawn from the battery with a 16.2 mA load is around 20 mA

for a battery voltage of 3.6V. Thus, the input power to the buck-boost is calculated by

𝑃𝐼𝑁 = 𝑉𝐵𝐴𝑇 ∙ 𝐼𝐵𝐴𝑇 = 3.6𝑉 ∙ 20 𝑚𝐴 = 72 𝑚𝑊 (6.1)

The buck-boost output power is calculated by

𝑃𝑂𝑈𝑇 = 𝑉𝑂𝑈𝑇 ∙ 𝐼𝐿𝑂𝐴𝐷 = 3.3𝑉 ∙ 16.2 𝑚𝐴 = 53 𝑚𝑊 (6.2)

With the input power and the output power calculated, the efficiency can be determined by taking

the ratio of output power to input power, or

𝐸(%) =
𝑃𝑂𝑈𝑇

𝑃𝐼𝑁
⁄ ∙ 100 = (53 𝑚𝑊

72 𝑚𝑊⁄) ∙ 100 = 74% (6.3)

The result of eq. (6.3) is an efficiency of 74%, meaning that 74% of input power is delivered to

the load, and the other 26% (around 19 mW) are burned up in the buck-boost as it regulates the

output voltage to 3.3V while driving the 16.2 mA load.

71

Figure 6.6 Battery Current Out vs. Battery Voltage, ILOAD = 16.2 mA

Figure 6.6 was generated using a power supply and a 198.7Ω resistor, used to pull ideally

16.6 mA from the buck-boost to simulate the system load from Table 6.1. The power supply

voltage was used to simulate the battery voltage and was decreased in steps of 100 mV to simulate

the battery voltage dropping as the battery discharges. The plot shows how the current drawn by

the buck-boost increases as the battery voltage decreases:

• At a battery voltage of 4.2V, the buck-boost pulls just over 16.2 mA of current from

the battery, and the power supply is operating in buck mode.

• At a battery voltage of 3.3V, the buck-boost pulls 22 mA of current from the battery

and is operating in 4-switch mode.

• At a battery voltage of 2.6V, the buck-boost pulls around 28 mA from the battery and

is operating in boost mode.

Once the buck-boost enters boost mode, the battery dies very quickly since the current draw is

high, and the buck-boost continues to pull larger and larger currents from the battery as its voltage

72

continues to drop, as mentioned at the beginning of section 6.3. The table below shows each of the

data points plotted in Fig. 6.6, along with the mode of operation corresponding with the current

battery voltage (input voltage to the buck-boost). The hitch in the trend between 3.0V and 2.9V

for the battery voltage results from the switching from 4SW mode to boost mode, as the different

hardware used in the power supply for boost mode initially draws less current at 2.9V than 4SW

mode hardware does at 3.0V. The efficiency is calculated and displayed in the table. The efficiency

is at a maximum when the battery voltage is the highest (77.6% at 4.2V) and is at a minimum when

the battery voltage is the lowest (67.0% at 2.3V). In general, the efficiency for this 16.2 mA load

is never greater than 80%, and a more efficient regulator should be used in future revisions.

Battery Voltage
(V)

Battery Current

(mA)

Load Current

(mA)

Operation
Mode

VDD (V) Efficiency (%)

4.2 16.41 16.16 BUCK 3.31 77.6%

4.1 16.87 16.16 BUCK 3.31 77.4%

4.0 17.37 16.15 BUCK 3.31 76.9%

3.9 17.86 16.14 4SW 3.31 76.6%

3.8 18.41 16.14 4SW 3.31 76.3%

3.7 19.03 16.13 4SW 3.31 75.7%

3.6 19.68 16.13 4SW 3.31 75.2%

3.5 20.36 16.13 4SW 3.31 74.8%

3.4 21.15 16.12 4SW 3.30 74.0%

3.3 22.01 16.12 4SW 3.30 73.3%

3.2 22.84 16.12 4SW 3.30 72.9%

3.1 23.78 16.12 4SW 3.30 72.2%

3.0 24.72 16.15 4SW 3.31 72.1%

2.9 24.13 16.17 BOOST 3.31 76.6%

2.8 25.32 16.16 BOOST 3.31 75.5%

2.7 26.77 16.15 BOOST 3.31 73.9%

2.6 28.21 16.15 BOOST 3.31 72.9%

2.5 29.98 16.14 BOOST 3.31 71.2%

2.4 32.23 16.14 BOOST 3.31 69.0%

2.3 34.58 16.13 BOOST 3.31 67.0%

Table 6.2 Buck-Boost Efficiency for Constant 16.2 mA Load, Input Voltage Swept

73

6.4 CHAPTER 6 SUMMARY

Chapter 6 overviews the system power considerations, including the power source, proper

voltage regulation, and system power consumption in terms of major system components.

• Section 6.1 highlights the rechargeable battery used (TENERGY 3.7V Li-Po) and provides

typical battery metrics, including the battery voltage and capacity.

• Section 6.2 discusses the design of the voltage regulation circuitry used to regulate the

battery voltage input to a constant 3.3V that is used to power the microcontroller and the

Bluetooth module. A buck-boost switching power supply (SPS) is used so that voltages

both above and below the desired 3.3V can be properly regulated.

• Section 6.3 breaks down the system power consumption by major component, providing a

look at how much current is drawn by each component in the system, along with a plot and

discussion about the accelerating battery discharge rate.

74

CHAPTER 7: FUTURE WORK AND CONCLUSION

7.1 FUTURE WORK AND IMPROVEMENTS

 The preceding chapters discuss, in detail, the design and implementation of the first

revision of the compression sensing device. Many tradeoffs were considered, and difficult

decisions were made in each stage of the design for various reasons and due to specific limitations.

Though the device is fully functional and exhibits accurate readings and efficient operation, each

different segment of the device can be improved in some way, or in many ways. This section

explores each tradeoff and potential design improvement in detail.

7.1.1 MAIN MCU/BLE CIRCUIT

 Many aspects of the main MCU/BLE circuit design and PCB can be improved upon,

including board size and shape, data processing, and power consumption. There are several minor

improvements that can be made to reduce the size of the board without any significant increase in

cost, the first of which is using a smaller microcontroller. The PIC18LF26K22 has 28 pins and 19

ADC channels, only 5 of which are used in the design. Thus, a microcontroller with at least 14 less

pins (50% less) could theoretically be used to properly operate and control the current system.

Future versions of the device may include other sensors (such as temperature sensors to help

identify the early onset of skin infection), in which case more ADC channels would be necessary.

Nonetheless, a large number of pins on the current microcontroller are NC and therefore a smaller

microcontroller would be plenty sufficient.

 As mentioned in section 4.2, the HM-11 BLE module is a sufficient, much smaller, much

lower pin count alternative for the HM-10 BLE module. The HM-11 is nearly half the size of the

75

HM-10 in terms of PCB area and has less than half the number of pins (HM-10 has 34 pins, HM-

11 has only 16). In terms of operation, the HM-11 operates identically to the HM-10. The pins

removed from the HM-10 to the HM-11 include a number of GPIO pins as well as NC pins, none

of which are necessary for the operation of the system. The HM-11 keeps the GPIO pin used to

indicate the Bluetooth device connection status, as well as the necessary UART communication

pins. Thus, the HM-10 can be replaced by the HM-11 with no performance downgrade and a

significant improvement in overall board size. The HM-11 and HM-10 are also similarly priced,

so there is no cost drawback in the HM-11, either.

