Systems, methods, and devices are disclosed, including an electronic device that includes a first data location, a quantizing circuit, and a reference current source, all coupled to an electrical conductor. The reference current source may include a current mirror with a side coupled to the electrical conductor and a second data location coupled to another side of the current mirror.

23 Claims, 18 Drawing Sheets
(56) References Cited

U.S. PATENT DOCUMENTS

6,807,403 B2 10/2004 Tanaka
6,813,208 B2 11/2004 Baker
6,822,802 B2 11/2004 Baker
6,826,102 B2 11/2004 Baker
6,829,188 B2 12/2004 Baker
6,847,234 B2 1/2005 Choi
6,850,441 B2 2/2005 Mokhlesi et al.
6,856,564 B2 2/2005 Baker
6,870,784 B2 3/2005 Baker
6,914,838 B2 7/2005 Baker
6,930,942 B2 8/2005 Baker
6,954,390 B2 10/2005 Baker
6,954,391 B2 10/2005 Baker
6,977,601 B1 12/2005 Fletcher et al.
7,324,380 B2* 1/2008 Negut et al. 365/185.2
2004/0008555 A1 1/2004 Baker
2005/0002249 A1 1/2005 Baker
2005/0007803 A1 1/2005 Baker
2005/0007850 A1 1/2005 Baker
2005/0013184 A1 1/2005 Baker
2005/0018477 A1 1/2005 Baker
2005/0018512 A1 1/2005 Baker
2006/0013040 A1 1/2006 Baker

OTHER PUBLICATIONS

* cited by examiner
FIG. 3

COLUMN DECODER

QUANTIZING CIRCUITRY

ROW DRIVERS

WL0
WL1
WL2
WL3
WL4
WL5
WL6
WL7

BL0
BL1
BL2
BL3
BL4

...
FIG. 5

\[V_{\text{FG}} = 0x \quad \text{DATA = 000} \]
\[V_{\text{FG}} = -1x \quad \text{DATA = 001} \]
\[V_{\text{FG}} = -2x \quad \text{DATA = 010} \]
\[V_{\text{FG}} = -3x \quad \text{DATA = 011} \]
\[V_{\text{FG}} = -4x \quad \text{DATA = 100} \]
\[V_{\text{FG}} = -5x \quad \text{DATA = 101} \]
\[V_{\text{FG}} = -6x \quad \text{DATA = 110} \]
\[V_{\text{FG}} = -7x \quad \text{DATA = 111} \]

WORD LINE VOLTAGE \((V_{\text{WL}}) \)

BIT LINE CURRENT \((1\text{BIT}) \)
FIG. 6

<table>
<thead>
<tr>
<th>V_{FG}</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7x</td>
<td>111</td>
</tr>
<tr>
<td>-6x</td>
<td>110</td>
</tr>
<tr>
<td>-5x</td>
<td>101</td>
</tr>
<tr>
<td>-4x</td>
<td>100</td>
</tr>
<tr>
<td>-3x</td>
<td>011</td>
</tr>
<tr>
<td>-2x</td>
<td>010</td>
</tr>
<tr>
<td>-1x</td>
<td>001</td>
</tr>
<tr>
<td>0x</td>
<td>000</td>
</tr>
</tbody>
</table>

BIT LINE CURRENT (IBIT)

TIME
FIG. 7
FIG. 16
FIG. 18
REFERENCE CURRENT SOURCES

BACKGROUND

1. Field of Invention

Embodiments of the present invention relate generally to electronic devices and, more specifically, in some embodiments, to electronic devices having reference current sources that are robust to temperature variations.

2. Description of Related Art

Generally, memory devices include an array of memory elements and associated sense amplifiers. The memory elements store data, and the sense amplifiers read the data from the memory elements. To read data, for example, a current is passed through the memory element, and the current or a resulting voltage is measured by the sense amplifier. Conventionally, the sense amplifier measures the current or voltage by comparing it to a reference current or voltage. Depending on whether the current or voltage is greater than the reference, the sense amplifier outputs a value of one or zero. That is, the sense amplifier quantizes or digitizes the analog signal from the memory element into one of two logic states.

Many types of memory elements are capable of assuming more than just two states. For example, some memory elements are capable of multi-bit (e.g., more than two state) storage. For instance, rather than outputting either a high or low voltage, the memory element may output four or eight different voltage levels, each level corresponding to a different data value. However, conventional sense amplifiers often fail to distinguish accurately between the additional levels because the difference between the levels (e.g., a voltage difference) in a multi-bit memory element is often smaller than the difference between the levels in a single-bit (i.e., two state) memory element. Thus, conventional sense amplifiers often cannot read multi-bit memory elements. This problem may be increased as high performance multi-bit memory elements become increasingly dense, thereby reducing the size of the memory elements and the difference between the levels (e.g., voltage) to be sensed by the sense amplifiers.

A variety of factors may tend to prevent the sense amplifier from discerning small differences in the levels of a multi-bit memory element. For instance, noise in the power supply, ground, and reference voltage may cause an inaccurate reading of the memory element. The noise may have a variety of sources, such as temperature, variations, parasitic signals, data dependent effects, and manufacturing process variations. This susceptibility to noise often leads a designer to reduce the number of readable states of the memory element, which tends to reduce memory density and increase the cost of memory.

Conventional sense amplifiers present similar problems in imaging devices. In these devices, an array of light sensors output a current or voltage in response to light impinging upon the sensor. The magnitude of the current or voltage typically depends upon the intensity of the light. Thus, the capacity of the sense amplifier to accurately convert the current or voltage into a digital signal may determine, in part, the fidelity of the captured image. Consequently, noise affecting the sense amplifier may diminish the performance of imaging devices.

CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. patent application Ser. No. 11/818,982, which was filed on Jun. 15, 2007.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an electronic device in accordance with an embodiment of the present invention;

FIG. 2 illustrates a memory device in accordance with an embodiment of the present invention;

FIG. 3 illustrates a memory array in accordance with an embodiment of the present invention;

FIG. 4 illustrates a memory element in accordance with an embodiment of the present invention;

FIG. 5 illustrates I-V traces of memory elements storing different values, in accordance with an embodiment of the present invention;

FIG. 6 illustrates noise in the bit-line current during a read operation;

FIG. 7 illustrates a quantizing circuit in accordance with an embodiment of the present invention;

FIG. 8 illustrates a delta-sigma sensing circuit in accordance with an embodiment of the present invention;

FIGS. 9 and 10 illustrate current flow during operation of the quantizing circuit of FIG. 8;

FIGS. 11-13 illustrate voltages in the quantizing circuit of FIG. 8 when sensing small, medium, and large currents, respectively;

FIG. 14 is a graph of bit-line current versus counter output for the quantizing circuit of FIG. 8;

FIG. 15 is a graph of count versus quantizing circuit output in accordance with an embodiment of the present invention;

FIG. 16 illustrates an example of a reference current source in accordance with an embodiment of the present invention;

FIG. 17 is a graph of count versus quantizing circuit output in accordance with an embodiment of the present invention;

FIG. 18-21 illustrate additional examples of reference current sources in accordance with embodiments of the present invention; and

FIG. 22 illustrates an example of a system that includes the electronic device of FIG. 2.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Various embodiments of the present invention are described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers’ specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.

Some of the subsequently described embodiments may address one or more of the problems with conventional sense amplifiers discussed above. Some embodiments include a quantizing circuit configured to detect small differences in voltages and/or currents. As explained below, the quantizing circuit may sample the measured electrical parameter on multiple occasions and filter, e.g., average or sum, the samples to reduce the impact of noise. As a result, in some embodiments, the quantizing circuit may resolve small differences between voltage or current levels in multi-bit memory elements and/or light sensors, which may allow circuit designers to increase...
the number of bits stored per memory element and/or the sensitivity of an imaging device.

In the course of measuring the electrical parameter, the quantizing circuit may compare the electrical parameter to a reference signal. In some designs, as discussed above, this reference signal may vary with temperature, which could interfere with accurately sensing the electrical parameter. This problem may be mitigated by some of the embodiments described below. Specifically, FIGS. 16-21 illustrate several examples of references current sources that are robust to temperature variations. As explained below, these reference current sources may reduce a source of noise that could otherwise impede the operation of the quantizing circuits.

FIG. 1 depicts an electronic device 10 that may be fabricated and configured in accordance with one or more of the present embodiments. The illustrated electronic device 10 includes a memory device 12 that, as explained further below, may include multi-bit memory elements and quantizing circuits. Alternatively, or additionally, the electronic device 10 may include an imaging device 13 having the quantizing circuits. Myriad devices may embody one or more of the present techniques. For example, the electronic device 10 may be a storage device, a communications device, an entertainment device, an imaging system, or a computer system, such as a personal computer, a server, a mainframe, a tablet computer, a palm-top computer, or a laptop.

FIG. 2 depicts a block diagram of an embodiment of the memory device 12. The illustrated memory device 12 may include a memory array 14, a quantizing circuit 16, a column decoder 18, and control circuitry 20, which may receive external inputs. As described below with reference to FIG. 3, the memory array 14 may include a matrix of memory elements arranged in rows and columns. As will be appreciated, the imaging device 13 (FIG. 1) may include similar features except that in the case of an imaging device 13, the array 14 might comprise an array of imaging elements, such as complementary-metal-oxide semiconductor (CMOS) imaging elements or charge coupled devices (CCDs).

When accessing the memory elements, the control circuitry may receive a command to read from or write to a target memory address. The control circuitry 20 may then convert the target address into a row address and a column address. In the illustrated embodiment, the row address bus 26 for example, including n lines) transmits the row address to the row address latches 28, and a column address bus 29 (for example, including m lines) transmits column address to the column address latches 30. After an appropriate settling time, a row address strobe (RAS) signal 31 (or other controlling clock signal) may be asserted by the control circuitry 28, and the row address latches 26 may latch the transmitted row address. Similarly, the control circuitry 28 may assert a column address strobe (CAS) 32, and the column address latches 28 may latch the transmitted column address.

Once row and column addresses are latched, the row decoder 24 may determine which row of the memory array 14 corresponds to the latched row address, and the row drivers 22 may assert a signal on the selected row. Similarly, the column decoder 18 may determine which column of the memory array 14 corresponds with the latched column address, and the quantizing circuit 16 may quantize (e.g., sense) a voltage or current on the selected column. Additional details of reading and writing are described below.
floating gate 78 (V_{FG}). As illustrated by FIG. 5, V_{FG} affects the response of the memory element 64 to a given V_{WL}. Decreasing the voltage of the floating gate shifts the I-V curve of the memory elements 64 to the right. That is, the relationship between the bit-line current and a word-line voltage depends on the voltage of the floating gate. The memory elements 64 may store data by exploiting this effect.

To write data to the memory elements 64, a charge corresponding to the data may be stored on the floating gate 78. The charge of the floating gate 78 may be modified by applying voltages to the source (V_s) 82, drain (V_d) 80, and/or gate 76 such that the resulting electric fields produce phenomenon like Fowler-Northam tunneling and/or hot-electron injection near the floating gate 78. Initially, the memory elements 64 may be erased by applying a word-line voltage designed to drive electrons off the floating gate 78. In some embodiments, an entire column or block of memory elements 64 may be erased generally simultaneously. Once the memory elements 64 are erased, the gate 76 voltage may be manipulated to drive a charge onto the floating gate 78 that is indicative of a data value. After the write operation ends, the stored charge may remain on the floating gate 78 (i.e., the memory elements 64 may store data in a nonvolatile fashion).

As illustrated by FIG. 5, the value stored by the memory element 64 may be read by applying a voltage, V_{WL}, to the gate 76 and quantizing (e.g., categorizing) a resulting bit-line current, I_{BIT}. Each of the I-V traces depicted by FIG. 5 correspond to a different charge stored on the floating gate, V_{FG}, which should not be confused with the voltage that is applied to the gate, V_{WL}. The difference in floating gate 78 voltage, V_{FG}, between each I-V trace is an arbitrarily selected scaling factor “x”. The illustrated I-V traces correspond to eight different data values stored by the memory element 64, with a V_{FG} of 0x representing a binary data value of 000, a V_{FG} of -1x representing a binary data value of 001, and so on through V_{FG} of -7x, which represents a binary data value of 111. Thus, by applying a voltage to the gate 76 and measuring the resulting bit-line current, the charge stored on the floating gate 78 may be sensed, and the stored data may be read.

