
ECG 703- Spring 2021

Homework Set 2

a) Create a set of 2D data (𝑑 = 2, features: 𝒙 = (𝑥1, 𝑥2))

b) Randomly create a set of 20 data points (𝑁 = 20) such that for

each point 𝒙 = (𝑥1, 𝑥2), the coordinates 𝑥1, 𝑥2 be integers. 𝑥1,

𝑥2 are to be limited to the [-30,+30] range and uncorrelated.

c) Choose the line 𝑥1 + 2𝑥2 - 1.1 = 0 as your target function, where

the points on one side of the line map to 𝑦 = +1

(𝑓 = 𝑥1 + 2𝑥2 − 1.1 > 0) and the other points map to 𝑦 = −1

(𝑓 = 𝑥1 + 2𝑥2 − 1.1 < 0). Now, you have a set of 20 data points

(𝒙, 𝑦) as your separable data points.

d) Plot the points on the 2D plane labeling them with “+” or “-“ or

Red and Blue.

e) Implement and run the simple perceptron algorithm. You must

write the perceptron code from scratch as opposed to using the

code in software packages. Make sure to include declarations

next to code lines for ease of readability. How many iterations

does it take to arrive at the solution boundary (estimated target

function)? Plot 4 iterations including the final one showing the

boundary line at each iteration. Draw function f line on the last

plot and explain why they are different.

Assignment 2: Perceptron
Student: Francisco Mata

Table of Contents
Part a) ... 1
Part b) ... 1
Part c) ... 2
Part d) ... 4
Part e) ... 5
Output Section .. 9

Part a)
INSTRUCTIONS
Create a set of 2D data (d=2, features: x=(x_1,x_2))
making some arbitrary vectors to use on the 2d

Implementation
Two row vectors were created for x1 and x2 with 20 columns each

format compact

%initilizing and allocating x1 and x2 vectors
disp('Initializing and allocating x1 and x2 vectors');
x1=zeros(1,20);
x2=zeros(1,20);
disp(x1);
disp(x2);

Initializing and allocating x1 and x2 vectors
 Columns 1 through 13
 0 0 0 0 0 0 0 0 0 0 0
 0 0
 Columns 14 through 20
 0 0 0 0 0 0 0
 Columns 1 through 13
 0 0 0 0 0 0 0 0 0 0 0
 0 0
 Columns 14 through 20
 0 0 0 0 0 0 0

Part b)
INSTRUCTIONS
Randomly create a set of 20 data points (N=20) such that
for each point x=(x_1,x_2), the coordinates x_1,x_2 be integers.
x_1,x_2 are to be limited to the [-30,+30] range and uncorrelated.

1

Assignment 2: Perceptron
Student: Francisco Mata

Implementation
A matrix of two rows and 20 columns with random variables was
created. The first row vector was set to x1 and the second row
to x2.

X = randi([-30,30], [2,20]); % array of 2x20 random values within -30
 and 30 range

x1 = X(1,:); % making the first row of X equal to x1
x2 = X(2,:); % making the first row of X equal to x1

Part c)
INSTRUCTIONS
Choose the line x_1+2x_2 - 1.1 = 0 as your target function, where
the points on one side of the line map to y=+1
(f=x_1+2x_2-1.1>0) and the other points map to y=-1
(f=x_1+2x_2-1.1<0). Now, you have a set of 20 data points
(x,y) as your separable data points.

Implementation
A for loop grabs every random point's x1 and x2 from the random
vector and puts those values in the target line function.
If the output is posive x1 and x2 are store in a vector
varialbe called "y_plus_x1" and "y_plus_x2". If the output
is negative then x1 and x2 are store in y_minus_x1 and
y_minus_x2. Figure 1 shows the first plot with the target line
and the 20 random points.

