Forward

Dr. Baker:
The zipped filed I sent you is titled "Final Project" and has two different designs in it titled "Design 1" and "Design 2". I included both designs because my first design "Design 1" seems to have better overall performance, but I had spent so much time troubleshooting "Design 2" that I figured I would include it. I hope this clearly allows you to simulate my project without any difficulties, and I would like to thank you for yet another wonderful semester and learning

Introduction

The objective of this course project is to use On's C5 process to design a voltage follower using an op-amp that can operate with a VDD between 3 V and 5 V while driving a 10 pF (max) and $1 \mathrm{k} \Omega(\mathrm{min})$ load. The input voltage should be connected to the noninverting " + " input of the op-amp and the output voltage connected back to the inverting "-" input of the op-amp. Lastly, the design should meet the design constraints stated below.

Design Constraints

- The error (difference) between the input signal and output signal should be $<0.1 \%$
- Bandwidth of the follower should be $>100 \mathrm{MHz}$
- Slew-rate with maximum load $>100 \mathrm{~V} /$ microsecond
- Current draw from VDD should be less than 10 mA under full load conditions
- Output swing should be 80% of VDD (e.g. 0.5 V to 4.5 V when $\mathrm{VDD}=5 \mathrm{~V}$ or 0.12 V to 2.88 V when $\mathrm{VDD}=3 \mathrm{~V}$. The output swing doesn't have to be centered as these examples are, that is, 0.25 V to 4.25 V when $\mathrm{VDD}=5 \mathrm{~V}$ is fine too).

Table of Contents

Forward 1
Introduction. 1
Design Constraints 1
Table of Contents 2
Transconductance Matching 3
NMOS Characterization 6
PMOS Characterization 13
Table Summary of Characterization 21
Beta-Multiplier Reference (BMR) 22
Voltage Follower: Design 1 23
Voltage Follower: Design 2 31
Voltage Follower: Design 3 38
Table Summary of Design Results 47
Conclusion 48
References 49

Transconductance Matching

The purpose of this section is to use On's C5 process information in order to match the transconductances of an NMOS and PMOS (g_{mn} and g_{mp}, respectively) based off their sizes. On's

C5 process Spice models detailed in C5_models.txt are shown in Fig. 1.

Fig. 1 - On's C5 Process Spice Models (C5_models.txt)

Schem. 1 shows the NMOS and PMOS connected to one another (NMOS drain connected to PMOS source) for transconductance matching. Both the NMOS and PMOS are drain-gate connected to ensure they are each operating in saturation, and their bodies are connected to their sources (GND and VDD, respectively) to eliminate body effect. The size of the NMOS is chosen to be minimum length ($\mathrm{Lmin}=0.6 \mathrm{um}=600 \mathrm{~nm}$) and minimum width ($\mathrm{Wmin}=3 \mathrm{um}$) based off On's C5 process information detailed in C5_models.txt shown in Fig. 1.

It is noted that "...we use 2-5 times minimum length for general design" and "...we use minimum length for high-speed design" (Baker, pg. 297). It is also important to know that "...using minimum channel lengths results in large mismatches between devices and low MOSFET output resistance" which results in "low gain and large input-referred offset voltages" (Baker, pg. 863). In addition, "...to minimize power and maximize speed, we will use minimum size devices (Baker, pg. 863). This information suggests we should not have started with minimum sizing for the NMOS since we are not designing for high speed since (bandwidth only needs to be greater than 100 MHz) or minimized power, we do not want large mismatches between our NMOS and PMOS, and we do not want low MOSFET output resistance which will result in low gain and large input-referred offset voltages. However, we will use minimum sizing for the NMOS as a starting point and note that we can always come back and repeat the
following process starting with a different sized NMOS. The PMOS in Schem. 1 has the same length as the NMOS (Lmin=0.6um=600nm) for good matching, and its width is stepped to determine which width gives the closest PMOS transconductance ($\mathrm{gmp}_{\mathrm{mp}}$) to the NMOS transconductance $\left(\mathrm{g}_{\mathrm{mn}}\right)$ as VDS $=\mathrm{VSD}=\mathrm{VGS}=\mathrm{VSG}=\mathrm{VDD}$ is swept from 0 V to 5 V . Sim. $\mathbf{1}$ shows the transconductances of the NMOS and PMOS (g_{mn} and g_{mp}, respectively) by plotting the derivative of their drain currents. See Eq. (9.57).

$$
\begin{equation*}
g_{m}=\left[\frac{\partial i_{D}}{\partial v_{G S}}\right]_{V_{G S}=\text { constant }}^{I_{D}=\text { constant }}=v_{s a t} \cdot C_{o x}^{\prime} \cdot W \tag{9.57}
\end{equation*}
$$

By averaging the area (over 0 V to 5 V) of the various PMOS transconductance curves (corresponding to the various PMOS widths), it can be seen that the third curve from the bottom (corresponding to $\mathrm{W}_{\mathrm{PMOS}}=4.8 \mathrm{um}$) best matches the NMOS transconductance curve.