The accuracy with which the bit-line current is quantized may affect the amount of data that a designer attempts to store in each memory element 64. For example, in a system with a low sensitivity, a single bit may be stored on each memory element 64. In such a system, a floating gate voltage V_{FG} of 0x may represent a binary value of 000, and a floating gate voltage V_{FG} of -7x may represent a binary value of 111. Thus, the difference in floating gate voltages V_{FG} corresponding to different data values may be relatively large, and the resulting differences and bit-line currents for different data values may also be relatively large. As a result, even low-sensitivity sensing circuitry may quantize (e.g., discern) these large differences in bit-line current during a read operation. In contrast, high-sensitivity sensing circuitry may facilitate storing more data in each memory element 64. For instance, if the sensing circuitry can distinguish between the eight different I-V traces depicted by FIG. 5, then the memory elements 64 may store three bits. That is, each of the eight different charges stored on the floating gate 78 may represent a different three-bit value: 000, 001, 010, 011, 100, 101, 110, or 111. Thus, circuitry that precisely quantizes the bit-line current I_{BIT} may allow a designer to increase the amount of data stored in each memory element 64.

However, as mentioned above, a variety of effects may interfere with accurate measurement of the bit-line current. For instance, the position of the memory elements 64 along a bit-line may affect R_{PD} and R_{PS}, which may affect the relationship between the word-line voltage V_{WL} and the bit-line current I_{BIT}. To illustrate these effects, FIG. 6 depicts noise on the bit-line while reading from the memory element 64. As illustrated, noise in the bit-line current I_{BIT} may cause the bit-line current I_{BIT} to fluctuate. Occasionally, the fluctuation may be large enough to cause the bit-line current I_{BIT} to reach a level that represents a different stored data value, which could cause the wrong value to be read from the memory elements 64. For instance, if the bit-line current is sensed at time 84, corresponding to an arbitrarily selected peak, a data value of 100 may be read rather than the correct data value of 011. Similarly, if the bit-line current is sensed at time 86, corresponding to an arbitrarily selected local minimum, a data value of 010 may be read rather than a data value of 011. Thus, noise on the bit-line may cause erroneous readings from memory elements 64.

FIG. 7 depicts a quantizing circuit 16 that may tend to reduce the likelihood of an erroneous reading. The illustrated quantizing circuit 16 includes an analog-to-digital (A/D) converter 88 and a digital filter (DF) 90 connected to each of the bit-lines 38, 40, 42, 44, and 46, respectively. Each bit-line 38, 40, 42, 44, and 46 may connect to a different analog-to-digital converter 88 and digital filter 90. The digital filters 90, in turn, may connect to an input/output (I/O) bus 92, which may connect to a column decoder 18, a column address latch 20, and/or control circuitry 28 (see FIG. 2).

In operation, the quantizing circuit 16 may quantize (e.g., digitize) analog signals from the memory elements 64 in a manner that is relatively robust to noise. As explained below, the quantizing circuit 16 may do this by converting the analog signals into a bit-stream and digitally filtering high-frequency components from the bit-stream. The analog-to-digital converter 88 may be a one-bit, analog-to-digital converter or a multi-bit, analog-to-digital converter. In the present embodiment, an analog-to-digital converter 88 receives an analog signal from the memory element 64, e.g., a bit-line current I_{BIT} or a bit-line voltage V_{BD}, and outputs a bit-stream that represents the analog signal. The bit-stream may be a one-bit, serial signal with a time-averaged value that generally represents the time-averaged value of the analog signal from the memory element 64. That is, the bit-stream may fluctuate between values of zero and one, but its average value, over a sufficiently large period of time, may be proportional to the average value of the analog signal from the memory element 64. In certain embodiments, the bit-stream from the analog-to-digital converter 88 may be a pulse-density modulated (PDM) version of the analog signal. The analog-to-digital converter 88 may transmit the bit-stream to the digital filter 90 on a bit-stream signal path 94. The digital filter 90 may digitally filter high-frequency noise from the bit-stream. To this end, the digital filter 90 may be a low-pass filter, such as a counter, configured to average (e.g., integrate and divide by the sensing time) the bit-stream over a sensing time, i.e., the time period over which the memory element 64 is read. (Alternatively, in some embodiments, the digital filter 90 is configured to integrate the bit-stream without dividing by the sensing time.) As a result, the digital filter 90 may output a value that is representative of both the average value of the bit-stream and the average value of the analog signal from the memory element 64. In some embodiments, the digital filter 90 is a counter, and the cut-off frequency of the digital filter 90 may be selected by adjusting the duration of the sensing time. In the present embodiment, increasing the sensing time will lower the cutoff frequency. That is, the frequency response of the digital filter 90 may be modified by adjusting the period of time over which the bit-stream is integrated and/or averaged before outputting a final value. The frequency response of the digital filter 90 is
described further below with reference to FIG. 15. For multi-bit memory elements 64, the output from the digital filter 90 may be a multi-bit binary signal, e.g., a digital word that is transmitted serially and/or in parallel.

Advantageously, in certain embodiments, the quantizing circuit 16 may facilitate the use of multi-bit memory elements 64. As described above, in traditional designs, the number of discrete data values that a memory element 64 stores may be limited by sense amps that react to noise. In contrast, the quantizing circuit 16 may be less susceptible to noise, and, as a result, the memory elements 64 may be configured to store additional data. Without the high frequency noise, the intervals between signals representative of different data values may be made smaller, and the number of data values stored by a given memory element 64 may be increased. Thus, beneficially, the quantizing circuit 16 may read memory elements 64 that store several bits of data, e.g., 2, 3, 4, 5, 6, 7, 8, or more bits per memory element 64.

Although the quantizing circuit 16 may sense the signal from the memory element 64 over a longer period of time than conventional designs, the overall speed of the memory device 12 may be improved. As compared to a conventional device, each read or write operation of the memory device 12 may transfer more bits of data into or out of the memory element 64. As a result, while each read or write operation may take longer, more data may be read or written during the operation, thereby improving overall performance. Further, in some memory designs 12, certain processes may be performed in parallel with a read or write operation, thereby further reducing the overall impact of the longer sensing time. For example, in some embodiments, the memory array 14 may be divided into banks that operate at least partially independently, so that, while data is being written or read from one bank, another bank can read or write data in parallel.