SMD PACKAGE TYPE DIMENSIONS (INCHES) DIMENSIONS (MM)

0201 0.024” × 0.012” 0.60 mm × 0.30 mm

0402 0.040” × 0.020” 1.00 mm × 0.50 mm

0603 0.063” × 0.031” 1.60 mm × 0.80 mm

0805 0.080” × 0.050” 2.00 mm × 1.25 mm

1206 0.126” × 0.063” 3.20 mm × 1.60 mm

Table 7.1 Imperial SMD Package Types and Dimensions

 The overall area of the main MCU/BLE board can also be decreased by using smaller

passives (resistors and capacitors) and smaller header pins for programming and wired connections

to the sensor/amplifier boards. The prototype build uses 0603 capacitors, 0402 resistors, and 0.1”

spaced header pins for programming and wired connections to the sensing devices. Some of the

smaller-valued capacitors could be replaced with 0402 capacitors and all resistors could be

replaced with 0201 resistors in order to conserve some space on the PCB. The biggest influence

on size, however, is the 0.1” spaced header pins, which are unnecessarily large. A future design

would use a fine-pitch, low profile connector and a ribbon cable to connect the main board signals

out to the sensor/amplifier boards. Smaller-pitch programming pins can also be used to reduce

board size. In production, the programming pins are a one-time use (for the uploading of the MCU

76

program during manufacturing). Though no component is soldered to these pins, they are still an

essential footprint on the board for the step of programming. All of these improvements can be

made without any significant drawbacks in terms of decreased performance or increased cost.

 Outside of making the main board smaller, other improvements can be made to the data

processing step and the board’s power consumption. The current microcontroller has an on-chip

10-bit ADC, which has a 3.22 mV LSB voltage when VDD = 3.3V. Other MCUs are available

with higher-resolution ADCs, where each increase by 1 bit in resolution cuts the LSB voltage in

half. If the LSB voltage is cut in half, the minimum sensible change in pressure is cut in half as

well. Thus, by using a higher-resolution ADC, smaller changes in pressure can be sensed by the

system. This may or may not be necessary depending on clinical trial results, considering that the

10-bit ADC is already able to detect changes in pressure less than 1 mmHg. Table 7.2 below

provides a look at the different LSB voltages for high-resolution ADCs, as well as the associated

LSB pressure, or minimum sensible change in pressure. One drawback is that higher-resolution

ADCs are larger, so MCUs with higher-resolution ADCs are often large and would make the

overall board size increase.

ADC RESOLUTION LSB VOLTAGE LSB PRESSURE

10-bit 3.22 mV 0.285 mmHg

11-bit 1.61 mV 0.143 mmHg

12-bit 0.81 mV 0.072 mmHg

Table 7.2 Changes in LSB Voltage with Different ADC Resolutions, VDD = 3.3V

 In the realm of power consumption, there are several resistors on the main board which can

be replaced with larger resistors to limit the current drawn and therefore the power consumed by

the circuit. For one, the BLE status LED has a series resistor connected to it for current limiting

purposes. This resistor, by limiting the current, also sets the brightness of the LED. Lowering the

77

resistance increases both the power consumption of the resistor and the brightness of the LED,

while increasing the resistance decreases both the power consumption of the resistor and the

brightness of the LED. A battery-monitoring voltage divider is also present on the main board and

simply connects the battery voltage to 2 series resistors of equal resistance to form a ½ voltage

divider. The output of the divider is used to monitor the battery voltage. The size of these resistors

sets the current through the divider directly, and therefore, sets the power consumption as well. If

smaller resistors are used, a more accurate reading of the battery voltage will come from the

divider, since the effects of mismatch will be much smaller. However, the smaller resistance results

in more power consumption. If larger resistors are used, a less accurate reading will result from

resistor mismatch, but the power consumption will decrease.

 The final future improvement of the main MCU/BLE circuit and PCB design is centered

around the use of the CC2541 microcontroller. The CC2541 is a 2.4 GHz Bluetooth Low Energy

System-on-Chip MCU made by Texas Instruments [5] and is the MCU present on the HM-10 and

HM-11 Bluetooth modules. Peripherals include 23 GPIO pins (2 of which can drive LEDs), 3

general-purpose timers, a watchdog timer, a battery monitor and temperature sensor, two USARTs

and a 12-bit ADC with 8 input channels and configurable resolution. All in all, this MCU is

essentially the entire MCU/BLE board built into one chip, aside from the voltage regulation. The

use of this IC would revolutionize the entire system design, as it costs just $4.42 when in stock per

unit, and only $2.76 when purchased in bulk quantities greater than or equal to 500 units. With the

HM-10 and HM-11 modules costing around $10 each and the microcontroller costing another

$3.38 per unit, the use of the CC2541 could reduce the cost per unit of the sensing device by nearly

$10, while also dramatically shrinking the size of the main PCB. The only problem with this MCU

is that currently, no major part distributors have it in stock, so none are available for purchase.

78

7.1.2 SENSOR/AMPLIFIER CIRCUIT AND SENSING MECHANISM

 Like the main MCU/BLE circuit, the sensor/amplifier circuit also has room to improve in

terms board size, as does the sensing mechanism (discussed in section 3.5 in detail). The

mechanism can also be improved to help assure that the correct pressure is read by the sensor. The

first major improvement to the board itself is changing the sensor from the HSFPAR303A to the

much smaller HSFPAR003A. Section 3.3 discusses the differences between the two devices in

detail. The key difference between the two devices is the size. Since the 003A is much smaller and

lower profile, the PCB (see Fig. 3.9) can be designed much smaller and thus the sensing devices

will be more comfortable for the patient. In addition, the 303A needs to be mounted to the PCB

using an adhesive, as it cannot be soldered. Its signals are routed out via a flex PCB meant to be

used in conjunction with a connector, but the sensor itself cannot be soldered. Its smaller

alternative, the 003A, is a surface mount device (SMD) and can be soldered using reflow soldering

and is therefore far more convenient for manufacturing purposes. The 003A is also about half the

price of the 303A, which is obviously desirable.

 Another key component that contributes to the size of the sensor/amplifier board is the

instrumentation amplifier. If the improvement described in the previous paragraph is made such

that the new force sensor is the smaller HSFPAR003A, the new limiting factor in how small the

PCB can be designed is the MAX4208 instrumentation amplifier. Though smaller amplifiers exist,

many of them have a large input offset voltage. The offset voltage adds to the input signal so that

the amplifier then sees the input voltage plus the offset voltage and amplifies the two of them

together, resulting in a garbage output signal. The offset voltage of the amplifier needs to be much

smaller (at least 2 orders of magnitude) than the input signal level for the amplifier to be effective.

As a last resort, the PCB could be designed as a two-sided board (components on two sides instead

79

of just one) so that components can be distributed evenly on top and bottom shrinking the overall

area of the board. The drawback of this technique is that components will then be directly

contacting the patient’s leg which is likely to be slightly uncomfortable, and certainly less

comfortable than would be the flat side of a one-sided board. Having components on two sides of

the board would also add to the already-excessive thickness of the sensing mechanisms, which is

undesirable.

 Improvements to the sensing mechanism include reduction of the spring constant in the

pogo pins, height reduction of the entire apparatus, and turret head size for applying a force to the

sensor actuator. First, the spring constant of the pogo pins is not terribly high, but a lower spring

constant would allow the device to measure pressure more accurately at lower pressures. As of

now, the spring force of the pogo pins needs to be overcome before the device can accurately sense

pressure. The measurements are still reasonable at lower pressures, but the sensor is not feeling

the full applied force since the pogo pin springs are absorbing a portion of it at low pressures.

Additionally, the height of the entire apparatus can very easily be reduced by simply ordering 0.6

mm thickness PCBs instead of 1.6 mm PCBs. The entire apparatus height decreases by 2 mm by

making this one simple change, and cost does not increase at all. Lastly, the force sensor datasheets

[8], [9] inform the user that the force should be applied by a body that is larger in surface area than

the actuator for the best results. Currently, the turret being used is smaller than the actuator, which

could result in poor force measurements, and in turn, poor pressure measurements. The issue is

temporarily fixed in the prototype build by soldering a small copper square (whose area is larger

than that of the actuator) to the end of the turret, but this is not a permanent fix. Instead, a different

turret with a larger head should be used in future revisions.

80

7.1.3 SOFTWARE

The software component of the system is split into two main parts. The first part is the C

code written in the MPLAB IDE and uploaded to the microcontroller to govern its operation, and

the second part is the smartphone application. The C code and the smartphone application can both

be improved upon to make the system more efficient and more powerful. First, the C code is

written as a sequential program (see Appendix C). A sequential program is one which runs from

start to finish in the same order each time through, and cycles back to the top and keeps running

on a loop. The result is a program which is running constantly and cranking out data which is not

necessarily needed so frequently. A better alternative to sequential programming is event-driven

programming. Rather than running on a loop, an event-driven program waits for “events” in order

to execute code segments or instructions. These “events” can be the push of a button by a user, the

measurement of a value above or below some threshold, or even just the reception of a character.

