THE ELECTRICAL TESTER: NON-CONTACT VOLTAGE DETECTOR

GLOVE WITH MEMORY

By
James Mellott
Isaac Robinson

Eric Monahan

A senior design project submitted in partial fulfillment

of the requirements for the

Bachelor of Science - Electrical and Computer Engineering

Department of Electrical and Computer Engineering

Howard R. Hughes College of Engineering

University of Nevada-Las Vegas

May 2017

© James Kenton Mellott, Eric Monahan, and Isaac Robinson

All Rights Reserved

Abstract

The risk of electrical shock from working with electrical circuits that could potentially
become live is a major concern for both individuals and employers operating in the high voltage
AJC electrical field. In the event of an accident, information regarding the details of the accident
is critical in preventing future accidents. There are currently no existing detection devices that
record any information of the events prior to an accident occurring.

The motivation behind the proposal is to design a glove that can be worn while working
on the circuit while simultaneously providing constant monitoring of the surrounding area for an
active A/C voltage. On the current market, there are no devices with memory providing passive
detection of live A/C circuits. The detection devices currently on the market require active use
for immediate detection, but do not continuously record live A/C circuit detection data.

The Electrical Tester offers passive detection to alert the user immediately if they are
working in the vicinity of a live circuit that could potentially cause electrical shock. Our design
is intended to protect individual users, employers, and employees. To protect the employer, our
design implements memory to record the detection of a live circuit as well as offering immediate
detection to prevent damage to equipment. The recorded data can be used to provide more
information on the events prior to an accident. To protect the user/employee, our design offers
passive detection to alert the user immediately if they are working in the vicinity of a live A/C

circuit that could potentially cause electrical shock or worse.

Table of Contents

AADSTIACT ...ttt bbbt [
TADIE OF CONENES ...t b bbbt ne bbb I
INEFOTUCTION ..ottt b et b bbbt e e e et e b bbbt b 1
IMIOTIVAEIONS ...t bbb bbbt bttt et n ettt b e 2
SYSTEIM OVEIVIBW ...ttt sttt sttt se et e e e st e she e sbe e st e e b e beanbesbeenbeeneesbeebeeneenreennas 3
DESIGN CONSTABIALIONS ...ttt bbbttt e b bbbttt et nn bbb 4
Non-Contact Voltage DeteCtion CIFCUIT..........ccueiveiieiiriiiiieieiee e 6
IMHICTOCONTIOTIEE ...t bbbttt e e bbb 9
Integrated Development ENVIFONMENT ..o 10
Arithmetic Logic Unit, Flash Memory and MCU ..o 11
Electrical Tester APPHCATIONoouiiiiiiiiieeiee e 12
Analog to Digital COMMUNICATION........cuiiiiirieitiiiieiee e 14
Printed Circuit BOArd DESIGNccuiiiiiiiiieiesie sttt bbb 16
Electrical Tester Assembly and TroubleshOotingcccoviiiiiiiiiicie 20
FULUIE IMPIOVEMENTS ...t e e e nne e e 22
BUAGET ...ttt bbbttt bbb 23
CONCIUSION ... bbb bbbt b et e e b et et e st b ane e 24
APPENTIX A PIOJECE POSTENveieiieeiee sttt bbbt 25
APPENTIX B: PrOJECT COUR ...ttt bbb bbb 26
RETEIENICES ...ttt bbbt bbbt 84

Introduction

The University of Nevada, Las Vegas EE498 Senior Design project completed is a non-
contact voltage detector glove with memory, named the Electrical Tester (ET), to be used by
individuals working on electrical circuits where the potential for electrical fault is present. The
project involved circuit design, testing, component integration, and fabrication. The completed
ET was designed and intended as a safety precaution to help electrical workers detect the
presence of energized wires prior to physical contact with the wires. An additional feature of the
ET is the capability of storing time stamped data regarding the positive detection of a live circuit.
The stored data will be retrieved wirelessly via an Android based application for analysis.

Existing technologies do not incorporate constant monitoring and expose individuals
working on A/C circuits to potential electrical shock. These technologies only offer momentary
detection meaning the technology is used to detect the presence of an electromagnetic field and
then switched off so the individual can use their hands to work as necessary. A safety hazard
occurs if a wire becomes 'hot" while work is being performed. The ET aims to remove this
hazard and also incorporate data collection that will record when such an event occurs. This
concept offers an additional safety net by allowing continuous monitoring while work is

performed with data collected for review and accident investigation.

Motivations

There are several key motivations serving as the impetus for the ET, but none weigh
more heavily than increasing the safety of electrical workers. According to data compiled by the
Electrical Safety Foundation International using Bureau of Labor statistics, in 2015 there were
134 fatal electrical injuries and 2480 nonfatal electrical injuries across all industries.™ Due to
efforts by employees, employers and government agencies, such as The Occupation Safety and

Health Administration, these numbers represent a downward trend, as seen in Figure 1 below.

Number of fatal electrical injuries, by Event Code, Number of nonfatal electrical injuries, Private Industry,
all ownerships, 2003-2015 by Nature of Injury (Electrical shock / Electrical burns), 2003-2015

Number of injuries (thousands)
4 [

N=2408] 2 8 10

W oan gy "
PR . c [w06 I as
2 —]
2 B 3,49 1570
T w \m‘i Utilities 0/ 930
B ~—_ N [Electric shock
=3 1
E 1 — Financial activities [630] 630
2 156 i O Electrical burns
T — Professional
E By ™ ional and businoss services | 1380 | 590
s Education and hoakth services [~ 256 Tasd
'E 1 Letsura and Hospiality [20 e
5
z
Retalltrade [2180 | | 3
= Wholesala trade 0
N (Electrical shock) = 19,300
other [T] 190/ 130 L !
M N (Electrical bum) = 11,520
2003 W04 2005 2006 2007 2008 008 2000 200 012 13 201 015 Mining [] 10
[Fimbar f el il i seieciod iuskien. by EVENT_Priva induir, S093 4915]
ryBestor | awy | o | oo | soos | teer | oea | doms | mewn | meni | sva | sens | s | gevs | Yew
S - -2 B o 0 B -3 W o - -1 data by the Safety (ESFI)
[Protessionst snd bumimees services £ ® =)) using data from the BLS CFOI and SOII, 2003-2015
- % : W £
27 2 I) 0)|
n e]
crnar nerveen) s =)|
T 3 3 ER) 3
3 3 -)
[T 5 - P 3 - 3 -
Ta| m| mn| sa] sa| | | ied|]] sai] | 1] e

However, this downward trend is a small consolation for those individuals impacted by these
events. The impact on these individuals is not solely physical, but also psychological and
financial with nonfatal injuries resulting in potential loss of income and possibly an inability to
continue living as done prior to an event. The ET was conceptualized and proposed as an attempt
to help employers and employees drive these statistics to zero. That is the main motivation

behind the ET.

System Overview

The proposed system incorporates a 3.6V battery powered, operational amplifier (op-
amp) based, non-contact voltage detection circuit that utilizes a simple wire antenna sewn into a
safety glove to detect the presence of electromagnetic fields via induction. An ON-OFF switch
will activate the ET. Once activated, if the antenna senses an electromagnetic field, the resulting
induced voltage is filtered through an active low-pass filter and then connected to the positive
terminal of a non-inverting op-amp with a gain designed to amplify the induced voltage. The
amplified signal is routed through a flexible printed circuit board (PCB) to a microcontroller
(MCU) to activate light emitting diodes (LED) and a piezoelectric speaker and begin the data
collection stage. The PCB will be protected by a 3-D printed box design that will be fixed to a
safety glove. Data will be accessible via an antenna on the PCB designed to support Bluetooth

Low Energy (BLE) communication to an off-device Android based application (app).

Design Considerations

This section presents a synopsis of the design considerations for the project with more
specific details regarding each part of the project included in later sections of the report. Prior to
beginning the design process, team members met to determine mutually agreeable design
parameters and constraints for the ET that the team felt were achievable within the time and
budget limitations of the project.

The main consideration was the design ergonomics needed to be non-restrictive so an
individual would not feel encumbered by the ET and would be willing to wear it. This led to the
decision to attach our PCB to a safety glove. The initial safety glove selected was only cut-
resistant, but we decided to pursue a safety glove that was also flame resistant due to the
potential for burn injuries. The final glove selected was the Ansell PowerFlex 80-813 due to
characteristics suitable to the project. Specifically, the glove is cut-resistant, uses a proprietary
flame resistant solution and is also arc rated to 8cal/cm”2. An additional benefit was the gloves
retail for under $20 per pair, thus helping to keep our budget low.

Next, the PCB design itself was conceptualized to be the size of the average wristwatch
to model a device individuals would be used to wearing. The initial idea was to design a flexible
PCB, but this was abandoned in favor of a traditional PCB due to the teams collective
inexperience with PCB design. The software used for the PCB design was Diptrace, a free
design suite selected due to ease of use, familiarity and a broad library of design relevant
components. Additional benefits to using Diptrace included having a mentor familiar with the
program, a built in design rule check feature and the ability to order PCB's directly from the

program.

The last general design consideration discussed was affordability. The group wanted to

keep the price of each unit in a reasonable range with the ultimate goal being in the $50 per unit

range. If the ET is eventually taken to market, the goal would be to drive this cost down further,

but not at the expense of compromising design integrity. The per unit cost will be discussed later

in the section on budget.

The remaining design details were all related to the actual circuit design. In brief, the

team wanted to meet the following general design criteria:

Sensitive to AC voltages

Durable

Low power with ability to change batteries

Small PCB to meet wristwatch size ergonomic goal

Ability to broadcast via bluetooth

The final design met some of the considerations discussed above, however many of these proved

to be unattainable for a variety of reasons that will be detailed in future sections with clarification

on the potential reasons and suggestions for future versions of the ET.

Non-Contact Voltage Detection Circuit

The non-contact voltage detection circuit design was a basic non-inverting operational
amplifier topology. Due to the simplicity of the design and integrated circuit availability, the
Texas Instruments LM324-N, a general purpose, low power op-amp was used for the circuit. In
future iterations of the design, a variety of different amplifiers will be tested and considered in an
effort to reduce PCB size since the LM324-N is quad operational and the design only calls for a

single amplifier. The final LT Spice circuit schematic is referenced in Figure 2.

Vcc

N
R4 ya
Antenna Vp _LT1014 R5 Vout
'z 5 vm : D1 5
¢ R3 U 50 A !
Q
0.01p 180k S R2 QTLP690C
R1 450K
SINE(0 12m 60 0 0 0 3) 1K
.tran 100m
Figure 2

The LT Spice circuit uses a 12mV 60Hz sinusoid input to model the induced voltage
measured from the antenna during laboratory experiments. The induced voltage is fed through a
low-pass filter, R4 and Cj, to reduce noise and into the op-amp. The 180kQ resistor, R3, to
ground is used to reduce the offset voltage. The physical antenna is an insulated copper wire that
will later be incorporated into the PCB design through an SMA connector. The non-inverting
topology has a gain defined by the following

v R
out =1+ _2
Uin Rl

with a resulting gain of 451 for this design. However, this gain proved to be much larger than
necessary for the MCU used, so a variable resistor was added in parallel to R to allow

6

adjustment once the design made it to the PCB. Essentially, footprints for both were added to
the PCB design to allow testing for optimal sensitivity and then placement of a fixed resistor
once the optimal gain is set. The final value for R, on the PCB was approximately 30k<2 and this
provided significant amplification for the induced voltage fed from the antenna. Simulating the

circuit resulted in the waveforms displayed in Figure 3.

e

Figure 3

The 12mV signal is seen in the middle plot with the output voltage, Vo , 0n the bottom.
The LED on the output voltage regulates the voltage and results in the clipping seen at
approximately 1.8V, thus verifying the diode is active. As the input voltage drops below 0V the
op-amp is limited by the OV to 3.6V rails and is unable to amplify the negative voltage. The top
plot displays the current draw during the amplification at a value of approximately 11.75mA
with a power dissipation of approximately 1.26mW.

Experimental testing of the circuit resulted in comparable results to the simulated results
discussed above. The circuit was built and tested on a breadboard using identical values as those
seen in Figure 2. The oscilloscope image displayed in Figure 4 verifies the induced AC voltage

is in fact approximately 12mV as modeled in LT Spice.

Tek Al Tria'd i Pos: 0.000s CURSOR
+*

Type

Source
CH4

al 12.0mY

Cursor 2
=200

M 10.0rms
CH4 50.0rmYEy 6-Dec-16 18:52

Figure 4
The amplified voltage is displayed in Figure 5 below on channel 1. The simulation result
clipping at approximately 1.8V closely approximates the experimental results of 2.08V and

demonstrates the circuit is functioning as intended.

Tek i Tria'd r Pos: 0.000s MEASLIRE
-

r 10.0rns
CH4 50.0mYEy 6-Dec—16 1553

Figure 5
Once the analog circuit was determined to be designed and functioning properly, the next step
was finding a suitable MCU and testing the analog circuit to see if it communicates with the

MCU. This will be detailed in a later section.

Microcontroller

The MCU selected was the TI - CC2650. This motherboard was selected due to its small
form factor, low price and ability to perform BLE communication. The MCU will be powered
by the same 3.6V power source connected to the operation amplifier. Moreover, due to the fact
that Texas Instruments offers a TI CC2650 Launchpad, Figure 6, prototyping for the CC2650

chip can be done on the fly.

XDS110 Out

000 ygense

| ®®0016Q Qo0
® 801017 §, O, 0015
3

Figure 6
This is due to the peripherals offered by the Launchpad on top of the CC2650, including a non-
volatile flash memory unit, LEDs, hardware debugger, and a high performance PCB antenna for

the Bluetooth LE communications.

