Table of Contents

ECG703 HW 2: Perceptron - James SKElYuuiiiiiiei e 1
Part A. Memory Allocation fOr Dala MELIXcceeuuuieiiiii e 1
Part B. Populating the Data MaIIiXccoeuruieiiiiiiieeiii ettt et e e e e e eeees 1
Part C. Plotting the Target FUNCLIONcoouutiiiiiii e 2
Part D. Linear Separation and PIOiNG Of Dalaluieiiiiiiieiiiiiecee e 3
Part E. Implementing Perceptron AIGOrThMooouuiiiii e 6
Questions Regarding HOmMework ASSIGNMENTiiiiiiei et 9
FUNCEIONS ...t ettt ettt ettt e e et et e e et ettt e e e eebe e e e enba e eeene 12
Final Comments & CONCIUSIONSoiieiiiiieiii et 13

ECG703 HW 2: Perceptron - James Skelly

This program implements the perceptron algorithm for a set of randomly generated 2D data. The datais
made "linearly separable” using a given target function. Prior to each section, a description will be given
which contains both the instructionsfor the section and adescription of the motivation and thought process
behind the implementation.

format conpact
clear all
cl ose all

Part A. Memory Allocation for Data Matrix

Part

Instructions: Create aset of 2D data (d = 2, features. X = (x1, X2)).

Implementation: A 20x2 matrix of zerosisgenerated for part A in order to allocate the necessary memory
for the random data which will populate the matrix in part B.

X = zeros(20,2); %Al locate nenory for the data matri x
x1 X(:,1); %Assign all values in 1st colum of X to x1 vector
X2 X(:,2); %Assign all values in 2nd colum of X to x2 vector

B. Populating the Data Matrix

Instructions: Randomly create a set of 20 data points (N = 20) such that for each point X = (x1,x2), the
coordinates x1, X2 be integers; x1, x2 are to be limited to the [-30,+30] range and uncorrel ated.

Implementation: A 20x2 matrix of random integersin the range specified is generated. The first column
values are assigned to an x1 vector and the second column values are assigned to an x2 vector, where one
point in the coordinate plane is of the form (x1,x2). The data is plotted as a scatter plot along with the
target function from part C.

X =randi ([-30,30],[20 2]); % CGenerates a random 20x2 matrix of

i ntegers

x1 = X(:,1); % Reassign all values in the first colum of X to x1
vect or

x2 = X(:,2); % Reassign all values in the second colum of X to x2
vect or

% Pl ot and axis settings, limts, labels for plot 1
figure(' Nane', 'HW2: Perceptron Plot 1")
scatter(x1,x2,'filled , 'D splayNane', 'Random Data');

| egend

title(' Random Data Scatter Plot & Target Boundary Line');
xl abel (" x_{1}', 'FontSize', 12, 'FontWeight', "bold);

yl abel (" x {2}', 'FontSize', 12, 'FontWight', 'bold);

ax = gca;

ax. XAxi sLocation = "origin';

ax. YAxi sLocation = "origin';

xlim[-30 30]);

xticks(-30:5:30);

ylin([-30 30]);

yticks(-30:5:30);

grid on

hold on % Plot the Iine and scatter plot on the sanme figure
% Scatter plot is plotted in part C, next

Random Data Scatter Plot & Tgrget Boundary Line
(] i L]

.25 Xz | ® Random Data|

L]
201

1571
1D_ »
- 51 X

L]
-25 -20 -15 -10 -b 5 m 15 20 25

Part C. Plotting the Target Function

Instructions: Choosethelinex1 + 2*x2 - 1.1 = 0 as your target function where the points on one side of
thelinemap to: y = +1 (f =x1 + 2*x2 - 1.1 > 0) and the other pointsmap to:y =-1 (f =x1+ 2*x2- 1.1
< 0). Now, you have a set of 20 data points (X,y) as your separable data points.