In order to sense “events” in sequential programs, interrupts must be used, but they are far less

robust and versatile than event-driven designs. The entire system could be improved and enhanced

with better functionality if redesigned in an event-driven format.

The smartphone application is also primed for improvements, including an enhanced

graphical user interface (GUI), better customizability, and compatibility with iOS. The current

smartphone application was designed using the MIT App Inventor, discussed in detail in Ch. 5.

The MIT App Inventor is useful but does not allow much freedom in terms of interface design.

Also, as of now, the application is only compatible with Android smartphones. An alternative to

the MIT App Inventor is a similar web-based program called Thunkable, and applications designed

in Thunkable are compatible with both Androids and iPhones, and web applications can also be

designed. Another alternative is to design the application from scratch independent of any online

81

app inventor. This method is the most difficult and code intensive but provides the most

customizability and freedom with the design of the application. For the current application, the

GUI is a bit dry and not much is going on. Future improvements would include the addition of a

battery status bar graphic, along with a graphic of the human leg and the four sensor levels. The

sensed pressure would be displayed on the graphic and the graphic would change colors at different

levels based on the current applied pressure value and whether or not it is correct within some

range. For example, if the pressure at the upper calf is supposed to be 10 mmHg, the application

can light up the upper calf region green when the pressure is between 8 mmHg and 12 mmHg, and

yellow when the pressure is outside of this range. Perhaps it can light up red if the pressure exceeds

25 mmHg, indicating an overpressure warning.

7.1.4 POWER AND BATTERY LIFE

One major downside to the battery and circuitry used to power the system (shown in Fig.

6.1) is that there is no overvoltage, overcurrent, reverse-polarity, or over-discharge protection

circuitry. Many rechargeable batteries come equipped with overvoltage, overcurrent, and over-

discharge protection to keep the battery safe from harmful charging voltages/currents, and from

harmful discharge levels. For example, the Texas Instruments BQ24312 Overvoltage and

Overcurrent Protection IC [14] is “designed to provide protection to Li-ion batteries from failures

of the charging circuit. The device continuously monitors the input voltage, the input current, and

the battery voltage. In case of an input overvoltage condition, the device immediately removes

power from the charging circuit…” Other ICs and protection circuits like the BQ24312 exist for

Lithium-Polymer batteries as well. A surefire improvement to the system would be to equip the

82

battery with protection circuitry. While protection circuitry would also increase cost, such a cost

increase may be worthwhile.

Figure 7.1 Pie Chart of Current Draw Distribution by System Component

 Another concern is presented by the power consumption of the Bluetooth module. The

HM-10 is a BLE or Bluetooth Low Energy module which nominally draws 8.5 mA [6] in active

mode, whether connected or disconnected. However, when the module is connected to another

Bluetooth device, the Bluetooth status LED is on, and draws an extra 0.75 mA of current, resulting

in a maximum current draw of 9.25 mA, as seen in Fig. 7.1 above. With the microcontroller circuit

drawing less than 1.5 mA and each of the sensor boards drawing just under 2 mA, the Bluetooth

module and status LED pull over half (55%) of the total current for the entire system. The total

current drawn by the entire system is around 16.6 mA at maximum current draw when the status

LED is ON and the system is connected to a smartphone. The BLE module current draw is fixed

at 8.5 mA in active mode and cannot be reduced any further. Other devices, such as the RN4870/71

and the BM70/71 BLE modules by Microchip, were explored and draw currents of between 10 –

9%

55%

12%

12%

12%

Current Draw Distribution

PIC18LF26K22 MCU, 1.45 mA

HM-10 BLE MODULE, 9.25 mA

UPPER CALF SENSOR, 1.95 mA

LOWER CALF SENSOR, 1.98 mA

LOWER LEG SENSOR, 1.99 mA

83

13 mA during normal operation, which is even higher than the HM-10 module. However, other

Bluetooth modules that use Bluetooth v5.0 and higher have much lower on-currents (average) are

shown in Table 7.3 below. These other devices should be considered for future revisions of the

device to limit current draw and increase battery life.

MODULE MANUFACTURER ION,AVG VERSION COST

DA14531MOD Dialog Semiconductor 3.0 mA Bluetooth v5.1 $4.48

BM70/71 Microchip 11.5 mA Bluetooth v5.0 $7.26

RN4870/71 Microchip 11.5 mA Bluetooth v5.0 $7.71

HM-10/HM-11 JNHuaMao Technology 8.5 mA Bluetooth v4.0 $8.99

NORA-B100 U-Blox 5.1 mA Bluetooth v5.2 $13.36

BDE-BLEM301 BDE Technology 3.0 mA Bluetooth v5.1 $20.00

Table 7.3 List of BLE Modules, Typical On-Currents, and Cost

7.1.5 OTHER IMPROVEMENTS

 Some other improvements include the obvious redesign and reconsideration of the garment

used, along with the addition of temperature sensors for the purpose of detecting infection, and a

compliance algorithm to check patient compliance with the device. The first of these

improvements is the reconsideration of the garment used. The compression sensing device detailed

in this paper is meant to go beneath a compression wrap and sense the pressure applied by the

wrap. Thus, for the purpose of comfort and promotion of compliance, the garment should be

reasonably thin and soft. The garment should also cover the lower leg and foot area, rather than

just the lower leg. Though it needs to cover the foot and lower leg, any sock-like donning of the

garment will be bothersome and tedious for the patient and therefore should be avoided. A Velcro-

strapping method or any sort of strapping method is ideal because it allows for size adjustability

for different legs. Since patients have all different sizes of legs, adjustability is desirable, and

cannot be achieved by a sock. Also, the garment should not apply any compression of its own to

84

the leg in order for the pressure readings to be accurate. For example, if the compression device is

applying 40 mmHg to the leg, the device will read 40 mmHg. If the garment is then applying an

extra 20 mmHg to the leg, that 20 mmHg will not be sensed. The reading on the smartphone display

will be 40 mmHg, though the leg will actually be feeling 60 mmHg.

 Another very important improvement that should be made to the device is the addition of

temperature sensors at the force sensor levels for local temperature monitoring. According to an

advanced wound care study published in the National Library of Medicine [21], “increased local

temperature is a classic sign of wound infection, and its quantitative measurement has the potential

to assist with assessment and diagnosis of chronic deep wound and surrounding skin infection at

the bedside.” Results of the study showed a “statistically significant relationship between increased

skin temperature and wound infection… [demonstrating] that incorporating quantitative skin

temperature measurement into routine wound assessment provides a timely and reliable method

for a wound care practitioner to quantify the heat associated with deep and surrounding skin

infection and to monitor ongoing wound status.” The addition of temperature sensors to the current

force sensor/amplifier boards would be seamless. Since the PCB is only one-sided, the addition of

a small temperature sensor like those in the TMP23x family by Texas Instruments [22] would be

quick and easy. Each sensor board would then have four signals routed back to the main board:

VDD, ground, the force sensor output, and the temperature sensor output. The TMP23x family of

temperature sensors are high-accuracy analog output temperature sensors. Figure 7.2 shows each

unused ADC input channel on the current configuration of the PIC18LF26K22 MCU in the system

design (red text on J1). The addition of four analog output temperature sensors would take up four

more ADC input channels, leaving 6 more for the addition of extra sensors in the future.

85

Figure 7.2 Schematic Snippet Showing Unused ADC Input Channel Pins on MCU

 One last addition to the design is the implementation of some form of compliance

monitoring algorithm. Patient compliance is a necessity if patients wish to heal properly or in a

timely manner. Typically, patients will get fed up with medical devices if they are uncomfortable

for the patient. While making the device as comfortable as possible is a necessity, not every patient

will be pleased. One possible method for implementing a compliance algorithm would deal with

the monitoring of pressure readings over time intervals when the patient is compliant and other

intervals when the patient is not compliant. These patterns can be analyzed and can be used to

determine based on past sensor readings whether or not a patient is compliant, and how often. For

example, when a patient has the device on and it is being used, pressure values will be greater than

0 mmHg. The device can check every 20 or 30 minutes whether or not the pressure readings are

greater than 0 mmHg. Each time the pressure readings are greater than, say 2 mmHg (to account

for any startup offset), the patient is theoretically complying, and this would be noted. If the

pressure readings are less than 2 mmHg, the patient is theoretically not complying. A running

86

average can be taken of the number of readings where the patient is theoretically complying and

not complying to form a metric for compliance in terms of percentage.