Integrated Development Environment

To perform useful work from an MCU, there must be a way to give it commands to
execute and calculate. Useful work from microcontrollers is generally done by generating
machine code for the MCU to run from a memory unit. To acquire machine code, one must
either have an intense understanding of the MCU at the bit level to create bit level commands, or
use an integrated development environment (IDE) with a more human, readable programming
language to generate the machine code for the MCU. Texas Instruments provides an IDE for the
development of the MCU code called Code Composer Studio. This IDE will not only work for
the T1-CC2650 but allows for code to be written for other T1 embedded processors. The IDE is
feature rich with a C/C++ compiler, debugger, profile build environment and other features that

are highly sought after when developing for an MCU.

10

Arithmetic Logic Unit, Flash Memory and MCU

The 3.6V power source for the op-amp and MCU can be considered the VDD of the
circuit, an important detail when considering the MCU's Analog to DC (ADC) converter circuit.
To prevent damage to the MCU, no digital pin is to input higher then VDD + 0.3 Volts.
Considering that the VDD of the amplifier is the same as that of the MCU, the amplifier will at
most put out a signal of VDD, thus under the VDD + 0.3 limit of the MCU digital pins. This
circuit will be responsible for reading in the inputs from the Non-Contact Voltage Detection
Circuit (NCVDC). The digital values read from the ADC will then be processed by the MCU.
Due the ADC's ability to read a variety of inputs, there will be a degree of flexibility in the
reading of the NCVDC output.

Next, when the output from the ALU detects a signal from the NCVDC indicating an
event has occurred, the event data must be stored for future reference. This will be done with an
external non-volatile memory unit. The TI-CC2650 Launchpad provides a 1MB serial flash unit
to save data onto. The MCU needs to store the time that a voltage has been detected and for how
long the voltage was detected. This will be done using some calculations and the on chip
crystals oscillators. The goal is to broadcast the event to an external application developed to
allow the retrieval of time-stamped data that includes the duration of any events that occur. The

development of the application will be discussed in the next section.

11

Electrical Tester Application

Adding a memory to the detection device required a way to read the memory from the
device. Since there are no physical connections from the final circuit to read the memory, the
design for the data transfer included the incorporation of an antenna to broadcast wirelessly. As
discussed earlier, the wireless medium selected for communication is Bluetooth, specifically
BLE. BLE was a perfect choice for this device due to the fact that BLE devices tend to, as the
name implies, not use a lot of power. This characteristic reduced the required power supply, in
this case the battery, to something small that will not be heavy or invasive and will contribute to
the goal of keeping the overall design small.

Originally, the plan was to create a Windows 8.1/10 application to read the data off the
MCU. This turned out to be an issue because Microsoft had not added support to communicate
to unpaired devices at the time this project started. Microsoft has stated that due to the
popularity of BLE devices they were planning to add support to communicate with unpaired
devices, but there has been no further update on this. The Tl - CC2650 Launchpad does not
allow for pairing, so this idea was ruled out. However, Android smart devices are widely
available and do support communication to BLE devices. Thus, an application that was able to
communicate with the MCU via BLE was coded using Android Studio. The images displayed in
Figure 7 below are Android screenshots of the final version of the application used for the

project. All relevant code will be included in the Appendix.

12

@9 9% 3 Q Eal B 9:07PM QEMOL® 3QE . B 11:04PM

< Electrical Tester App % < Electrical Tester App %

Electrical Tester - #4830 Connected to:
24:0A:C4:05:BC:82 g':g%gzggfégé ;4830
REFRESH CLEAR MEM DISCONNECT
TIME OF EVENT -> DURATION OF SIGNAL
HELP MEM[12] = 10:23AM -> 00:12:30
REFRESH MEM([11] = 10:20AM -> 00:01:48

MEM[10] = 10:17AM -> 00:03:13
Please select your Electrical Tester from (ol

the above list to get started.

MEM[09] = 10:14AM -> 00:08:55
If you don't see your device, make sure
that Bluetooth is enabled on your phone, e & e
and that the Electrical Tester Device has MERIOSS08 DOt 00 g
power, continue by pressing REFRESH.

MEMI[07] = 08:59AM -> 00:09:81
For more information about the Electrical

Tester Device and App, press HELP. MEMI06] = 08:57AM -> 00:00:47

Android based Electrical Tester App for wireless data transfer

Figure 7

Note the app includes time stamped data and the duration of each event, as intended.

13

Analog to Digital Communication

Once an early version of the application was developed, the analog circuit was connected
to the TI Launchpad to determine if the analog circuit breadboard prototype and the MCU could
communicate with verification determined via the MCU controlling an on board LED. Simply,
if an AC voltage was detected by the sensing antenna an induced voltage would be amplified and
sent to the MCU and the MCU would activate an LED to alert the user that an AC voltage was
detected.

Initial testing resulted in the realization that the amplifier gain was too high, thus making
the device overly sensitive. There were two steps the team used for solving this issue. The first
step was to decrease the feedback resistor, Ry, such that the gain was reduced. This was
achieved via a variable resistor with an approximate value of 50kQ settled on for a suitable
degree of sensitivity. Next, to further refine the sensitivity, the MCU was programmed to adjust
the threshold voltage that would trigger the LED and memory. This allowed two separate
methods for controlling sensitivity.

After making these adjustments, the analog and digital components worked as designed.
Upon detection of an AC voltage, the MCU turned on an LED and broadcast to the ET app. An
early version of the app indicating a positive AC detection with LED activation is displayed in

Figure 8.

14

B0 % .l W 9:58PM

Clicker

ScanResult{mDevice=B0:B4:48:BA:00:85,
mScanRecord=ScanRecord [mAdvertiseFlags=6,
mServiceUuids=null, mManufacturerSpecificData={},
mServiceData={}, mTxPowerLevel=-2147483648,
mbDeviceName=Project Zero], mRssi=-47,
mTimestampNanos=280379269884134}

GLEDON GLEDOFF
RLEDON RLEDOFF

android.bluetooth.BluetoothGattService@
81cc23e

android.bluetooth.BluetoothGattService@
3161c89f

android.bluetooth.BluetoothGattService@
1bbdOdec

android.bluetooth.BluetoothGattService@
7b84145

android.bluetooth.BluetoothGattService@

Figure 8
The net result of the analog to digital testing was successful communication between the
three main components of the ET. The analog to digital components communicated and the
BLE antenna successfully broadcast event data to the ET app. The next step involved moving

from the breadboard to the actual PCB design.

15

Printed Circuit Board Design

The printed circuit board design presented several challenges for the team due to
inexperience with PCB design, as well as challenges in fabricating a working antenna to allow
BLE communication. As discussed previously, the software used for the design was Diptrace.
The first step involved in the PCB design was creating a schematic. The finished schematic is
displayed below. This process included choosing the proper components and their values to
allow the circuit to function and included the addition of decoupling circuitry and diode

protection. The finished circuit schematic is seen in Figure 9.

I
IP—‘%
IP—‘%
IP—H%
IP—‘%}

LT
;Jj‘uv:rc
S

B OgE gs
Gz FF Ef am ;
g ef A

Figure 9
Once the schematic was completed, footprints for components not included in the Diptrace
library were created. One of the main challenges in transferring from the Launchpad to the PCB
was the creation of an antenna. Since antenna design is complex, the team elected to simplify

the design process by treating the antenna design as an out of the box component similar to the

16

operational amplifier. To this end, the antenna on the Launchpad was replicated using TI's
available antenna specifications, seen in Figure 10 ' on the left, with the correlating footprint
replicated in Diptrace on the right. Additional consideration was given to the impedance

matching of the antenna design on the Launchpad such that the PCB reflected similarly.

180 ohim fesd point

Figure 1. IFA Dimensions

H1 570 mm | W2 0.46 mm
H2 0.74mm | L1 25.58 mm
H3 1.29mm | L2 16.40 mm
H4 221mm | L3 2.18 mm
H5 0.66 mm | L4 4.80 mm
H6 1.21mm | LS 1.00 mm
H7 080mm | L6 1.00 mm
H8 1.80mm | L7 3.20 mm
H9 0.61mm | L8 0.45 mm
W1 1.21 mm

Figure 10
After all the footprints were completed, the PCB layout commenced with the final

version seen below in Figure 11.

Figure 11

17

The images in Figure 11 show the unpoured version of the PCB with the top layer
displayed to the left and the bottom layer to the right. The learning curve for the PCB design
included seven versions of the board with an early version sent for fabrication to Bay Area
Circuits with incorrect footprints for several components. Additional early design errors
included improper placement of coupling capacitors and less organized trace routing. After
redesigning to address these issues, a second PCB design was sent for fabrication.

As a contrast, Figure 12 displays the same images with the poured ground plane included.

Figure 11
The next step after designing and ordering the boards was ordering all the relevant
components. Nearly all the components were surface mount with all components purchased via
the internet through either Mouser or DigiKey. A list of all the components included in the
project will be detailed in a later section. Additionally, the PCB 3-D housing was ordered. The
design files are not included in the report as these were created by an outside vendor and
considered proprietary. The only information given to the vendor was the dimensions required

for the design. The housing for the PCB is literally a box with a slide top that allows the PCB

18

battery to be changed and holes for a switch, LED and an antenna. This concludes the PCB

design section.

19

Electrical Tester Assembly and Troubleshooting

The last stage of the project involved assembly of all the components to build a
functioning prototype. This included organizing all the PCB components to be soldered, sewing
the antenna and PCB housing to the safety glove, and testing the ET once assembled.

This stage of the project proved to be the most challenging for the team and provided the
most practical engineering experience to date. The soldering process was completed using the
reflow station in the UNLV Electrical Engineering laboratory. A total of seven boards were
soldered with varying degrees of success and failure. The second board soldered was the board
that performed the best, but had several drawbacks. Specifically, the board did not have an ON-
OFF switch or piezoelectric speaker because this was a PCB from the first design containing
incorrect footprints. The team was unable to complete a functioning board from the PCB's
fabricated with the correct footprints.

The second board was selected for the prototype due to time constraints as the project
came to the end. The selected board activated an LED, as intended, but even more significantly
the ET broadcast event data to the ET application meaning the memory worked. This was a
credit to the PCB designed by the team electrical engineers and the app developed by the
computer engineer. The board was hot-glued to the 3-D printed housing and the antenna was
connected via the SMA connector. The final step of the assembly involved sewing the housing
and antenna to the glove for the prototype. The final prototype did not offer ideal mechanical
stability, but the team was satisfied with the results for the first version ET prototype. The

completion of the assembly allowed the team to compete in and win the Grand Prize in the Fred

20

and Harriet Cox Senior Design Competition for the UNLV Spring 2017 semester featuring 31

different teams from all the UNLV engineering disciplines.

21

Future Improvements

The design process resulted in a functioning prototype, however several key
improvements are suggested for future versions of The Electrical Tester. These include, but are
not limited to the following:

» Reduce power consumption

» Decrease PCB layout area

» Test flexible PCB suitability

* Increase sensitivity range

» Reduce per unit cost

* Improve Glove-PCB integration

» Develop App to be more user friendly

Despite the successful completion of the design, the team members are looking to future
versions of the design, as well as areas that were neglected due to time constraints. An area that
was neglected during prototyping was testing the ET. The final prototype was completed less
than 48 hours prior to the competition. Due to this, the design presented emphasized proof of
concept while neglecting actual testing. The team recognizes testing for issues such as false
positives and negatives, sensitivity to variations in temperature, durability, and basic circuit
testing including power consumption are all required to move the ET into the next stage of
development. The team intends to pursue a provisional patent and to continue working on

improving the design.

22

Budget

The total per unit cost of the ET is estimated at $76 with the project costs totaling
approximately $700. These costs can be driven lower if the ET was to be produced on a large
scale with savings seen in bulk purchases, reduced layout size and design simplification. An
itemized list of all the ET components cross referenced with the PCB schematic is included in

Table 1 below. The PCB housing was printed for free, thus this cost is omitted.

ary PRICE TOTAL

0.019
0.15
0.019
0.014
0.105
0.027
1.5
0.1
0.321
0.47
0.4
0.21
3.39
0.83
3.11
0.17
0.055
0.139

0.368

Conclusion

The project mission was to design a low-cost, non-contact, A/C voltage detector glove
with wireless data transfer capabilities to record event data. To this end, a functioning glove has
been designed, tested and demonstrated to work in coordination with an Android based
application developed to wirelessly retrieve event data.

The estimated per unit cost is $76 with an overall project budget of less than $1000. Both
of these numbers can be reduced with bulk production costs driving component and fabrication
costs down. Additionally, the design and development of The Electrical Tester provided team

members fundamental experience participating in an interdisciplinary design project.

24

Introduction

The Electrical Tester is a non-contact, A/C
voitage detector glove with memory designed
for individuals working near elecirical circuits
where the potential for electrical fault is
present

Motivations

Improve workplace safety and productivity
Reduce number of annual fatal and nonfatal
electrical injuries across all industries

e o o el i, oy Lot G,
ah arbiz, 39013605

e o el et e, Privte bt
oyt o8 ey [shech bttt e, 003 3851

Improve existing technology by providing
continuous, passive monitoring with event
friggered data collection

Assist in determination of event liability via
fime stamped data collection

Appendix A: Project Poster

The Electrical Tester

ISAAC ROBINSON JAMES MELLOTT ERIC MONAHAN

Department of Electrical and Computer Engineering
Advisors: Brandon Blackstone Dr. R. Jacob Baker

Design

The design incorporates the following

components:

« Glove offering resistance from flames, arc
flash and cuts

= Antenna for sensing A/C voltage
Circuit for A/C voltage amplification
TI-CC2650 Microcontroller for system
alerts and data collection
Bluetooth Low Energy (BLE) wireless data
fransfer to Android Studio application
Interchangeable 3.6V lithium icn battery
Two alert system using LED and Speaker

Early prototype of The Electrical Tester

Design Considerations
Sensiivity Durability
Affordability Life cycle

Size Power consumption
Dexderity Marketability

Electrical Tester Schematic
and PCB Layout

Circuit Testing

The Electrical Tester's ability to amplify the
small A/C voltage detected by the system
antenna and used to aclivate the
microcontroller is the most eritical aspect of
the circuit design. Simulation and laboratory
test results are as displayed below:

Experimental results closely approximate
simulation results indicating the amplifier
circuit design functions as intended

Data Collection

BLE wireless data transfer

On chip, non-volatile memory storage
Analog-to-Digital conversion

Battery powered

Android based application

25

Ti data

o
UNL\7 ENGINEERING

Future
Improvements

The design process resulied in a functioning
prototype, however several key improvements
are suggested for future versions of The
Electrical Tester These include, but are not
limited to the following:

Reduce power consumption
Decrease PCB layout area

Test flexible PCE suitability

Increase sensitivity range

Decrease component costs

Improve Glove-PCB integration
Develop App to be more user friendly

o
A%

Conclusion

The project mission was to design a low-
cost, non-contact, A/C voltage detector glove
with wireless data transfer capabilities to
record event data. To this end, a funcfioning
glove has been designed, tested and
demonstrated to work in coordination with an
Android based application developed to
wirelessly retrieve event data,

The estimated per unit cost is $78 with an
aoverall project budget of less than $1000
Both of these numbers can be reduced with
bulk production costs driving component and
fabrication costs down. Additionally, the
design and development of The Electrical
Tester provided team members fundamental

participating in an interdisci Y
design project.

