EE 421 – Digital Electronics Course Project: Negative Charge Pump By Dane Gentry University of Nevada, Las Vegas Professor Baker

Table of Contents

Forward	3
Introduction	3
Design Constraints	4
Complete Design	4
Bandgap	9
Decoupling Capacitor	11
Feedback Resistors	13
Difference Amplifier	13
Level Shifter	16
Comparator	18
Ring Oscillator w/ Buffer	20
Negative Charge Pump	27
Pin Diagram	30
Conclusion	

Forward

Dr. Baker:

The library I sent you is titled "OfficialProject". The cell containing my schematic, layout, and extracted layout which yields a successful LVS is titled "BAKER". The cell containing my overall schematic for which to simulate is titled "BAKERsimthis". I hope this clearly allows you to simulate my project without any difficulties, and I would like to thank you for yet another wonderful semester and learning experience.

Introduction

The objective of this course project is to design and layout a charge pump circuit using Cadence. The project was prefaced with a bandgap reference circuit schematic provided by Professor Baker for which a layout was created. The purpose of the bandgap circuit implemented is to generate a reference voltage of approximately 1.25 V despite temperature and VDD variations. The next portion of the project consisted of designing a circuit to sense the input voltage, *Vin*, of the bandgap and output a voltage, *Enable*, to be a logic 1 (VDD) for *Vin* greater than -2.5 V and a logic 0 (ground = 0 V) for *Vin* less than -2.5 V. Furthermore, the project should implement a ring oscillator, designed to be enabled by *Enable*, which will drive a charge pump that supplies -2.5 V with load currents ranging from 0 to 200 uA. Lastly, the design should meet the design constraints stated below.

Design Constraints

- Vin should draw between 10 and 50 uA of current
- Sensing circuit should have at least a 100 mV built in hysteresis
 - Vin > -2.45 V → Enable = Logic 1 & Vin < -2.55 V → Enable = Logic 0
- Design characterized for VDD ranging from 4.5 to 5.5 V
- Design characterized for temperature ranging from 0 to 100C

Complete Design

DRC

****** Summary of rule violations for cell "COMPLETEDProject layout" Total errors found: O

Schematic

Symbol

Gentry, Dane EE 421 – Fall 2015

Simulation

Sweeping temperature from 0 to 100C & Sweeping VDD=Vin from 4.5 to 5.5V

Parametric Analysis - spectre(20): OfficialProject BAKERsimthis schematic @csimcluster.ee.unlv.edu															
<u>F</u> ile <u>A</u> nalysis <u>H</u> elp															
⊫ Parametric Simu	Parametric Simulation Completed.														
🖻 🔒 📲 😽	×	00	🛃 🛄 🗕 Run	Mode: Swee	ps & Ranges	- 🖸 🙆									
Variable	Value	Sweep?	Range Type	From	То	Step Mode	Step Size								
temp	27	V	From/To	0	100	Linear Steps	50								
vin	5	V	From/To	4.5	5.5	Linear Steps	0.5								

Idc Current source load of (I = 0uA):

-2.0

Idc Current source load of (I = 100 uA):

75.0 50.0 50.0 100.0 150.0 250.0

Idc Current source load of (I = 200uA):