7.2 CONCLUDING REMARKS

 The prototype build is successful by a wide variety of standards. It is capable of wirelessly

transmitting accurate pressure readings to a user-friendly smartphone application via Bluetooth,

and while on continuously, it lasts approximately 8 hours on a single charge. Pressure readings at

each level never have an error greater than 5 mmHg, and the entire device costs less than $100 to

build one unit during mass production (see Appendix C). Despite the success of the prototype,

there are a plethora of improvements that need to be made for the device to be market-ready and

patient-friendly. Improvements should be made to minimize the size of all components resulting

in the minimum possible PCB sizes. The smartphone application should be made more

aesthetically pleasing for the user. The battery life can be extended by using a lower-power BLE

module and/or a higher-capacity battery. Deeper analysis of the tradeoffs associated with each

improvement in terms of size, patient comfort, and cost should be considered in the design of a

second revision of the system. The certain next steps and essential improvements for the design of

a second revision include:

• The replacement of the HM-10 with the HM-11 Bluetooth module

• The replacement of the HSFPAR303A with the HSFPAR003A force sensor

• The replacement of the buck-boost regulator with an efficient linear regulator

• The redesign of both PCBs for area and thickness minimization

• The inclusion of temperature sensors for the detection of skin infection

87

• The redesign of the smartphone application for both Android and iOS compatibility

• The redesign of a garment which covers the foot and is much thinner than the calf sleeve

• The use of ribbon cable and low-profile connectors from the main board to sensor boards

With each of these improvements made, the second revision of the device will be taken to clinical

trials at UMC for testing on real patients. These clinical trials will be used to collect data on the

healing time of VSUs for patients with and without the device beneath their compression wraps.

If the device shows promising results in terms of healing time reduction and patient compliance in

the clinical trial stage, a final revision will be designed, and the device will be ready to bring to

market.

88

APPENDIX A: SCHEMATICS

Figure A.1 Main MCU/BLE PCB Schematic

89

Figure A.2 Force Sensor/Amplifier PCB Schematic

90

APPENDIX B: SINGLE UNIT COST BREAKDOWN

PART DESCRIPTION UNIT PRICE QUANTITY TOTAL

MAIN MCU/BLE PCB $5.00 1 $5.00
HM-10 BLUETOOTH LOW ENERGY MODULE $8.99 1 $8.99

BLUETOOTH STATUS LED 0805 (BLUE) $0.18 1 $0.18

LTC3531-3.3 BUCK-BOOST REGULATOR IC $5.39 1 $5.39

LFT4022T-100M-D 10µH INDUCTOR $1.73 1 $1.73
PIC18LF26K22 MICROCONTROLLER $3.44 1 $3.44

PASSIVES: CAPACITOR 0603, VALUES VARY $0.22 7 $1.54

PASSIVES: RESISTOR 0402, VALUES VARY $0.13 8 $1.04

TENERGY 3.7V 380MAH LIPO BATTERY $6.99 1 $6.99
2 X 100 MIL RIGHT ANGLE MALE HEADER $0.03 1 $0.03

COPPER WIRE, RED, STRANDED $0.30 3 $0.90

COPPER WIRE, BLACK, STRANDED $0.30 3 $0.90

COPPER WIRE, YELLOW, STRANDED $0.30 3 $0.90
SENSOR/AMPLIFIER PCB $5.00 3 $15.00

SENSOR MECHANISM HOUSING PCB $5.00 3 $15.00

TERM TURRET SINGLE L=1.79MM $0.72 3 $2.16

HSFPAR303A FORCE SENSOR $11.60 3 $34.80

MAX4208 INSTRUMENTATION AMPLIFIER $4.16 3 $12.48

GOLD-PLATED COPPER POGO PIN CONN. $0.13 9 $1.17

VIVE LOWER LEG COMPRESSION WRAP $13.99 1 $13.99

 TOTAL COST: $131.63

Table B.1 Cost Breakdown by Part for One Single Unit

https://www.amazon.com/DSD-TECH-HM-10-Bluetooth-Compatible/dp/B07589XCVN/ref=sr_1_6?dchild=1&keywords=hm-10&qid=1633497329&s=electronics&sr=1-6
https://www.digikey.com/en/products/detail/w%C3%BCrth-elektronik/150080BS75000/4489912
https://www.digikey.com/en/products/detail/analog-devices-inc/LTC3531ES6-3-3-TRMPBF/1620528
https://www.digikey.com/en/products/detail/tdk-corporation/LTF4022T-1R2N-D/4766661
https://www.digikey.com/en/products/detail/microchip-technology/pic18lf26k22-i-so/2480397
https://www.tenergy.com/31496
https://www.amazon.com/Headers-Single-2-54mm-Breadboard-10-Piece/dp/B01EWSOGG4/ref=sr_1_1_sspa?dchild=1&keywords=right+angle+male+header&qid=1633498406&sr=8-1-spons&psc=1&smid=A1TBO7AH1TIA3O&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExTktET0MwV0RNWkkyJmVuY3J5cHRlZElkPUEwMzkzMDY1M0Y0UlRDU0lUM1FWNSZlbmNyeXB0ZWRBZElkPUEwNTQ5MDEzMlY4T1JCQjg0MVA5QSZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU=
https://www.digikey.com/en/products/detail/cal-test-electronics/ct2956-2-50/6005487
https://www.digikey.com/en/products/detail/cal-test-electronics/CT2956-0-50/6005484?s=N4IgTCBcDaIEIGkDCAVMBOArANgLQAZdNCA5AERAF0BfIA
https://www.digikey.com/en/products/detail/cal-test-electronics/CT2956-4-50/6005490?s=N4IgTCBcDaIEIGkDCAVMBOArANgLQBZdMAGXAOQBEQBdAXyA
https://www.digikey.com/en/products/detail/mill-max-manufacturing-corp/2111-2-00-44-00-00-07-0/435071?s=N4IgTCBcDaIKYBMCMSDMAOJIC6BfIA
https://www.arrow.com/en/products/hsfpar303a/alps-electric
https://www.digikey.com/en/products/detail/maxim-integrated/MAX4208AUA-T/1782206
https://www.amazon.com/dp/B07FQF2BRC?psc=1&ref=ppx_yo2_dt_b_product_details
https://www.amazon.com/Vive-Calf-Brace-Compression-Circulation/dp/B0101BXKHM/ref=sr_1_5?dchild=1&keywords=vive+lower+leg+compression&qid=1633498889&sr=8-5