References

s,

Appendix B: Project Code

Appl Code:

/I The following code is for the initial app screen where
/I user has to select a detected BLE device

package com.voo.paw.clicker;

import android.bluetooth.BluetoothAdapter;
import android.bluetooth.BluetoothManager;
import android.bluetooth.le.BluetoothLeScanner;
import android.bluetooth.le.ScanCallback;
import android.bluetooth.le.ScanResult;

import android.content.Context;

import android.content.Intent;

import android.os.Handler;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.Button;

import android.widget.ListView;

import android.widget. TextView;

import android.widget. Toast;

import java.util. ArrayList;
import java.util.List;

import static com.wagnerandade.coollection.Coollection.*;
public class MainActivity extends AppCompatActivity {
private BluetoothAdapter mBluetoothAdapter;
private BluetoothLeScanner mBluetoothLeScanner;
private Integer REQUEST_ENABLE_BT = 1;

Button btnClick;
Button btnReset;

26

TextView txtCount;
ListView bleDevicesList;
ListView bleLogList;

List<ScanResult> bleScanResult = new ArrayList<>();
List<String> bleDevices = new ArrayList<>();
List<String> bleLog = new ArrayList<>();
ArrayAdapter bleLogArrayAdapter;

ArrayAdapter bleDevicesArrayAdapter;

private boolean mScanning;
private Handler mHandler = new Handler();

I/ Stops scanning after 5 seconds.
private static final long SCAN_PERIOD = 5000;

private void scanLeDevice(final boolean enable) {
if (enable) {
I/ Stops scanning after a pre-defined scan period.
mHandler.postDelayed(new Runnable() {
@Override
public void run() {
mScanning = false;
mBluetoothLeScanner.stopScan(mLeScanCallback);

}
}, SCAN_PERIOD);

mScanning = true;

mBluetoothLeScanner.startScan(mLeScanCallback);
}else {

mScanning = false;

mBluetoothLeScanner.stopScan(mLeScanCallback);

k
¥

// Device scan callback.
private ScanCallback mLeScanCallback =
new ScanCallback(){
@Override
public void onScanResult(int callBackType, ScanResult result){
ScanResult mResult;
mResult = from(bleScanResult).where(*"toString",
contains(result.getDevice().getAddress())).first();

if (mResult == null) {
bleScanResult.add(result);

27

Toast.makeText(MainActivity.this, result.toString(),
Toast. LENGTH_SHORT).show();
bleDevices.add(result.getDevice().getName() + "\n" +
result.getDevice().getAddress());
bleDevicesArrayAdapter.notifyDataSetChanged();
}

ks

public void onScanFailed(int errorCode) {
Toast.makeText(MainActivity.this, "SCANFAILED",
Toast. LENGTH_SHORT).show();

}
} 3

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity _main);

btnClick = (Button)findViewByld(R.id.button);

btnReset = (Button)findViewByld(R.id.button2);

txtCount = (TextView)findViewByld(R.id.textView);
bleDevicesList = (ListView)findViewByld(R.id.bleDevicesList);
bleLogList = (ListView)findViewByld(R.id.bleLogList);

bleLog.add("Please select your Electrical Tester from the above list to get started.” +

"\n\nlf you don't see your device, make sure that Bluetooth is enabled on your phone,

and that the Electrical Tester Device has power, continue by pressing REFRESH." +

"\n\nFor more information about the Electrical Tester Device and App, press HELP.");

/I Initialize Bluetooth adapter
final BluetoothManager bluetoothManager =
(BluetoothManager) getSystemService(Context. BLUETOOTH_SERVICE);
mBluetoothAdapter = bluetoothManager.getAdapter();
if (mBluetoothAdapter == null || 'mBluetoothAdapter.isEnabled()) {

Intent enableBtIntent = new Intent(BluetoothAdapter. ACTION_REQUEST_ENABLE);

startActivityForResult(enableBtintent, REQUEST_ENABLE_BT);
}

mBluetoothLeScanner = mBluetoothAdapter.getBluetoothLeScanner();
scanLeDevice(true);
bleLogArrayAdapter = new ArrayAdapter(this, android.R.layout.simple_list_item_1,

bleLog);
bleLogList.setAdapter(bleLogArrayAdapter);

bleDevicesArrayAdapter = new ArrayAdapter(this, android.R.layout.simple_list_item_1,

bleDevices);
bleDevicesL.ist.setAdapter(bleDevicesArrayAdapter);

28

btnClick.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
txtCount.setText(String.valueOf(Integer.parselnt(txtCount.getText().toString())+1));

}
hok

btnReset.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
txtCount.setText(""0");
if (ImScanning) {
scanLeDevice(true);
}
}
b

bleDevicesList.setOnltemClickListener(new AdapterView.OnltemClickListener() {
@Override
public void onltemClick(AdapterView<?> adapterView, View view, inti, long I) {
String [] myStrings =
((String)adapterView.getltemAtPosition(i)).split(System.getProperty("line.separator™));
Intent wew = new Intent(MainActivity.this, BlelnteractActivity.class);
/lIntent wew = new Intent(MainActivity.this, Main2Activity.class);

ScanResult mResult;
mResult = from(bleScanResult).where(*"toString"”, contains(myStrings[1])).first();

wew.putExtra("mResult”, mResult);
startActivity(wew);

hok

29

App2 Code:

/I The following code is for the screen on the app that displays
/I the times recorded by the cc2650 MCU

package com.voo.paw.clicker;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.bluetooth.BluetoothGatt;

import android.bluetooth.BluetoothGattCallback;
import android.bluetooth.BluetoothGattCharacteristic;
import android.bluetooth.BluetoothGattService;
import android.bluetooth.BluetoothManager;
import android.bluetooth.BluetoothProfile;

import android.bluetooth.le.BluetoothLeScanner;
import android.bluetooth.le.ScanResult;

import android.os.Handler;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.widget.ArrayAdapter;

import android.widget.Button;

import android.widget.ListView;

import android.widget. TextView;

import android.widget. Toast;

import java.sgl.Time;
import java.util.List;
import java.util.UUID,;
import java.util.Date;
import java.util.Calendar;

public class BlelnteractActivity extends AppCompatActivity {

TextView textView DeviceName;
ListView servicesListView;
Button btnActionl;

Button btnAction2;

Button btnAction3;

Button btnAction4;

Button btnAction10;

30

Button btnActionll;
BluetoothGatt mBluetoothGatt;

BluetoothGattService ledGatService = null,
BluetoothGattService timeArrayService = null;

List<BluetoothGattCharacteristic> ledGatCharacteristic;
List<BluetoothGattCharacteristic> timeArrayCharacteristic;

byte timeArray[] = new byte[200];

List<Byte> timeArrayList;
private static final String TAG = "MyActivity";

byte muhArray[] = new byte[200];
String timeString = """;

private BluetoothManager mBluetoothManager;

private BluetoothAdapter mBluetoothAdapter;

private String mBluetoothDeviceAddress;

private int mConnectionState = STATE_DISCONNECTED;

ArrayAdapter servicesArrayAdapter;
List<BluetoothGattService> mBluetoothGattServices;

private Handler mHandler = new Handler();

private static final int STATE_DISCONNECTED = 0;
private static final int STATE_CONNECTING =1,
private static final int STATE_CONNECTED = 2,

public final static String ACTION_GATT_CONNECTED =
"com.example.bluetooth.le. ACTION_GATT_CONNECTED";

public final static String ACTION_GATT_DISCONNECTED =
"com.example.bluetooth.le. ACTION_GATT_DISCONNECTED";

public final static String ACTION_GATT_SERVICES_DISCOVERED =
"com.example.bluetooth.le. ACTION_GATT_SERVICES DISCOVERED";

public final static String ACTION_DATA_AVAILABLE =
"com.example.bluetooth.le. ACTION_DATA_ AVAILABLE";

public final static String EXTRA_DATA =
"com.example.bluetooth.le. EXTRA _DATA";

[/l Various callback methods defined by the BLE API.

private final BluetoothGattCallback mGattCallback =
new BluetoothGattCallback() {

31

@Override
public void onConnectionStateChange(BluetoothGatt gatt, int status,
int newState) {
String intentAction;
if (newState == BluetoothProfile. STATE_CONNECTED) {
intentAction = ACTION_GATT_CONNECTED;
mConnectionState = STATE_CONNECTED;
Toast.makeText(BlelnteractActivity.this, "CONNECTING: " +
mBluetoothGatt.discoverServices(), Toast. LENGTH_SHORT).show();

} else if (newState == BluetoothProfile. STATE_DISCONNECTED) {
intentAction = ACTION_GATT_DISCONNECTED;
mConnectionState = STATE_DISCONNECTED,;
Toast.makeText(BlelnteractActivity.this, "DISCONNECTED",

Toast. LENGTH_SHORT).show();

}
}
j
@Override
protected void onCreate(Bundle savedInstanceState) {
boolean isConnected = false;

for (inti=0; 1< 200; i++)
timeArray[i] = (byte)i;

for (inti=0; i <200; i++)
muhArray[i] = 8;

super.onCreate(savedInstanceState);
setContentView(R.layout.activity ble interact);

textView_DeviceName = (TextView) findViewByld(R.id.textView_deviceName);
textView_DeviceName.setText(getIntent().getExtras().get("mResult").toString());

servicesListView = (ListView) findViewByld(R.id.servicesListView);
btnAction4 = (Button) findViewByld(R.id.btnAction4);
btnActionll = (Button) findViewByld(R.id.btnAction11);

mBluetoothGatt = ((ScanResult)
getintent().getExtras().get("mResult")).getDevice().connectGatt(this, false, mGattCallback);

mBluetoothGatt.disconnect();

32

isConnected = mBluetoothGatt.connect();
mBluetoothGatt.discoverServices();
mBluetoothGattServices = mBluetoothGatt.getServices();

servicesArrayAdapter = new ArrayAdapter(this, android.R.layout.simple_list_item_1,
mBluetoothGattServices);

servicesListView.setAdapter(servicesArrayAdapter);

servicesArrayAdapter.notifyDataSetChanged();

/[Toast.makeText(this, "Services: " + mBluetoothGattServices.size(),
Toast. LENGTH_SHORT).show();

/I get the ledGatService, wait if you have to, this might cause crash :\

ledGatService = mBluetoothGatt.getService(UUID.fromString("F0001110-0451-4000-
B000-000000000000"));

while(ledGatService == null)

{

ledGatService = mBluetoothGatt.getService(UUID.fromString("F0001110-0451-4000-

B000-000000000000"));

}

ledGatCharacteristic = ledGatService.getCharacteristics();

/I Use this to fetch the array of times produced by MCU, also might cause crash...

timeArrayService = mBluetoothGatt.getService(UUID.fromString("*F0001130-0451-4000-
B000-000000000000"));

while(timeArrayService == null)

{

timeArrayService = mBluetoothGatt.getService(UUID.fromString(*F0001130-0451-

4000-B000-000000000000™));

}

timeArrayCharacteristic = timeArrayService.getCharacteristics();

/] Test ... buttons

/*

timeArrayService = mBluetoothGatt.getService(UUID.fromString("F0001120-0451-4000-
B000-000000000000"));

while(timeArrayService == null)

{

timeArrayService = mBluetoothGatt.getService(UUID.fromString("F0001120-0451-

4000-B000-000000000000™));

}

timeArrayCharacteristic = timeArrayService.getCharacteristics();

*/

33

final Runnable rr = new Runnable() {
@Override
public void run(){
mBluetoothGatt.writeCharacteristic(ledGatCharacteristic.get(0));
}
};

btnActionl.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
ledGatCharacteristic.get(0).setValue(new byte[]{1});
mBluetoothGatt.writeCharacteristic(ledGatCharacteristic.get(0));
}
b

btnAction2.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
ledGatCharacteristic.get(0).setValue(new byte[]{0});
mBluetoothGatt.writeCharacteristic(ledGatCharacteristic.get(0));

Handler hh = new Handler();
hh.postDelayed(rr, 200); // <-- the "1000" is the delay time in miliseconds.