Hysteresis

Bandgap

	0	-	L											L	ay	01	ut												
•														+	•		† •					* • •	****	÷				• •	+
•														+	+		ł۰				٠	<mark>∿</mark> &	iya di	80 A	1	andy.	аў,	• •	+
•														•	•		ł۰				2	÷	÷	αų.	- 22	an per se	ajaa	🚹 🔸	+
•														•	•		ļ.			-									•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		ļ.	•	•	÷		•	•		•	+		4 88	
																	Ι.			ά.								4	
																				έ,	4								
•	•	•	•	•	•	•	•	•	·	•	•	·	•	•	•		1	•	•	ŝ B	1	•	•	•	·	•	·	1	·
•				•	•	•	•	•	•	•	•			•	•		† †		•	φ.		•	•	+	•	+		4	٠
•														•	•		† •			ų.,								4 A.	٠
•														•	•		ŧ ۰			<i>11</i> *									+
•														•	•		ŧ ۰			÷	2							ž •	•
+														٠	٠		ł۰			8	1							3 1. S	٠
٠														+	+		ł۰			ŝ,	18							4	٠
•														•	•		ļ.			φ.	4							<u>1.</u>	٠
•														•	•		ļ.			¥в	÷.							वंध्य ह	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		ļ.	•	•	÷.,		•	•		•	+	•	4	•
				1	5755					110							Ι.			÷								4	
																					8.4							<u> 2</u> 2003	
											Ċ	•	•	•	•		Ī	•	•	·	Į.	•	•	Ť	•	Ť	Ť	<u>.</u>	Ť
		Π									•	•	•	•	•		† †	•	•	8		•	•	•	•	+	•	8 📩	•
•											٠			•	•		† •			Υ.	18							4	٠
•											٠			+	+		† •			÷.	ų,								٠
•											٠			•	•		ŧ ۰			N R									٠
•	1875		//										un de						8	ŝę -								4 76	٠
÷	s s	ere er	0002	202		2020	_						-				┝												
•	3	34 - 3	923V]		•	٠					+	+		٠ ¦			<u>م</u> ر -	褶							2 CO2	•
÷		÷	÷	in in				Č.						+	+		ļ.				ä							i .	+
•	¥111													•	•		ļ.			1		+	+	+					•
	1111									um			_				Ι.			÷.								9 W	
	8					-						8	ŝ.							÷.	62							8 8 8	
Ť	1111									Ť		18	8	•	•		Ī	Ť		i i i	-	•	•	Ľ	Ť		Ť	8,459 - 5	
•	1111	•	•	Ľ	•	•	•	•	•	•		<u>183</u>	8	•	•		† †	•		÷.		•	•	*	•	+	•	1	•
•	100	•	•	Ľ	•	•	+	•	•	•	1	88	Š.	•	•		† †	•		٩.		•	•	*	•	+	•		•
•	111			٠							•		Š.	•	•		† •			4	쏊							1 <u></u>	٠
•	1911			٠							٠	18	ŝ	•	•		† •			•	1							8	+
•	141			٠							•	4 2		+	+		•			Ť۴								84 · ·	•
٠	181			·								1								۲.	18							3 (f)	٠
•	141			٠								K								1	<u></u>							-8-6 C	٠
•	181			٠						聯		N.	Ø				ф.,			i B	22								٠
•	1141			٠											N					1								2 (C.)	•
•	11.4	199	(NAME	i lana	a a l	a second						l ee									l)					+ 🗖	and a set		•
•	1116		1		1														Sec	100 100 100 100 100	80 10								
•	1114		1				Ø.			d.		N.					Ø.			+	+	+	+	+	+			di il	
•	1111					L																+	+		+				
	i i i i			10.000	sto fi			andy	and the			160			000	-		8 er j.			-	anine I				<u>8</u>	disability	North New York	1

DRC

****** Summary of rule violations for cell "bandgap layout" Total errors found: O

Schematic

<u>Symbol</u>

Decoupling Capacitor

	<u>Layout</u>															
•	(/*////								*///////		/////*///	//////				
•																
•																
•																
•									• •							
•																
•						<u>.</u>							,			
•																
•																
														•		
•									• •							
•																
•									• •							
•									*****						//////////////////////////////////////	
		•														

<u>DRC</u>

***** Summary of rule violations for cell "DecoupleCap layout" Total errors found: 0

	LVS	
Netlist	🗹 schematic	🗹 extracted
Library	OfficialProject	OfficialProject
Cell	DecoupleCap	DecoupleCap
💐 @cs	imcluster.ee.unlv.edu	×
	The LVS job has completed.	The net-lists match.
	Run Directory: /home/gentryc	12/CMOSedu/LVS

Feedback Resistors

DRC Summary of rule violations for cell "R_75k_poly2 layout" ·***** Total errors found: 0

Difference Amplifier

<u>DRC</u>

****** Summary of rule violations for cell "DiffAmp layout" Total errors found: O

	LVS	
Netlist	🗹 schematic	🗹 extracted
Library	OfficialProject	OfficialProject
Cell	DiffAmp	DiffAmp
💌 @c	simcluster.ee.unlv.edu	×
	simcluster.ee.unlv.edu The LVS job has completed	. The net-lists match.

							vdd									vd	d.									
						T																				
						•																				
					m:1																					
				- I-	-80	τv	dd!							Ň	td!	P2										
				1-	-0u								ne	4A	i Arc	н.	aen									
			W	=12	2.Øu		Чb		_					Ĥ		- Yen III	20P	~								
				am	níØ6₽	ddl	Jľn	et8								_w=	12.	Øu								
							et8							net	103	LI=6	3u -									
							0,00							1 Y	. 1 22	m:1										
						—																				
						T																				
																						ाम				
																•				vuu	:	٧Ē				
																		n	etik	2 gr	ia:	omiØ	<u> FN</u>			
																						w=2	4.Ø	LI .		
					·	<u> </u>									π:1		4.00				۹.	=2	4m			
				r	net8	i ΤΓ	15							=	6u	Inet	t'10			ou:	t	- <u>_</u> _	ти			
	/			Vρ	o gn	id!a	mไØ®	N						w	Б <u>ш</u> _											
				÷	ΗF		1=6	2						SE,	XANA	ndl	57.1									
						₽ï	- 4	и.						ami	46MA	nu:	۷m								-	
				, r	net9		=bu								82	net	£9									
						п	n:1																			
											-+ ò	ыz														
										n€ ∵∼	ety															
									ne	t8	gnd	ami	Ø6N													
												w =	1.5	iu.												
											'⊢₽	1-1	12.0	X												
										١Ð	nd!	-	2.2	2u												
												-m:1														
												gn														
												~														