91

APPENDIX C: MASS PRODUCTION (1000+) UNIT COST BREAKDOWN

PART DESCRIPTION UNIT PRICE QUANTITY TOTAL

MAIN MCU/BLE PCB $0.75 1 $0.75
HM-10 BLUETOOTH LOW ENERGY MODULE $8.99 1 $8.99

BLUETOOTH STATUS LED 0805 (BLUE) $0.12 1 $0.12

LTC3531-3.3 BUCK-BOOST REGULATOR IC $3.38 1 $3.38

LFT4022T-100M-D 10µH INDUCTOR $0.79 1 $0.79
PIC18LF26K22 MICROCONTROLLER $2.85 1 $2.85

PASSIVES: CAPACITOR 0603, VALUES VARY $0.05 7 $0.35

PASSIVES: RESISTOR 0402, VALUES VARY $0.02 8 $0.16

TENERGY 3.7V 380MAH LIPO BATTERY $3.50 1 $3.50
2 X 100 MIL RIGHT ANGLE MALE HEADER $0.03 1 $0.03

COPPER WIRE, RED, STRANDED $0.30 3 $0.90

COPPER WIRE, BLACK, STRANDED $0.30 3 $0.90

COPPER WIRE, YELLOW, STRANDED $0.30 3 $0.90
SENSOR/AMPLIFIER PCB $0.32 3 $0.96

SENSOR MECHANISM HOUSING PCB $0.34 3 $1.02

TERM TURRET SINGLE L=1.79MM $0.40 3 $1.20

HSFPAR303A FORCE SENSOR $11.60 3 $34.80

MAX4208 INSTRUMENTATION AMPLIFIER $2.36 3 $7.08

GOLD-PLATED COPPER POGO PIN CONN. $0.13 9 $1.17

VIVE LOWER LEG COMPRESSION WRAP $13.99 1 $13.99

 TOTAL COST: $83.84

Table C.1 Cost Breakdown by Part for One Single Unit in Mass Production

https://www.amazon.com/DSD-TECH-HM-10-Bluetooth-Compatible/dp/B07589XCVN/ref=sr_1_6?dchild=1&keywords=hm-10&qid=1633497329&s=electronics&sr=1-6
https://www.digikey.com/en/products/detail/w%C3%BCrth-elektronik/150080BS75000/4489912
https://www.digikey.com/en/products/detail/analog-devices-inc/LTC3531ES6-3-3-TRMPBF/1620528
https://www.digikey.com/en/products/detail/tdk-corporation/LTF4022T-1R2N-D/4766661
https://www.digikey.com/en/products/detail/microchip-technology/pic18lf26k22-i-so/2480397
https://www.tenergy.com/31496
https://www.amazon.com/Headers-Single-2-54mm-Breadboard-10-Piece/dp/B01EWSOGG4/ref=sr_1_1_sspa?dchild=1&keywords=right+angle+male+header&qid=1633498406&sr=8-1-spons&psc=1&smid=A1TBO7AH1TIA3O&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExTktET0MwV0RNWkkyJmVuY3J5cHRlZElkPUEwMzkzMDY1M0Y0UlRDU0lUM1FWNSZlbmNyeXB0ZWRBZElkPUEwNTQ5MDEzMlY4T1JCQjg0MVA5QSZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU=
https://www.digikey.com/en/products/detail/cal-test-electronics/ct2956-2-50/6005487
https://www.digikey.com/en/products/detail/cal-test-electronics/CT2956-0-50/6005484?s=N4IgTCBcDaIEIGkDCAVMBOArANgLQAZdNCA5AERAF0BfIA
https://www.digikey.com/en/products/detail/cal-test-electronics/CT2956-4-50/6005490?s=N4IgTCBcDaIEIGkDCAVMBOArANgLQBZdMAGXAOQBEQBdAXyA
https://www.digikey.com/en/products/detail/mill-max-manufacturing-corp/2111-2-00-44-00-00-07-0/435071?s=N4IgTCBcDaIKYBMCMSDMAOJIC6BfIA
https://www.arrow.com/en/products/hsfpar303a/alps-electric
https://www.digikey.com/en/products/detail/maxim-integrated/MAX4208AUA-T/1782206
https://www.amazon.com/dp/B07FQF2BRC?psc=1&ref=ppx_yo2_dt_b_product_details
https://www.amazon.com/Vive-Calf-Brace-Compression-Circulation/dp/B0101BXKHM/ref=sr_1_5?dchild=1&keywords=vive+lower+leg+compression&qid=1633498889&sr=8-5

92

APPENDIX D: MICROCONTROLLER (C LANGUAGE) SOURCE CODE

/*

 *

 * Last Updated: 08/29/2021

 * Updated By: James Skelly

 *

 */

#include <xc.h>

#include "config_bits_PIC16LF26K22.h"

#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>

#define _XTAL_FREQ 4000000 // set delay clk, system clk = 4 MHz

#define BAUDRATE 9600 // set baudrate to 9600

#define VDD 3.3 // declare VDD to be 3.3V

#define VCM 1.65 // declare VCM to be 1.65V

#define WHITE_LED PORTBbits.RB6 // define programmer clk on RB6

#define BLUE_LED PORTBbits.RB7 // define programmer data on RB7

///

/////////////////////// ***** Function prototypes ***** ///////////////////////

///

void putch(char); // Used to enable printf function

char UART_RxChar(void); // Performs reception of a character

void UARTInit(const long int); // Initializes UART (rs232)

void INTERRUPTInit(void); // Initializes/Enables Interrupts

void CompleteTask(char); // Completes task based on character

 // received by MCU

void ADCInit(void); // Initializes/configures the ADC

float GetADCResult(int);

float VoltageToForce(float, float);

float ForceToPressure(float, float);

///

///////////////////////// ***** Main Code Body ***** //////////////////////////

///

void main(void)

{

 ///// ***** Variable Declarations ***** /////

 char sbuf1[40], a[]="s1: "; // label to identify pressure from sensor 1

 char sbuf2[40], b[]="s2: "; // label to identify pressure from sensor 2

 char sbuf3[40], c[]="s3: "; // label to identify pressure from sensor 3

 char sbuf4[40], d[]="s4: "; // label to identify pressure from sensor 4

 char sbuf5[40], e[]="f1: "; // label to identify force value from sensor 1

93

 char sbuf6[40], f[]="f2: "; // label to identify force value from sensor 2

 char sbuf7[40], g[]="f3: "; // label to identify force value from sensor 3

 char sbuf8[40], h[]="f4: "; // label to identify force value from sensor 4

 char sbuf9[40], i[]="v1: "; // label to identify voltage from sensor 1

 char sbuf10[40], j[]="v2: "; // label to identify voltage from sensor 2

 char sbuf11[40], k[]="v3: "; // label to identify voltage from sensor 3

 char sbuf12[40], l[]="v4: "; // label to identify voltage from sensor 4

 char sbuf13[40], m[]="BL: "; // label to identify battery life

 char ch; // character received by MCU UART Rx pin

 int AN = 0;

 int cycleCounter = 0;

 _Bool isFirstCycle = 1;

 int currentChannel = 0;

 int resultOfConversion[5] = {0,0,0,0,0};

 float resultingVoltage[5] = {0.0,0.0,0.0,0.0,0.0};

 float appliedForce[4] = {0.0,0.0,0.0,0.0};

 float appliedPressure[4] = {0.0,0.0,0.0,0.0};

 float BIAS[4] = {0.0,0.0,0.0,0.0};

 const float AREA_PCB = 346.36; // units of mm squared, actual PCB area

 const float AREA_CALC = 665.35; // units of mm squared, calculated area

 const float AREA_FINAL = 594.06; // units of mm squared, edited area

 ///// ***** Initialization ***** /////

 OSCCON = 0x56; // set internal oscillator to 4MHz

 UARTInit(BAUDRATE); // initialize the UART

 INTERRUPTInit(); // initialize the interrupt

 ADCInit(); // initialize the ADC

 TRISA = 0xFF; // set all port A pins as inputs to enable ADC channels

 TRISB = 0x00; // set all port B pins as outputs to enable LEDs

 PORTB = 0x00; // initially set all port B pins low

 ///// ***** Continuous Loop ***** /////

 while (1)

 {

 cycleCounter++;

 // Obtain Sensor Values

 for (int AN=0; AN<4; AN++)

 {

 if(isFirstCycle == 1)

 {

 BIAS[AN] = GetADCResult(AN);

 }

 else

 {

 resultingVoltage[AN] = GetADCResult(AN);

 appliedForce[AN] = VoltageToForce(resultingVoltage[AN], BIAS[AN]);

 appliedPressure[AN] = (ForceToPressure(appliedForce[AN], AREA_FINAL));

 }

 }

 // Obtain battery voltage

 int AN=4;

 resultingVoltage[AN] = (GetADCResult(AN))*2;