Implementation: The given target function is solved for x2 (y) so that it can be plotted on the same plot
with the data points generated in part B. The mapping to +1 and -1 for points above and below the line

isimplemented in part D along with the color coding of the points for convenience and code readability.
Thisway, the points are both color coded and mapped in asingle loop rather than writing one loop to map
them and another to color code them.

x1pl ot = -30:0.05:30; % Creates a vector of plot points in the x
direction

x2plot = -0.5*x1plot + 0.55; % Plot target function

Plotl = plot(xlplot, x2plot, 'Di splayNane',' Target','color'," black');

| egend % Add | egend to plot of target function

hol d of f

Random Data Scatter Plot & Tgrget Boundary Line

[] []
. X, ® Random Data
. Target
20
L]
1571
® L]
i]
X
L 1 1 1 1 1 = 1 1 1 |. 1 i
25 20 15 10 -5 10 15 20 25
5t -
L]
. 0t
L]
& 16
20t s
25T

Part D. Linear Separation and Plotting of Data

Instructions: Plot the points on the 2D plane labeling them with "+" or "-" or Red and Blue.

Implementation: A "for" loop is used to cycle through each row in the X matrix (or in other words, each
of the 20 data points) to check if a point is above or below the target function line. If apoint is above the
line, it is mapped to avalue of 1 and given ared fill. If apoint is below the line, it is mapped to a value
of -1 and given a bluefill. The mapping of the point is stored as a third column in the data matrix so that
each point has an associated mapping in the matrix. The points are plotted one by one, red or blue, above
or below the line by the "for" loop.

% Store size of X matrix for

[nNRowsI nX, size(X);
| oopi ng

wlarg = [-1.1 1 2];

nCol umsl nX] =

% target function weights = [w0, wl, Ww2]

figure(' Name', 'HW2: Perceptron Plot 2')

Pl ot2 = plot(x1plot,

x2plot,"':","'DisplayNane', ' Target','color','black','LineWdth',3);
hold on % pl ot target function, separated data, and initial boundary
%all in sanme figure

WP = 0.002 + rand(1,3); %create and popul ate vector for random
initial
% wei ght val ues. 0.001 offset is introduced

to

% avoid a situation where the randomy
gener at ed

% wei ght value is 0 and one of the functions
tries

%to then divide by 0, causing problens.
disp(" ")
di sp("Wei ght Vector Initial Values: ")
di sp(wWP)
disp(" ")

% Plot initial boundary |ine using randomy generated wei ght vector
WP

x1pl ot P = -30: 0. 05: 30;
x2plotP = (-1*(wWWP(2)/wWP(3))*x1pl ot P)- (WWP(1)/wWP(3));
Plot3 = plot(xlplotP, x2plotP,':"," DisplayNane', 'Initial

Boundary','color', ' magenta','LineWdth', 3);

redvatrix = zeros(2,2);
bl ueMatrix = zeros(2,2);
redCount = 1;
bl ueCount = 1;

% Cenerate linearly separable data separable by the given target
function
for i = 1:nRowslnX % Loop through every row of the X matrix
x1lLoop = X(i,1); % Get the x1 value of the ith row
x2Loop = X(i,2); % Get the x2 value of the ith row
f = wrarg(1l) + wrlarg(2)*x1lLoop + wTarg(3)*x2Loop; % Obtain f val ue
if f >0
X(i,3) =1; %assign a 1 to points above the line
c ='red; %give points above the line a red color fill
redvatri x(redCount, 1) = X(i,1l); % populate red matrix for
|ater plotting
redvatri x(redCount, 2) = X(i,2);
redCount = redCount + 1;
el se
X(i,3) =-1; %assign a -1 to point below the Iine
c = 'blue'; %give points belowthe line a blue color fill
bl ueMatri x(bl ueCount, 1) = X(i,1); % populate blue matrix for
|ater plotting

bl ueMat ri x(bl ueCount, 2) = X(i, 2);
bl ueCount = bl ueCount + 1

end

% Pl ot and axis settings, limts, labels for plot 2
title('lteration Plot along with Target Function');

xl abel (" x_{1}', 'FontSize', 12, 'FontWeight', "bold);
yl abel (" x {2}', 'FontSize', 12, 'FontWight', 'bold);
ax = gca;

ax. XAxi sLocation = "origin';

ax. YAxi sLocation = "origin';

xlim([-30 30]);
xticks(-30:5:30);
ylim([-30 30]);
yticks(-30:5:30);
grid on
scatter(X(i,1),X(i,2),c, ' filled);
| egend([Pl ot 2, Pl ot 3]);
end

% di sp("Values in X matrix: ")
% di sp(X)

Wei ght Vector Initial Values:
0. 4860 0. 6410 0. 8896

Iteration Plot along with Target Function
.