% line below is to make the target line function the same range as
% x1 maximum and minimum values
x1_sort = sort(x1, 'ascend');

% The variables and vectors declared below were used for the first
 plot
% to identified the points above and below the target line
jp=1;
jm=1;
y_plus_x1=zeros(1,2);
y_plus_x2=zeros(1,2);
y_minus_x1=zeros(1,2);
y_minus_x2=zeros(1,2);
y = zeros(1,2);

% the for loop below checks for all random points (x1,x2) and
 allocates
% them on 2 different vectors; one for the points above the line and
% another one for the ones below the line
for i=1:20
 f = x1(i) + 2*x2(i) - 1.1; % target function
 if f > 0
 y_plus_x1(jp) = x1(i);
 y_plus_x2(jp) = x2(i);

2

Assignment 2: Perceptron
Student: Francisco Mata

 y(i) = 1;
 jp= jp+1;
 else
 y_minus_x1(jm)=x1(i);
 y_minus_x2(jm)=x2(i);
 y(i)=-1;
 jm = jm+1;
 end
end
%Vlength=length(x1)

% the lines below displays the y output, -1 or 1
disp('y output of +1(above the line) or -1(below the line');
disp(y);

% the lines below display thr random points above the line and below
disp('Final Vector Values From Target Function');
disp('Random Points Above Line');
disp(y_plus_x1);
disp(y_plus_x2);
disp('Random Point Below Line');
disp(y_minus_x1);
disp(y_minus_x2);
%disp(jp);
%disp(jm);
x2_lf = -(x1_sort./2) +0.55; % target line function x1 + 2x2 - 1.1 = 0

clf(figure(1))
figure(1)
plot(x1, x2, 'b*'); % plotting the random values of x1 and x2
title('Random Points and Target Line Function');
suptitle('Figure 1')
xlabel('x1');
ylabel('x2');
hold on
plot(x1_sort,x2_lf, 'm'); %plotting the line function, the x-value is
 the
 %range of the maximun and minimum of x1 row
legend('Random Points', 'Target Line Function')
grid on
hold off

y output of +1(above the line) or -1(below the line
 Columns 1 through 13
 1 1 1 1 1 1 -1 -1 1 1 1
 1 -1
 Columns 14 through 20
 1 1 1 1 -1 1 -1
Final Vector Values From Target Function
Random Points Above Line
 Columns 1 through 13
 21 26 5 23 -30 7 0 5 15 -15 10
 24 16
 Columns 14 through 15

3

Assignment 2: Perceptron
Student: Francisco Mata

 26 22
 Columns 1 through 13
 4 12 19 30 22 30 24 21 5 10 14
 29 5
 Columns 14 through 15
 5 -1
Random Point Below Line
 2 18 -25 -29 21
 -1 -17 8 -23 -18

Part d)
INSTRUCTIONS
Plot the points on the 2D plane labeling them with “+” or “-“
or Red and Blue.

Implementation
The figure below plots the random points above the target line
with a "+" in blue for points above the target line and a "+"
in red for the points below the line

clf(figure(2))
figure(2)
plot(y_plus_x1, y_plus_x2, 'b+');
title('Labeling Random Points');
suptitle('Figure 2');

4

Assignment 2: Perceptron
Student: Francisco Mata

xlabel('x1');
ylabel('x2');
hold on
plot(y_minus_x1, y_minus_x2, 'r+');
grid on
plot(x1_sort, x2_lf, 'm')
legend('Points Above', 'Points Below', 'Target Function')
hold off

Part e)
INSTRUCNTIONS: Implement and run the simple perceptron algorithm. You must write the perceptron
code from scratch as opposed to using the code in software packages. Make sure to include declarations
next to code lines for ease of readability. How many iterations does it take to arrive at the solution boundary
(estimated target function)? Plot 4 iterations including the final one showing the boundary line at each
iteration. Draw function f line on the last plot and explain why they are different.

Implementation: A fixed starting line was chosen with given (w) values which are w(x)_old. Then it goes
into a while loop with if statements and a couple for lopps that take the first misclassified point, takes the
coordinates and produces new weights (w). Once it implements the new set of weights a new function line
is created, and then it goes through the loop again to recheck how many and which are the misclassified
points. There is also a varialble counter that counts the iterations. Figure 3 shows a plot with the path and
number of iterations the line function is taking. Figure 4 shows the first 3 iterations and the last itiration
along with the target line in red and the random points above and below. The last itiration is in magenta
color and it should be close to the target line function. The starting and first itiration is in blue, the second
in green, third in cyan and the last one in magenta.