94

 // create strings with data to send to app

 sprintf(sbuf1, "%s%.3f", a, appliedPressure[0]);

 sprintf(sbuf2, "%s%.3f", b, appliedPressure[1]);

 sprintf(sbuf3, "%s%.3f", c, appliedPressure[2]);

 sprintf(sbuf4, "%s%.3f", d, appliedPressure[3]);

 sprintf(sbuf5, "%s%.3f", e, appliedForce[0]);

 sprintf(sbuf6, "%s%.3f", f, appliedForce[1]);

 sprintf(sbuf7, "%s%.3f", g, appliedForce[2]);

 sprintf(sbuf8, "%s%.3f", h, appliedForce[3]);

 sprintf(sbuf9, "%s%.3f", i, resultingVoltage[0]);

 sprintf(sbuf10, "%s%.3f", j, resultingVoltage[1]);

 sprintf(sbuf11, "%s%.3f", k, resultingVoltage[2]);

 sprintf(sbuf12, "%s%.3f", l, resultingVoltage[3]);

 sprintf(sbuf13, "%s%.3f", m, resultingVoltage[4]);

 // send pressures to app

 printf("%s\n", sbuf1);

 __delay_ms(20);

 printf("%s\n", sbuf2);

 __delay_ms(20);

 printf("%s\n", sbuf3);

 __delay_ms(20);

 printf("%s\n", sbuf4);

 __delay_ms(20);

 // send forces to app

 printf("%s\n", sbuf5);

 __delay_ms(20);

 printf("%s\n", sbuf6);

 __delay_ms(20);

 printf("%s\n", sbuf7);

 __delay_ms(20);

 printf("%s\n", sbuf8);

 __delay_ms(20);

 // send voltages to app

 printf("%s\n", sbuf9);

 __delay_ms(20);

 printf("%s\n", sbuf10);

 __delay_ms(20);

 printf("%s\n", sbuf11);

 __delay_ms(20);

 printf("%s\n", sbuf12);

 __delay_ms(20);

 // send battery voltage to app

 printf("%s\n", sbuf13);

 __delay_ms(20);

 if (cycleCounter >= 1)

 {

 isFirstCycle = 0;

 }

 }

 return;

}

95

// Functions

//

// function below writes characters to USART using printf

 void putch(char data)

{

 while(!TX1IF)

 continue;

 TXREG1 = data;

}

// function to receive char

char UART_RxChar()

{

 while(RCIF == 0);

 RCIF = 0;

 return RCREG1;

}

// function to complete task based on input char

void CompleteTask(char ch)

{

 switch(ch)

 {

 case '0':

 {

 BLUE_LED = 0;

 printf(" --> BLUE LED TURNED OFF\n");

 break;

 }

 case '1':

 {

 BLUE_LED = 1;

 printf(" --> BLUE LED TURNED ON\n");

 break;

 }

 case '2':

 {

 WHITE_LED = 0;

 printf(" --> WHITE LED TURNED OFF\n");

 break;

 }

 case '3':

 {

 WHITE_LED = 1;

 printf(" --> WHITE LED TURNED ON\n");

 break;

 }

 default:

 {

 printf(" --> INVALID COMMAND\n");

 }

 }

}

 float GetADCResult(int analogChannelNum)

 {

 float Vresult = 0.0;

 int ADCresult = 0;

 switch(analogChannelNum)

 {

 case 0:

96

 ADCON0 = 0b00000001;

 break;

 case 1:

 ADCON0 = 0b00000101;

 break;

 case 2:

 ADCON0 = 0b00001001;

 break;

 case 3:

 ADCON0 = 0b00001101;

 break;

 case 4:

 ADCON0 = 0b00010001;

 break;

 default:

 printf("ADC Channel Not Connected");

 break;

 }

 __delay_ms(20);

 ADCON0 = ADCON0 | 0b00000010; // start ADC conversion cycle

 __delay_ms(10);

 ADCresult = ((ADRESH<<8)+ADRESL); // pull ADC result from ADreg

 Vresult = ((double)ADCresult/1023)*VDD; // calculate voltage from ADC

 if (analogChannelNum == 4)

 {

 ADCON0 = 0b00000001;

 }

 return Vresult;

 }

 void ADCInit(void)

 {

 // ADC control registers, page 304-306 in datasheet

 // RA0: AN0, 00000

 // RA1: AN1, 00001

 // RA2: AN2, 00010

 // RA3: AN3, 00011

 // RA5: AN4, 00100

 ADCON0 = 0b00000001; // set ADC channel input RA0(AN0), enable ADC(bit0)

 ADCON1 = 0b00000011; // connect Voltage Reference to analog VDD and VSS

 ADCON2 = 0b10001011; // Right justify result, set A/D acq. time, conv. clk

 }

/* The function below calculates the force being applied based on a voltage

 reading from the the ADC coming from the sensor. The (v) variable is

 the current voltage reading and the (b) variable is the biased voltage

 reading set at the beginning when the program starts running and the

 counter is at 0. */

float VoltageToForce(float voltage, float bias)

{

 float force = (voltage - bias)/0.2442; //(1.221 for gain of 100)

 return force;

}

float ForceToPressure(float force, float area)

{

 float conversionFactor = 7500.62; // convert N/mm2 to mmHg

 float pressure = (force/area)*conversionFactor;

97

 return pressure;

}

void UARTInit(const long int baudrate)

{

 float x = ((_XTAL_FREQ/16)/BAUDRATE)-1; // baudrate formula

 int sp = x; // SPBRG1 integer value

 TRISCbits.RC6 = 1; // TX pin set as output

 TRISCbits.RC7 = 1; // RX pin set as input

 SPBRG1 = x; // baudrate generator value

 TXSTA1bits.BRGH = 1; // high baud rate select bit

 TXSTA1bits.SYNC = 0; // setting for Asynchronous

 RCSTA1bits.SPEN = 1; // enable serial pins

 TXSTA1bits.TXEN = 1; // enable transmission

 RCSTA1bits.CREN = 1; // enable receiver

 ANSELCbits.ANSC6 = 0; // disable ADC channel functionality of RC6

 ANSELCbits.ANSC7 = 0; // disable ADC channel functionality of RC7

 __delay_ms(2000);

}

void INTERRUPTInit(void)

{

 RCONbits.IPEN = 1; // enable interrupt priority specification

 INTCONbits.GIEH = 1; // enable all high priority interrupts

 PIE1bits.RC1IE = 1; // enable interrupt for UART Rx 1

 IPR1bits.RC1IP = 1; // set as high priority interrupt

 __delay_ms(200);

}

void __interrupt(high_priority) TechMode(void)

{

 char ch = UART_RxChar(); // wait for a character

 CompleteTask(ch); // complete task according to button pressed

 return;

}

Figure D.1 MCU C Code for Data Reception, Processing, Transmission

98

APPENDIX E: MIT APP INVENTOR BLOCKS VIEW

Figure E.1 Blocks View for Home Screen Design, MIT App Inventor

99

REFERENCES

[1] D. Joseph, OD. “Chronic Venous Insufficiency (CVI).” My.clevelandclinic.org.

https://my.clevelandclinic.org/health/diseases/16872-chronic-venous-insufficiency-cvi

(accessed Oct. 1, 2021).

[2] D. Jaliman, MD. “Understanding Varicose Veins – the Basics.” Webmd.com.

https://www.webmd.com/skin-problems-and-treatments/understanding-varicose-veins-

basics (accessed Oct. 1, 2021).

[3] K. Holland. “Obesity Facts.” Healthline.com. https://www.healthline.com/health/obesity-

facts (accessed Oct. 1, 2021).

[4] J. Menezes, MD. (2021). Optimization of Compression Therapy – Smart Stockings

[PowerPoint slides].

[5] Texas Instruments, “2.4-GHz Bluetooth low energy and Proprietary System-on-Chip,”

CC2541 datasheet, Jan. 2012 [Revised June 2013].

[6] JNHuaMao Technology Company, “Bluetooth 4.0 BLE module,” HM-10 datasheet

[Revised Aug. 2013].

[7] Linear Technology, “LTC3531 200mA Buck-Boost Synchronous DC/DC Converters,”

LTC3531-3.3 datasheet [Revised 2006].

[8] Alps Alpine, “Force Sensor HSFPAR003A Data sheet,” HSFPAR003A datasheet

[Revised Mar. 2019].

[9] Alps Alpine, “Force Sensor HSFPAR303A Data sheet,” HSFPAR303A datasheet

[Revised Apr. 2019].