}
i

btnAction3.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
ledGatCharacteristic.get(1).setValue(new byte[]{1});
mBluetoothGatt.writeCharacteristic(ledGatCharacteristic.get(1));

}
i

btnAction4.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
ledGatCharacteristic.get(1).setValue(new byte[]{0});
mBluetoothGatt.writeCharacteristic(ledGatCharacteristic.get(1));
}
b

final Runnable r = new Runnable() {

@Override
public void run(){

34

byte[] data = timeArrayCharacteristic.get(0).getValue();

String myString = """;
final Calendar t = Calendar.getInstance();

myString +=t.get(Calendar. HOUR_OF _DAY) + ™" + t.get(Calendar. MINUTE) + ™"
+ t.get(Calendar.SECOND) + \n';

myString += "DEVICE RUNTIME =>" + data[156] + ":" + data[157] + ":" +
data[158] + "\n’;

myString += "LAST RECORDED TIME => " + (data[159] - 1) + '\n’;

int myHour = Integer.valueOf(t.get(Calendar. HOUR_OF _DAY));
int myMinute = Integer.valueOf(t.get(Calendar. MINUTE));

int mySecond = Integer.valueOf(t.get(Calendar.SECOND));

int devHour = data[156];

int devMinute = data[157];

int devSecond = data[158];

int powerOnHour = myHour - devHour;

int powerOnMinute = myMinute - devMinute;

int powerOnSecond = mySecond - devSecond,;

if (powerOnSecond < 0) {powerOnSecond+=60; powerOnMinute--;}
if (powerOnMinute < 0) {powerOnMinute+=60; powerOnHour--;}
if (powerOnHour < 0) {powerOnHour+=24;}

myString += "POWERED ON AT =>" + powerOnHour + ":" + powerOnMinute + ":"
+ powerOnSecond + "\n";

int myTime[] = new int[3];
for(inti=0;i<31;i++)
{
int recHour = data[i*5];
int recMinute = data[i*5 + 1];
int recSecond = data[i*5 + 2];

myTime[2] = powerOnSecond + recSecond;
if (myTime[2] >= 60)
{

myTime[2] -= 60;

recMinute++;

}
if (recMinute >= 60)
{
recMinute -= 60;
recHour++;
}

if (recHour >= 24) {recHour -= 24;}

35

myTime[1] = powerOnMinute + recMinute;
if (myTime[1] >= 60)

myTime[1] -= 60;
recHour++;

}
if (recHour >= 24) {recHour -= 24;}

myTime[0] = powerOnHour + recHour;
if (recHour >= 24) {recHour -= 24;}

myString +="TIME[" + i + "]" + myTime[0] + ":" + myTime[1] + ":" + myTime[2]
+ " DURATION "+ data[i*5 + 3] + ":" + data[i*5 + 4] + "\n";
ky

Toast.makeText(BleInteractActivity.this, myString, Toast. LENGTH_LONG).show();
¥
b

btnAction11.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
/*
Toast.makeText(BlelnteractActivity.this, "TOTAL: " + timeArrayCharacteristic.size()

"\n0:" + timeArrayCharacteristic.get(0).toString() + "\nUUIDO:" +

timeArrayCharacteristic.get(0).getUuid().toString() +

"\nDESCRIPTORSO: " + timeArrayCharacteristic.get(0).getDescriptors().size()+
"\n\nl:" +

timeArrayCharacteristic.get(1).toString() + "\nUUID1:" +

timeArrayCharacteristic.get(1).getUuid().toString() +

"\nDESCRIPTORS1: " + timeArrayCharacteristic.get(1).getDescriptors().size() +

"\n" + timeArrayCharacteristic.get(1).getDescriptors().get(0).toString() +

"\n" + timeArrayCharacteristic.get(1).getDescriptors().get(0).getValue()

, Toast. LENGTH_SHORT).show();

*/

timeArrayCharacteristic.get(0).setValue(new byte[]{0});
mBluetoothGatt.readCharacteristic(timeArrayCharacteristic.get(0));

Handler h = new Handler();
h.postDelayed(r, 1000); // <-- the "1000" is the delay time in miliseconds.

hok

36

ky

MCU Code:

/I The following code is the code loaded onto the CC2650 MCU
/I Its responsible for reading the ADC, memory, output and BLE

/*

* Copyright (c) 2016, Texas Instruments Incorporated

* All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*

* * Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

*

** Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

*

** Neither the name of Texas Instruments Incorporated nor the names of

* jts contributors may be used to endorse or promote products derived

* from this software without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS"

* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO,

* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR

* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO,

* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS;

* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY,

* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR

* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

37

/***

* INCLUDES
*/
#include <string.h>

[l#define xdc_runtime_Log_DISABLE_ALL 1 // Add to disable logs from this file

#include <ti/sysbios/knl/Task.h>
#include <ti/sysbios/knl/Semaphore.h>
#include <ti/sysbios/knl/Queue.h>

#include <ti/drivers/PIN.h>

#include <xdc/runtime/Log.h>
#include <xdc/runtime/Diags.h>

/I Stack headers

#include <hci_tl.h>

#include <gap.h>

#include <gatt.h>

#include <gapgattserver.h>
#include <gattservapp.h>
#include <osal_snv.h>
#include <gapbondmgr.h>
#include <peripheral.h>
#include <ICallBIeAPIMSG.h>

#include <devinfoservice.h>
#include "util.h"

#include "Board.h"
#include "ProjectZero.h"

// Bluetooth Developer Studio services
#include "LED_Service.h"

#include "Button_Service.h"

#include "Data_Service.h"

T
#include "osal_snv.h" // for Simple NV
#include <math.h>

#include <driverlib/aux_adc.h>

#include <driverlib/aux_wuc.h>
#include <inc/hw_aux_evctl.h>

38

uint8 myHour = 0;
uint8 myMin = 0;
uint8 mySec = 0;
uint8 myDeciSec = 0;
uint8 myCentiSec = 0;
uint8 lastFreeLoc = 0;

int highestVal = 0;

/Nast "WORKING" value
UInt32 myClock = 5000;
//UInt32 myClock = 1000;
//UInt32 myClock = 16666;
//UInt32 myClock = 500;

inti;
int printMe = 0;
int pageBuf[16] = {0,};

int signalBuf[60] = {0,};
int signalCnt = 0;

/I Customer NV Items - Range 0x80 - 0x8F - This must match the number of Bonding entries
Il #define BLE_NVID_CUST _START 0x80 //'< Start of the Customer's NV IDs

#define BUF_LEN 10
#define SNV_ID_APP 0x80

Ulnt8 buf[BUF_LEN] = {0,};
uint8_t bigBuf[BUF_LEN*8] = {0,}:

/* XDC module Headers */
#include <xdc/std.h>
#include <xdc/runtime/System.h>

/* BIOS module Headers */
#include <ti/sysbios/knl/Clock.h>

/I Timer Variable
UInt32 btnTimer = 0;
UlInt32 chainMe = 83;
UlInt32 lastLedState = 0;
UInt32 offTimer = 0;
int keepRecording = 0;

39

/I Clock Stuff

Void clkOFxn(UArg arg0);

Void clk1Fxn(UArg arg0);
Clock_Struct clkOStruct, clk1Struct;

#define DEBUGMODE 0
i

/***

* CONSTANTS

*/

/I Advertising interval when device is discoverable (units of 625us, 160=100ms)
#define DEFAULT_ADVERTISING _INTERVAL 160

/I Limited discoverable mode advertises for 30.72s, and then stops
Il General discoverable mode advertises indefinitely
#define DEFAULT_DISCOVERABLE_MODE GAP_ADTYPE_FLAGS GENERAL
/I Default pass-code used for pairing.

#define DEFAULT_PASSCODE 000000

/I Task configuration
#define PRZ_TASK PRIORITY 1

#ifndef PRZ_TASK_STACK SIZE
#define PRZ_TASK_STACK_SIZE 800
#endif

/I Internal Events for RTOS application

#define PRZ_STATE_CHANGE_EVT 0x0001
#define PRZ_CHAR_CHANGE_EVT 0x0002
#define PRZ_PERIODIC_EVT 0x0004

#define PRZ_CONN_EVT _END_EVT 0x0008

/***

* TYPEDEFS

*/

/I Types of messages that can be sent to the user application task from other

/] tasks or interrupts. Note: Messages from BLE Stack are sent differently.

typedef enum

{
APP_MSG_SERVICE_WRITE =0, /* A characteristic value has been written */
APP_MSG_SERVICE_CFG, I* A characteristic configuration has changed */
APP_MSG_UPDATE_CHARVAL, /* Request from ourselves to update a value */
APP_MSG_GAP_STATE_CHANGE, /* The GAP /connection state has changed */
APP_MSG_BUTTON_DEBOUNCED, /* A button has been debounced with new value */

40

APP_MSG_SEND_PASSCODE, /* A pass-code/PIN is requested during pairing */
} app_msg_types_t;

/I Struct for messages sent to the application task
typedef struct
{
Queue Elem _elem;
app_msg_types_t type;
uint8_t pduf];
} app_msg_t;

/I Struct for messages about characteristic data
typedef struct
{
uintl6_t svcUUID; // UUID of the service
uintl6_t datalen; //
uint8_t paramlID; // Index of the characteristic
uint8_t data[]; // Flexible array member, extended to malloc - sizeof(.)
} char_data_t;

/I Struct for message about sending/requesting passcode from peer.
typedef struct
{
uintl6_t connHandle;
uint8_t uilnputs;
uint8 t uiOutputs;
} passcode_req_t;

/I Struct for message about button state
typedef struct

{
PIN_Id pinld;
uint8_t state;
} button_state_t;

/***

* LOCAL VARIABLES
*/

/I Entity ID globally used to check for source and/or destination of messages
static I1Call_EntityID selfEntity;

/I Semaphore globally used to post events to the application thread
static 1Call_Semaphore sem;

/I Queue object used for application messages.

41

static Queue_Struct applicationMsgQ;
static Queue_Handle hApplicationMsgQ;

/I Task configuration
Task_Struct przTask;
Char przTaskStack[PRZ_TASK_STACK_SIZE];

I/l GAP - SCAN RSP data (max size = 31 bytes)
static uint8_t scanRspData[] =
{
/I No scan response data provided.
0x00 // Placeholder to keep the compiler happy.

}

Il GAP - Advertisement data (max size = 31 bytes, though this is
/1 best kept short to conserve power while advertisting)
static uint8_t advertData[] =
{
Il Flags; this sets the device to use limited discoverable
/I mode (advertises for 30 seconds at a time) or general
/I discoverable mode (advertises indefinitely), depending
// on the DEFAULT _DISCOVERY_MODE define.
0x02, /I length of this data
GAP_ADTYPE_FLAGS,
DEFAULT_DISCOVERABLE_MODE |
GAP_ADTYPE_FLAGS BREDR_NOT_SUPPORTED,

/[complete name

13,
GAP_ADTYPE_LOCAL_NAME_COMPLETE,
'Eli ILII 'Ell IC|1 I"l ' I! IT'I 'Ell ISI! 'Tl1 IE'I 'Rll

}

/I GAP GATT Attributes
static uint8_t attDeviceName[GAP_DEVICE_NAME_LEN] = "Electrical Tester";

Il Globals used for ATT Response retransmission
static gattMsgEvent_t *pAttRsp = NULL,;
static uint8_t rspTxRetry = 0;

/* Pin driver handles */
static PIN_Handle buttonPinHandle;
static PIN_Handle ledPinHandle;

42

/* Global memory storage for a PIN_Config table */
static PIN_State buttonPinState;
static PIN_State ledPinState;

/*
* Initial LED pin configuration table
* - LEDs Board_LEDO & Board_LED1 are off.
*/
PIN_Config ledPinTable[] = {
Board_LEDO | PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL |
PIN_DRVSTR_MAX,
Board_LED1 |PIN_GPIO_OUTPUT_EN | PIN_GPIO_LOW | PIN_PUSHPULL |
PIN_DRVSTR_MAX,
PIN_TERMINATE

}

/*

* Application button pin configuration table:

* - Buttons interrupts are configured to trigger on falling edge.

*/

PIN_Config buttonPinTable[] = {
Board_BUTTONO | PIN_INPUT_EN | PIN_PULLUP | PIN_IRQ_NEGEDGE,
Board BUTTONL | PIN_INPUT_EN | PIN_PULLUP | PIN_IRQ_NEGEDGE,
PIN_TERMINATE

)3

/I Clock objects for debouncing the buttons
static Clock_Struct buttonODebounceClock;
static Clock_Struct button1DebounceClock;

/[State of the buttons
static uint8_t buttonOState = O;
static uint8_t buttonlState = 0;

/***

* LOCAL FUNCTIONS
*/

static void ProjectZero_init(void);
static void ProjectZero_taskFxn(UArg a0, UArg al);

T

static void saveBuf(void);
static void saveBufs(void);

43

static void writePage(int page, int printBuf);
static void readPage(int page, int printBuf);

static uint8_t getDuration(uint32 btnTimer, uint8* myMem); //return MM SS mSmS
T

static void user_processApplicationMessage(app_msg_t *pMsQ);
static uint8_t ProjectZero_processStackMsg(ICall_Hdr *pMsg);
static uint8_t ProjectZero_processGATTMsg(gattMsgEvent_t *pMsg);

static void ProjectZero_sendAttRsp(void);
static uint8_t ProjectZero_processGATTMsg(gattMsgEvent_t *pMsg);
static void ProjectZero_freeAttRsp(uint8_t status);

static void user_processGapStateChangeEvt(gaprole_States_t newState);

static void user_gapStateChangeCB(gaprole_States_t newState);

static void user_gapBondMgr_passcodeCB(uint8_t *deviceAddr, uint16_t connHandle,
uint8_t uilnputs, uint8_t uiOutputs);

static void user_gapBondMgr_pairStateCB(uint16_t connHandle, uint8_t state,
uint8_t status);

static void buttonDebounceSwiFxn(UArg buttonld);
static void user_handleButtonPress(button_state_t *pState);

/I Generic callback handlers for value changes in services.

static void user_service_ValueChangeCB(uintl6_t connHandle, uint16_t svcUuid, uint8_t
paramID, uint8_t *pValue, uintl6_tlen);

static void user_service_CfgChangeCB(uint16_t connHandle, uint16_t svcUuid, uint8_t
paramID, uint8_t *pValue, uint1l6_tlen);

/I Task context handlers for generated services.

static void user_LedService_ValueChangeHandler(char_data_t *pCharData);

static void user_ButtonService_CfgChangeHandler(char_data_t *pCharData);
static void user_DataService_ValueChangeHandler(char_data_t *pCharData);
static void user_DataService_CfgChangeHandler(char_data_t *pCharData);

Il Task handler for sending notifications.
static void user_updateCharVal(char_data_t *pCharData);

/I Utility functions
static void user_enqueueRawAppMsg(app_msg_types_t appMsgType, uint8_t *pData, uint16_t
len);
static void user_enqueueCharDataMsg(app_msg_types_t appMsgType, uintl6_t connHandle,
uint1l6_t serviceUUID, uint8 t paramiD,
uint8_t *pValue, uint16_t len);
static void buttonCallbackFxn(PIN_Handle handle, PIN _Id pinld);

44

static char *Util_convertArrayToHexString(uint8_t const *src, uint8_t src_len,
uint8_t *dst, uint8_t dst_len);
static char *Util_getLocalNameStr(const uint8_t *data);

/***

* PROFILE CALLBACKS
*/

I/l GAP Role Callbacks
static gapRolesCBs_t user_gapRoleCBs =

{
user_gapStateChangeCB // Profile State Change Callbacks
Y

/I GAP Bond Manager Callbacks
static gapBondCBs_t user_bondMgrCBs =
{
user_gapBondMgr_passcodeCB, // Passcode callback
user_gapBondMgr_pairStateCB // Pairing / Bonding state Callback

}

/*
* Callbacks in the user application for events originating from BLE services.
*/
/I LED Service callback handler.
/I The type LED_ServiceCBs_t is defined in LED_Service.h
static LedServiceCBs_t user LED_ServiceCBs =
{
.pfnChangeCb = user_service_ValueChangeCB, // Characteristic value change callback
handler
.pfnCfgChangeCb = NULL, // No notification-/indication enabled chars in LED Service

}

/[Button Service callback handler.