FIG. 8 illustrates details of one implementation of the quantizing circuit 16. In this embodiment, the digital filter 90 is a counter, and the analog-to-digital converter 88 is a first-order delta-sigma modulator. The illustrated delta-sigma modulator 88 may include a latch comparator 96, a capacitor 98, and a switch 100. In other embodiments, other types of digital filters and analog-to-digital converters may be employed, such as those described below in reference to FIGS. 17 and 18.

As illustrated, an input of the counter 90 may connect to the bit-stream signal path 94, which may connect to an output of the comparator 96. The output of the comparator 96 may also connect to a gate of the switch 100 by a feedback signal path 102. The output terminal (e.g., source or drain) of the switch 100 may connect in series to one of the bit-lines 38, 40, 42, 44, or 46, and the input terminal of the switch 100 may connect to a reference current source 104 (IREF). One plate of the capacitor 98 may connect to one of the bit-lines 38, 40, 42, 44, or 46, and the other plate of the capacitor 98 may connect to ground.

The illustrated counter 90 counts the number of clock cycles of a clock signal (CLOCK) that the bit-stream 94 is at a logic high value or logic low value during the sensing time. The counter may count up or count down, depending on the embodiment. In some embodiments, the counter 90 may do both, counting up one for each clock cycle that the bit-stream has a logic high value and down one for each clock cycle that the bit-stream has a logic low value. Output terminals (D0-D3) of the counter 90 may connect to the input/output bus 92 for transmitting the count. The counter 90 may be configured to be reset to zero or some other value when a reset signal (RESET) is asserted. In some embodiments, the counter 90 may be a series connection of D-flip flops, e.g., D-flip flops having SRAM or other memory for storing an initial value and/or values to be written to the memory element 64.

In the illustrated embodiment, the clocked comparator 96 compares a reference voltage (VREF) to the voltage of one of the bit-lines 38, 40, 42, 44, or 46 (VBL), which may be generally equal to the voltage of one plate of the capacitor 98. The comparator 96 may be clocked (e.g., falling and/or rising edge triggered), and the comparison may be performed at regular intervals based on the clock signal, e.g., once per clock cycle. Additionally, the comparator 96 may latch, i.e., continue to output, values (VFB) between comparisons. Thus, when the clock signals the comparator 96 to perform a comparison, if VBL is less than VREF (VBL<VREF), then the comparator 96 may latch its output to a logic low value, as described below in reference to FIG. 9. Conversely, if VBL is greater than VREF (VBL>VREF), then the comparator 96 may latch a logic high value on its output, as described below in reference to FIG. 10. As a result, the illustrated comparator 96 outputs a bit-stream that indicates whether VBL is larger than VREF, where the indication is updated once per clock cycle.

Advantageously, in some embodiments, the quantizing circuit 16 may include a single comparator (e.g., not more than one) for each column of multi-level memory elements 64. In contrast, conventional sense amplifiers often include multiple comparators to read from a multi-bit memory cell, thereby potentially increasing device complexity and cost.

The capacitor 98 may be formed by capacitive coupling of the bit-lines 38, 40, 42, 44, and 46. In other designs, this type of capacitance is referred to as parasitic capacitance because it often hinders the operation of the device. However, in this embodiment, the capacitor 98 may be used to integrate differences between currents on the bit-lines 38, 40, 42, 44, or 46 and the reference current to form the bit-stream, as explained further below. In some embodiments, the capacitor 98 may be supplemented or replaced with an integrated capacitor that provides greater capacitance than the “parasitic” bit-line capacitance.

The illustrated switch 100 selectively transmits current IREF from the reference current source 104. In various embodiments, the switch 100 may be a PMOS transistor (as illustrated in FIGS. 8-10) or an NMOS transistor (as illustrated in FIG. 17) controlled by the VFB signal on the feedback signal path 102.

The operation of the quantizing circuit 16 will now be described with reference to FIGS. 9-12. Specifically, FIGS. 9 and 10 depict current flows in the quantizing circuit 16 when the comparator 96 is latched low and high, respectively. FIG. 11 illustrates VBL, the bit-stream output from the comparator 96, and the corresponding increasing count of the counter 90 for a relatively small bit-line current. FIG. 12 depicts the same voltages when measuring a medium sized bit-line current, and FIG. 13 depicts these voltages when measuring a relatively large bit-line current.

To sense the current through the memory element 64, the illustrated delta-sigma modulator 88 exploits transient effects to output a bit-stream representative of the bit-line current IBL. Specifically, the delta-sigma modulator 88 may repeatedly charge and discharge the capacitor 98 with a current divider that subtracts the bit-line current IBL from the reference current IREF. Consequently, a large current through the memory element 64 may rapidly discharge the capacitor 98, and a small current through the memory element 64 may slowly discharge the capacitor 98.

To charge and discharge the capacitor 98, the delta-sigma modulator 88 switches between two states: the state depicted by FIG. 9 (hereinafter “the charging state”) and the state depicted by FIG. 10 (hereinafter “the discharging state”).
Each time the delta-sigma modulator 88 transitions between these states, the bit-stream changes from a logic high value to a logic low value or vice versa. The proportion of time that the delta-sigma modulator 88 is in the state illustrated by either FIG. 9 or FIG. 10 may be proportional to the size of the bit-line current I_{BIT} through the memory element 64. The larger the bit-line current I_{BIT}, the more time that the delta-sigma modulator 88 is in the state illustrated by FIG. 9, rather than the state illustrated by FIG. 10, and the more time that the bit-stream has a logic low value.

Starting with the charging state (FIG. 9), the capacitor 98 may initially accumulate a charge (e.g., become more charged). To this end, the output of the comparator 96 is latched to logic low, which, as mentioned above, may occur when V_{BL} is less than V_{REF}. The logic low may be conveyed to switch 100 by the feedback signal path 102, and the switch 100 may close, thereby conducting the reference current I_{REF} through one of the bit-lines 38, 40, 44, or 46, as indicated by the larger arrows in FIG. 9. A portion of the electrons flowing through the reference current source 104 may be accumulated by the capacitor 98, as indicated by the smaller-horizontal arrows, and the remainder may be conducted through the memory element 64, i.e., the bit-line current I_{SD} as indicated by the smaller vertical arrows. Thus, the capacitor 98 may accumulate a charge, and V_{BL} may increase.