Sim. 1 - Matching NMOS \& PMOS Transconductances ($\mathbf{g}_{\mathrm{mn}} \& \mathbf{g}_{\mathrm{mp}}$)
Sim. 1-1 shows the PMOS transconductance $\left(g_{m p}=349 \mathrm{uA} / \mathrm{V}\right)$ for $\mathrm{W}_{\mathrm{PMOS}}=4.8 \mathrm{um}$ and NMOS transconductance $\left(\mathrm{g}_{\mathrm{mn}}=302 \mathrm{uA} / \mathrm{V}\right)$ for $\mathrm{VDS}=\mathrm{VSD}=\mathrm{VDD}=4 \mathrm{~V}$. This result simply shows the NMOS and PMOS transconductances (g_{mn} and g_{mp}, respectively) are relatively closely matched for the specified sizes.

Sim. 1-1 - Matching NMOS \& PMOS Transconductances $\left(g_{m n} \& g_{m p}\right)\left(W_{\text {PMos }}=4.8 u m\right)$

NMOS Characterization

The purpose of this section is to sweep VGS in order to determine threshold voltage (Vthn), bias current (Ibiasn), and bias voltage (Vbiasn=VGS) to then determine output resistance (r_{on}), transconductance $\left(g_{m n}\right)$, and transition frequency $\left(f_{T}\right)$ for the NMOS. Schem. 2 shows the NMOS (3um/0.6um) with VDS $=3 \mathrm{~V}$ in order to characterize the NMOS on the lower end of VDD.

Schem. 2 - NMOS: VGS Sweep
Sweeping VGS from 0V to 5 V results in Sim. 2 which shows VGS $=$ Vthn $=713 \mathrm{mV}$. This is the voltage in which the NMOS turns on.

Sim. 2 - NMOS: VGS Sweep to determine Vthn=713mV
Referring to Eq. (9.54) and noting "...For general analog design, we set the overdrive voltage to 5% of VDD. For high-speed design, we might set the overdrive voltage to 10% of VDD or larger" (Baker, pg. 863), we can estimate Vovn $=7 \%(\mathrm{VDD})=7 \%(5 \mathrm{~V})=350 \mathrm{mV}$ and can calculate VGS=Vovn+Vthn=(350+713)mV=1.063V. Sim. 2-1 shows Ibiasn=31.2uA at Vbiasn=VGS $=1.063 \mathrm{~V}$.

$$
\begin{equation*}
V_{o v n}=V_{G S}-V_{T H N} \neq V_{D S, \text { sat }} \tag{9.54}
\end{equation*}
$$

Sim. 2-1 - Ibiasn=31.2uA at Vbiasn=1.063V

Schem. $\mathbf{3}$ shows the NMOS with VGS=Vbiasn=1.063V and VDS=3V, and Sim. $\mathbf{3}$ shows various DC operating point values from the Spice error log including Vthn $=699 \mathrm{mV}, \mathrm{g}_{\mathrm{mn}}=174 \mathrm{uA} / \mathrm{V}$, $\mathrm{r}_{\mathrm{on}}=1 / \mathrm{Gds}=1 /\left(2.48 \times 10^{-6}\right)=403,226 \Omega$, and VDS, sat $($ here Vovn $)=242 \mathrm{mV}$.

Schem. 3 - NMOS: .op (DC Operating Point)

\boldsymbol{J} SPICE Error Log: C:\Users
Vth: $6.99 \mathrm{e}-01$ Vdsat: $2.42 \mathrm{e}-01$ Vm: $1.74 \mathrm{e}-04$ Gm: Gds: Gdi $2.48 \mathrm{e}-06$

Sim. 3 - NMOS: .op (DC Operating Point)
In order to ensure the NMOS is in saturation when Ibiasn=31.2uA at Vbiasn=1.063V, Schem. 4 shows VDS being swept from 0 V to 5 V with VGS=1.063V. Sim. 4 shows the NMOS is, in fact, in saturation when Ibiasn $=31.2 \mathrm{uA}$ and gives VDS $=2.98 \mathrm{~V}$.

Schem. 4 - NMOS: VDS sweep to ensure Saturation

Sim. 4 - NMOS: VDS sweep to ensure Saturation
In order to determine the output resistance ($\mathrm{r}_{\text {on }}$) of the NMOS, Schem. 5 shows VDS being swept from 0 V to 5 V with VGS $=1.063 \mathrm{~V}$. $\operatorname{Sim} .5$ shows the output resistance $\left(\mathrm{r}_{\text {on }}\right)$ plotted as the reciprocal of the derivative of the drain current $\left(1 / \operatorname{deriv}\left(\mathrm{I}_{\mathrm{D}}\right)\right)$. VDS, sat (here Vovn) is approximated as the voltage where the output resistance begins to increase. This results in VDS, $\mathrm{sat}=170.8 \mathrm{mV}$ (approx.) and gives $\mathrm{r}_{\mathrm{on}}=19.74 \mathrm{k} \Omega$.