/I The type Button_ServiceCBs_t is defined in Button_Service.h

static ButtonServiceCBs_t user_Button_ServiceCBs =

{
.pfnChangeCb = NULL, // No writable chars in Button Service, so no change handler.
.pfnCfgChangeCb = user_service_CfgChangeCB, // Noti/ind configuration callback handler

/I Data Service callback handler.
/I The type Data_ServiceCBs _t is defined in Data_Service.h
static DataServiceCBs_t user_Data_ServiceCBs =

{

45

.pfnChangeCb = user_service_ValueChangeCB, // Characteristic value change callback
handler
.pfnCfgChangeCb = user_service_CfgChangeCB, // Noti/ind configuration callback handler

/***

* PUBLIC FUNCTIONS
*/

/*
* @brief Task creation function for the user task.

*

* @param None.

*

* @return None.

*/

void ProjectZero_createTask(void)

{

Task_Params taskParams;

/I Configure task

Task_Params_init(&taskParams);

taskParams.stack = przTaskStack;
taskParams.stackSize = PRZ_TASK_STACK_SIZE;
taskParams.priority = PRZ_TASK_PRIORITY;

Task_construct(&przTask, ProjectZero_taskFxn, &taskParams, NULL);
}

Il Saves recorded times into NV and reads from the NV
static void clearMe(void)
{
uint8 status = SUCCESS;
for (i =0; i < BUF_LEN; i++) {buf[i] = 0;}
for (i=0;i1<8;i++) {status = osal_snv_write(SNV_ID_APP+i, BUF_LEN, (UInt8 *)buf);
System_printf("clearMe[%i]: memory cleared\n", i); System_flush();}

System_printf(“clearMe: memory cleared\n™);
System_flush();

¥
static void readPage(int page, int printBuf)

{
uint8 status = SUCCESS;
status = osal_snv_read(SNV_ID_APP+page, BUF_LEN, (UInt8 *)buf);

46

if(status = SUCCESS)
{
System_printf(“readPage: FAILED TO READ BUF FROM PAGE #%i\n", page);
System_flush();
}else {
if (printBuf == 1) {System_printf("readPage: READ BUF FROM PAGE #%i\n", page);}
for (I1=0; i <BUF_LEN; i++)
{
bigBuf[(page*10) + i] = bufi];
if (printBuf == 1) {System_printf("readPage: READ FROM MEM: bigBuf[%i][%:i] = %i
<=> buf[%i] = %i\n", page, i, bigBuf[(page*10) + i], i, buf[i]);}

}
}
if (printBuf == 1) {System_flush();}
}
static void writePage(int page, int printBuf)
{

for(i = 0; i < BUF_LEN; i++) {buf[i] = bigBuf[page*10 + i];}

if (printBuf == 1) {System_printf("writePage: SAVING BUF TO PAGE #%i\n", page);}
osal_snv_write(SNV_ID_APP+page, BUF_LEN, (UInt8 *)buf);
if (printBuf == 1) {System_printf("writePage: WROTE BUF TO PAGE #%i, reading page
from memory ...\n", page);}
readPage(page, printBuf);
if (printBuf == 1) {System_printf("writePage: finished\n\n\n", page);}
}

static void saveBuf(void)

{

int X = lastFreeLoc / 2;
writePage(x, DEBUGMODE);

/I save the new lastFreeLoc

lastFreeLoc++; Il increment lastFreeLoc
if (lastFreeLoc > 15) { lastFreeLoc = 0; } /I memory full, set next write location
over oldest recording
bigBuf[79] = lastFreelLoc; /I update the lastFreeLoc in buffer
writePage(7, DEBUGMODE); Il write page 15
[mmmmmmmm e
readPage(lastFreeLoc/2, 0);
}
static void saveBufs(void)
{

47

inti;
for(i=0;i<8;i++)

if (pageBuf[i] == 1)
{

writePage(i, DEBUGMODE);
pageBuf[i] = 0;
}
}
}

// read out all 80 bytes of memory and save in bigBuf[]
static void readMe(void)
{

uint8 status = SUCCESS;

int Xxx;

for (xxx = 0; XXX < 8; XXx++)

{
// Read from SNV flash
status = osal_snv_read(SNV_ID_APP+xxx, BUF_LEN, (UInt8 *)buf);
if(status '= SUCCESS)

{
System_printf("xxx[%d]: SNV READ FAIL: %d\n", xxXx, status);

ks

else
{
System_printf("xxx[%d]SNV READ SUCCESS: %d\n",xxx, status);
for(i = 0; i < BUF_LEN; i++)
{
System_printf("buf[%i] = %i\n", i, bufi]);
bigBuf[i + (xxx*10)] = buffi];
}

}
System_flush();

lastFreeLoc = bigBuf[79]; /I the last saved location should be in bigBuf[159];
}
static uint8_t getDuration(uint32 btnTimer, uint8* myMem)
{

int myFreq = 200; // 1/0.005 ...
float myTime = (float)btnTimer * ((float)1/(float)myFreq);

myMem([0] = floor(myTime) / myFreq; /[minute

48

myMem[1] = (uint8)floor(myTime) % myFreq; /[second
myMem[2] = (uint8)floor(myTime * 10) % myFreq; // deciSecond

/*
if (DEBUGMODE == 1)
{
System_printf("btnTimer = %i\n", (int)btnTimer);
System_printf("Minutes = %i\n", (intymyMem[0]);
System_printf(""Seconds = %i\n", (int)myMem[1]);
System_printf("DeciSec = %i\n", (int)myMem[2]);
System_flush();
}
*/
}
/*
* @brief Called before the task loop and contains application-specific
* initialization of the BLE stack, hardware setup, power-state
* notification if used, and BLE profile/service initialization.

*

* @param None.

*

* @return None.

*/

static void ProjectZero_init(void)

{

//**

/I NO STACK API CALLS CAN OCCUR BEFORE THIS CALL TO ICall_registerApp

//**

Il Register the current thread as an ICall dispatcher application
/I so that the application can send and receive messages via ICall to Stack.
ICall_registerApp(&selfEntity, &sem);

//System_printf("Initializing the user task, hardware, BLE stack and services.\n");
//System_flush();

/I Initialize queue for application messages.

/I Note: Used to transfer control to application thread from e.g. interrupts.
Queue_construct(&applicationMsgQ, NULL);

hApplicationMsgQ = Queue_handle(&applicationMsgQ);

//**

// Hardware initialization
/ AEAAEAAAEAAEAAAAAXAAAAAAAAAXAAAAAAXAAAXAAAXAAAXAAAXAAAAAAXAAAAAAAAAAAAAAAAAX)

/ISystem_printf("OPENNING LED PINS...\n");

49

//System_flush();
// Open LED pins
ledPinHandle = PIN_open(&ledPinState, ledPinTable);
/ISystem_printf("DONE\n");
//System_flush();
if('ledPinHandle) {
/[System_printf("Error initializing board LED pins");
//System_flush();
Task_exit();

¥

//buttonPinHandle = PIN_open(&buttonPinState, buttonPinTable);
/lif("buttonPinHandle) {

/I System_printf("Error initializing button pins");

/I System_flush();

Il Task_exit();

I}

/I Setup callback for button pins

/1if (PIN_registerIntCb(buttonPinHandle, &buttonCallbackFxn) = 0) {
/I System_printf("Error registering button callback function");

/I System_flush();

Il Task_exit();

I}

/ISystem_printf("Constructing BIOS OBJECTS...\n");
//System_flush();

T

Il Construct BIOS Obijects

Clock_Params clkParams, clkParams2;

lastLedState = PIN_getOutputValue(Board_LEDO);

Clock_Params_init(&clkParams);

clkParams.period = myClock/Clock_tickPeriod;

clkParams.startFlag = TRUE;

/I Construct a periodic Clock Instance

Clock_construct(&clk0Struct, (Clock_FuncPtr)clkOFxn,
myClock/Clock_tickPeriod, &clkParams);

myClock = 10000;

Clock_Params_init(&clkParams2);
clkParams2.period = myClock/Clock _tickPeriod,;

50

clkParams2.startFlag = TRUE;

/I Construct a periodic Clock Instance
Clock_construct(&clk1Struct, (Clock_FuncPtr)clk1Fxn,
myClock/Clock _tickPeriod, &clkParams2);

M

System_printf(*"Memory stuff...\n");
System_flush();

/* memory stuff */
IlclearMe();

AUXWUCCIockEnable(AUX_WUC_ADI_CLOCK | AUX_WUC_SOC_CLOCK |
AUX_WUC_SMPH_CLOCK);

AUXADCSelectinput(ADC_COMPB_IN_AUXIO4); // DIO8 for 4XS -> http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/2_20_00_06/exports/tirtos_full_2 20 _
00_06/products/tidrivers_full_2 20 00_08/docs/doxygen/html/_a_d c_buf ¢ ¢c26 x x_8h.html

AUXADCDisablelnputScaling();

AUXADCEnableSync(AUXADC_REF_VDDA_REL,
AUXADC_SAMPLE_TIME_2P7_US, AUXADC_TRIGGER_MANUAL);

IIAUXADCEnableSync(AUXADC_REF_VDDA REL,
AUXADC_SAMPLE_TIME_1P37_MS, AUXADC_TRIGGER_MANUAL);

readMe();

/linti;

[ffor(i = 0; i < 80; i++)
11{

/I bigBuf[i] =1i;

I}

i

/*

Il Create the debounce clock objects for Button 0 and Button 1
Clock_Params clockParams;
Clock_Params_init(&clockParams);

/I Both clock objects use the same callback, so differentiate on argument
Il given to the callback in Swi context
clockParams.arg = Board_ BUTTONO;

/I Initialize to 50 ms timeout when Clock_start is called.
/I Timeout argument is in ticks, so convert from ms to ticks via tickPeriod.

51

Clock_construct(&buttonODebounceClock, buttonDebounceSwiFxn,
50 * (1000/Clock _tickPeriod),
&clockParams);

/[Second button
clockParams.arg = Board BUTTONL1;
Clock_construct(&button1DebounceClock, buttonDebounceSwiFxn,
50 * (1000/Clock _tickPeriod),
&clockParams);
*/

/ KEAAKREAAKRAAAAAAAAAAAAAAAAAhhAAhAAhArAAAAArAAAhhhkihhhhhhhhihhihdhiiiiiikx

// BLE Stack initialization

//**

/ISystem_printf("BLE stack initialization...\n");
//System_flush();

/I Setup the GAP Peripheral Role Profile
uint8_t initialAdvertEnable = TRUE; // Advertise on power-up

I/ By setting this to zero, the device will go into the waiting state after
/ being discoverable. Otherwise wait this long [ms] before advertising again.
uintl6_t advertOffTime = 0; // miliseconds

/I Set advertisement enabled.
GAPRole_SetParameter(GAPROLE_ADVERT_ENABLED, sizeof(uint8_t),
&initial AdvertEnable);

/I Configure the wait-time before restarting advertisement automatically
GAPRole_SetParameter(GAPROLE_ADVERT_OFF_TIME, sizeof(uint16 _t),
&advertOffTime);

/I Initialize Scan Response data
GAPRole_SetParameter(GAPROLE_SCAN_RSP_DATA, sizeof(scanRspData), scanRspData);

/I Initialize Advertisement data
GAPRole_SetParameter(GAPROLE_ADVERT_DATA, sizeof(advertData), advertData);

/ISystem_printf("Name in advertData array: \x1b[33m%s\x1b[0Om\n",
1 (IArg)Util_getLocalNameStr(advertData));
/ISystem_flush();

/I Set advertising interval
uintl6_t advint = DEFAULT_ADVERTISING_INTERVAL;

52

GAP_SetParamValue(TGAP_LIM_DISC_ADV_INT_MIN, advint);
GAP_SetParamValue(TGAP_LIM_DISC_ADV_INT_MAX, advint);
GAP_SetParamValue(TGAP_GEN_DISC_ADV_INT_MIN, advint);
GAP_SetParamValue(TGAP_GEN_DISC_ADV_INT_MAX, advint);

/I Set duration of advertisement before stopping in Limited adv mode.
GAP_SetParamValue(TGAP_LIM_ADV_TIMEOUT, 30); // Seconds

/ KEKAKAEAKAAIARAARAAARAIARAAARAAARAAIAAAIAAAIAITAAIAAAAAkAAAkAIAAAAAkArhkhrhhihhihiiiixkx

/ BLE Bond Manager initialization
//**
uint32_t passkey = 0; // passkey 000000

uint8_t pairMode = GAPBOND_PAIRING_MODE_WAIT_FOR_REQ;

uint8_t mitm = TRUE;

uint8_t ioCap = GAPBOND_|O_CAP_DISPLAY_ONLY;

uint8_t bonding = TRUE;