The comparator 96 and the reference current source 104 may cooperate to charge the capacitor 98 for a discrete number of clock cycles. That is, when the delta-sigma modulator 88 transitions to the charging state, the delta-sigma modulator 88 may remain in this state for an integer number of clock cycles. That is, when the delta-sigma modulator 88 is in the state illustrated by FIG. 9, the comparator 96 may compare the voltage of the capacitor V_{BL} to the reference voltage V_{REF}. As a result, the reference current source 104 conducts current I_{REF} through the bit-line and into the capacitor 98 for a discrete number of clock cycles.

After each clock cycle of charging the capacitor 98, the delta-sigma modulator 88 may transition from the charging state to the discharging state, which is illustrated by FIG. 10, depending on the relative values of V_{BL} and V_{REF}. Once per clock cycle (or at some other appropriate interval, such as twice per clock cycle), the comparator 96 may compare the voltage of the capacitor V_{BL} to the reference voltage V_{REF}. The capacitor 98 has been charged to the point that V_{BL} is greater than V_{REF}, then the output of the comparator 96 may transition to logic high, as illustrated in FIG. 10. The logic high signal may be conveyed to the switch 100 by the feedback signal path 102, thereby opening the switch current 100. As a result, the reference current source 104 may cease conducting current through the memory element 64 and into the capacitor 98, and the capacitor 98 may begin to discharge through the memory element 64.

In the present embodiment, the delta-sigma modulator 88 discharges the capacitor 98 for a discrete number of clock intervals. After each clock cycle of discharging the capacitor 98, the delta-sigma modulator 88 compares V_{BL} to V_{REF}. If V_{BL} is still greater than V_{REF}, then the comparator 96 may continue to output a logic high signal, i.e., $V_{FB}=1$, and the switch 100 remains open. On the other hand, if enough current has flowed out of the capacitor 98 that V_{BL} is less than V_{REF}, then the comparator 96 may output a logic low signal, i.e., $V_{FB}=0$, and the switch 100 may close, thereby transitioning the delta-sigma modulator 88 back to the charging state and initiating a new cycle.

The counter 90 may count the number of clock cycles that the delta-sigma modulator 88 is in either the charging state or the discharging state by monitoring the bit-stream current path 94. The bit-stream signal path 94 may transition back and forth between logic high and logic low with the output of the comparator 96, V_{FB}, and the counter 90 may increment and/or decrement a count once per clock cycle (or other appropriate interval) based on whether the bit-stream is logic high or logic low. After the sensing time has passed, the counter 90 may output a signal indicative of the count on output terminals D0-D5. As explained below, the count may correspond, e.g., proportionally, to the bit-line current, I_{BIT}.

FIGS. 11-13 illustrate voltages V_{FB} and V_{BL} in the quantizing circuit 16 when reading data from a memory element 64. Specifically, FIG. 11 illustrates a low-current case, in which the value stored by the memory element 64 is represented by a relatively low bit-line current. Similarly, FIG. 12 illustrates a medium-current case, and FIG. 13 illustrates a high-current case. In each of these figures, the ordinate of the lower trace represents the voltage of the bit-stream signal path 94, V_{FB}, and the ordinate of the upper trace illustrates the bit-line voltage, V_{BL}. The abscissa in each of the traces represents time, with the lower trace synchronized with the upper trace, and the duration of the time axes is one sensing time.

As illustrated by FIG. 11, the counter 90 is initially preset to zero (or some other appropriate value) by applying a reset signal. In some embodiments, the delta-sigma modulator 88 may undergo a number of start-up cycles to reach steady-state operation before initiating the sensing time and resetting the counter 90. At the beginning of the illustrated read operation, the delta-sigma modulator 88 is in the charging state, which charges the capacitor 98 and increases V_{BL} as indicated by dimension arrow 108. At the beginning of the next clock cycle, the comparator 96 compares the bit-line voltage to the reference voltage and determines that the bit-line voltage is greater than the reference voltage. As a result, the bit-stream signal path 94 (V_{FB}) transitions to a logic high voltage, and the delta-sigma modulator 88 transitions to the discharging state. Additionally, the counter 90 increments the count by one to account for one clock cycle of the bit-stream signal 94 holding a logic low value. Next, the charge stored on the capacitor 98 drains out through the memory element 64, and the bit-line voltage drops until the comparator 96 determines that V_{BL} is less than V_{REF}, at which point the cycle repeats.

A comparison of FIG. 11 to FIGS. 12 and 13 illustrates why the counter correlates with the bit-line current. In FIG. 13, the high-current case, the stored charge drains from the capacitor 98 quickly, relative to the other cases, because the bit-line current I_{BIT} is large and, as a result, the delta-sigma modulator 88 spends more time in the charging state than the discharging state. As a result, the bit-stream has a logic low value for a large portion of the sensing time 106, thereby increasing the count.

The capacitance of the capacitor 98 may be selected with both the clock frequency and the range of expected bit-line currents in mind. For example, the capacitor 98 may be large enough that the capacitor 98 does not fully discharge (e.g., saturate) when the bit-line current I_{BIT} is either at its lowest expected value or at its highest expected value. That is, in some embodiments, the capacitor 98 generally remains in a transient state while reading the memory element 64. Simi-
larly, the frequency at which the comparator 96 is clocked may affect the design of the capacitor 98. A relatively high frequency clock signal may leave the capacitor 98 with relatively little time to discharge or saturate between clock cycles, thereby leading a designer to choose a smaller capacitor 98. Similarly, the size of the reference current may be selected with the range of expected bit-line currents in mind. Specifically, in certain embodiments, the reference current is less than the largest expected bit-line current \(I_{\text{BIT}} \), so that, in the case of maximum bit-line current \(I_{\text{BIT}} \) the capacitor 98 can draw charge from the reference current while the rest of the reference current flows through the memory element 64.