5

Assignment 2: Perceptron
Student: Francisco Mata

The total number of iterations is shown in figure 3 and at the bottom of the outputs section.

The last function line and the target line are not the same for several resons. First, there are infinite number
of line functions that can separate the data linearly using 20 random points. Second, depending on how
clotter the data is around the target function, the learning line will get closer towards the target line but
not exact unless the number of data points keeps increasing.

% starting line function is 0.5x2 + x1 + 0 = 0, which for this
% case is fixed and is the first itiration since it checks for
% misclassified points.
% below are the starting weight (w) values the x range of the
% training line and the learning rate
n = 0.005; % learning rate
w0_old = 0; % starting weight 0
w1_old = 1; % starting weight 1
w2_old = 0.5; % starting weight 2
x1_new = -30:30; % x1 range of values used on plots

%starting line function 0.5x2 + x1 + 0 = 0

new_y_plus_x1=zeros(1,2); % stores x1 points above the learinig line
new_y_plus_x2=zeros(1,2); % stores x2 points above the learinig line
new_y_minus_x1=zeros(1,2); % stores x1 points below the learinig line
new_y_minus_x2=zeros(1,2); % stores x2 points below the learinig line
new_y = zeros(1,20); % stores new y output, -1 or 1
misclassified_x1 = zeros(1,2); % holds x1 misclassified values
misclassified_x2 = zeros(1,2); % holds x2 misclassified values

miss = 1; % counts misclassified point each iteration
iterations = 0; %initializing iteration counter

clf(figure(3)) % clears the figure 3 each time the code is run
clf(figure(4)) % clears the figure 4 each time the code is run

while miss ~= 0 % while the counter,"miss", that holds the number of
 % misclassified points is not equal to zero

% incrementing variables used with vectors to store x1 and x2 points
% above and below the learing line
new_jp=1;
new_jm=1;

 % statememt below decides if between the starting weight values
 % given above or the new weight values depending on the number
 % of iterations
 if iterations == 0
 w0 = w0_old;
 w1 = w1_old;
 w2 = w2_old;
 else
 w0 = w0_new;
 w1 = w1_new;
 w2 = w2_new;

6

Assignment 2: Perceptron
Student: Francisco Mata

 end

 % the for loop below takes the current weight (w) values and puts
 % them with the line function and rechecks for new misclassified
 % values
 for i=1:20
 f2 = w1*x1(i) + w2*x2(i) + w0;
 if ((f2 > 0) && (new_jp < jp))
 new_y_plus_x1(new_jp) = x1(i);
 new_y_plus_x2(new_jp) = x2(i);
 new_y(i) = 1;
 %disp(new_y);
 new_jp = new_jp + 1;
 elseif ((f2 <= 0)&&(new_jm < jm))
 new_y_minus_x1(new_jm)=x1(i);
 new_y_minus_x2(new_jm)=x2(i);
 new_y(i)=-1;
 %disp(new_y);
 new_jm = new_jm + 1;
 end
 end

 miss=0;
 y_should_be = zeros(1:2); % initializing vector for the output
 % value the misclassified point
 % should be

 % the loop below checks for the target line y output of -1 and 1
 % and compares it with each line iteration to see if there is any
 % misclassified points. If there are any misclassified points
 % then the variable "miss" will count up, however the "miss"
 % number value should decrease per iteration
 for i = 1:20
 if new_y(i) ~= y(i)
 miss = miss + 1;
 misclassified_x1(miss) = x1(i);
 misclassified_x2(miss) = x2(i);
 y_should_be(miss) = y(i);
% disp("misclassified points");
% disp(misclassified_x1);
% disp(misclassified_x2);
% disp(miss);

 end
 end

 iterations = iterations + 1; % iteration counter

 w0_new = w0 + n*y_should_be(1)*1; % creates new weight, w0
 w1_new = w1 + n*y_should_be(1)*misclassified_x1(1); % ", w1
 w2_new = w2 + n*y_should_be(1)*misclassified_x2(1); % ", w2

7

Assignment 2: Perceptron
Student: Francisco Mata

 % f_line variable below receives a returning line from
 % funciton "fun", which takes weight values and x range
 f_line = fun(w0, w1, w2, x1_new);