Schem. 5 - NMOS: Output Resistance (r_{on})

Sim. 5 - NMOS: Output Resistance (r_{on})
Table 1 shows values for $r_{\text {on }}$ at varying voltages of VDS

VDS $=0 \mathrm{~V}$	$\mathrm{r}_{\text {on }}=7.2 \mathrm{k} \Omega$
VDS,sat $=170.8 \mathrm{mV}$	$\mathrm{r}_{\text {on }}=19.7 \mathrm{k} \Omega$
VDS $=3 \mathrm{~V}$	$\mathrm{r}_{\text {on }}=402.7 \mathrm{k} \Omega$
VDS=4 V	$\mathrm{r}_{\text {on }}=363.0 \mathrm{k} \Omega$
VDS=5 V	$\mathrm{r}_{\text {on }}=170.2 \mathrm{k} \Omega$

Table 1 - $r_{\text {on }}$ for various values of VDS

Lambda can be calculated as $\lambda_{\mathrm{n}}=1 /\left(\mathrm{r}_{\mathrm{on}} * \mathrm{I}_{\mathrm{D}}\right)=1 /\left(\mathrm{r}_{\mathrm{on}} *\right.$ Ibiasn $)$ using $\mathrm{r}_{\mathrm{on}}=402.7 \mathrm{k} \Omega @ \mathrm{VDS}=3 \mathrm{~V}$ from
Sim. 5 and using Ibiasn $=31.2 \mathrm{uA} \rightarrow$:

- $\quad \lambda_{\mathrm{n}}=1 /\left(\mathrm{r}_{\mathrm{on}} * \mathrm{I}_{\mathrm{D}}\right)=1 /\left(\mathrm{r}_{\text {on }} *\right.$ Ibiasn $)=1 /((402.7 \mathrm{k} \Omega) *(31.2 \mathrm{uA}))=0.0796 \mathrm{~V}^{-1}$
- $\chi_{n}=0.0796 \mathrm{~V}^{-1}$

Determining the forward transconductance $\left(\mathrm{g}_{\mathrm{mn}}\right)$ of the NMOS is modeled in Schem. 6 in which VDS $=$ VDS,sat $(=$ Vovn $)=350 \mathrm{mV}$ and VGS is swept from 0 V to 1.5 V in order to show a clear plot.

Sim. 6 shows the transconductance $\left(\mathrm{g}_{\mathrm{mn}}\right)$ plotted as the derivative of the drain current $\left(\operatorname{deriv}\left(\mathrm{I}_{\mathrm{D}}\right)\right)$ and gives $\mathrm{g}_{\mathrm{mn}}=129.5 \mathrm{u} / \mathrm{V}$ at VGS=1.063V . It should be noted that " $\ldots \mathrm{g}_{\mathrm{mn}}$ does change with VGS, unlike what was indicated in Eq. (9.57). This is because the saturation velocity isn't exactly constant and depends on both VGS and VDS" (Baker, pg. 298-299). The gain can then be calculated using $\mathrm{r}_{\mathrm{on}}=402.7 \mathrm{k} \Omega$ @ VDS $=3 \mathrm{~V}$ from Sim. 5 and using $\mathrm{g}_{\mathrm{mn}}=129.5 \mathrm{uA} / \mathrm{V}$ at VGS $=1.063 \mathrm{~V}$ from Sim. 6.

- Gain $=\mathrm{g}_{\mathrm{mn}} \mathrm{r}_{\mathrm{on}}=(129.5 \mathrm{uA} / \mathrm{V}) *(402.7 \mathrm{k} \Omega)=52 \mathrm{~V} / \mathrm{V}$
- Gain=52V/V

Additionally, Schem. 1 can be referred to for Sim. 6-1 which shows $g_{m n}=163.3 \mathrm{uA} / \mathrm{V}$ for VDS=VGS=Vbiasn=1.063V.

Sim. 6-1 - NMOS: Forward Transconductance (g_{mn}) (Referring to Schem. 1)
Determining the transition frequency $\left(\mathrm{f}_{\mathrm{Tn}}\right)$ of the NMOS is modeled in Schem. 7 in which VDS=VDS,sat(= Vovn) $=350 \mathrm{mV}$, VGS $=1.063$ (AC 1), and an ac simulation is swept from 100 MHz to 100 GHz in order to show a clear plot.

The transition frequency $\left(\mathrm{f}_{\mathrm{Tn}}\right)$ is determined in Sim. 7 by plotting the drain current divided by the current through VGS $\left(\mathrm{I}_{\mathrm{D}} / \mathrm{I}_{\mathrm{VGS}}\right)$ which gives $\mathrm{f}_{\mathrm{Tn}}=\mathrm{f}_{\mathrm{un}}=7.04 \mathrm{GHz}$ at 0 dB .

Sim. 7 - NMOS: Transition Frequency ($\mathbf{f}_{\text {Tn }}$)

PMOS Characterization

The purpose of this section is to sweep VSG in order to determine threshold voltage (Vthp) and bias voltage $($ Vbiasp $=V S G)$ based on the NMOS bias current $(\operatorname{Ibiasn=Ibiasp}=31.2 \mathrm{uA})$ to then determine output resistance $\left(\mathrm{r}_{\mathrm{op}}\right)$, transconductance $\left(\mathrm{g}_{\mathrm{mp}}\right)$, and transition frequency $\left(\mathrm{f}_{\mathrm{T}}\right)$ for the PMOS. Schem. 8 shows the PMOS (4.8um/0.6um) with VSD=3V in order to characterize the PMOS on the lower end of VDD.

Schem. 8 - PMOS: VSG Sweep

Sweeping VSG from 0V to 5V results in $\mathbf{S i m} .8$ which shows VSG=Vthp=807mV (the voltage in which the PMOS turns on) as well as the voltage VSG=Vbiasp=1.274V at Ibiasn=Ibiasp=31.2uA.

