
Logistic Regression Problem Instructions

Problem 1. The data comprises data related to studies on real participants in relation to heart disease.

The data was cleansed in STATA resulting in the original data of 4,239 data entries being reduced to

3,749.

Two datasets of 3 features each were selected after examining plots of the data:

• HeartData_01 – selected features are somewhat correlated

• HeartData_02 – selected features are somewhat correlated

Prevalent hypertension (prevalentHyp) was chosen as the predictor.

a) Find the probability of prevalent hypertension for the following patients using HeartData_01

and HeartData_02:

diaBp BMI heartRate prevalentHyp

140 33 95

80 27 70

60 21 65

Note: Below are the steps that were followed in MATLAB to accomplish this assignment. The results

are shown under the section titled, Results, published by the MATLAB code.

1) Initialize the weights at 𝐭 = 𝟎 𝐭𝐨 𝐰(𝟎).

2) For 𝑡 = 0, 1, 2, … . . 𝑑𝑜 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔

3) Compute the gradient using the equation below.

𝛻𝐸𝑖𝑛 = −
1

𝑁
∑

𝑦𝑛𝑋𝑛

1 + 𝑒(𝑦𝑛𝑤𝑇(𝑡)𝑋𝑛)

𝑁

𝑛=1

4) Update the weights: 𝐰(𝐭 + 𝟏) = 𝒘(𝒕) − 𝜼
𝛻𝐸𝑖𝑛

||𝛻𝐸𝑖𝑛||

5) Iterate to the next step until it is time to stop.

6) Return the final weights 𝐰.

7) Compute the sigmoid function (below) to obtain a value between 0 and 1, which can be used as

probability.

𝑃(𝑦|𝑥) = 𝛳(𝑦𝑤𝑇𝑥) , 𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

 𝛳(𝑠) =
1

1 + 𝑒−𝑠
 , 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Logistic Regression Problem 1

Table of Contents
Importing Data from Excel File and Plotting the Data .. 1
Logistic Regression Algorithm .. 3
Initializing the Weights .. 3
Computing the Gradient and Updating the Weights ... 3
Finding the Probability Using the Sigmoid Function .. 4
Results .. 5
Functions .. 6
Weight Update Function ... 6
Excel Import File Function ... 6

Importing Data from Excel File and Plotting the
Data

The excel data file with patients having certain conditions in relation to heart desiase that was used for
this assignment was provided by the instructor

% Getting the Data from the HeartData Excel Sheet
% diaBP = diastolic blood pressure
% BMI = body mass index
% prevalentHyp = prevalent hypertension
[diaBP, BMI, heartRate, prevalentHyp] =
 importfile('HeartData_01.xlsx');

% creating a column vector of ones to be multiplied to w0 when doing
% matrix multiplication
heart_x0 = ones(3749,1);

% concatination of the data into one matrix
x = [heart_x0, diaBP, BMI, heartRate];
Y = prevalentHyp; % passing prevalent hypertension to Y

% initializing colum vectors to save values if hypertension is
 positive.
% the parameters below will be plot in red, so they can be identified
% as positive hyperstion
diaBP_pos = zeros(1,1);
BMI_pos = zeros(1,1);
heartRate_pos = zeros(1,1);

% initializing colum vectors to save values if hypertension is
 negative
% the parameters below will be plot in blue, so they can be identified
% as negative hypertension
diaBP_neg = zeros(1,1);
BMI_neg = zeros(1,1);
heartRate_neg = zeros(1,1);

1

Logistic Regression Problem 1

%y_pos = zeros(1,1);
%y_neg = zeros(1,1);

%%
% Separating the Data: Positive and Negative Hypertension
% for loop below separates the data in respect to positive
 hypertension
% or negative hypertension
 j = 0;
 j_n = 0;
for i = 1:3749

 if prevalentHyp(i) > 0
 j = j + 1;
 diaBP_pos(j) = diaBP(i);
 BMI_pos(j) = BMI(i);
 heartRate_pos(j) = heartRate(i);
 Y(i) = prevalentHyp(i);
 else
 j_n = j_n + 1;
 diaBP_neg(j_n) = diaBP(i);
 BMI_neg(j_n) = BMI(i);
 heartRate_neg(j_n) = heartRate(i);
 Y(i) = -1;
 end
end

%%%
%%
% figure below plots the data onto a 3D plane with red dots indicating
% positve hypertension and blue dots indicating negative hypertension
figure(1)
scatter3(diaBP_pos, BMI_pos, heartRate_pos, 'red')
hold on
scatter3(diaBP_neg, BMI_neg, heartRate_neg, 'blue')
title('Heart Data 1')
xlabel('diaBP');
ylabel('BMI');
zlabel('Heart Rate');
legend('Positive Hypertension','Negative
 Hypertension', 'location','nw');
hold off

2

Logistic Regression Problem 1

Logistic Regression Algorithm

Initializing the Weights
w_0 = 0;
w_1 = 0;
w_2 = 0;
w_3 = 0;
w = [w_0; w_1; w_2; w_3];

N = 3749; % number of samples per iteration
xt = transpose(x); % transpose of x

Computing the Gradient and Updating the
Weights

% the forloop below computes the gradient and updates the weights
for t = 1:1000 % number of iterations

 gradi = (zeros(4,1));
 new_gradiw = (zeros(1,4));
 for i = 1:3749

3

Logistic Regression Problem 1

 gradi = gradi + ((Y(i)*xt(:,i)))/(1+
 exp(Y(i)*transpose(w)*xt(:,i)));

 end
 % the lines below update the weights
 gradient = -1*gradi/N;
 wnew = w_update(w,gradient);
 w = wnew;

end

Finding the Probability Using the Sigmoid
Function

the for loop below takes new data and gives a probability output based on the weights that were previously
found using the training data

prob1 = zeros(3,1);
for i = 1:3
% the new data set, below, is the test data given in the instructions
 for
% part a) to find the probability of prevalent hypertension
 x1_new_test = [1 140 33 95;
 1 80 27 70;
 1 60 21 65];

 x1_test_2_tran = transpose(x1_new_test(i,:));