Schem

Symbol

Simulation

Schem

<u>Sim</u>

Layout Halt ž ٥, е, D<mark>m</mark>In 8 ۰. Chgi<mark>ran</mark>mpIn

Level Shifter

<u>DRC</u>

****** Summary of rule violations for cell "LevelShift layout" Total errors found: 0

LVS

Netlist	🗹 schematic	🗹 extracted
Library	OfficialProject	OfficialProject
Cell	LevelShift	LevelShift
💌 @cs	simcluster.ee.unlv.edu	×
	The LVS job has completed.	The net-lists match.
	Run Directory: /home/gentry	d2/CMOSedu/LVS

	Diff	In ·	-		DíffIn	RØ						
					· · · <	≥ r=	75K					
					VV	5						
				H	alfVout							
						—		_		lalf		ut
				·ц	ماأف امناب	6 1						
					airvout		75K					
					<	$\land \land$						
					.net9							
											•	
					net9	5 <u>R2</u>	75V					
					· · · · · · · · · · · · · · · · · · ·	\geq	7 UN					
					.net8							
•					net8	5 R3					•	
					A A	> r=	75K					
				haE								
				L IN L								

Schem

Symbol

Comparator

Layout

<u>DRC</u>

****** Summary of rule violations for cell "Comp layout" Total errors found: 0

LVS

Gentry, Dane EE 421 – Fall 2015

Symbol

Simulation Schem

Ring Oscillator w/ Buffer Layout .

 $\underline{DRC}_{\text{Summary of rule violations for cell "RingOscBuffer layout"}}$ ·***** Total errors found: 0

	LVS	
Netlist	⊻ schematic	⊻ extracted
Library	OfficialProject	OfficialProject
Cell	RingOscBuffer	RingOscBuffer
	csimcluster.ee.unlv.edu	X
	csimcluster.ee.unlv.edu	d. The net-lists match.

Determination of number of stages to be used in Ring Oscillator in addition to the 2 inverter buffer and nand gate.

22 stages \rightarrow freq. = 229MHz

Freq. = 1/Period = 1/(11.26597-6.897838)ns = 229 MHz

229 MHz is too fast. I'm shooting for 200MHz. This prompted me to increase the number of stages to 28 stages in order to increase delay and slow down the frequency.

28 stages \rightarrow freq. = 184MHz

Freq. = 1/Period = 1/(11.24397-5.814822)ns = 184 MHz

Given: 22 stages \rightarrow 229 MHz & 28 stages \rightarrow 184 MHz

Calculated: (229-184)MHz/(28-22)stages = 7.5 MHz/stage

This gives that 26 stages will yield a oscillation frequency of 197 MHz

26 **→** 197MHz

Gentry, Dane EE 421 – Fall 2015

Simulation

Schem

Negative Charge Pump

 $\underline{DRC}_{\text{Summary of rule violations for cell "ChgPump layout"}}$ ***** Total errors found: 0

LVS

Schem

For the charge pump schematic, I wanted 15pF capacitors, so I sized the pmos capacitors using:

$$C = 2.5 fF/um^2 * L *W$$

I decided to have my length equal width which yielded:

$$15pF = 2.5fF/um^2 * L *W \rightarrow L=W=20u$$

Symbol

Gentry, Dane EE 421 – Fall 2015

Simulation

Schem

ut	· •		C	Cha Pùn	rge np	In		- -	Ri	ng	0s	<u>cÖut</u>					Rin Osc	g C					
0dmn																				nable			
												vdd!	₽ <u></u> ∨1 + ``	/dc=	 5					Vin Vin	ive	j 1•01	
												gnd!							L · q	ית(<u>-</u> nd!	Ðv L	1.0 2=5 r=1	5 5u
																					gn		

Pin Diagram

For the above pin diagram, I would connect my GND to pin 1, my VDD to pin 2, and my bandgap out pin to pin 3.

To calculate power efficiency, I would average the current over the time of one period. Unfortunately, I did not simulate this.

Conclusion

The overall charge pump design and layout perform considerably well. All layouts yield no DRC errors as well as successful LVS, and, in addition, a pin diagram for the design's layout has been provided so that the layout could potentially be connected to bond pads and the design fabricated. I encountered numerous issues throughout the project including designing the overall charge pump to meet all the design requirements and perform as well as possible, and Cadence presented a great deal of various problems especially in referencing the model library for the diodes used in the bandgap. This issue was especially apparent because the bandgap that was initially provided to us had to be changed due to sizing oversights on a few PMOS. This led to multiple occurences of the parasitic pnp diode model library, but after much time and frustration, I was able to get my bandgap and all associated cells to LVS successfully. Despite any setbacks, all issues were overcome with time and yielded a better knowledge of Cadence and circuit design in general. Having successfully completed this course project has certainly resulted in my becoming a more confident and experienced circuit designer as well as engineer.