
Table of Contents
ECG703 HW6, Support Vector Machine - James Skelly .. 1
HW6. Due April 29, 2021 .. 1
Solution with MATLAB's Quadratic Programmer ... 1
Plotting .. 3
Results and Concluding Remarks ... 4

ECG703 HW6, Support Vector Machine - James
Skelly

close all

HW6. Due April 29, 2021
Derive a SVM solution for the dataset below. You must show all the details and intermediate steps. Ex-
ceptions to use library functions are matrix operations and Quadratic Programming. After finding the so-
lution, plot the results and mark the margin as well as the support vectors.

% Class 1, Red Data Points
x1 = [-2;1;2;4;5;7;8;9;6];
y1 = [9;5;8;6;9;2;7;4;4];
c1 = 1;
C1Data = [x1,y1];

% Class 2, Blue Data Points
x2 = [-2;-4;-4;-5;-6;-7;-7;-8;-9];
y2 = [2;2;4;3;7;1;5;8;7];
c2 = -1;
C2Data = [x2,y2];

% Obtain size of class 1 and class 2 data for matrix indexing
[nRowsC1, nColsC1] = size(x1);
[nRowsC2, nColsC2] = size(x2);

% Compute number of data points and number of dimensions
nDataPoints = nRowsC1 + nRowsC2;
nDimensions = nColsC1 + nColsC2;

Solution with MATLAB's Quadratic Program-
mer

After getting the necessary matrices into standard form, a quadratic programmer can be used to find the
final weights of the boundary line. From these weights and the calculated margin, the support vectors can
be obtained using basic geometry.

% Get Q matrix for the standard form of QP

1

Q = eye(nDimensions + 1);
Q(1,1) = 0;

% Build p, c vectors for standard form of QP
p = zeros(nDimensions + 1,1);
c = ones(nDataPoints,1);

% Negate all components of c for standard form
c = c*-1;

% Allocate memory for the A matrix
A = zeros(nDataPoints,nDimensions + 1);

% Populate the A matrix for standard form of QP
for i = 1:nDataPoints

 if i <= (nDataPoints/2)
 A(i,1) = c1;
 A(i,2) = x1(i)*c1;
 A(i,3) = y1(i)*c1;
 else
 A(i,1) = c2;
 A(i,2) = x2(i-(nDataPoints/2))*c2;
 A(i,3) = y2(i-(nDataPoints/2))*c2;
 end

end

% Negate all components of A for standard form
A = A * -1;

% Obtain final boundary line weights using QP
wf = quadprog(Q,p,A,c);

% Create a separate vector excluding the bias (wo)
wf2 = [wf(3),wf(2)];

% Compute the margin
margin = 1/norm(wf2);

% Compute the offset for the support vectors from the boundary line
theta1 = rad2deg(atan(wf2(2)/wf2(1)));
theta2 = 90 - theta1;
dy = margin/(sin(deg2rad(theta2)));

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-
decreasing in
feasible directions, to within the default value of the optimality
 tolerance,
and constraints are satisfied to within the default value of the
 constraint tolerance.

2

Plotting
xplot2 = -30:0.05:30;
yplot2 = (-1*(wf(2)/wf(3))*xplot2)-(wf(1)/wf(3));

% Plot filler between support vectors and boundary line setup
xp2 = [xplot2, fliplr(xplot2)];
inBetween = [yplot2, fliplr(yplot2+dy)];
inBetween2 = [yplot2 - dy, fliplr(yplot2)];

% Initialize support vector matrix, point counter, offset for doubles
SV0 = zeros(1,2);
ptCounter = 1;
del = 0.0001;

% Find support vectors
for i = 1:nRowsC1

 if (C1Data(i,2)+del) == round(((-1*(wf(2)/wf(3))*C1Data(i,1))-
(wf(1)/wf(3)))+ dy + del,4)
 SV0(ptCounter,1) = C1Data(i,1);
 SV0(ptCounter,2) = C1Data(i,2);
 ptCounter = ptCounter + 1;
 end

 if (C2Data(i,2)+del) == round(((-1*(wf(2)/wf(3))*C2Data(i,1))-
(wf(1)/wf(3)))- dy + del,4)
 SV0(ptCounter,1) = C2Data(i,1);
 SV0(ptCounter,2) = C2Data(i,2);
 ptCounter = ptCounter + 1;
 end

end

figure('Name', 'ECG703 HW6 Support Vector Machine Solution');
set(gcf,'units','normalized','position',[0.314,0.191,0.499,0.525]);
p4 = fill(xp2, inBetween, 'g');
hold on
p5 = fill(xp2, inBetween2, 'y');
p1 = plot(xplot2, yplot2, 'black', 'LineWidth', 2);
p2 = plot(xplot2, yplot2 + dy, 'blue', 'LineWidth',2);
p3 = plot(xplot2, yplot2 - dy, 'red', 'LineWidth',2);
title('Support Vector Machine Solution for Linearly Separable Data')
xlim([-12 12])
ylim([-1 12])
xticks(-11:1:11)
yticks(-1:11)
ax = gca;
ax.XAxisLocation = 'origin';

3

ax.YAxisLocation = 'origin';
grid on
p6 = scatter(x1,y1,'red', 'filled');
p7 = scatter(x2,y2,'blue', 'filled');
p8 = scatter(SV0(:,1),SV0(:,2),200, 'black');

legend('Class 1 Margin', 'Class 2 Margin', 'Final Boundary',...
'Upper Boundary', 'Lower Boundary', 'Class 1', 'Class 2', 'Support
 Vectors')

Results and Concluding Remarks
The Support Vector Machine is a perfect application to use a quadratic programmer. Since MATLAB has
a built in quadratic programmer, it is not difficult to solve the SVM using the quadprog function and the
correct matrices/vectors in standard form. The final plot shows the boundary line, the support vectors, all
of the data points, and the margins shaded.

fprintf('\n')
fprintf('Final Weights of Boundary Line:\n')
disp(wf)
fprintf('\n')

fprintf('\n')
fprintf('Margin:\n')
disp(margin)
fprintf('\n')

fprintf('\n')
fprintf('Support Vectors:\n')
disp(SV0)

4

fprintf('\n')

Final Weights of Boundary Line:
 -0.8519
 0.3704
 0.2963

Margin:
 2.1083

Support Vectors:
 -2 2
 1 5
 -6 7

Published with MATLAB® R2018b

5

	Table of Contents
	ECG703 HW6, Support Vector Machine - James Skelly
	HW6. Due April 29, 2021
	Solution with MATLAB's Quadratic Programmer
	Plotting
	Results and Concluding Remarks