[] []
.25 i xz =8 sas Target
® === o= |nitial Boundary
I*.. 29 - .
Tu
.."'.. ..*"b 57]
ln,.*' e, 11}"
» " -
. t.'..‘,*. L
t*..ﬂ i
. o, 2 X,
%
i i i i l!Jr'.‘.’l i i i i
25 -20 -15 -10 b ".?'..’H} 15 20 25
A ".t *-*-. ®
] fe, tex
. A0 F e, Tt
L] s *'q.
e, oLy
® -15 i._"
»
20| T,
25T

Part E. Implementing Perceptron Algorithm

Instructions: Implement and run the perceptron algorithm. You must write the perceptron code from
scratch as opposed to using the code in software packages. Make sure to include declarations next to code
lines for ease of readability.

Implementation: A copy of the datamatrix is generated and the new randomly weighted initial boundary
line is used to determine a new mapping of the data points. The new mapping (the third column of the
comparison matrix) and the initial mapping (the third column of the data matrix) are compared. If the new
mapping and initial mapping of agiven point are equal, then that point is not misplaced. If these mappings
are not equal, then the point is misplaced. This data (misplaced, 1, or not misplaced, 0) isstored in afourth
column of the data matrix.

A "for" loop isthen used to cycle through the matrix and find the first point which islabeled as misplaced.
A function was written to update the weight values each time that a misplaced point is detected. After the
update, the values in the data matrix and comparison matrix are regenerated and a new list of misplaced
pointsiscreated. Thisprocessrepeats until there are 0 misplaced points detected at which point the program
is done and the final weights define avalid boundary line.

XConpare = X; % Set conparison matri x equal to reference matrix X
isDone = false; % initialize stop variable for while | oop
colorindex = 0; % initialize color index for plotting iterations

| oopCounter = 1; %initialize |oop counter for |egend

nRate = 0. 02; % Set learning rate for weight update function
whi |l e i sDone == fal se
for i = 1:nRowsl nX % Loop through every row of the X matrix

x1lLoop = X(i,1); % Get the x1 value of the ith row
(coordi nat e)

x2Loop = X(i,2); % Get the x2 value of the ith row
(coordi nat e)

f = wP(1) + WP(2)*x1Loop + WVWP(3)*x2Loop; % Obtain new f

val ue
if f >0
XConpare(i,3) = 1; %assign a 1 to points above the line
el se
XConpare(i,3) = -1; %assign a -1 to points below the Iine
end
end
% di sp("Values in Conparison matrix: ")

% di sp(XConpar €)

% Fi nd nunber of misplaced points and mark their status in colum

4
nunPts = 0;
for i = 1:nRowsl nX
if X(i,3) ~= XCompare(i,3) %if third colum val ues are not
equal
nunPts = nunPts + 1, % then increnent the m splaced
count er

to

%
%

%

%
%

%

X(i,4) =1, % and set the fourth colum val ue

1
XConpare(i,4) = 1;
el se
X(i,4) = 0; %otherwi se, set fourth colum value to O
XConpare(i,4) = 0;
end
end

% Exit the while | oop and stop iterating when there are no nore
% m spl aced points detected, but keep iterating if there are still
% m spl aced points.
if nunPts ==
i sDone = true;
x2pl ot Pnew = (-1*(wWVP(2)/wWP(3))*x1pl ot P)- (WP(1)/wWP(3));
disp("X matrix m splaced pts: ")
di sp(X)
fprintf('Msplaced Pts: %l\n', nunPts)
el se
disp("X matrix m splaced pts: ")

di sp(X)
fprintf('Msplaced Pts: %l\n', nunPts)

% Traverse matrix for msplaced points to adjust weights

for i = 1:nRowsl nX
if X(i,4) == % enter this code body if the point is
m spl aced
xIMsp = X(i,1); %get x1 value of the m splaced point
x2M sp = X(i,2); %get x2 value of the msplaced point
WP =

Updat eWei ght s(WP(1) , wP(2), WP(3), x1M sp, x2M sp, nRat e, X(i, 3));

di spTxt = ['Iteration: ", nunstr(loopCounter)];

di sp(di spTxt)

di sp("Updated Weights: ")

di sp(wWP)

disp(" ")

% plot a newline for each iteration to track changes
x2pl ot Pnew = (-1*(wWWP(2)/wWP(3))*x1pl ot P)- (wWWP(1)/

WP(3));

pl ot Col or = ChangeCol or (col orl ndex); % change |ine

col or

| egendTxt ['Final Ilteration:

", nunstr (Il oopCounter)];

pl ot Fi nal =

pl ot (x1pl ot P, x2pl ot Pnew, ' Di spl ayNane', | egendTxt, ' col or', pl ot Col or);

| egend([pl ot Final ,Plot2,Plot3]);
if | oopCounter ==
iterationl = x2pl ot Pnew;,
el seif | oopCounter ==
iteration2 = x2pl ot Pnew;,
el seif | oopCounter ==

iteration3 = x2pl ot Pnew;
end
br eak
end
end
end

% increnent the color index and | oop counter after each iteration

col orl ndex = col orlndex + 1;
| oopCounter = | oopCounter + 1

end
iterationFinal = x2pl ot Pnew;
di sp("Number of iterations taken: ")

num terations = | oopCounter - 2;
di sp(num terations)

disp(" ")
di sp("Final Weights: ")
di sp(wWP)

% | egend([Plot2,Plot3]); %add a |legend for the lines
hol d of f

Iteration Plot along with Target Function
.

[] []
.25 N xz Final lteration: 5
® IIIIIITErget
Fa, 20 F == === |nitial Boundary

Questions Regarding Homework Assignment

How many iterations does it take to arrive at the solution boundary (estimated target function)? Plot 4
iterations including the final one showing the boundary line at each iteration. Draw function f line on the
last plot and explain why they are different.

Average Number of Iterations Taken for Random Data (nRate = 0.02)
Run1: 4

Run2:1

Run 3: 2

Run4: 4

Run5: 2

Run 6: 2

Run7:2

Run8: 7

Run 9: 3

Run 10: 2

Average Number of Iterations Taken = 2.9

Thetarget function line and the final weighted line found by the perceptron algorithm are different because
there are infinitely many solutions which can be found by the perceptron algorithm as lines that "fit" or
properly separate the data. The perceptron algorithm is simply checking for misplaced points and stops
iterating when there are no more points misplaced, so it stops at thefirst solution. Given that we have only
20 data points, thereisahigher likelihood that we have alarger range of lineswhich will separate the data.
However, if we were to run the algorithm with more data, we would expect to see a final boundary line
much closer to the target function because there are more data points, and therefore alower likelihood that
we have alarge range of lines which will properly separate the data.

% Pl ot showing 4 iterations

if numterations > 3
figure(' Nane', 'HA2: Perceptron Plot 3")
pl ot (x1plotP,iterationl,’ blue);
hol d on
pl ot (x1plotP,iteration2,'red);
pl ot (x1plotP,iteration3,' green');
pl ot (x1pl ot P,iterationFinal,' cyan');
scatter(redvatrix(:,1),redMatrix(:,2), ' red ,"filled);
scatter(blueMatrix(:,1),blueMatrix(:,2), blue' ," ' filled);
title(' Pl ot Showi ng Four Iterations of Perceptron');

xl abel (" x_{1}', 'FontSize', 12, 'FontWeight', "bold);
yl abel (" x {2}', 'FontSize', 12, 'FontWight', 'bold);
ax = gca;

ax. XAxi sLocati on
ax. YAxi sLocati on
xlim[-30 30]);

xticks(-30:5:30);
ylim([-30 30]);

yticks(-30:5:30);
legend('Iteration 1',"Iteration 2',"'Iteration 3','Fina

‘origin';
‘origin';

I[teration', 'y = 1', 'y = -1');
grid on
hol d of f
end
% Final plot showing final line, target line, and data points.

figure(' Name', 'HW2: Perceptron Final Plot')

% Plot the target function again on the final plot for comparison
pl_final = plot(xlplot,

x2pl ot,"' Di spl ayNane', ' Target','color','black','LineWdth',2);
hol d on

% Plot the final boundary line in the same figure
x1pl ot P_final = -30:0.05: 30;
x2plotP_final = (-1*(wWP(2)/wP(3))*x1pl otP_final)-(wWP(1)/wWP(3));

p2_final = plot(xlplotP, x2plotPnew, 'D splayNanme',"'Fina
Boundary','color',"'green','LineWdth', 1);