Fig. 14 illustrates the relationship between the bit-line current \(I_{\text{BIT}} \) and the count for the presently discussed embodiment. As illustrated by Fig. 14, the count corresponds with (e.g., is generally proportional to) the bit-line current \(I_{\text{BIT}} \). This relationship is described by the following equation (Equation 1), in which \(N_{\text{ST}} \) represents the number of clock cycles during the sensing time:

\[
I_{\text{BIT}}/I_{\text{REF}} = \text{Count}/N_{\text{ST}}
\]

Thus, in the illustrated embodiment, the count corresponds with (e.g., is indicative of) the bit-line current \(I_{\text{BIT}} \) which corresponds with the value stored by the memory element 64.

Advantageously, the quantizing circuit 16 may quantize (e.g., categorize) the bit-line current \(I_{\text{BIT}} \) as falling into one of a large number of categories, each of which is represented by an increment of the count. In doing so, in some embodiments, the quantizing circuit 16 may resolve small differences in the bit-line current \(I_{\text{BIT}} \). The resolution of the quantizing circuit 16 may be characterized by the following equation (Equation 2), in which \(I_{\text{REF}} \) represents the smallest resolvable difference in bit-line current \(I_{\text{BIT}} \), i.e., the resolution of the quantizing circuit 16:

\[
I_{\text{BIT}}/I_{\text{REF}} = 1/N_{\text{ST}}
\]

Thus, the resolution of the quantizing circuit 16 may be increased by increasing the sensing time or the clock frequency or by decreasing \(I_{\text{REF}} \), which may limit the maximum cell current since \(I_{\text{BIT}} \) is less than \(I_{\text{REF}} \).

The resolution of the quantizing circuit 16 may facilitate storing multiple bits in the memory element 64 or sensing multiple levels of light intensity in an image sensor element. For example, if the quantizing circuit 16 is configured to quantize (e.g., categorize) the bit-line current \(I_{\text{BIT}} \) into one of four different levels, then the memory element 64 may store two bits of data or, if the quantizing circuit 16 is configured to categorize the bit-line current \(I_{\text{BIT}} \) into one of eight different current levels, then the memory element 64 may store three bits of data. For the present embodiment, the number of bits stored by the memory element 64 may be characterized by the following equation (Equation 3), in which \(N_{\text{G}} \) represents the number of bits stored by a memory element 64 and \(I_{\text{RANGE}} \) represents the range of programmable bit-line currents through the memory element 64:

\[
N_{\text{G}} = \log(I_{\text{RANGE}}/I_{\text{BIT}})/\log 2
\]

In short, in the present embodiment, greater resolution translates into higher density data storage for a given memory element 64.

Fig. 15 is a graph that illustrates one way in which the counter 90 may be configured to further reduce the effects of noise. In Fig. 15, the abscissa represents the count, and the ordinate represents the output of the quantizing circuit 16. In the present embodiment, the three-least-significant digits of the count are disregarded as potentially corrupted by noise. That is, \(D0-D2 \) (Fig. 8) either do not connect to the input/
floating gate than the data location 64. Reasons for selecting certain properties of the data location 122 are described below. To distinguish these data locations 64 and 122, the data location 122 may be referred to as a reference device, i.e., a device of the same type as the data location being sensed. In operation, the reference current source 104 may conduct an auxiliary reference current IREF through the data location 122 and mirror the auxiliary reference current to the bit-line, thereby conducting the reference current IREF. The size of the auxiliary reference current may be determined by the properties of the data location 122. Specifically, the auxiliary reference current may vary proportionally with the resistance of the data location 122. This current IREF, in turn, may be mirrored by the current mirror 120, which may maintain a relatively constant reference current IREF even though the voltage drop between its source and its drain (VSD) may vary. That is, the reference current IREF may be relatively insensitive to the VSD of the transistor 126.

When the temperature changes, the reference current source 104 may counteract the temperature induced variation in the data location 64. As explained above, changes in temperature may cause the data location 64 to conduct more or less current regardless of the data value that it stores, thereby potentially making it appear to store a different value than it does. The reference current source 104, in the present embodiment, may track the temperature response of the data location 64 and compensate for it. Because the data locations 64 and 122 are of the same type (e.g., both floating gate transistors), the data location 122 may be affected by temperature changes in the same way as data location 64 that is being sensed. As a result, the auxiliary reference current IREF may vary with temperature, which, in turn, may cause the reference current IREF to vary with temperature. Below, this variation is described by drawing how this variation is believed to compensate for variation of the data location 64.

FIG. 17 illustrates the reference current IREF tracking the bit-line current IBIT over a range of temperatures. As illustrated, as temperature increases, all other things being generally equal, the bit line current IBIT also increases. Further, because the reference current IREF is regulated by another data location 122, it increases along with the bit-line current IBIT as temperature changes. That is, in this embodiment, the reference current IREF changes in sympathy (e.g., proportionally or generally identically) with the bit-line current IBIT.

It should be noted that, in other embodiments, or in other operating regimes, the slope of the lines illustrated by FIG. 17 may change. For instance, at higher temperatures, the slope of the lines may invert and they may curve and slope down to the right. However, regardless of the curvature or the slope, in the present embodiment, the reference current IREF may track the bit-line current IBIT as temperature changes. That is, the reference current IREF may be correlated with the bit-line current IBIT as the bit-line current IBIT changes with temperature. Advantageously, the reference current source 104 may reduce noise from changes in temperature. As explained above, this noise arises when data is written to the data location 64 at one temperature and read from the data location 64 at another temperature. The change in temperature may cause the data location 64 to appear as if it is storing a different value. However, in the present embodiment, this effect may be reduced by letting the reference current IREF vary with temperature changes in a similar manner. As explained above in reference to FIGS. 11-13, the illustrated delta-sigma modulator 88 reads data from the data location 64 by measuring a ratio of the bit line current IBIT to the reference current IREF. In this embodiment, a large bit-line current IBIT relative to the reference current IREF causes the delta sigma modulator 88 to close the current switch 102 for a large proportion of the sensing time, and the counter 90 registers this by outputting a large digital number that is representative of the values stored by the data location 64. Temperature variations may cause problems because, if only the bit line current IBIT changes with temperature, the ratio of a bit line current IBIT to reference current IREF may not be representative of the data stored. On the other hand, if both the bit line current IBIT and the reference current change IREF with temperature, then the ratio is believed to remain generally constant over a range of temperatures, and the output of the counter 90 is more likely to correlate with the data written to the data location 64. In other words, in the present embodiment, both the property being measured and the thing against which it is measured change with temperature, so overall, the effect of temperature should cancel out.