GAPBondMgr_SetParameter(GAPBOND_ DEFAULT_PASSCODE, sizeof(uint32_t),
&passkey);
GAPBondMgr_SetParameter(GAPBOND_PAIRING_MODE, sizeof(uint8_t), &pairMode);
GAPBondMgr_SetParameter(GAPBOND_MITM_PROTECTION, sizeof(uint8_t), &mitm);
GAPBondMgr_SetParameter(GAPBOND 10 _CAPABILITIES, sizeof(uint8_t), &ioCap);
GAPBondMgr_SetParameter(GAPBOND_BONDING_ENABLED, sizeof(uint8_t),
&bonding);

//System_printf("BLE Service initialization...\n");
//System_flush();

//**

/I BLE Service initialization

/ FEhAAAEAAAAAkAAAkAAAkAAhkAAhkhrhkhkhhhkhhhkrhhhkhrhkhihhkhkhhkhihhkhhhkhihkhkihkhkihiihiiiikx

/I Add services to GATT server
GGS_AddService(GATT_ALL_SERVICES); Il GAP
GATTServApp_AddService(GATT_ALL_SERVICES); // GATT attributes
Devinfo_AddService(); // Device Information Service

/I Set the device name characteristic in the GAP Profile
GGS_SetParameter(GGS_DEVICE_NAME_ATT, GAP_DEVICE_NAME_LEN,
attDeviceName);

/I Add services to GATT server and give ID of this task for Indication acks.
LedService_AddService(selfEntity);

/[ButtonService_AddService(selfEntity);

DataService_AddService(selfEntity);

53

/I Register callbacks with the generated services that

/I can generate events (writes received) to the application
LedService_RegisterAppCBs(&user LED_ServiceCBs);
/[ButtonService_RegisterAppCBs(&user_Button_ServiceCBs);
DataService_RegisterAppCBs(&user_Data_ServiceCBs);

/I Placeholder variable for characteristic intialization
uint8_t initVal[40] = {0};
uint8_t initString[] = "This is a pretty long string, isn't it!";

/I Initalization of characteristics in LED_Service that can provide data.
LedService_SetParameter(LS_LEDO_ID, LS LEDO_LEN, initVal);
LedService_SetParameter(LS _LED1 ID, LS LED1 LEN, initVal);

/I Initalization of characteristics in Button_Service that can provide data.
/[ButtonService_SetParameter(BS_ BUTTONO_ID, BS BUTTONO_LEN, initVal);
/[ButtonService_SetParameter(BS BUTTONL1 ID, BS BUTTONL LEN, initVal);

/l change this in data_service.h #define DS_STRING_LEN 80

/I Initalization of characteristics in Data_Service that can provide data.
DataService_SetParameter(DS_STRING_ID, sizeof(bigBuf), bigBuf);
DataService_SetParameter(DS_STREAM _ID, DS STREAM_LEN, initVal);

/I Start the stack in Peripheral mode.
VOID GAPRole_StartDevice(&user_gapRoleCBs);

// Start Bond Manager
VOID GAPBondMgr_Register(&user_bondMgrCBs);

/I Register with GAP for HCI/Host messages
GAP_RegisterForMsgs(selfEntity);

/I Register for GATT local events and ATT Responses pending for transmission
GATT _RegisterForMsgs(selfEntity);

//System_printf("DONE!...\n");
/ISystem_flush();

¥

/*
* @brief Application task entry point.
*

54

Invoked by TI-RTOS when BIOS_start is called. Calls an init function
and enters an infinite loop waiting for messages.

Messages can be either directly from the BLE stack or from user code
like Hardware Interrupt (Hwi) or a callback function.

The reason for sending messages to this task from e.g. Hwi's is that
some RTOS and Stack APIs are not available in callbacks and so the
actions that may need to be taken is dispatched to this Task.

ok ok ok % ok % k%

*

* @param a0, al - not used.
*
* @return None.
*/
static void ProjectZero_taskFxn(UArg a0, UArg al)
{
/I Initialize application
ProjectZero_init();

/I Application main loop
for (;:)

if (printMe)

saveBufs();
DataService_SetParameter(DS_STRING _ID, sizeof(bigBuf), bigBuf);
printMe = 0;

}

/I Waits for a signal to the semaphore associated with the calling thread.
/I Note that the semaphore associated with a thread is signaled when a
/I message is queued to the message receive queue of the thread or when
/l'1Call_signal() function is called onto the semaphore.

ICall_Errno errno = ICall_wait(ICALL_TIMEOUT_FOREVER);

if (printMe)

{
saveBufs();
DataService_SetParameter(DS_STRING_ID, sizeof(bigBuf), bigBuf);
printMe = 0;

}
if (errno == ICALL_ERRNO_SUCCESS)
{

if (printMe)

55

saveBufs();
DataService_SetParameter(DS_STRING_ID, sizeof(bigBuf), bigBuf);

printMe = 0;
}

ICall_EntityID dest;
ICall_ServiceEnum src;
ICall_HciExtEvt *pMsg = NULL,;

/I Check if we got a signal because of a stack message

if (ICall_fetchServiceMsg(&src, &dest,
(void **)&pMsg) == ICALL_ERRNO_SUCCESS)
{

if (printMe)

saveBufs();
DataService_SetParameter(DS_STRING_ID, sizeof(bigBuf), bigBuf);

printMe = 0;
}

uint8 safeToDealloc = TRUE;

if (src == ICALL_SERVICE_CLASS_BLE) && (dest == selfEntity))
{

if (printMe)

{

saveBufs();
DataService_SetParameter(DS_STRING_ID, sizeof(bigBuf), bigBuf);

printMe = 0;
}

ICall_Event *pEvt = (ICall_Event *)pMsg;

Il Check for event flags received (event signature Oxffff)
if (pEvt->signature == Oxffff)

/[Event received when a connection event is completed
if (pEvt->event_flag & PRZ_CONN_EVT_END_EVT)
{
Il Try to retransmit pending ATT Response (if any)
ProjectZero_sendAttRsp();

¥
ks

else // It's a message from the stack and not an event.

{

/I Process inter-task message

56

safeToDealloc = ProjectZero_processStackMsg((ICall_Hdr *)pMsg);

k
k

if (printMe)

saveBufs();
DataService_SetParameter(DS_STRING_ID, sizeof(bigBuf), bigBuf);
printMe = 0;

}

if (pMsg && safeToDealloc)

{
ICall_freeMsg(pMsg);

k
¥

Il Process messages sent from another task or another context.
while ('Queue_empty(hApplicationMsgQ))

{
if (printMe)

saveBufs();
DataService_SetParameter(DS_STRING _ID, sizeof(bigBuf), bigBuf);
printMe = 0;

}

app_msg_t *pMsg = Queue_dequeue(hApplicationMsgQ);

/I Process application-layer message probably sent from ourselves.
user_processApplicationMessage(pMsg);

/I Free the received message.
ICall_free(pMsg);

/*
* @brief Handle application messages

*

* These are messages not from the BLE stack, but from the
* application itself.
*

57

* For example, in a Software Interrupt (Swi) it is not possible to
* call any BLE APIs, so instead the Swi function must send a message
* to the application Task for processing in Task context.

*

* @param pMsg Pointer to the message of type app_msg_t.

* @return None.
*/
static void user_processApplicationMessage(app_msg_t *pMsg)

{
char_data_t *pCharData = (char_data_t *)pMsg->pdu;

switch (pMsg->type)
{
case APP_MSG_SERVICE_WRITE: /* Message about received value write */
/* Call different handler per service */
switch(pCharData->svcUUID) {
case LED_SERVICE_SERV_UUID:
user_LedService_ValueChangeHandler(pCharData);
break;
case DATA_SERVICE_SERV_UUID:
user_DataService_ValueChangeHandler(pCharData);
break;

}
break;

case APP_MSG_SERVICE_CFG: /* Message about received CCCD write */
[* Call different handler per service */
switch(pCharData->svcUUID) {
case BUTTON_SERVICE_SERV_UUID:
user_ButtonService_CfgChangeHandler(pCharData);
break;
case DATA_SERVICE_SERV_UUID:
user_DataService_CfgChangeHandler(pCharData);
break;
}

break;

case APP_MSG_UPDATE_CHARVAL.: /* Message from ourselves to send */
user_updateCharVal(pCharData);
break;

case APP_MSG_GAP_STATE_CHANGE: /* Message that GAP state changed */

user_processGapStateChangeEvt(*(gaprole_States t *)pMsg->pdu);
break;

58

case APP_MSG_SEND_PASSCODE: /* Message about pairing PIN request */
{
passcode_req_t *pReq = (passcode_req_t *)pMsg->pdu;
Log_info2("BondMgr Requested passcode. We are %s passcode %06d",
(1Arg)(pReg->uilnputs?"Sending":"Displaying™),
DEFAULT_PASSCODE);
/I Send passcode response.
GAPBondMgr_PasscodeRsp(pReg->connHandle, SUCCESS, DEFAULT_PASSCODE);
}

break;

case APP_MSG_BUTTON_DEBOUNCED: /* Message from swi about pin change */

{
button_state t *pButtonState = (button_state_t *)pMsg->pdu;

user_handleButtonPress(pButtonState);

}
break;
}

}

/***
*

KEAAKEAKAAEAAAIAAAAAAAAAIAAAAAAAAAIAAAIAAAIAAAAAAAAAAAAkAAAkAAhkAArhkhrhhrhkhkihhihhihiiiiiiik

Handlers of system/application events deferred to the user Task context.
Invoked from the application Task function above.

Further down you can find the callback handler section containing the
functions that defer their actions via messages to the application task.

% ok ok ok X X

TEAAIAEAAAEAAAIAAAAAAAAAAAAAAAIAAAIAAAIAAAIAAAIAAAAAAAAAkAAhkArAhkhrhkhkhhkhkihhkhhhihhihiiiiikx

***/

/*
* @brief Process a pending GAP Role state change event.

*

* @param newState - new state
*

* @return None.
*/
static void user_processGapStateChangeEvt(gaprole_States_t newState)

{

59

switch (newState)

{
case GAPROLE_STARTED:

{
uint8_t ownAddress[B_ADDR_LEN];
uint8_t systemId[DEVINFO_SYSTEM_ID_LEN];

GAPRole_GetParameter(GAPROLE_BD_ADDR, ownAddress);

I use 6 bytes of device address for 8 bytes of system ID value
systemId[0] = ownAddress[0];
systemld[1] = ownAddress[1];
systemld[2] = ownAddress[2];

I set middle bytes to zero
systemld[4] = 0xQ0;
systemlId[3] = 0xQ0;

/I shift three bytes up

systemld[7] = ownAddress[5];
systemld[6] = ownAddress[4];
systemld[5] = ownAddress[3];

Devinfo_SetParameter(DEVINFO_SYSTEM_ID, DEVINFO_SYSTEM_ID_LEN,
systemlid);

/I Display device address
char *cstr_ownAddress = Util_convertBdAddr2Str(ownAddress);
Log_infol("GAP is started. Our address: \x1b[32m%s\x1b[Om", (IArg)cstr_ownAddress);

}

break;

case GAPROLE_ADVERTISING:
Log_infoO("Advertising");
break;

case GAPROLE_CONNECTED:

{
uint8_t peerAddress[B_ADDR_LEN];

GAPRole_GetParameter(GAPROLE_CONN_BD_ADDR, peerAddress);

char *cstr_peerAddress = Util_convertBdAddr2Str(peerAddress);
Log_infol("Connected. Peer address: \x1b[32m%s\x1b[Om", (IArg)cstr_peerAddress);

}

break;

60

case GAPROLE _CONNECTED_ADV:
Log_infoO("Connected and advertising");
break;

case GAPROLE_WAITING:
Log_infoO("Disconnected / Idle™);
break;

case GAPROLE_WAITING_AFTER_TIMEOUT:
Log_infoO("Connection timed out");
break;

case GAPROLE_ERROR:
Log_infoO("Error");
break;

default:
break;

¥
k

/*

* @brief Handle a debounced button press or release in Task context.

* Invoked by the taskFxn based on a message received from a callback.
*

* @see buttonDebounceSwiFxn

* @see buttonCallbackFxn

*

* @param pState pointer to button_state_t message sent from debounce Swi.
*

* @return None.

*/

static void user_handleButtonPress(button_state_t *pState)

{

Log_info2("%s %s",
(1Arg)(pState->pinld == Board_BUTTONO?"Button 0":"Button 1"),
(1Arg)(pState->state?"\x1b[32mpressed\x1b[Om":
"\x1b[33mreleased\x1b[Om"));

/I Update the service with the new value.
/I Will automatically send notification/indication if enabled.
switch (pState->pinld)

{
case Board BUTTONQO:

61

ButtonService_SetParameter(BS_BUTTONO_ID,
sizeof(pState->state),
&pState->state);

break;

case Board BUTTONL.:

ButtonService_SetParameter(BS_ BUTTONL _ID,
sizeof(pState->state),
&pState->state);

break;

}
}

/*
* @brief Handle a write request sent from a peer device.

*

Invoked by the Task based on a message received from a callback.
When we get here, the request has already been accepted by the
service and is valid from a BLE protocol perspective as well as
having the correct length as defined in the service implementation.