Sim. 8 - PMOS: VSG Sweep to determine Vthp=807mV \& Vbiasp=1.274 at Ibiasp=31.2uA
Schem. 9 shows the PMOS with VSG=Vbiasp=1.274V and VSD=3V, and Sim. 9 shows various DC operating point values from the Spice error log including Vthp $=886 \mathrm{mV}, \mathrm{g}_{\mathrm{mp}}=134 \mathrm{uA} / \mathrm{V}$, $\mathrm{r}_{\mathrm{op}}=1 / \mathrm{Gds}=1 /\left(3.43 \times 10^{-6}\right)=291,545 \Omega$, and VSD, $\mathrm{sat}=329 \mathrm{mV}$.

Schem. 9 - PMOS: .op (DC Operating Point)

$$
\begin{aligned}
& \text { LJ SPICE Error Log: C:|Users } \\
& \begin{array}{|lr}
\hline \text { Vth: } & -8.86 \mathrm{e}-01 \\
\text { Vdsat: } & -3.29 \mathrm{e}-01 \\
\text { Gm: } & 1.34 \mathrm{e}-04 \\
\text { Gds: } & 3.43 \mathrm{e}-06
\end{array}
\end{aligned}
$$

Sim. 9 - PMOS: .op (DC Operating Point)
In order to ensure the PMOS is in saturation when Ibiasp=31.2uA at Vbiasp=1.274V, Schem. 10 shows VSD being swept from 0 V to 5 V with VSG $=1.274 \mathrm{~V}$. Sim. $\mathbf{1 0}$ shows the PMOS is, in fact, in saturation when $\operatorname{Ibiasp}=31.2 \mathrm{uA}$ and gives $\mathrm{VSD}=3.005 \mathrm{~V}$.

Schem. 10 - PMOS: VSD sweep to ensure Saturation

Sim. 10 - PMOS: VSD sweep to ensure Saturation
In order to determine the output resistance (r_{op}) of the PMOS, Schem. 11 shows VSD being swept from 0 V to 5 V with $\mathrm{VSG}=1.274 \mathrm{~V}$. Sim. 11 shows the output resistance $\left(\mathrm{r}_{\mathrm{op}}\right)$ plotted as the reciprocal of the derivative of the drain current $\left(1 / \operatorname{deriv}\left(\mathrm{I}_{\mathrm{D}}\right)\right)$. VSD, sat is approximated as the voltage where the output resistance begins to increase. This results in VSD,sat $=255.5 \mathrm{mV}$ (approx.) and gives $\mathrm{r}_{\mathrm{op}}=32.6 \mathrm{k} \Omega$.

Schem. 11 - PMOS: Output Resistance (r_{op})

Table 2 shows values for r_{op} at varying voltages of VSD

$\mathrm{VSD}=0 \mathrm{~V}$	$\mathrm{r}_{\mathrm{op}}=9.5 \mathrm{k} \Omega$
$\mathrm{VSD}, \mathrm{sat}=255.5 \mathrm{mV}$	$\mathrm{r}_{\mathrm{op}}=32.6 \mathrm{k} \Omega$
$\mathrm{VSD}=3 \mathrm{~V}$	$\mathrm{r}_{\mathrm{op}}=291.7 \mathrm{k} \Omega$
$\mathrm{VSD}=4 \mathrm{~V}$	$\mathrm{r}_{\mathrm{op}}=292.3 \mathrm{k} \Omega$
$\mathrm{VSD}=5 \mathrm{~V}$	$\mathrm{r}_{\mathrm{op}}=289.0 \mathrm{k} \Omega$

Table 2 - $r_{\text {op }}$ for various values of VSD

Lambda can be calculated as $\chi_{\mathrm{p}}=1 /\left(\mathrm{r}_{\mathrm{op}} * \mathrm{I}_{\mathrm{D}}\right)=1 /\left(\mathrm{r}_{\mathrm{op}} * \mathrm{Ibiasp}\right)$ using $\mathrm{r}_{\mathrm{op}}=291.7 \mathrm{k} \Omega @ \mathrm{VSD}=3 \mathrm{~V}$ from
Sim. 11 and using $\operatorname{Ibiasp}=31.2 \mathrm{uA} \rightarrow$:

- $\quad \lambda_{\mathrm{p}}=1 /\left(\mathrm{r}_{\mathrm{op}} * \mathrm{I}_{\mathrm{D}}\right)=1 /\left(\mathrm{r}_{\mathrm{op}} *\right.$ Ibiasp $)=1 /((291.7 \mathrm{k} \Omega) *(31.2 \mathrm{uA}))=0.1099 \mathrm{~V}^{-1}$
- $\lambda_{\mathrm{P}}=0.1099 \mathrm{~V}^{-1}$

Determining the forward transconductance (g_{mp}) of the PMOS is modeled in Schem. $\mathbf{1 2}$ in which $\mathrm{VSD}=\mathrm{VSD}$, sat $=350 \mathrm{mV}$ and VSG is swept from 0 V to 1.5 V in order to show a clear plot.

Schem. 12 - PMOS: Forward Transconductance (g_{mp})
Sim. 12 shows the transconductance $\left(g_{\mathrm{mp}}\right)$ plotted as the derivative of the drain current $\left(\operatorname{deriv}\left(\mathrm{I}_{\mathrm{D}}\right)\right)$ and gives $\mathrm{g}_{\mathrm{mp}}=84.7 \mathrm{uA} / \mathrm{V}$ at $\mathrm{VGS}=1.274 \mathrm{~V}$. The gain can then be calculated using $\mathrm{r}_{\mathrm{op}}=291.7 \mathrm{k} \Omega$ @ $\mathrm{VSD}=3 \mathrm{~V}$ from Sim. 11 and using $\mathrm{g}_{\mathrm{mp}}=84.7 \mathrm{uA} / \mathrm{V}$ at $\mathrm{VSG}=1.274 \mathrm{~V}$ from Sim. $\mathbf{1 2}$.