 % figure 3 below plots all the iterations
 figure(3)
 plot(x1_new, f_line, 'b')
 title('Total Number of Iterations')
 suptitle('Figure 3');
 % subtitle('3');
 text = ['Number of Iterations = ', num2str(iterations)];
 legend(text)
 hold on
 xlabel('x1');
 ylabel('x2');

 grid on

 % figure 4 below plots 4 iterations and the target line. Blue,
 % green, and cyan are the first 3 iterations and magenta is
 % the last iteration. The target line function is in red
 figure(4)
 plot(y_plus_x1, y_plus_x2, 'b+');
 title('4 Iterations with Target Function Looping in Real Time')
 suptitle('Figure 4');
 xlabel('x1');
 ylabel('x2');
 hold on
 plot(y_minus_x1, y_minus_x2, 'r+');
 grid on
 hold on
 plot(x1_sort,x2_lf, 'r') % plotting target line
 hold on

 if iterations == 1
 first_iteration = f_line;
 plot(x1_new, f_line, 'b')
 %first_iteration = f_line;
 hold on
 elseif iterations == 2
 second_iteration = f_line;
 plot(x1_new, f_line, 'g')
 hold on
 elseif iterations == 3
 third_iteration = f_line;
 plot(x1_new, f_line, 'c')
 hold on

 end

end

 plot(x1_new, f_line, 'm') % plots the last iteration line for
 hold off % figure 4

8

Assignment 2: Perceptron
Student: Francisco Mata

% the lines below was used for testing the misclassified outputs -1
 and 1
% disp("new_y output of +1(above the line) or -1(below the line)");
disp("New_y vector output to be verified with first set of y output");
disp(new_y);

disp("Final Vector Values from Perceptrom Algorithm");
disp("Random Points Above Last Itiration Line ");
disp(new_y_plus_x1);
disp(new_y_plus_x2);
disp("Random Point Below Last Itiration Line");
disp(new_y_minus_x1);
disp(new_y_minus_x2);
disp("misclassified points");
disp(misclassified_x1);
disp(misclassified_x2);
disp(miss);
disp("The value the misclassified should be");
disp(y_should_be);

disp("Number of iterations");
disp(iterations);
%disp(first_iteration);

clf(figure(5))
figure(5)
plot(x1_new, first_iteration, 'b');
title('4 Iterations with Target Function');
suptitle('Figure 5');
hold on
plot(x1_new, second_iteration, 'g');
plot(x1_new, third_iteration, 'c');
plot(x1_new, f_line, 'm')
plot(x1_sort,x2_lf, 'r')
plot(y_plus_x1, y_plus_x2, 'b+');
plot(y_minus_x1, y_minus_x2, 'r+');
legend('First Iteration', 'Second Iteration', 'Third Iteration', 'Last
 Iteration', 'Target Function','Points above', 'Points Below')
grid on
hold off
 % funtion below returns a line function from a set of weights given
 function f1 = fun(w0, w1, w2, x1_new)
 x2_new = ((-w1*x1_new) - w0*1)/w2 ;
 f1 = x2_new;
 end

Output Section
New_y vector output to be verified with first set of y output
 Columns 1 through 13
 1 1 1 1 1 1 -1 -1 1 1 1
 1 -1

9

Assignment 2: Perceptron
Student: Francisco Mata

 Columns 14 through 20
 1 1 1 1 -1 1 -1
Final Vector Values from Perceptrom Algorithm
Random Points Above Last Itiration Line
 Columns 1 through 13
 21 26 5 23 -30 7 0 5 15 -15 10
 24 16
 Columns 14 through 15
 26 22
 Columns 1 through 13
 4 12 19 30 22 30 24 21 5 10 14
 29 5
 Columns 14 through 15
 5 -1
Random Point Below Last Itiration Line
 2 18 -25 -29 21
 -1 -17 8 -23 -18
misclassified points
 2 2 18 -15 21
 -1 -1 -17 10 -18
 0
The value the misclassified should be
 0 0
Number of iterations
 14

10

Assignment 2: Perceptron
Student: Francisco Mata

11

Assignment 2: Perceptron
Student: Francisco Mata

Published with MATLAB® R2019a

12