@param pCharData pointer to malloc'd char write data

% % ok ok X X X

* @return None.
*/
void user_LedService_ValueChangeHandler(char_data_t *pCharData)
{
static uint8_t pretty data_holder[16]; // 5 bytes as hex string "AA:BB:CC:DD:EE"
Util_convertArrayToHexString(pCharData->data, pCharData->datalLen,
pretty data_holder, sizeof(pretty data_holder));

switch (pCharData->paramID)
{
case LS _LEDO_ID:
Log_info3("Value Change msg: %s %s: %s",
(1Arg)"LED Service",
(1Arg)"LEDOQ",
(1Arg)pretty_data_holder);

/I Do something useful with pCharData->data here

/I Set the output value equal to the received value. 0 is off, not 0 is on
PIN_setOutputValue(ledPinHandle, Board_LEDO, pCharData->data[0]);
Log_info2("Turning %s %s",
(1Arg)"\x1b[31mLEDO\x1b[Om",
(1Arg)(pCharData->data[0]?"on":"off"));

62

break;

case LS_LED1_ID:
Log_info3("Value Change msg: %s %s: %s",
(1Arg)"LED Service",
(IArg)"LED1",
(IArg)pretty_data_holder);

/I Do something useful with pCharData->data here
I mmmmmmm e
/I Set the output value equal to the received value. 0 is off, not 0 is on
PIN_setOutputValue(ledPinHandle, Board_LED1, pCharData->data[0]);
Log_info2("Turning %s %s",
(1Arg)"\x1b[32mLED1\x1b[Om",
(1Arg)(pCharData->data[0]?""on":"0off"));

break;
default:
return;

}
}
/*

* @brief Handle a CCCD (configuration change) write received from a peer
* device. This tells us whether the peer device wants us to send

* Notifications or Indications.

*

* @param pCharData pointer to malloc'd char write data
*

* @return None.
*/
void user_ButtonService_CfgChangeHandler(char_data_t *pCharData)
{
Il Cast received data to uint16, as that's the format for CCCD writes.
uintl6_t configValue = *(uint16_t *)pCharData->data;
char *configValString;

I/l Determine what to tell the user

switch(configValue)

{

case GATT_CFG_NO_OPERATION:
configValString = "Noti/Ind disabled";
break;

case GATT_CLIENT_CFG_NOTIFY:
configValString = "Notifications enabled";

63

break;

case GATT_CLIENT_CFG_INDICATE:
configValString = "Indications enabled";
break;

ky

switch (pCharData->paramID)
{
case BS_BUTTONO_ID:

Log_info3("CCCD Change msg: %s %s: %s",
(1Arg)"Button Service",
(1Arg)"BUTTONO",
(1Arg)configValString);

/I Do something useful with configVValue here. It tells you whether someone
// wants to know the state of this characteristic.

...

break;

case BS BUTTONL1_ID:

Log_info3("CCCD Change msg: %s %s: %s",
(1Arg)"Button Service",
(1Arg)"BUTTON1",
(1Arg)configValString);

/I Do something useful with configVValue here. It tells you whether someone
I/l wants to know the state of this characteristic.

...

break;

¥
k

/*
* @brief Handle a write request sent from a peer device.

*

Invoked by the Task based on a message received from a callback.
When we get here, the request has already been accepted by the
service and is valid from a BLE protocol perspective as well as
having the correct length as defined in the service implementation.

@param pCharData pointer to malloc'd char write data

% % 3k ok ok X X

* @return None.
*/
void user_DataService_ValueChangeHandler(char_data_t *pCharData)

64

I/l ' Value to hold the received string for printing via Log, as Log printouts
I/l happen in the Idle task, and so need to refer to a global/static variable.
static uint8_t received_string[DS_STRING_LEN] = {0};

switch (pCharData->paramID)
{
case DS_STRING_ID:
/I Do something useful with pCharData->data here
I mmmmmmm e
/I Copy received data to holder array, ensuring NULL termination.
memset(received_string, 0, DS_STRING_LEN);
memcpy(received_string, pCharData->data, DS_STRING_LEN-1);
/I Needed to copy before log statement, as the holder array remains after
Il the pCharData message has been freed and reused for something else.
Log_info3("Value Change msg: %s %s: %s",
(1Arg)"Data Service",
(1Arg)"String",
(IArg)received_string);
break;

case DS_STREAM_ID:
Log_info3("Value Change msg: Data Service Stream: %02x:%02x:%02x...",
(1Arg)pCharData->data[0],
(1Arg)pCharData->data[1],
(1Arg)pCharData->data[2]);

/I Do something useful with pCharData->data here
break;

default;
return;

k
¥

/*
* @brief Handle a CCCD (configuration change) write received from a peer
* device. This tells us whether the peer device wants us to send

* Notifications or Indications.
*

* @param pCharData pointer to malloc'd char write data
*

* @return None.

*/

void user_DataService_CfgChangeHandler(char_data_t *pCharData)
{

65

Il Cast received data to uint16, as that's the format for CCCD writes.
uint16_t configValue = *(uint16_t *)pCharData->data;
char *configValString;

// Determine what to tell the user

switch(configValue)

{

case GATT_CFG_NO_OPERATION:
configValString = "Noti/Ind disabled";
break;

case GATT_CLIENT_CFG_NOTIFY:
configValString = "Notifications enabled";
break;

case GATT_CLIENT_CFG_INDICATE:
configValString = "Indications enabled";
break;

ks

switch (pCharData->paramID)
{
case DS_STREAM_ID:
Log_info3("CCCD Change msg: %s %s: %s",
(1Arg)"Data Service",
(1Arg)"Stream",
(IArg)configValString);

/I Do something useful with configValue here. It tells you whether someone

// wants to know the state of this characteristic.
/...
break;

/*
* @brief Process an incoming BLE stack message.

*

This could be a GATT message from a peer device like acknowledgement
of an Indication we sent, or it could be a response from the stack

*
*
* to an HCI message that the user application sent.
*
* @param pMsg - message to process

*

* @return TRUE if safe to deallocate incoming message, FALSE otherwise.

*/
static uint8_t ProjectZero_processStackMsg(ICall_Hdr *pMsg)

66

{
uint8_t safeToDealloc = TRUE;

switch (pMsg->event)

case GATT_MSG_EVENT:
/I Process GATT message
safeToDealloc = ProjectZero_processGATTMsg((gattMsgEvent_t *)pMsg);
break;

case HCI_GAP_EVENT_EVENT:
{

// Process HCI message

switch(pMsg->status)

{

case HCI_COMMAND_COMPLETE_EVENT_CODE:

I/ Process HCI Command Complete Event
Log_infoO("HCI Command Complete Event received");
break;

default:
break;

k
}

break;

default:
// do nothing
break;

¥

return (safeToDealloc);

by

/*
* @brief Process GATT messages and events.

*

* @return TRUE if safe to deallocate incoming message, FALSE otherwise.
*/

static uint8_t ProjectZero_processGATTMsg(gattMsgEvent_t *pMsg)

{

/I See if GATT server was unable to transmit an ATT response
if (pMsg->hdr.status == blePending)

{

67

Log_warning1("Outgoing RF FIFO full. Re-schedule transmission of msg with opcode
0x%02x",
pMsg->method);

/I No HCI buffer was available. Let's try to retransmit the response

// on the next connection event.

if (HCI_EXT_ConnEventNoticeCmd(pMsg->connHandle, selfEntity,
PRZ_CONN_EVT_END_EVT) == SUCCESS)

{

/I First free any pending response
ProjectZero_freeAttRsp(FAILURE);

/[Hold on to the response message for retransmission
pAttRsp = pMsg;

/I Don't free the response message yet
return (FALSE);
}
}
else if (pMsg->method == ATT_FLOW_CTRL_VIOLATED_EVENT)
{
/I ATT request-response or indication-confirmation flow control is
[l violated. All subsequent ATT requests or indications will be dropped.
/I The app is informed in case it wants to drop the connection.

/I Log the opcode of the message that caused the violation.
Log_errorl("Flow control violated. Opcode of offending ATT msg: 0x%02x™,
pMsg->msg.flowCtrlEvt.opcode);

else if (pMsg->method == ATT_MTU_UPDATED_EVENT)

{
/I MTU size updated

Log_infol("MTU Size change: %d bytes"”, pMsg->msg.mtuEvt. MTU);
}

else

{

/I Got an expected GATT message from a peer.
Log_infol("Recevied GATT Message. Opcode: 0x%02x", pMsg->method);

¥

Il Free message payload. Needed only for ATT Protocol messages
GATT_bm_free(&pMsg->msg, pMsg->method);

/' 1t's safe to free the incoming message
return (TRUE);

68

/*
* Application error handling functions

***/

/*

* @brief Send a pending ATT response message.

*

* The message is one that the stack was trying to send based on a
* peer request, but the response couldn't be sent because the

* user application had filled the TX queue with other data.

*

* @param none

*

* @return none

*/

static void ProjectZero_sendAttRsp(void)

/I See if there's a pending ATT Response to be transmitted
if (pAttRsp '= NULL)
{

uint8_t status;

/I Increment retransmission count
rspTxRetry++;

/[Try to retransmit ATT response till either we're successful or

/[the ATT Client times out (after 30s) and drops the connection.

status = GATT_SendRsp(pAttRsp->connHandle, pAttRsp->method, &(pAttRsp->msg));
if ((status !'= blePending) && (status '= MSG_BUFFER_NOT_AVAIL))

/I Disable connection event end notice
HCI_EXT_ConnEventNoticeCmd(pAttRsp->connHandle, selfEntity, 0);

/' We're done with the response message
ProjectZero_freeAttRsp(status);
}

else

{

/I Continue retrying
Log_warning2("Retrying message with opcode 0x%02x. Attempt %d",
pAttRsp->method, rspTxRetry);

69

¥
k
k

/*
* @brief Free ATT response message.

*

* @param status - response transmit status

*

* @return none

*/

static void ProjectZero_freeAttRsp(uint8_t status)

{

/I See if there's a pending ATT response message
if (pAttRsp '= NULL)

/I See if the response was sent out successfully
if (status == SUCCESYS)
{
Log_info2("Sent message with opcode 0x%02x. Attempt %d",
pAttRsp->method, rspTxRetry);
}

else

{

Log_error2("Gave up message with opcode 0x%02x. Status: %d",
pAttRsp->method, status);

I Free response payload
GATT_bm_free(&pAttRsp->msg, pAttRsp->method);

¥

Il Free response message
ICall_freeMsg(pAttRsp);

I/ Reset our globals
pAttRsp = NULL;
rspTxRetry = 0;

/***
*
KEAIAIAIIAAAAAAAIAIAIAIAAAAAAAAAAAIAAAAAAAAAIAAAAAAAAhAhErrrrrrrhkhkhhkhdrirrrhhhhhhiiiiiiixx

*

* Handlers of direct system callbacks.

70

Typically enqueue the information or request as a message for the
application Task for handling.

* % % %

KEKAEAKAAEAKAAIARAIARXAARAARAAARAIARAAAAAIAAAIAITAAAAAAAAIAAAAAAAAAAAkArhkhrhhihhihhihhiiiix

***/

/*
* Callbacks from the Stack Task context (GAP or Service changes)

'k'k'k'k'k'k'k********************/

/**

* Callback from GAP Role indicating a role state change.
*/
static void user_gapStateChangeCB(gaprole_States_t newState)
{
Log_infol("(CB) GAP State change: %d, Sending msg to app.", (IArg)newState);
user_enqueueRawAppMsg(APP_MSG_GAP_STATE_CHANGE, (uint8_t *)&newState,
sizeof(newState));

ks

/*

* @brief Passcode callback.

*

* @param connHandle - connection handle

* @param uilnputs - input passcode?

* @param uiOutputs - display passcode?

*

* @return none

*/

static void user_gapBondMgr_passcodeCB(uint8_t *deviceAddr, uintl6_t connHandle,
uint8_t uilnputs, uint8_t uiOutputs)

{

passcode_req_treq =
{
.connHandle = connHandle,
.uilnputs = uilnputs,
.uiOutputs = uiOutputs
3

/I Defer handling of the passcode request to the application, in case

I user input is required, and because a BLE API must be used from Task.
user_enqueueRawAppMsg(APP_MSG_SEND_ PASSCODE, (uint8_t *)&req, sizeof(req));

71

ky

/*

* @brief Pairing state callback.

*

* @param connHandle - connection handle

* @param state - pairing state

* @param status - pairing status

*

* @return none

*/

static void user_gapBondMgr_pairStateCB(uint16_t connHandle, uint8_t state,
uint8_t status)

{
if (state == GAPBOND_PAIRING_STATE_STARTED)
{
Log_infoO("Pairing started");
}

else if (state == GAPBOND_PAIRING_STATE_COMPLETE)

{
if (status == SUCCESS)

{Log_infoO("Pairing completed successfully.™);
}
else
{
Log_errorl(*"Pairing failed. Error: %02x", status);
}
}
else if (state == GAPBOND_PAIRING_STATE_BONDED)
{if (status == SUCCESYS)
{Log_infOO("Re-estabIished pairing from stored bond info.");
}
}
}
/**

* Callback handler for characteristic value changes in services.

*/

static void user_service_ValueChangeCB(uintl6_t connHandle, uintl6 _t svcUuid,
uint8_t paramlID, uint8_t *pValue,
uintlé tlen)

{

Il See the service header file to compare paramID with characteristic.