[10] TDK, “Inductors for power circuits,” LTF4022-D datasheet [Revised Sept. 2018].

https://my.clevelandclinic.org/health/diseases/16872-chronic-venous-insufficiency-cvi
https://www.webmd.com/skin-problems-and-treatments/understanding-varicose-veins-basics
https://www.webmd.com/skin-problems-and-treatments/understanding-varicose-veins-basics
https://www.healthline.com/health/obesity-facts
https://www.healthline.com/health/obesity-facts

100

[11] Maxim Integrated, “Ultra-Low Offset/Drift, Precision Instrumentation Amplifiers with

REF Buffer,” MAX4208 datasheet, May 2015 [Revised Sept. 2019].

[12] Microchip, “28/40/44-Pin, Low-Power, High-Performance Microcontrollers with XLP

Technology,” PIC18LF26K22 datasheet [Revised 2012].

[13] Branch Education. How does Bluetooth Work? (May 19, 2021). Accessed: Sep. 24, 2021.

[Online video]. Available: https://www.youtube.com/watch?v=1I1vxu5qIUM&t=580s

[14] Texas Instruments, “bq24312 Overvoltage and Overcurrent Protection IC and Li+

Charger Front-End Protection IC,” BQ24312 datasheet, Aug. 2009 [Revised Aug. 2015].

[15] Wikipedia, “Android version history,” (Oct. 4, 2021). Accessed: Oct. 7, 2021. [Online].

Available: https://en.wikipedia.org/wiki/Android_version_history [Revised Oct. 4, 2021].

[16] Microchip, “Bluetooth Low Energy (BLE) Module,” BM70/71 datasheet, 2017 [Revised

Aug. 2018].

[17] Microchip, “Bluetooth Low Energy Module,” RN4870/71 datasheet, 2016 [Revised Feb.

2020].

[18] Dialog Semiconductor, “SmartBond TINY Module,” DA14531MOD datasheet [Revised

Aug. 2020].

[19] BDE, “Bluetooth 5.1 LE Module,” BDE-BLEM301 datasheet, July 2020 [Revised Apr.

2021].

[20] U-Blox, “Stand-alone dual-core Bluetooth 5.2 Low Energy and IEEE 802.15.4 module,”

NORA-B1 series datasheet, Sep. 2020 [Revised Aug. 2021].

[21] M. Fierheller, R. G. Sibbald, “A clinical investigation into the relationship between

increased periwound skin temperature and local wound infection in patients with chronic

https://www.youtube.com/watch?v=1I1vxu5qIUM&t=580s%20
https://en.wikipedia.org/wiki/Android_version_history

101

leg ulcers.” Pubmed.ncbi.nlm.nih.gov. https://pubmed.ncbi.nlm.nih.gov/20631603/

(accessed Oct. 9, 2021).

[22] Texas Instruments, “TMP23x-Q1 Automotive Grade, High-Accuracy Analog Output

Temperature Sensors,” TMP235AQDBZRQ1 datasheet, Apr. 2019 [Revised Nov. 2019].

[23] SunPower Electronics, “Efficiency,” (2019). Accessed: Oct 8, 2021. [Online]. Available:

https://www.sunpower-uk.com/glossary/what-is-power-supply-efficiency/.

[24] Bluetooth and USB 3, “Testing for the Bluetooth+USB3 problem,” (2014). Accessed:

Oct 9, 2021. [Online]. Available: https://www.bluetoothandusb3.com/checking-

bluetooth-signal-strength.

[25] M. Thomas. “What Does DBm Mean? How Do I Know If My Signal Strength Is

Optimal?” securitycoverage.com. https://www.securitycoverage.com/articles/faq/dbm-

mean-know-signal-strength-optimal/ (accessed Oct. 9, 2021).

[26] T. Strassburger. “What is a Good Cell Phone Signal Strength?” accu-tech.com.

https://www.accu-tech.com/accu-insider/what-is-a-good-cell-phone-signal-strength

(accessed Oct. 9, 2021).

[27] Microchip, “MPLAB XC8 C Compiler User’s Guide for PIC MCU,” MPLAB XC8 User

Guide, March 2018 [Revised: Feb. 2020].

https://pubmed.ncbi.nlm.nih.gov/20631603/
https://www.sunpower-uk.com/glossary/what-is-power-supply-efficiency/
https://www.bluetoothandusb3.com/checking-bluetooth-signal-strength
https://www.bluetoothandusb3.com/checking-bluetooth-signal-strength
https://www.securitycoverage.com/articles/faq/dbm-mean-know-signal-strength-optimal/
https://www.securitycoverage.com/articles/faq/dbm-mean-know-signal-strength-optimal/
https://www.accu-tech.com/accu-insider/what-is-a-good-cell-phone-signal-strength

102

CURRICULUM VITAE

James W. Skelly

James.W.Skelly@gmail.com http://cmosedu.com/jbaker/students/james_s/james_s.htm

Education

University of Nevada, Las Vegas, 2020-2021

Master of Science in Electrical and Computer Engineering

Graduating: December 2021

University of Nevada, Las Vegas, 2016-2020

Bachelor of Science in Electrical Engineering

Honors: Magna Cum Laude (GPA: 3.96/4.00)

Research

• Graduate Research Assistant in an integrated circuit design/testing research group

supervised by Dr. R. Jacob Baker at UNLV.

o Publication 1: Vikas Vinayaka, Sachin P. Namboodiri, Shadden Abdalla, Bryan

Kerstetter, Francisco Mata-Carlos, Daniel Senda, James Skelly, Angsuman Roy,

R. Jacob Baker. 2019. Monolithic 8x8 SiPM with 4-bit Current-Mode Flash ADC

with Tunable Dynamic Range. In GLSVLSI ’19: 2019 Great Lakes Symposium

on VLSI, May 9-11, 2019, Tysons Corner, VA, USA. ACM, New York, NY,

USA, 6 pages. https://doi.org/10.1145/3299874.3318005

o Publication 2: S. P. Namboodiri, G. Arteaga, J. Skelly, F. Mata-carlos, A. Roy

and R. J. Baker, "A Current-Mode Photon Counting Circuit for Long- Range

LiDAR Applications," 2020 IEEE 63rd International Midwest Symposium on

Circuits and Systems (MWSCAS), 2020, pp. 146-149, doi:

10.1109/MWSCAS48704.2020.9184584.

o IC design, layout, tape out using C5, AMS, TowerJazz processes in Cadence.

o PCB design for ICs designed in the lab and other lab projects.

o Soldering through-hole, SMD components by hand, as well as reflow soldering.

o Programming microcontrollers for various embedded systems projects.

http://cmosedu.com/jbaker/students/james_s/james_s.htm
https://doi.org/10.1145/3299874.3318005

103

Other Work Experience

• Electrical Engineering Intern at Vorpal Research Systems, a laser and electro-optical

system design and manufacturing company. (Spring 2019 – Fall 2020)

• Electrical Engineering Intern at Pololu Robotics and Electronics, design and test

voltage regulators, motor drivers, controllers. (Fall 2021)

• Intellectual Property Technical Consultant

o Covington & Burling LLP (Palo Alto, CA and Washington, DC)

▪ Case 1 – Phenix (sic) Longhorn, LLC v. Texas Instruments, Inc.

• Case Number - Texas, ED (Marshall) 2:18-cv-00020. Complaint

filed on January 22, 2018.

• Case Subject Matter – Circuit with non-volatile memory for

gamma correction in a display screen.

• Work Performed – Provided expert consulting services including

reviewing schematics and other case materials.

▪ Case 2 – Bell Semiconductor, LLC v. Texas Instruments, Inc.

• Case Number – Texas, ED 2:20-cv-00048

• Case Subject Matter – Package drawing files using cutouts to

reduce parasitic capacitance on high-speed pins.

• Work Performed – Reviewed package drawing files and

categorized package designs.

o DLA Piper (East Palo Alto, CA)

▪ Case – Invensas Corporation and Tessera Advanced Technologies, Inc. v.

NVIDIA Corporation

• Case Number – Delaware, 1:19-cv-00861. Complaint filed on May

8, 2019.