- Gain $=\mathrm{g}_{\mathrm{mp}} \mathrm{r}_{\mathrm{op}}=(84.7 \mathrm{uA} / \mathrm{V}) *(291.7 \mathrm{k} \Omega)=24.7 \mathrm{~V} / \mathrm{V}$
- Gain=24.7V/V

Sim. 12 - PMOS: Forward Transconductance ($\mathbf{g m p}_{\mathrm{mp}}$)
Additionally, Schem. $\mathbf{1}$ can be referred to for $\mathbf{S i m}$. 12-1 which shows $g_{m p}=118.5 \mathrm{uA} / \mathrm{V}$ for $\mathrm{VDS}=\mathrm{VSD}=\mathrm{VSG}=\mathrm{Vbiasp}=1.274 \mathrm{~V}$ for $\mathrm{W}_{\mathrm{PMOS}}=4.8 \mathrm{u}$.

Sim. 12-1 - PMOS: Forward Transconductance (g_{mp}) (Referring to Schem. 1)
Determining the transition frequency (f_{Tp}) of the PMOS is modeled in Schem. 13 in which $\mathrm{VSD}=\mathrm{VSD}$,sat $=350 \mathrm{mV}$, $\mathrm{VSG}=1.274$ (AC 1), and an ac simulation is swept from 10 MHz to 10 GHz in order to show a clear plot.

.ac dec 100 10MEG 10G .include C5_models.txt
Schem. 13 - PMOS: Transition Frequency ($\mathbf{f}_{\text {Tp }}$)
The transition frequency ($\mathrm{f}_{\mathrm{T}_{\mathrm{p}}}$) is determined in $\operatorname{Sim} .13$ by plotting the drain current divided by the current through VSG $\left(\mathrm{I}_{\mathrm{D}} / \mathrm{I}_{\mathrm{VSG}}\right)$ which gives $\mathrm{f}_{\mathrm{Tp}}=\mathrm{f}_{\mathrm{un}}=2.08 \mathrm{GHz}$ at 0 dB .

Table Summary of Characterization

Table 3 was generated using the information captured from the previous simulations.

On's C5 Process MOSFET Parameters $\mathrm{VDD}=3 \mathrm{~V}$ to $5 \mathrm{~V}\left(\mathrm{VDD}=3 \mathrm{~V}\right.$ Used) and a scale factor of $1 \mathrm{um}\left(\right.$ scale $\left.=1 \times 10^{-6}\right)$			
Parameter	NMOS	PMOS	Comments
Bias Current, I_{D}	31.2uA (=Ibiasn)	31.2 uA (=Ibiasp)	Approximate, see Sim. 2-1
W/L	3/0.6 (Min. length, Min. width)	4.8/0.6 (Min. length)	PMOS width based on Sim. 1
$\begin{aligned} & \hline \text { VDS,sat \& } \\ & \text { VSD,sat } \end{aligned}$	*350mV (Vovn calc.) *242mV (Sim. 3)	329 mV (Sim. 9)	
VGS \& VSG	*1.063V (=Vbiasn) (Calc. based on Vovn \& Vthn)	*1.274V (=Vbiasp) (Sim. 8 - based on Ibiasp=Ibiasn \& Vthp)	No Body Effect
Vthn \& Vthp	$\begin{aligned} & * 713 \mathrm{mV}(\text { Sim. 2 }) \\ & * 699 \mathrm{mV}(\text { Sim. 3 }) \end{aligned}$	$\begin{aligned} & * 807 \mathrm{mV}(\text { Sim. 8) } \\ & * 886 \mathrm{mV}(\text { Sim. 9) } \end{aligned}$	Approx. \& .op values
$\mathrm{g}_{\mathrm{mn}} \& \mathrm{~g}_{\mathrm{mp}}$	$\begin{gathered} * 174 \mathrm{uA} / \mathrm{V}(\text { Sim. 3) } \\ * 129.5 \mathrm{uA} / \mathrm{V}(\text { Sim. 6 }) \\ * 163.3 \mathrm{uA} / \mathrm{V}(\text { Sim. 6-1 }) \end{gathered}$	$\begin{gathered} * 134 \mathrm{uA} / \mathrm{V}(\operatorname{Sim} .9) \\ * 84.7 \mathrm{uA} / \mathrm{V}(\text { Sim. 12 }) \\ * 118.5 \mathrm{uA} / \mathrm{V}(\text { Sim. 12-1 }) \end{gathered}$	Similar values for different sim's
$\mathrm{r}_{\text {on }} \& \mathrm{r}_{\mathrm{op}}$	$\begin{gathered} * 403.2 \mathrm{k} \Omega(\text { Sim. 3) } \\ * 402.7 \mathrm{k} \Omega(\text { Refer to } \\ \text { Sim. } 5 \& \text { Table 1) } \\ \hline \end{gathered}$	$\text { *291.6k } \Omega(\text { Sim. } 9)$ *291.7k Ω (Refer to Sim. 11 \& Table 2)	Similar values for different sim's
Gain: $\mathrm{g}_{\mathrm{mn}} \mathrm{r}_{\mathrm{on}} \& \mathrm{~g}_{\mathrm{mp}} \mathrm{r}_{\mathrm{op}}$	52V/V	$24.7 \mathrm{~V} / \mathrm{V}$!!Open circuit gain!! See calc. before Sim. 6 \& Sim. 12, respectively
$\chi_{\mathrm{n}} \& \chi_{\mathrm{p}}$	$0.0796 \mathrm{~V}^{-1}$	$0.1099 \mathrm{~V}^{-1}$	See calculation after Table 1 \& Table 2
$\mathrm{f}_{\text {Tn }} \& \mathrm{f}_{\text {Tn }}$	7.04 GHz	2.08 GHz	See Sim. 7 \& Sim. 13