 % below is the sigmoid equation used to find the probability of
 positive
 % hypertension based on the information given for 3 patients, which
 are
 % above in the matrix named x1_new_test, and using the w's as well
 prob1(i) = 1/(1+ exp(-1*transpose(w)*x1_test_2_tran)); %sigmoid
 function
end

figure(2)
scatter3(diaBP_pos, BMI_pos, heartRate_pos, 'red')
hold on
scatter3(diaBP_neg, BMI_neg, heartRate_neg, 'blue')
hold on
title('Heart Data 1')
xlabel('diaBP');
ylabel('BMI');
zlabel('Heart Rate');

% plotting the test points which are given in the instructions for
% part a)
scatter3(x1_new_test(:,2),x1_new_test(:,3),
 x1_new_test(:,4), 'filled','green')

4

Logistic Regression Problem 1

legend('Positive Hypertension','Negative Hypertension', 'new data
 points', 'location','nw');
hold off

Results
% below are the weights being printed to the command window
 disp('Below are the weights produced by the algorithm After Training
 Data');
 disp(w);

% output probability results
disp('Output Result from Test Data to Find Positive prevalentHyp
 Probality');
disp(prob1);

prevalentHypertension = prob1;
diaBp = [140; 80; 60];
BMI = [33; 27; 21];
HeartRate = [95; 70; 65];
% Below is a table with the probablity results
disp('The table below displays the patients probabilities of having
 prevalent hypertension');
T = table(diaBp, BMI,HeartRate, prevalentHypertension);
disp(T)
% x_test_2_tran = transpose(x_test_2)

5

Logistic Regression Problem 1

 % prob1 = 1/(1+ exp(-1*transpose(w)*x1_test_2_tran))

Below are the weights produced by the algorithm After Training Data
 -0.0206
 0.0738
 -0.0855
 -0.0543

Output Result from Test Data to Find Positive prevalentHyp Probality
 0.9117
 0.4440
 0.2856

The table below displays the patients probabilities of having
 prevalent hypertension
 diaBp BMI HeartRate prevalentHypertension
 _____ ___ _________ _____________________

 140 33 95 0.91167
 80 27 70 0.44404
 60 21 65 0.28563

Functions

Weight Update Function
function w_new = w_update(w, gradient)
 n = 0.01;
 new_w = w - ((n*gradient)/norm(gradient));
 w_new = new_w;
end

Excel Import File Function
function [diaBP1, BMI, heartRate, prevalentHyp] =
 importfile(workbookFile, sheetName, dataLines)
%IMPORTFILE1 Import data from a spreadsheet
% [DIABP1, BMI, HEARTRATE, PREVALENTHYP] = IMPORTFILE1(FILE) reads
 data
% from the first worksheet in the Microsoft Excel spreadsheet file
% named FILE. Returns the data as column vectors.
%
% [DIABP1, BMI, HEARTRATE, PREVALENTHYP] = IMPORTFILE1(FILE, SHEET)
% reads from the specified worksheet.
%
% [DIABP1, BMI, HEARTRATE, PREVALENTHYP] = IMPORTFILE1(FILE, SHEET,
% DATALINES) reads from the specified worksheet for the specified row
% interval(s). Specify DATALINES as a positive scalar integer or a
% N-by-2 array of positive scalar integers for dis-contiguous row
% intervals.

6

Logistic Regression Problem 1

%
% Example:
% [diaBP1, BMI, heartRate, prevalentHyp] = importfile1("C:\Users
\Baker\Desktop\School\ECG703\Midterm\problem_1_dataset_given
\HeartData_01.xlsx", "Sheet1", [2, 3750]);
%
% See also READTABLE.
%
% Auto-generated by MATLAB on 30-Mar-2021 02:02:04

%%%
%%
% Input handling

% If no sheet is specified, read first sheet
if nargin == 1 || isempty(sheetName)
 sheetName = 1;
end

% If row start and end points are not specified, define defaults
if nargin <= 2
 dataLines = [2, 3750];
end

%%%
%%%

% Setup the Import Options
opts = spreadsheetImportOptions("NumVariables", 4);

% Specify sheet and range
opts.Sheet = sheetName;
opts.DataRange = "A" + dataLines(1, 1) + ":D" + dataLines(1, 2);

% Specify column names and types
opts.VariableNames = ["diaBP1", "BMI", "heartRate", "prevalentHyp"];
opts.SelectedVariableNames =
 ["diaBP1", "BMI", "heartRate", "prevalentHyp"];
opts.VariableTypes = ["double", "double", "double", "double"];

% Import the data
tbl = readtable(workbookFile, opts, "UseExcel", false);

for idx = 2:size(dataLines, 1)
 opts.DataRange = "A" + dataLines(idx, 1) + ":D" + dataLines(idx,
 2);
 tb = readtable(workbookFile, opts, "UseExcel", false);
 tbl = [tbl; tb]; %#ok<AGROW>
end

%%%
%%%

% Convert to output type

7

Logistic Regression Problem 1

diaBP1 = tbl.diaBP1;
BMI = tbl.BMI;
heartRate = tbl.heartRate;
prevalentHyp = tbl.prevalentHyp;
end

Published with MATLAB® R2019a

8