• Case Subject Matter – Reference voltage circuits (programmable

bandgaps) having a substantially zero temperature coefficient

using bipolar and MOS transistors.

• Work Performed – Provided expert consulting services including

reviewing schematics and other case materials.

• Grader for various electrical and computer engineering courses (Spring 2020 – Spring

2021)

• Math Tutor – tutored 6 high school and undergraduate level students in a variety of

mathematics courses including (high school) algebra I, algebra II, geometry, (college)

pre-calculus, calculus I, II, III. (Fall 2016 – Spring 2019)

• Textbook Reviewer for CMOS Circuit Design, Layout, and Simulation, Fourth Edition –

R. Jacob Baker.

104

Projects

Individual

• Bluetooth Low Energy Module Breakout Board: Designed a breakout board for the

HM-10, HM-11 BLE modules with on-board buck-boost SPS. PIC18LF26K22 MCU is

used to send data serially to the BLE module and to configure settings on the module.

MCU programmed in C using MPLAB. System can be connected to Android apps.

• Force Sensing Mechanism with Amplified Output: Designed a PCB containing a small

force sensor with analog output voltage and an instrumentation amplifier. Entire unit is

comprised of two PCBs connected by pogo pins for spring action.

• Manually Operable Scoreboard: Designed a 9” by 15” fully functional scoreboard for

various sports using an ATmega328P MCU programmed in C.

• Darkness Sensor: Designed, programmed, and built PCB containing ATMEGA328P

MCU and a photoresistor divider to sense when the undergraduate lab is dark and hit the

switch turning the lights back on using DC push-type solenoids. MCU programmed in C.

• PIC Microcontroller Breakout Board: Designed a breakout board for the QFP44

PIC18LF46K22 microcontroller including convenient PICkit3 programming pins, female

header ports for each IO pin, indicator LEDs for programming and power, and a UART

port breaking out the TX and RX pins.

• CMOS Boost Switching Power Supply: Designed, simulated, and laid out a Boost SPS

IC for varying temperature (0 to 100 degrees Celsius) and power supply voltage (3.75V ≤

VDD ≤ 4.75V) with a fixed 5V DC output reference voltage.

• 555 Timer Christmas Tree Ornament: Designed a PCB to be used as an ornament in

the shape of a Christmas tree using a 555 timer and powered by a 9V battery. The

ornament has flashing and solid modes, and the flashing frequency can be adjusted by the

on-board easily accessible potentiometer. No programming necessary.

• CMOS High-Speed Transimpedance Amplifier: Designed and simulated a

transimpedance amplifier using differential amplifiers to convert light from an avalanche

photodiode into a voltage output.

• CMOS Low Voltage, High Gain Op-Amp: Designed and simulated an op-amp with

Gain Bandwidth Product over 1 MHz, capable of operating over a wide power supply

range (2V ≤ VDD ≤ 6V).

• CMOS Serial-to-Parallel Data Converter: Designed, simulated, and laid out 8-bit

Serial-to-Parallel data converter in Cadence’s C5 process.

• CMOS Low-Power Voltage Amplifier: Designed, simulated, and tested (on

breadboard) a CMOS voltage amplifier with a gain of 10 which draws less than 1mA of

current from a 9V power supply.

• CMOS Full Adder: Designed CMOS 8-bit full adder, performed logic simulation using

transient analysis of digital signals, and laid out the circuit in Cadence’s C5 process.

105

Group

• Wireless Data Transmission System (Thesis): Worked in a team of 2 to design a

system (confidential) to extract data from sensors, process the data and transmit

processed data wirelessly to a smartphone application for analysis. System was designed

using HM-10 BLE module and PIC MCU, programmed in C using MPLAB.

• Motor-Driven Laser Alignment Station (Senior Design): Worked in a team of 2 to

design a laser lens alignment station using programmable stepper motors and ball-screw

linear actuators. GUI programmed using C# and beam modeling performed in MATLAB.

• Alignment Station 3D Modeling: Worked in a team of 2 to model each individual

component of the laser alignment station and create a final assembly in SolidWorks.

• Freedom Photonics IC Tape-out: Worked in a team of 5 to tape out a 152-pin, 5mm x

5mm ASIC with on-chip current and voltage DACs, op-amps, LVDS channels, and other

structures for a Freedom Photonics project. Cadence TowerJazz process was used.

• Four Function Calculator: Led a team of 2 in design of 8-bit four-function calculator,

implemented on DE2 board. Wrote code for each function using Verilog, designed

schematic.

• Test Structures IC: Worked in a team of 3 which designed IC containing logic gates

(NAND, NOR, NOT), ring oscillator, voltage divider, MOSFETs, and boost SPS

circuitry. Laid out in Cadence’s C5 process and fabricated for testing.

• CMOS Audio Amplifier: Led a team of 2 in design, simulation, and testing of a CMOS

audio amplifier using ZVN3306A and ZVP3306A transistors. Input is audio signal from

iPhone audio jack, output on 22-ohm speaker.

Volunteering & Service Activities

• Reach Our City – Travel down to the Las Vegas Strip every other Wednesday to help

give out 100 free Bibles, free waters, and pray with people walking by.

• Calvary Downtown Outreach – Volunteer at Calvary Downtown Outreach helping to

feed homeless people in the downtown Las Vegas area.

• F.E.A.T. (Families for Effective Autism Treatment) Picnic – Volunteer at F.E.A.T.

picnic manning game stations, giving out lunch, setup, and breakdown.

• I.K.E.D. (Introduce a Kid to Engineering Day) – Led different age groups of 15 or

more children in creating a makeshift light spectrometer using cereal boxes and CDs,

answered questions about engineering and college in general.

• Panelist on student panel for NSF Las Vegas Scholars’ Program. (Summer 2019)

106

Leadership

• Former President of Tau Beta Pi, NV Beta Chapter at UNLV: Lead chapter

(containing 845 total members) by planning of service events, delegating tasks to other

officers, organizing and leading initiation and orientation ceremonies.

• Teaching Assistant: Lead group review and study sessions as a TA, as well as office

hours for several electrical and computer engineering courses, including Digital Logic

Design I, Mixed-Signal Circuit Design, Digital Electronics and Digital IC Design, Digital

Electronics Lab, and Memory Circuit Design. (Spring 2020 – Spring 2021)

• IEEE Workshop Leader: Led PCB Design, Soldering, LTSpice workshops for students

at UNLV who are pursuing degrees in electrical/computer engineering.

• Event Manager at The Plaza, Whitney Ranch: In charge of event setup and venue

management, directing and managing caterers, bartenders, barbacks, DJs, and guests for

over three years. (June 2015 – September 2018)

• UNLV Intramural Basketball Team Captain (Spring 2018 – Spring 2019)

• Men’s Slow-pitch Softball Team Coach/Captain (Fall 2019, Spring 2021)

Honors/Awards

• UNLV Rebel Grad Slam 3-Minute Thesis Competition Grand Prize Winner (Fall 2021)

• Marjorie and Victor Kunkel Scholarship (Fall 2020 – Spring 2021)

• AEE Nevada Chapter 2020 Scholarship (Fall 2020 – Spring 2021)

• Magna Cum Laude, Bachelor of Science in Engineering (Spring 2020)

• Wolzinger Family Engineering Scholarship (Fall 2019 – Spring 2020)

• Gilman and Bartlett Engineering Scholarship (Fall 2018 – Spring 2019)

• Earl and Hazel Wilson Scholarship (Fall 2016 – May 2020)

• Valedictorian Scholarship (Fall 2016 – May 2020)

• Millennium Scholarship (Fall 2016 – May 2020)

• Robert Mars Principal Achievement Scholarship (Fall 2016 – Spring 2017)

• Howard R. Hughes College of Engineering Dean’s Honor List (Fall 2016 – May 2020)

• Named to UNLV Intramural Basketball All-Star Team (Spring 2019)

• Back-to-back UNLV Intramural 3-Point Contest Champion (Fall 2020, Spring 2021)

107

Professional Associations

• Member, IEEE (Institute of Electrical and Electronics Engineers)

• Member, Tau Beta Pi (Engineering Honor Society) National Chapter