% Pl ot the scatter plot (data points) on the sane figure with the
[ines
for i = 1:nRowsl nX % Loop through every row of the X matrix
x1lLoop = X(i,1); % Get the x1 value of the ith row
x2Loop = X(i,2); % Get the x2 value of the ith row
f2 = wP(1l) + wWP(2)*x1Loop + WP(3)*x2Loop

if f2 >0
c ='red;
el se
c = 'blue';
end
% Pl ot and axis settings, limts, labels for final plot
title(' Final Perceptron Values');
xl abel (" x_{1}', 'FontSize', 12, 'FontWight', '"bold");
ylabel (" x_{2}', 'FontSize', 12, 'FontWight', 'bold);
ax = gca;
ax. XAxi sLocation = '"origin';
ax. YAxi sLocation = 'origin';

xlim([-30 30]);

xticks(-30:5:30);

ylim([-30 30]);

yticks(-30:5:30);

grid on

scatter (X(i,1),X(i,2),c, ' filled");
end

10

| egend([pl_final,p2_final]);

hol d of f

Plot Showing Four lterations of Perceptron

® -8 ®
.25 N xz lteration 1
® lteration 2
20 F lteration 3
o Final lteration
15T ® y=1
L * y=-1
R‘—nt 10 F ®
~ 5 L
] — 11
I R m— HP’“%— I I I I I
o
-25 20 -15% 10 -5 “H— 10 15
5 F -
. -\-\-\L_H-"'-\-______\-
. 10T T
L]
® —1 5' B
20t e
=25

11

Final Perceptron Values
-

X

Target
Final Boundary

-25

-20

15 -10

Functions

% Function that takes in the weights,
% out puts new wei ghts to update the boundary |ine
function WP_new = Updat eWi ght s(w0, wl, w2,

WWP_new(1l) =

WVP_new 2)

WVP_new 3)
end

% Function that takes in the col or

di fferent

% col or for each iteration of the while | oop

| earning rate, and i nput and

w0 + (nRate * d * 1);
wl + (nRate * d * x1);
w2 + (nRate * d * x2);

function col or = ChangeCol or (i)

i new = nod(i,7);

switch i new
case 0O
col or
case 1
col or
case 2
col or
case 3
col or
case 4

"yel | ow ;
'green';
'cyan';

" bl ue';

x2, nRate, d)

i ndex variable and outputs a

12

color = 'red
case 5
color = 'black';
case 6
color = 'nmagenta';
end
end

Iteration: 1
Updat ed Wi ghts:
0. 4660 0. 0810 1.2696

Iteration: 2
Updat ed Wi ghts:
0. 4860 0.4210 1.1496

Iteration: 3
Updat ed Wi ghts:
0. 4660 0. 8410 0. 9896

Iteration: 4
Updat ed Wi ghts:
0. 4460 0. 2810 1. 3696

Iteration: 5
Updat ed Wi ghts:
0. 4660 0.6210 1. 2496

Nunber of iterations taken:
5

Fi nal Wi ghts:
0. 4660 0. 6210 1.2496

Final Comments & Conclusions

The average number of iterations required was cal cul ated based on random data and afixed learning rate.
In this case, the learning rate was fixed at 0.02. Different sizes of data matrices (i.e. more points) and
different learning rates were tested, and it was determined that changing the learning rate can improve
the number of iterations taken in some cases, but not in others. This because the learning rate directly
influences the updated weights proportionally. If we have alarger learning rate, the updated weights will
change more drastically. A smaller learning rate causes smaller changes in the updated weights.

In this program, the data is generated randomly on every single run, so no two data sets are identical (ide-
ally, unless by some insane odds, two randomly generated sets wind up identical). Likewise, the weights
for theinitial boundary line are randomly generated on each run, so the boundary line never startsin the
same place. The result of thisrandomnessis that the number of iterations changes with each run. Most of
the time, the number of iterationsis below ten. However, there are some cases where two data points (one
red and one blue) are on either side of the target line and very very close to it, resulting in an enormous
number of iterations required for the algorithm to find the correct line. This is because the window is so
small for possible solutions that the algorithm has to bounce back and forth around the solution until it
finally settles very close to the target line.

James Skelly, 2021

13

Published with MATLAB® R2018b

14

	Table of Contents
	ECG703 HW 2: Perceptron - James Skelly
	Part A. Memory Allocation for Data Matrix
	Part B. Populating the Data Matrix
	Part C. Plotting the Target Function
	Part D. Linear Separation and Plotting of Data
	Part E. Implementing Perceptron Algorithm
	Questions Regarding Homework Assignment
	Functions
	Final Comments & Conclusions