FIG. 18 illustrates another embodiment of a reference current source 128. This reference current source 128 differs from the previously discussed reference current source 104 by including a floating gate transistor 130 as the data location 122. The illustrated floating gate transistor 130 is coupled to the current mirror 120 by its source and to ground 74 by its drain. In this embodiment, the control gate of the floating gate transistor 130 is also coupled to ground 74.

The floating gate transistor 130 may be configured to provide a desired reference current IREF. As previously mentioned, in some embodiments, the reference current IREF is selected to be larger than the largest anticipated bit-line current IBIT to prevent the delta-sigma modulator 88 from saturating. To this end, in some embodiments, the floating gate transistor 130 may be programmed with no charge on its floating gate, a positive charge on its floating gate, or a negative charge on its floating gate, depending on the desired reference current IREF. In some embodiments, other properties of the floating gate transistor 130 may be selected to produce a desired reference current IREF. For example, the floating gate transistor 130 may have a wider channel than the floating gate transistor 64 that is being measured by the delta-sigma modulator 88.

FIG. 19 illustrates a third embodiment of a reference current source 132. In this embodiment, the current mirror 120 is connected to ground 74 by two data locations 134 and 136 in parallel. As with the previously described embodiments, the data locations 134 and 136 may be the same type as the data location 64 that is being sensed. The parallel data locations 134 and 136 may produce a larger auxiliary reference current IREF than a single data location. The larger current may, in turn, produce a larger reference current IREF, which may tend to prevent the delta-sigma modulator 88 from saturating when the bit line current IBIT is particularly large. As a result, in some embodiments, the delta-sigma modulator 88 may sense a larger range of bit-line currents IBIT, which may facilitate storing a larger range of values in the data location 64.

Along with temperature variations, other sources of noise may affect the operation of the quantizing circuit 16, among which are power supply noise and ground noise. These effects may arise when a large number of devices are simultaneously sinking or sourcing a current. The noise may affect the voltage drop across the data location 122 used to create the auxiliary reference current IREF. Consequently, in some embodiments, the reference current IREF applied when writing to the data location 64 may be different from the reference current IREF applied when reading from the data location 64. This difference could, in certain circumstances, cause the quantizing circuit 16 to read an erroneous value from the data location 64.
These sources of noise may be mitigated by the embodiment depicted by FIG. 20, which illustrates a fourth example of a reference current source 138. As described below, the reference current source 138 may exercise feedback control over the voltage drop across the floating gate transistor 130, thereby counteracting the effect of power supply noise and ground noise.

The illustrated reference current source 138 includes several components. In addition to the previously described current mirror 120 and floating gate transistor 130 (which functions as the reference device), the reference current source 138 may include a differential amplifier 140, a transistor 142, and a capacitor 144. The source and drain of the transistor 142 may be connected to the mirror current 120 and the floating gate transistor 130. The gate of the transistor 142 may be connected to the output of the differential amplifier 140. The non-inverting input of the differential amplifier 140 may be connected to both the plate of the capacitor 142 and a reference voltage \(V_{\text{REF}} \), and the inverting input of the differential amplifier 140 may be connected to the drain of the floating gate transistor 130. The other plate of the capacitor 142 may be connected to ground 74.

In operation, the differential amplifier 140 may hold the drain voltage \(V_D \) at a generally fixed potential. In the illustrated embodiment, the drain voltage \(V_D \) remains generally equal to the reference voltage \(V_{\text{REF}} \), even when the voltage of the power supply \(V_{DD} \) changes. For example, if the drain voltage \(V_D \) drops below the reference voltage \(V_{\text{REF}} \), the differential amplifier 140 may increase the gate voltage of the transistor 142, and additional charge may flow through the transistor 142 to elevate the drain voltage \(V_D \) to the reference voltage \(V_{\text{REF}} \). On the other hand, if the differential amplifier 140 senses that the drain voltage \(V_D \) is greater than the reference voltage \(V_{\text{REF}} \), then it may lower the voltage of the gate of the transistor 142 and decrease its source-to-drain resistance, which may decrease the drain voltage \(V_D \). As a result, noise in the power supply may have little effect on the auxiliary reference current \(I_{\text{REF}} \) because the differential amplifier 140 may sense and counteract fluctuations in the power supply voltage \(V_{DD} \).

This embodiment may also mitigate the effect of ground noise. The illustrated capacitor 144 AC-couples the non-inverting input of the differential amplifier 142 ground, so when the ground voltage changes, the change shifts the reference voltage \(V_{\text{REF}} \). When the reference voltage \(V_{\text{REF}} \) changes, the differential amplifier 140 may adjust the voltage of the gate of the transistor 142 to match the drain voltage \(V_D \) to the new reference voltage \(V_{\text{REF}} \). In this manner, the reference current source 138 counteracts changes in the ground voltage 74, thereby potentially reducing the effect of ground noise on the auxiliary reference current \(I_{\text{REF}} \).

The illustrated current source 138 is configured to mitigate three sources of noise: temperature fluctuations, power supply fluctuations, and ground voltage fluctuations. In other embodiments, the reference current source may be configured to mitigate a subset of these sources of noise or to mitigate additional sources of noise. For example, if the effect of ground noise is deemed acceptable, the reference current source 138 may not include the capacitor 142 or its connection to ground 74.

FIG. 21 illustrates another example of a reference current source 145. In this embodiment, the reference current source 145 includes a digital-to-analog converter 146, a controller 148, and an ammeter 150. The illustrated digital-to-analog converter 146 is connected to the controller 148 by a control bus 152, and the controller 148 is connected to the ammeter 150 by a sensor signal path 154. In this embodiment, the ammeter 150 is disposed on the bit line.

In operation, the reference current source 145 may exercise feedback control over the reference current \(I_{\text{REF}} \). The ammeter 150 may sense the reference current \(I_{\text{REF}} \) and send a signal indicative of the reference current to the controller 148 via the sensor signal path 154. The controller 148 may receive the signal and compare it to a predetermined target reference current. Based on this comparison, the controller 148 may send a control signal on the control bus 152 to the digital-to-analog converter 146. The control signal may cause the digital-to-analog converter 146 to increase, maintain, or decrease the reference current \(I_{\text{REF}} \) to match the reference current \(I_{\text{REF}} \) to the target reference current. Thus, in this embodiment, the reference current source 145 may exercise feedback control over the reference current \(I_{\text{REF}} \). Advantageously, this control may reduce the effect of a variety of sources of noise, such as those discussed above.