72

Log_info2("(CB) Characteristic value change: svc(0x%04x) paramID(%d). "
"Sending msg to app.”, (IArg)svcUuid, (1Arg)paramID);
user_enqueueCharDataMsg(APP_MSG_SERVICE_WRITE, connHandle, svcUuid, paramID,

pValue, len);
}
/**
* Callback handler for characteristic configuration changes in services.
*/

static void user_service_CfgChangeCB(uint16_t connHandle, uint16_t svcUuid,
uint8_t paramlID, uint8_t *pValue,
uintlé _tlen)
{
Log_info2("(CB) Char config change: svc(0x%04x) paramID(%d). "
"Sending msg to app.”, (IArg)svcUuid, (IArg)paramID);
user_enqueueCharDataMsg(APP_MSG_SERVICE_CFG, connHandle, svcUuid,
paramiD, pValue, len);
}

/*
* Callbacks from Swi-context

***/

/*
* @brief Callback from Clock module on timeout

*

* Determines new state after debouncing

*

* @param buttonld The pin being debounced

*/

static void buttonDebounceSwiFxn(UArg buttonld)

// Used to send message to app
button_state_t buttonMsg = { .pinld = buttonid };
uint8_t sendMsg = FALSE;

/I Get current value of the button pin after the clock timeout
uint8_t buttonPinVal = PIN_getInputValue(buttonld);

/I Set interrupt direction to opposite of debounced state

/I'1f button is now released (button is active low, so release is high)

if (buttonPinVal)

{
/l Enable negative edge interrupts to wait for press
PIN_setConfig(buttonPinHandle, PIN_BM_IRQ, buttonld | PIN_IRQ_NEGEDGE);

73

ks

else

/l Enable positive edge interrupts to wait for relesae
PIN_setConfig(buttonPinHandle, PIN_BM_IRQ, buttonld | PIN_IRQ_POSEDGE);

¥

switch(buttonld)
{
case Board_ BUTTONO:
/I If button is now released (buttonPinVal is active low, so release is 1)
/l and button state was pressed (buttonstate is active high so press is 1)
if (buttonPinVal && button0State)
{
// Button was released
buttonMsg.state = buttonOState = 0;
sendMsg = TRUE;

¥
else if ('buttonPinVal && !button0State)

{
/[Button was pressed
buttonMsg.state = buttonOState = 1;
sendMsg = TRUE;

}

break;

case Board BUTTONL.:
/I If button is now released (buttonPinVal is active low, so release is 1)
/[and button state was pressed (buttonstate is active high so press is 1)
if (buttonPinVal && button1State)
{
// Button was released
buttonMsg.state = button1State = 0;
sendMsg = TRUE;

else if ("buttonPinVal && 'button0State)
{

// Button was pressed
buttonMsg.state = button1State = 1;
sendMsg = TRUE;

}

break;

¥

if (sendMsg == TRUE)
{

74

user_enqueueRawAppMsg(APP_MSG_BUTTON_DEBOUNCED,
(uint8_t *)&buttonMsg, sizeof(buttonMsQ));
}

¥

/*
* Callbacks from Hwi-context

'k'k'k'k'k'k'k'k'k'k'k'k'k'k*********************/

/*
* @brief Callback from PIN driver on interrupt

*

* Sets in motion the debouncing.

*

* @param handle The PIN_Handle instance this is about

* @param pinld The pin that generated the interrupt

*/
static void buttonCallbackFxn(PIN_Handle handle, PIN_Id pinld)
{

Log_infol("Button interrupt: %s",

(1Arg)((pinld == Board_BUTTONO)?"Button 0":"Button 1"));

// Disable interrupt on that pin for now. Re-enabled after debounce.
PIN_setConfig(handle, PIN_BM_IRQ, pinld | PIN_IRQ_DIS);

/I Start debounce timer
switch (pinld)

case Board_ BUTTONO:
Clock_start(Clock_handle(&button0DebounceClock));
break;

case Board BUTTONL.:
Clock_start(Clock_handle(&button1DebounceClock));
break;

}
}

/***
*
AEAAEAAEAAEAAAAAAAAAAXAEAAXAAAXAAAXAAAXAAAXAAAAAAAAAAAXAAAAAAAAAAAAXAAAXAAAAAAAAAAAAAAX)
*

* Utility functions

*

KEAIAIAIKKAKAKAAAAAAAIAAAAAAAAAAXAAAAAAAAEAAAIAIAAAAAAAEhArdrrAAhhhhdhrirrrhkhhhhhiiiiiiixx

75

***/

/*

* @brief Generic message constructor for characteristic data.

*

Sends a message to the application for handling in Task context where
the message payload is a char_data_t struct.

From service callbacks the appMsgType is APP_MSG_SERVICE_WRITE or
APP_MSG_SERVICE_CFG, and functions running in another context than
the Task itself, can set the type to APP_MSG_UPDATE_CHARVAL to
make the user Task loop invoke user_updateCharVal function for them.

* ok ok ok % ok %

*

* @param appMsgType Enumerated type of message being sent.
* @param connHandle GAP Connection handle of the relevant connection
* @param serviceUUID 16-bit part of the relevant service UUID
* @param paramiD Index of the characteristic in the service
* @oaram *pValue Pointer to characteristic value
* @param len Length of characteristic data
*/
static void user_enqueueCharDataMsg(app_msg_types_t appMsgType,
uintl6_t connHandle,
uint16_t serviceUUID, uint8_t paramiD,
uint8_t *pValue, uint16_tlen)

// Called in Stack's Task context, so can't do processing here.
/I Send message to application message queue about received data.
uintl6_t readLen = len; // How much data was written to the attribute

/I Allocate memory for the message.

/I Note: The pCharData message doesn't have to contain the data itself, as

/I that's stored in a variable in the service implementation.

1

/[However, to prevent data loss if a new value is received before the

/I service's container is read out via the GetParameter API is called,

/[we copy the characteristic's data now.

app_msg_t *pMsg = ICall_malloc(sizeof(app_msg_t) + sizeof(char_data_t) +
readLen);

if (pMsg = NULL)
{
pMsg->type = appMsgType;

char_data_t *pCharData = (char_data_t *)pMsg->pdu;
pCharData->svcUUID = serviceUUID; // Use 16-bit part of UUID.

76

pCharData->paramID = param|D;

/I Copy data from service now.

memcpy(pCharData->data, pValue, readLen);

// Update pCharData with how much data we received.
pCharData->datalLen = readLen;

/I Enqueue the message using pointer to queue node element.
Queue_enqueue(hApplicationMsgQ, &pMsg->_elem);

/I Let application know there's a message.
Semaphore_post(sem);

k
¥

/*
* @brief Generic message constructor for application messages.

*

* Sends a message to the application for handling in Task context.
*

* @param appMsgType Enumerated type of message being sent.

* @oaram *pValue Pointer to characteristic value

* @param len Length of characteristic data

*/

static void user_enqueueRawAppMsg(app_msg_types_t appMsgType, uint8 t *pData,
uintl6_tlen)

{

/I Allocate memory for the message.
app_msg_t *pMsg = ICall_malloc(sizeof(app_msg_t) + len);

if (pMsg != NULL)
pMsg->type = appMsgType;

/I Copy data into message
memcpy(pMsg->pdu, pData, len);

/I Enqueue the message using pointer to queue node element.
Queue_enqueue(hApplicationMsgQ, &pMsg->_elem);
/I Let application know there's a message.
Semaphore_post(sem);
}
}

/*
* @brief Convenience function for updating characteristic data via char_data_t

* structured message.
*

77

* @note Must run in Task context in case BLE Stack APIs are invoked.
*
* @param *pCharData Pointer to struct with value to update.
*/
static void user_updateCharVal(char_data_t *pCharData)
{
switch(pCharData->svcUUID) {
case LED_SERVICE_SERV_UUID:
LedService_SetParameter(pCharData->paramID, pCharData->datalen,
pCharData->data);
break;

case BUTTON_SERVICE_SERV_UUID:
ButtonService_SetParameter(pCharData->paramID, pCharData->datalLen,
pCharData->data);
break;

¥
k

/*
* @brief Convert {0x01, 0x02} to "01:02"
*

* @param src - source byte-array

* @param src_len - length of array

* @param dst - destination string-array

* @param dst_len - length of array

*

* @return array as string

*/

static char *Util_convertArrayToHexString(uint8_t const *src, uint8_t src_len,
uint8_t *dst, uint8_t dst_len)

{

char hex[] = "0123456789ABCDEF";
uint8 t *pStr = dst;
uint8 t avail =dst_len-1;

memset(dst, 0, avail);

while (src_len && avail > 3)
{
if (avail < dst_len-1) { *pStr++ ="" avail -=1; };
*pStr++ = hex[*src >> 4];
*pStr++ = hex[*src++ & 0xO0F];
avail -= 2;
src_len--;

78

ky

if (src_len && avail)
*pStr++ =""; // Indicate not all data fit on line.

return (char *)dst;

ks

/*
* @brief Extract the LOCALNAME from Scan/AdvData

*

* @param data - Pointer to the advertisement or scan response data
*

* @return Pointer to null-terminated string with the adv local name.
*/
static char *Util_getLocalNameStr(const uint8_t *data) {

uint8_t nuggetLen = 0;

uint8_t nuggetType = 0;

uint8_t advldx = 0;

static char localNameStr[32] ={ 0 };
memset(localNameStr, 0, sizeof(localNameStr));

for (advldx = 0; advldx < 32;) {
nuggetLen = data[advIidx++];
nuggetType = data[advldx];
if ((nuggetType == GAP_ADTYPE_LOCAL_NAME_COMPLETE ||
nuggetType == GAP_ADTYPE_LOCAL_NAME_SHORT) && nuggetLen < 31) {
memcpy(localNameStr, &data[advldx + 1], nuggetLen - 1);

break;
}else {
advldx += nuggetLen;
}
}
return localNameStr;

by

/***

***/

Void clk1Fxn(UArg arg0)
{

int newSecond = 0;
uintl6 t data;

79

myCentiSec++;

if (myCentiSec >= 10) {myDeciSec++; myCentiSec = 0;}

if (myDeciSec >= 10)

{
[IAUXADCGenManualTrigger();
//data = AUXADCReadFifo();
/[int32_t microVolt =

AUXADCValueToMicrovolts(AUXADC_FIXED REF VOLTAGE_NORMAL, data);

/ISystem_printf("ADC READING: %imV\n", microVolt/1000);
/[System_printf("HIGHEST ADC LAST 10dS: %i\n", highestVal);
//System_flush();
highestVal = 0;

myDeciSec = 0;
newSecond = 1;
mySec++;
if ((mySec % 15) ==0)
{
/lif (DEBUGMODE ==1) {
//System_printf("CurrentTime-> %i:%i:%i\n", myHour, myMin, mySec);
System_flush();
I}
}
}
if (mySec >= 60) {myMin++; mySec = 0;}
if (myMin >=60) {myHour++; myMin =0;}
if (myHour >= 24){myHour = 0;}

if (newSecond == 1)

{
bigBuf[78] = mySec;
bigBuf[77] = myMin;
bigBuf[76] = myHour;

/I Update the broadcasted time so app can calculate time since event.
DataService_SetParameter(DS_STRING_ID, sizeof(bigBuf), bigBuf);

newSecond = 0;

}
}
i
/*
* —======= c|lkOFXn =======
*/

80

Void clkOFxn(UArg arg0)
{
uint8 myMem[3] = {0,};
btnTimer++;
uintl6 t data;
int recordTime = 0;

AUXADCGenManual Trigger();
data = AUXADCReadFifo();

if (highestVal < data) {highestVal = data;}
if (signalCnt < 60)
{
signalBuf[signalCnt] = data;
signalCnt++;
} else if (signalCnt == 60) {
[ffor(i = 0; i < 60; i++)
//System_printf(*signalBuf[%i] = %i\n", i, signalBuf[i]);
signalCnt = 0;
//System_flush();

//int32_t microVolt =
AUXADCValueToMicrovolts(AUXADC_FIXED _REF VOLTAGE_NORMAL, data);

if (data > 800) // 400 too low // ignore->// VOLTAGLOVE analog circuit detection voltage
(500 works, try smaller value)

{
PIN_setOutputValue(ledPinHandle, Board_LEDO, 1); //turn LED ON

}else {
if (PIN_getOutputValue(Board LEDO0) == 1) {recordTime = 1;}

PIN_setOutputValue(ledPinHandle, Board_LEDO, 0); //turn LED OFF
}

if (PIN_getOutputValue(Board LEDO) == 0) {offTimer++;} //increment off timer
if (lastLedState != PIN_getOutputValue(Board_LEDO)) //LED has changed state

if ((lastLedState == 1) || (recordTime == 1)) //LED ON -> LED OFF (or ADC toggling
LED)

{

getDuration(btnTimer, myMem);

/lonly record time is sec or min >0
if ((myMem][0] > 0) || (myMem[1] > 0))

81

Il Save the data in the big buff on the correct page

bigBuf[lastFreeLoc*5 + 0] = myHour;

bigBuf[lastFreeLoc*5 + 1] = myMin;

bigBuf[lastFreeLoc*5 + 2] = mySec;

bigBuf[lastFreeLoc*5 + 3] = myMem][0]; // add the 2 upper deciSec bits here
bigBuf[lastFreeLoc*5 + 4] = myMem[1]; // add the 2 lower deciSec bits here

/I SAVE ME -----------

int X = lastFreeLoc / 2;

pageBuf[x] = 1; // queue the page to be written

chainMe = lastFreeLoc; // add a buffer for when the device turns off and back rapidly

/I save the new lastFreeLoc

lastFreeLoc++; Il increment lastFreeLoc

if (lastFreeLoc > 15) { lastFreeLoc = 0; } / memory full, set next write
location over oldest recording

bigBuf[79] = lastFreeLoc; Il update the lastFreeLoc in buffer

pageBuf[7] = 1; // queue to save the lastFreeLoc value

printMe = 1; // queue to save to memory
}
offTimer = 0;
} else {// LED OFF -> ON
/I keep recording time if offTimer < 350 (don't reset time)
if (offTimer >=50) // 250ms / (1/60) => 15 => only chain time if its been less than
250mS
{
btnTimer = 0;
offTimer = 0;
} else if (chainMe 1= 83) { // We are chaining the times together
lastFreeLoc = chainMe; // write over the previous time (chain them together, since
timer hasn't been restarted yet
}
chainMe = 83;
}
}

lastLedState = PIN_getOutputValue(Board_LEDO);

/I flip Green LED state

uint32_t currVal = 0;

currVal = PIN_getOutputValue(Board _LED1);
PIN_setOutputValue(ledPinHandle, Board_LED1, !currVal);

82

¥
T

83

References

Electrical Safety Foundation International using data from the BLS SOII, 2003-2015,

http://www.esfi.org/resource/workplace-fatalities-and-injuries-2003-2015-571

http://d3i5bpxkxvwmz.cloudfront.net/articles/2011/09/22/inverted-f-antenna-PCB-

1316730420.pdf

84

http://www.esfi.org/resource/workplace-fatalities-and-injuries-2003-2015-571
http://www.esfi.org/resource/workplace-fatalities-and-injuries-2003-2015-571
http://www.esfi.org/resource/workplace-fatalities-and-injuries-2003-2015-571