Table 3 - On's C5 Process MOSFET Parameters

Beta-Multiplier Reference (BMR)

The Beta-Multiplier Reference (BMR) in Fig. 20.47 of the CMOSedu book was used to generate the BMR shown in Schem. 14. Except for a few different sized devices, all the NMOS are $3 \mathrm{u} / 0.6 \mathrm{u}$ and the PMOS are $4.8 \mathrm{u} / 0.6 \mathrm{u}$. The PMOS in the startup circuit (MSU2) is meant to operate as a large resistor, so its length is greatly increased in order to prevent MSU3 from turning on, preventing Vbiasp from stealing current from Vbiasn. Schem. 14 shows the resistor (R1) being stepped for different values in order to determine which resistor value results in Iref=Ibiasn=Ibiasp=31.2uA. Sim. 14 shows R1=4.2k sets Iref=Ibiasn=Ibiasp=31.2uA.

Sim. 14-1 - BMR (R1=4.2k to get $\operatorname{Iref}=\mathbf{I b i a s}=31.2 \mathrm{uA})$

Voltage Follower: Design 1

The op-amp design in Fig. 20.44 from the CMOSedu book was used as a starting point for the design of the voltage follower for Design 1. Except for a few different sized devices, all the NMOS are $3 u / 0.6 u$ and the PMOS are $4.8 u / 0.6$ u. Sim. 15 corresponding to Schem. $\mathbf{1 5}$ shows the unity gain frequency at 0 dB and gives $\mathrm{f}_{\mathrm{un}}=145.9 \mathrm{MHz}$.

Schem. 15 - Frequency Response

Sim. 15 - Frequency Response ($f_{u n}=145.9 \mathrm{MHz}$)

Schem. 16 - Frequency Response

Sim. 16 - Frequency Response

Schem. 17 - Frequency Response

Sim. 17 - Frequency Response
Schem. 18 and the corresponding Sim. 18 show the output swing of voltage follower for Design

1. The output closely follows the input, but there is unwanted clipping on the bottom swing of the output.

Schem. 18 - Output Swing

Sim. 18 - Output Swing

Schem. 19 and Sim. 19 shows a pulse input and the corresponding output. This is used to calculate the percent error difference as $(($ Vin-Vout $) /($ Vin + Vout $)) * 100$. The percent error difference for Design 1 can then be calculated from Sim. 19 as $((4.0014-4) /(4.0014+4))^{*} 100=$ 0.012%.
$\Rightarrow \%$ Error $=0.012 \%$.

Schem. 19-\% Error Difference

Sim. 19-\% Error Difference $=\mathbf{0 . 0 1 2 \%}$

Schem. 20 - \% Error Difference

Sim. 20 \% - Error Difference
Schem. 21 and Sim. 21 show the slew rate of the output by plotting the derivative of the output voltage (deriv(vout)). Sim. 21 shows the slew rate for Design 1 is $124.2 \mathrm{MV} / \mathrm{s}=124.2 \mathrm{~V} / \mathrm{us}$.

Schem. 21 - Slew Rate

Sim. 21 - Slew Rate $=124.2 \mathrm{MV} / \mathrm{s}=124.2 \mathrm{~V} / \mathrm{us}$
Sim. Design 1 .op shows the total current draw from VDD for Design 1 as $\mathrm{I}(\mathrm{VDD})=2.55 \mathrm{~mA}$.

EE 420: Final Project - Spring 2016
$\mathcal{L J}$ * $\mathrm{C} \backslash \backslash$ Users \backslash Dane
Documents\DLG\School\Spring 2016\EE 420\P

Is (M51) :	$2.001 \mathrm{e}-005$	device_current
Id (M61) :	-2.00334e-005	device_current
Ig (M61) :	0	device_current
Ib (M61) :	$6.6136 \mathrm{e}-013$	device_current
Is (M61) :	$2.00334 \mathrm{e}-005$	device_current
Id (M6r) :	-2.00334e-005	device_current
Ig (M6r) :	0	device_current
Ib (M6r) :	$6.6136 \mathrm{e}-013$	device_current
Is (M6r) :	$2.00334 \mathrm{e}-005$	device_current
I (Cc1) :	$3.34898 \mathrm{e}-025$	device_current
I (Cbig1) :	$9.99661 \mathrm{e}-028$	device_current
I (Cc) :	$4.69478 \mathrm{e}-026$	device_current
I (Cload) :	$9.99661 \mathrm{e}-024$	device_current
I (R1) :	0.000999661	device_current
I (Rbig1) :	-1.11022e-007	device_current
I (Vp) :	0	device_current
I (Vdd) :	-0.0025461	device_current