FIG. 22 depicts an exemplary processor-based system 310 that includes the memory device 12. Alternatively or additionally, the system 310 may include the imaging device 13. The system 310 may be any of a variety of types such as a computer, pager, cellular phone, personal organizer, control circuit, etc. In a typical processor-based system, one or more processors 312, such as a microprocessor, control the processing of system functions and requests in the system 310. The processor 312 and other subcomponents of the system 310 may include quantizing circuits, such as those discussed above.

The system 310 typically includes a power supply 314. For instance, if the system 310 is a portable system, the power supply 314 may advantageously include a fuel cell, permanent batteries, replaceable batteries, and/or rechargeable batteries. The power supply 314 may also include an AC adapter, so the system 310 may be plugged into a wall outlet, for instance. The power supply 314 may also include a DC adapter such that the system 310 may be plugged into a vehicle cigarette lighter, for instance.

Various other devices may be coupled to the processor 312 depending on the functions that the system 310 performs. For instance, a user interface 316 may be coupled to the processor 312. The user interface 316 may include buttons, switches, a keyboard, a light pen, a mouse, a digitizer and stylus, and/or a voice recognition system, for instance. A display 318 may be any of a variety of types such as a computer, pager, cellular phone, personal organizer, control circuit, etc. An RF sub-system 310 may be coupled to the processor 312. The RF sub-system 310 may include an antenna that is coupled to an RF receiver and an RF transmitter (not shown). One or more communication ports 322 may be also coupled to the processor 312. The communication port 322 may be adapted to be coupled to one or more peripheral devices 324 such as a modem, a printer, a computer, or to a network, such as a local area network, remote area network, intranet, or the Internet, for instance.

The processor 312 generally controls the system 310 by implementing software programs stored in the memory. The memory is operably coupled to the processor 312 to store and facilitate execution of various programs. For instance, the processor 312 may be coupled to the volatile memory 326 which may include Dynamic Random Access Memory (DRAM) and/or Static Random Access Memory (SRAM). The volatile memory 326 is typically large so that it can store dynamically loaded applications and data. As described fur-
ther below, the volatile memory 326 may be configured in accordance with embodiments of the present invention.

The processor 312 may also be coupled to the memory device 12. The memory device 12 may include a read-only memory (ROM), such as an EPROM, and/or flash memory to be used in conjunction with the volatile memory 326. The size of the ROM is typically selected to be just large enough to store any necessary operating system, application programs, and fixed data. Additionally, the non-volatile memory 328 may include a high capacity memory such as a tape or disk drive memory.

The memory device 10 and volatile memory 326 may store various types of software, such as an operating system or office productivity suite including a word processing application, a spreadsheet application, an email application, and/or a database application.

While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.

What is claimed is:
1. A system comprising:
an electronic device comprising:
a data location of an array of data locations;
a delta-sigma modulator coupled to the data location; and
a reference current source comprising a reference device, wherein the reference current source is configured to compensate for an effect of temperature changes of the data location, wherein the reference current source is configured to supply a reference current, to the delta-sigma modulator and the reference device, for use in determining a data value stored in the data location.

2. The system of claim 1, wherein the reference current source comprises:
a current mirror with a first side coupled to the delta-sigma modulator; and
a floating gate transistor coupled to a second side of the current mirror.

3. The system of claim 2, wherein the reference current source comprises parallel floating gate transistors.

4. The system of claim 2, wherein the reference current source comprises a differential amplifier configured to exercise feedback control of a terminal of the floating gate transistor.

5. The system of claim 1, wherein the reference current source comprises a digital-to-analog converter configured to provide the reference current to the delta-sigma modulator.

6. The system of claim 1, comprising:
a system board coupled to the electronic device; and
a processor coupled to the electronic device via the system board.

7. The system of claim 1, wherein the electronic device comprises a memory device.

8. The system of claim 7, wherein the data location comprises a memory element.

9. The system of claim 1, wherein the data location comprises an imaging element.

10. A system comprising:
an electronic device comprising:
a data location;
asensing circuit configured to sense a voltage or current from the data location based upon a comparison of a fixed reference voltage with a bit line voltage generated from the data location; and
a reference current source comprising a reference device, wherein the reference current source is configured to provide a reference current to the sensing circuit and the reference device.

11. The system of claim 10, wherein the reference current source is configured to track a temperature response of the data location and compensate for the temperature response.

12. The system of claim 10, wherein the reference current source is configured to counteract a temperature induced variation in the data location.

13. The system of claim 10, wherein the reference device is substantially the same type of device as the data location.

14. The system of claim 10, wherein the data location comprises a floating gate transistor.

15. The system of claim 10, wherein the sensing circuit comprises a delta-sigma modulator.

16. The system of claim 10, wherein the reference current source comprises a current mirror.

17. A system comprising:
an electronic device comprising:
a data location;
asensing circuit configured to sense a voltage or current from the data location based upon a comparison of a fixed reference voltage with a bit line voltage generated from the data location; and
a reference current source comprising a reference device and a current mirror, wherein the reference current source is configured to provide a reference current to the sensing circuit and the reference device.

18. The system of claim 17, wherein the reference current source is configured to track a temperature response of the data location and compensate for the temperature response.

19. The system of claim 17, wherein the reference current source is configured to counteract a temperature induced variation in the data location.

20. The system of claim 17, wherein the reference device comprises a same type of device as the data location.

21. The system of claim 17, wherein the reference current source is configured to supply the reference current to the sensing circuit for use in determining a data value stored in the data location.

22. The system of claim 17, wherein the reference device comprises two reference devices arranged in parallel.

23. The system of claim 17, wherein the reference current source comprises:
a differential amplifier having an output, an input coupled to the reference device, and another input coupled to the fixed reference voltage; and
a transistor having one terminal connected to the current mirror, another terminal connected to the reference device, and a gate coupled to the output of the differential amplifier.