Sim. Design 1 .op - Total Current Draw from VDD

Voltage Follower: Design 2

The op-amp design in Fig. 20.48 from the CMOSedu book was used as a starting point for the design of the voltage follower for Design 2. Except for a few different sized devices, all the NMOS are $3 \mathrm{u} / 0.6 \mathrm{u}$ and the PMOS are $4.8 \mathrm{u} / 0.6 \mathrm{u}$. The width of the NMOS diff-pair is increased by setting $\mathrm{m}=2$ for both the NMOS in the NMOS diff-pair. The NMOS and PMOS on the output act as a push-pull amplifier, and their widths are each increased by setting m=10. Sim. 22 corresponding to Schem. 22 shows the unity gain frequency at 0 dB and gives $\mathrm{f}_{\mathrm{un}}=179.9 \mathrm{MHz}$.

EE 420: Final Project - Spring 2016

Schem. 22 - Frequency Response

Sim. 22 - Frequency Response $\left(f_{\text {un }}=179.9 \mathrm{MHz}\right)$

EE 420: Final Project - Spring 2016

Schem. 23 - Frequency Response

Sim. 23 - Frequency Response

Schem. 24 - Frequency Response

Sim. 24 - Frequency Response
Schem. 25 and the corresponding Sim. 25 show the output swing of voltage follower for Design
2.

Schem. 25 - Output Swing

Sim. 25 - Output Swing
Schem. 26 and Sim. 26 shows a pulse input and the corresponding output. This is used to calculate the percent error difference as $(($ Vin-Vout $) /($ Vin + Vout $)) * 100$. The percent error difference for Design 1 can then be calculated from Sim. 26 as $((0.9-0.8973) /(0.9+0.8973)) * 100$ $=0.15 \%$.
$\Rightarrow \%$ Error $=0.15 \%$.

Schem. 26-\% Error Difference

Sim. 26-\% Error Difference=0.15\%
Schem. 27 and Sim. 27 show the slew rate of the output by plotting the derivative of the output voltage (deriv(vout)). Sim. 27 shows the slew rate for Design 2 is 274.8 MV/s=274.8V/us.

Schem. 27 - Slew Rate

Sim. 27 - Slew Rate=274.8MV/s=274.8V/us
Sim. Design 2 .op shows the total current draw from VDD for Design 2 as $I(V D D)=739 u A$.

Ig (M13) :	0	device_current
Ib (M13) :	$6.3883 \mathrm{e}-013$	device_current
Is (M13) :	$1.40852 \mathrm{e}-005$	device_current
Id (M12) :	-1.40823e-005	device_current
Ig (M12) :	0	device_current
Ib (M12) :	$6.38102 \mathrm{e}-013$	device_current
Is (M12) :	$1.40823 \mathrm{e}-005$	device_current
Id (M1) :	-1.40823e-005	device_current
Ig (M1) :	0	device_current
Ib (M1) :	$6.38102 \mathrm{e}-013$	device_current
Is (M1) :	$1.40823 \mathrm{e}-005$	device_current
I (Cc2) :	$1.02522 \mathrm{e}-024$	device_current
I (Cc1) :	-1.01888e-025	device_current
I (Cload1) :	$1.00167 \mathrm{e}-024$	device_current
I (R1) :	0.000100167	device_current
I (Vp) :	0	device_current
\underline{I} (Vdd) :	-0.000739147	device_current

Sim. Design 2 .op - Total Current Draw from VDD

Voltage Follower: Design 3

The op-amp design in Fig. 20.48 from the CMOSedu book was used as a starting point for the design of the voltage follower for Design 3. The use of minimum sizes ($\mathrm{Lmin}=0.6 \mathrm{um}$, Wmin=3um) in Design 1 and Design 2 resulted in poor performance in certain aspects and did not meet all the required specifications due to certain characteristics related to minimum sizing including low gain. Design 3 was implemented by choosing the NMOS size to be $6 \mathrm{u} / 2.4 \mathrm{u}$.

Matching the transconductances of a $6 u / 2.4 \mathrm{u}$ NMOS to a PMOS with a length of 1.8 u is shown in Schem. 28 and Sim. 28 in which the width of the PMOS is stepped to determine what width of the PMOS gives the best matching of transconductances. Schem 29 and Sim. 29 show the PMOS width should be chosen to be 12.6 u .

Schem. 28 - Matching NMOS \& PMOS Transconductances ($\mathbf{g m n}_{\mathrm{mn}} \& \mathrm{~g}_{\mathrm{mp}}$)

Sim. 28 - Matching NMOS \& PMOS Transconductances ($\mathrm{g}_{\mathrm{mn}} \& \mathrm{~g}_{\mathrm{mp}}$)

.include C5_models.txt

Schem. 29 - Matching NMOS \& PMOS Transconductances $\left(g_{\mathrm{mn}} \& \mathrm{~g}_{\mathrm{mp}}\right)\left(\mathbf{W}_{\mathrm{PMOS}}=\mathbf{1 2 . 6 u}\right)$

Sim. 29 - Matching NMOS \& PMOS Transconductances $\left(\mathbf{g}_{\mathrm{mn}} \& \mathrm{~g}_{\mathrm{mp}}\right)\left(\mathbf{W}_{\mathrm{PMos}}=\mathbf{1 2 . 6 u}\right)$ Except for a few different sized devices, Design 3 was implemented with all the NMOS sized as $6 \mathrm{u} / 2.4 \mathrm{u}$ and the PMOS sized as $12.6 \mathrm{u} / 1.8 \mathrm{u}$. The width of the NMOS diff-pair is increased by setting $\mathrm{m}=2$ for both the NMOS in the NMOS diff-pair. The NMOS and PMOS on the output act as a push-pull amplifier, and their widths are each increased by setting m=10. Sim. 29 corresponding to Schem. 29 shows the unity gain frequency at 0 dB and gives $\mathrm{f}_{\mathrm{un}}=54.4 \mathrm{MHz}$.

Schem. 30 - Frequency Response

Sim. 30 - Frequency Response ($\mathbf{f}_{\mathrm{un}}=\mathbf{5 4 . 4 M H z}$)

EE 420: Final Project - Spring 2016

Schem. 31 - Frequency Response

Sim. 31 - Frequency Response

Schem. 32 - Frequency Response

Sim. 32 - Frequency Response
Schem. 33 and the corresponding Sim. 33 show the output swing of voltage follower for Design
3.

Schem. 33 - Output Swing

Sim. 33 - Output Swing
Schem. $\mathbf{3 4}$ and Sim. $\mathbf{3 4}$ shows a pulse input and the corresponding output. This is used to calculate the percent error difference as ((Vin-Vout)/(Vin+Vout))*100. The percent error difference for Design 1 can then be calculated from Sim. 26 as $((1-0.9) /(1+0.9)) * 100=5.26 \%$.
$\Rightarrow \%$ Error $=5.26 \%$.

Schem. 34-\% Error Difference

Sim. 34 \% - Error Difference=5.26\%
Schem. 35 and Sim. 35 show the slew rate of the output by plotting the derivative of the output voltage (deriv(vout)). Sim. 35 shows the slew rate for Design 3 is $228.0 \mathrm{MV} / \mathrm{s}=228.0 \mathrm{~V} / \mathrm{us}$.

Schem. 35 - Slew Rate

Sim. 35 - Slew Rate=228.0MV/s=228.0V/us
Sim. Design 3 .op shows the total current draw from VDD for Design 3 as I(VDD)=1.67mA.

EE 420: Final Project - Spring 2016
$L \boldsymbol{L}$ * $\mathrm{C}: \backslash$ Users\Dane\Documents\DLG\School\Spring 2016\EE 420\F

Ig (M13) :	0	device_current
Ib (M13) :	$7.90083 \mathrm{e}-013$	device current
Is (M13) :	$4.41243 \mathrm{e}-005$	device_current
Id (M12) :	-4.40965e-005	device_current
Ig (M12) :	0	device_current
Ib (M12) :	$7.83662 \mathrm{e}-013$	device_current
Is (M12) :	$4.40965 \mathrm{e}-005$	device_current
Id (M1) :	-4.40965e-005	device_current
Ig (M1) :	0	device_current
Ib (M1) :	$7.83662 \mathrm{e}-013$	device_current
Is (M1) :	$4.40965 \mathrm{e}-005$	device_current
I (Cc2) :	$4.94594 \mathrm{e}-025$	device_current
I (Cc1) :	-4.20326e-026	device_current
I (Cload1) :	$1.04722 \mathrm{e}-024$	device_current
I (R1) :	0.000104722	device_current
I (Vp) :	0	device_current
I (Vdd) :	-0.00167199	device_current

Sim. Design 3 .op - Total Current Draw from VDD

Table Summary of Design Results

Table 4 summarizes some important performance information for the three designs

	Design 1	Design 2	Design 3
$\mathrm{f}_{\text {un }}$	145.9MHz	179.9MHz	54.4MHz
\% Error	0.012\%	0.15\%	5.26\%
Slew Rate	124.2V/us	274.8V/us	228.0V/us
Current Draw from VDD	2.55 mA	739uA	1.67 mA

Table 4 - Performance of the three designs

Conclusion

Of the three designs included in this report, the first design (Design 1) performed the best as it was closest to the required specifications, though it did not meet every specification. Design 2 had the largest unity gain frequency while Design 1 had the lowest percent error difference. In addition, Design 2 had the largest slew rate yet lowest total current drawn from VDD while Design 1 had the smallest slew rate and largest total current drawn from VDD. In regard to the simulations presented in this report for each of the three designs, Design 1 seems to have the best overall performance in regard to meeting the required specifications. Much experience and knowledge was gained from this project, and over time I gained a good understanding of the expectations of the project as well as the process necessary in fulfilling these expectations. With more time, I would have continued trying different sizes based on known tradeoffs such as gain and speed in order to get my BMR to have better biasing for my design circuit. I encountered numerous issues throughout the project including designing the overall voltage follower to meet all the design requirements and perform as well as possible, and LTSpice presented a great deal of various problems especially in generating symbols for schematics in a hierarchy, but after much time and frustration, I was able to improve each of my designs. Despite any setbacks, many issues were overcome with time and yielded a better knowledge of LTSpice and circuit design in general. Having successfully completed this course project has certainly resulted in my becoming a more confident and experienced circuit designer as well as engineer.

References

[1] Baker, R. J., CMOS: Circuit Design, Layout, and Simulation, $3^{\text {rd }}$ ed., IEEE Press. John Wiley \& Sons Inc. 2010.

